
© The Author 2011. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 7 August 2011 doi:10.1093/comjnl/bxr077

Orange4WS Environment
for Service-Oriented Data Mining

Vid Podpečan
1
, Monika Zemenova

2
and Nada Lavrač

1

1Jožef Stefan Institute, Ljubljana, Slovenia
2IZIP Inc., Prague, Czech Republic

∗Corresponding author: vid.podpecan@ijs.si

Novel data-mining tasks in e-science involve mining of distributed, highly heterogeneous data and
knowledge sources. However, standard data mining platforms, such as Weka and Orange, involve
only their own data mining algorithms in the process of knowledge discovery from local data sources.
In contrast, next generation data mining technologies should enable processing of distributed data
sources, the use of data mining algorithms implemented as web services, as well as the use of
formal descriptions of data sources and knowledge discovery tools in the form of ontologies, enabling
automated composition of complex knowledge discovery workflows for a given data mining task. This
paper proposes a novel Service-oriented Knowledge Discovery framework and its implementation
in a service-oriented data mining environment Orange4WS (Orange for Web Services), based on
the existing Orange data mining toolbox and its visual programming environment, which enables
manual composition of data mining workflows. The new service-oriented data mining environment
Orange4WS includes the following new features: simple use of web services as remote components
that can be included into a data mining workflow; simple incorporation of relational data mining
algorithms; a knowledge discovery ontology to describe workflow components (data, knowledge and
data mining services) in an abstract and machine-interpretable way, and its use by a planner that
enables automated composition of data mining workflows. These new features are showcased in three

real-world scenarios.

Keywords: data mining; knowledge discovery; knowledge discovery ontology; e-science workflows;
automated planning of data mining workflows

Received 20 December 2010; revised 30 May 2011
Handling editor: Yannis Manolopoulos

1. INTRODUCTION

Fast-growing volumes of complex and geographically dispersed
information and knowledge sources publicly available on the
web present new opportunities and challenges for knowledge
discovery systems. Principled fusion and mining of distributed,
highly heterogeneous data and knowledge sources requires the
interplay of diverse data processing and mining algorithms,
resulting in elaborate data mining workflows. If such data
mining workflows were built on top of a service-oriented
architecture, the processing of workflow components (e.g.
data mining algorithms) can be distributed between the user’s
computer and remote computer systems. Therefore, as the
use of data mining algorithms (implemented as services) is
no longer limited to any particular data mining environment,
platform or scenario, this can greatly expand the domains
where data mining and knowledge discovery algorithms can

be employed. As an example, state-of-the-art data mining and
knowledge discovery methods can become widely available
in bioinformatics, business informatics, medical informatics
and other research areas. Moreover, existing domain-specific
services can become seamlessly integrated into service-oriented
data mining environments.

There is another important aspect that makes data mining
difficult for non-expert users. While the mutual relations of
specialized algorithms used in the workflows and principles of
their applicability are easily mastered by computer scientists,
this cannot be expected from all end-users, e.g. life scientists.
A formal capture of the knowledge of data mining tasks,
and input–output characteristics of data mining algorithms
is thus needed, which can be captured in the form of
ontologies of relevant services and knowledge/data types,
to serve as a basis for intelligent computational support in

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Orange4WS Environment for Service-Oriented Data Mining 83

knowledge discovery workflow composition. A formal capture
of knowledge discovery tasks can then be used to improve
repeatability of experiments and to enable reasoning on the
results to facilitate their reuse.

This paper proposes a novel Service-oriented Knowledge
Discovery (SoKD) framework, and its implementation that
address the challenges discussed earlier. Building such a
framework has been recognized as an important aspect of
third-generation data mining [1]. A practical implementation of
the proposed third-generation knowledge discovery platform,
named Orange4WS (Orange for Web Services), has been
conceived as an extension of the existing data mining platform
Orange [2].

The third-generation data mining paradigm shift implies the
need for a substantially different knowledge discovery platform,
aimed at supporting human experts in scientific discovery
tasks. In comparison with the current publicly available data
mining platforms (best known examples being Weka [3],
KNIME [4], RapidMiner [5] and Orange [2]), the Orange4WS
platform provides the following new functionalities: (a) user-
friendly composition of data mining workflows from local
and distributed data processing/mining algorithms applied to
a combination of local and distributed data/knowledge sources,
(b) simplified creation of new web services from existing
data processing/mining algorithms, (c) a knowledge discovery
ontology of knowledge types, data mining algorithms and
tasks and (d) automated construction of data mining workflows
based on the specification of data mining tasks, using the data
mining ontology through an algorithm that combines planning
and ontological reasoning. This functionality is based on—
and extends—a rich collection of data processing and mining
components as well as data and information sources provided
by local processing components as well as remote web services.

While each individual extension of the existing data
mining technologies is not scientifically ground-breaking, the
developed Orange4WS environment as a whole is a radically
new data mining environment from many perspectives. From the
machine learning and data mining perspective, the uniqueness of
this platform is in the incorporation of propositional data mining
as well as relational data mining algorithms (implemented in
Prolog) in a unique data mining framework. On the other hand,
from the Artificial Intelligence perspective, a unique feature
of the proposed SoKD framework is the use of the developed
knowledge discovery ontology of data types and data mining
algorithms for automated data mining workflow construction
using a fast-forward planning algorithm. From the e-Science
perspective, Orange4WS substantially improves the existing
environments that support manual construction of scientific
workflows (such as Taverna [6] and Triana [7]) by incorporating
advanced propositional and relational data mining algorithms
as well as by supporting automated workflow construction.
Finally, from the web services perspective, simplified creation
of new web services from existing data processing/mining
algorithms is a valuable extension of existing web-service-based

environments. In the presented work, some of these unique
features of Orange4WS are show-cased in three complex data
mining scenarios, presented in Section 6.

The paper is structured as follows. Section 2 presents
a motivating use case for developing and using a service-
oriented knowledge discovery platform. Section 3 presents
our approach to developing a novel SoKD framework and its
implementation that upgrades the existing data mining system
Orange into a new SoKD platform Orange4WS.1 Sections 4
and 5 upgrade the implemented solution by introducing a
knowledge discovery ontology of annotated types of data and
knowledge resources, data mining algorithms and data mining
tasks, and a facility for automated data mining workflow
planning based on these annotations. Section 6 presents three
use cases illustrating the advantages of the new platform. The
Weka use case in Section 6.1 demonstrates that Weka algorithms
can easily be integrated as services into the Orange4WS
platform. The relational data mining use case in Section 6.2
shows how to combine propositional and relational data
preprocessing and mining algorithms in a single environment.
Section 6.3 illustrates a complex systems biology use case,
which combines (a) a complex relational subgroup discovery
system SEGS that uses biological ontologies and background
knowledge for learning, and (b) a complex reasoning and
visualization environment Biomine that includes data from
numerous biological databases. Section 7 presents the related
work. Section 8 concludes with a summary and plans for
further work.

2. A SAMPLE TEXT MINING USE CASE

This section presents a motivating use case for developing
and using a service-oriented knowledge discovery platform,
including a user-friendly workflow editor. The use case is built
upon text mining web services, available from LATINO2 text
mining library, which provides a range of data mining and
machine learning algorithms, with the emphasis on text mining,
link analysis and data visualization.

The goal of this use case is to produce a compact and
understandable graph of terms, which could potentially give
insights into relations between biological, medical and chemical
terms, relevant to the subject of a user-defined query.A manually
constructed Orange4WS workflow of processing components is
shown in Fig. 1.

The use case demonstrates the need for a service-
oriented platform able to combine publicly available data
repositories (PubMed) with third-party data analysis tools
(LATINO), specialized algorithms (Pathfinder) and powerful
local visualization components (Orange graph visualizer).

1The Orange4WS software environment is available under the GPL licence
at http://orange4ws.ijs.si.

2http://sourceforge.net/projects/latino.

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://orange4ws.ijs.si
http://sourceforge.net/projects/latino
http://comjnl.oxfordjournals.org/


84 V. Podpečan et al.

FIGURE 1. An Orange4WS workflow of text mining services in the Orange workflow execution environment. Components numbered 3, 4, 5, 6,
7, 8 and 10 are web services; components 1, 2 and 9 are Orange4WS supporting widgets; components 11 and 12 are instances of the native Orange
graph visualizer.

PubMed search web services is queried with a user-defined
query string and a parameter defining the maximal number
of documents returned (components 1, 2 and 3). It returns a
collection of IDs of relevant documents. Then, the obtained
IDs are used to collect titles, abstracts and keyword of these
documents (component 4). Next, bag-of-words (BoW) sparse
vectors are created from the collection of words (component 6).
To simplify the setting of parameters for unexperienced users,
there is a service providing a suitable set of default values
that can be used as an input to the web service that constructs
BoW vectors (component 5). BoW vectors are then transposed
(component 7) and a network of words/terms is created
(component 8) in the .net format of the well-known Pajek social
network analysis tool.3 The resulting graph of terms in the .net
format is then transformed into Orange’s native data structure
for representing graphs (component 9), and simplified using a
sparse variant of the Pathfinder algorithm that is implemented as
a web service (component 10). Finally, the original and pruned
graph are visualized using the Orange’s native Network
explorer (components 11 and 12).

This Orange4WS workflow, implementing a complex text
mining scenario, was designed and constructed manually in
the Orange’s user-friendly workflow editor. In Section 5,
we will demonstrate how this workflow can be constructed
automatically using a workflow planner and an ontology, which

3User manual of the Pajek software tool for the analysis and visualization
of large social networks is available at http://pajek.imfm.si/doku.php.

provides information about workflow operators and their input
and output knowledge types.

3. THE ORANGE4WS PLATFORM

This section briefly describes the structure and design of the
proposed software platform. We explain and comment our
decisions concerning the selection of technologies and software
tools used. The main part of this section describes the design
of the Orange4WS platform and the accompanying toolkit for
producing new web services.

3.1. Technological background

Our goal was to develop a simple, user-friendly software
platform that is able to seamlessly integrate web services
and local components in terms of workflow composition,
originating from different communities (propositional data
mining, relational data mining, text mining, systems biology,
etc.), including also a knowledge discovery ontology to support
the automatization of workflow construction.

The proposed software platform, named Orange4WS,
is built on top of two open-source scientific-community-
driven projects: (a) the Orange data mining framework [2]
that provides a range of preprocessing, modeling and data
exploration techniques and a user-friendly workflow execution
environment, and (b) the Python Web Services project4 (more

4http://pywebsvcs.sourceforge.net/.

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://pajek.imfm.si/doku.php
http://pywebsvcs.sourceforge.net/
http://comjnl.oxfordjournals.org/


Orange4WS Environment for Service-Oriented Data Mining 85

specifically, the Zolera SOAP infrastructure) that provides
libraries for the employment and development of web services
using the Python programming language by implementing
various protocols, including SOAP, WSDL, etc.

In contrast with other freely available workflow environments
such as Weka, Taverna, Triana, KNIME, RapidMiner, etc., the
Orange4WS framework offers a rather unique combination of
features: (a) a large collection of data mining and machine
learning algorithms, efficiently implemented in C++ (Orange
core); (b) a three-layer architecture: C++, Python, as well
as Orange and Orange4WS Widgets; (c) a collection of
very powerful yet easy to use data visualization widgets;
(d) incorporation of propositional as well as selected relational
data mining algorithms, (e) simplicity of workflow composition
in the Orange canvas and (f) automated workflow construction
using a knowledge discovery ontology and a planner. Moreover,
by using an interpreted high-level programming language
(Python), it is possible to avoid the compile-test-recompile
development cycle. Also, high-level interpreted languages
are a perfect choice for rapid software development using
emerging web technologies such as RESTful web services5 or
WEB APIs.6

3.2. Platform design

Apart from the Orange core in C++ and its interface to the
Python programming language, the Orange framework enables
visual programming achieved by graphically composing
processing components into workflows. Workflows are—
essentially—executable visual representations of complex
procedures. They enable repeatability of experiments as they
can be saved and reused. Moreover, workflows make the frame-
work suitable also for non-experts due to the representation of
complex procedures as sequences of simple steps.

Workflow construction in Orange is supported by the Orange
Canvas, an interactive graphical user interface component.
It enables graphical construction of workflows by allowing
workflow elements called Orange Widgets to be positioned in
a desired order, connected with lines representing flow of data,
adjusted by setting their parameters and finally executed.

An Orange Widget is defined by its inputs, outputs and the
graphical user interface. Inputs and outputs are defined by the
so-called typed channels, which specify the name of the channel,
multiplicity (inputs only), data type, and a handler function
(inputs only), which is invoked when the input data are available.
For example, one of the most common inputs (outputs) is the
Orange ExampleTable, a data structure used to store tabular
and/or sparse data.

5A RESTful web service is a simple web service implemented using HTTP
and the principles of REST [8].

6A Web API is a defined set of HTTP request messages along with a
definition of the structure of response messages, most commonly expressed
in JSON or XML.

Orange4WS extends and upgrades Orange on three levels.
First, it provides tools that ease the employment of web services
from the Python interpreter. Second, it upgrades the Orange
Canvas with the ability to use web services as workflow
components. Note that this level also provides a number of
local Orange4WS widgets that are required for web service
integration such as data transformation, data serialization
and deserialization etc. Third, it enables automatic workflow
construction by integrating a knowledge discovery ontology and
a planner.

The functionality of Orange4WS is provided by several
components (modules). The most important modules are: web
service widget code generator, web service types extractor,
web services stubs importer and the subsystem for automated
workflow construction. The latter offers a number of supporting
modules and functions as well as a general knowledge discovery
ontology (KD ontology) that enables automated workflow
planning. A high-level overview of the design of Orange4WS
showing the main components and their interaction is shown in
Fig. 2. The structure of the subsystem for automated workflow
planning is discussed in more details in Section 5.

The Web service stubs importer module pro-
vides the base functionality that is required by the majority of
other components. It dynamically loads web service consumer
classes (web service client) generated by the Zolera SOAP
infrastructure library using the provided link to the WSDL
description of the service. These classes provide a high-level
access to all methods provided by a given SOAP web service.

FIGURE 2. The structural design of the Orange4WS platform. A
more detailed structure of the workflow planner component is shown
in Fig. 8.

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


86 V. Podpečan et al.

The role of the Web service types extractor
module is to extract all type information for a given web service
client instance, which was imported by the Web service
stubs importer module. All web service functions and
their input and output parameters are analyzed in a recursive
manner, and full type as well as multiplicity7 information is
extracted. Simple data types are mapped to equivalents from the
Python language, while complex types are mapped to objects,
respectively.

The Web service widget code generator imple-
ments one of the main functionalities of Orange4WS: fully
automated creation of widgets from web services. It relies
on the modules, described earlier, to import generated web
service consumer code and to define web service widget’s inputs
and outputs according to the extracted types. For a given web
service, a widget is generated for each of its methods, and
each input (output) parameter of a given method is mapped to
one input (output) typed channel. Every web service widget
is a subclass of the BaseWebServiceWidget class that
takes care of the execution of the corresponding method, error
detection and reporting, user notification, etc.

Since the main design goals of Orange4WS are simplicity
and automatization, all technical details of creating new
Orange4WS widgets from web services are summarized as
a single user-interface command import web service.
It invokes the web service widget code generator, which
implements all required steps to enable access to the
web services through a collection of Orange4WS widgets
representing its methods. The details of actual invocation of
a given web service method are thus hidden and can be
summarized from the user’s perspective as a normal widget
operation: (1) receiving data, (2) widget internal processing and
(3) outputting processed data. Essentially, the Orange Canvas
is not aware of a non-local nature of web service widgets.
Such simplicity is essential as the platform is intended to
be used by scientists from very different domains, including
bioinformatics, natural language processing, etc.

3.3. Composition and execution of workflows

One of the most important features of Orange, also inherited
by Orange4WS, is an easy-to-use interactive workflow
construction in Orange Canvas. Workflows components
(widgets) represented with icons can be dragged to the
appropriate position on the Canvas, while their inputs and
outputs can be connected visually by drawing lines. The
Signal manager, Orange’s main workflow management
component, enables or disables the connectivity of inputs and
outputs according to their types. It also prevents the user from
creating loops while connecting widgets by detecting cycles
in the corresponding directed graph. If a widget supports the

7Parameter multiplicity can be one of the following: required (1..1),
optional (0..1), zero or more (0..*), one or more (1..*).

adjustment of its parameters, this can be done from widget’s user
interface, which can also enable data and results visualization
as well as other interactive features. Finally, a constructed
workflow can be saved into an XML format that corresponds to a
predefined XML schema. This ensures repeatability of scientific
experiments as well as user collaboration.

Orange4WS extends the manual composition of workflows
in Orange with the ability to construct workflows automatically.
Automated workflow construction is treated as a planning
task where available workflow components represent operators
while their input and output knowledge types represent
preconditions and effects. The Workflow planner that is
used to discover workflows satisfying the specified knowledge
discovery task queries the developed knowledge discovery
ontology where the available operators are annotated. The
discovered workflows are available in the Orange’s XML
format, and can be loaded, instantiated and executed in
Orange4WS. Section 5 discusses this feature of Orange4WS
in details.

Orange’s approach to workflow execution differs from
the conventional workflow execution engines [9]. Because
Orange workflows tend to be simple and as interactive as
possible, the execution is provided on per-widget basis. As
such, workflow components are treated as standalone steps
in interactive analysis of data. Essentially, Orange does not
provide a central workflow execution engine. Instead, the
decision on how and when a widget is to be executed
is left to the widget itself. Widgets are basically GUI
wrappers around data analysis and visualization algorithms [2]
implemented in Orange (note that Orange4WS extends Orange
with web service widgets). In comparison with the Taverna
workflow management system [10], this allows for rich and
complex workflow components enabling user interaction and
visualizations but also decreases the overall complexity of
workflows (note that this is a well-known tradeoff between
the complexity of workflows and the complexity of their
components).

Essentially, there are two types of widgets: flow-through
widgets and on-demand widgets. Flow-through widgets are
executed as soon as all required input data are available. On
the other hand, on-demand widgets are executed only when the
user request their execution (all required input data must also
be present). This type of execution is usual in the case of rich
and complex widgets that require user interaction prior to the
actual execution.

Orange4WS workflows are executed in the same manner as
Orange workflows only with the following differences. First,
Orange4WS provides components that simulate unconditional
looping. The Emitor and Collector widgets enable
processing of data sequences by emitting unprocessed data
and collecting the results, respectively. Second, unlike Orange
where the majority of widgets are of the on-demand type,
all auto-generated Orange4WS web service widgets are
flow-through. This corresponds to the base principle of

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Orange4WS Environment for Service-Oriented Data Mining 87

service-oriented design according to which a web service should
encapsulate only one well-defined functionality that should not
require complex user interaction. However, using the supporting
modules and tools Orange4WS provides, any kind of web
service widget can be developed. For example, an on-demand-
type web service widget with progress polling was developed
to interact with the computationally complex web service
implementing the SEGS algorithm [11] (Section 6.3 discusses
this service in more detail). Finally, the actual flow of data in
Orange4WS workflows depends on the types of web services.
In the case of location unaware web services, the results of
the execution are always sent back to the caller (Orange4WS),
while in the case of location aware web services,8 Orange4WS
only coordinates the execution while the actual data are not
transmitted.

3.4. Creation of new web services

A separate part of our service-oriented knowledge discovery
platform, also shown in Fig. 2 as the Web service server tools
component, is a package of tools that ease the creation of new
web services. These tools closely follow the general WSDL first
design principle [12]. This principle promotes clearly designed,
interoperable and reusable services by separating the design of
interfaces from the actual logic. Essentially, our tools extend the
Python language framework by using the Python Web Services
package, enhanced with multiprocessing capabilities, security,
logging and other related functionalities. By using these tools,
any code can easily be transformed into a SOAP web service and
used as an ingredient for Orange4WS workflow composition
(or in any other workflow environment capable of using web
services). Moreover, the provided tools support the creation
of simple request/response stateless services as well as more
complex batch (job) processing services, which can be used for
time-consuming server-side processing. Such batch processing
services also store results which can be retrieved later.

We have successfully created web services for the Relational
subgroup discovery algorithm [13] implemented in Prolog.
As a result, this relational data mining algorithm is available
as a processing component in a propositional workflow-
enabled environment. Also, the SEGS algorithm [11], a
highly computationally complex rule discovery algorithm that
uses biological ontologies as background knowledge, was
transformed into a web service that greatly improved its
processing capability, availability and also its ontology update
mechanisms, which are now automated. Section 6 provides
more details on these web services.

4. KNOWLEDGE DISCOVERY ONTOLOGY

To enrich the proposed knowledge discovery platform with
semantics, we have developed the Knowledge Discovery

8Location aware web services only exchange references to the actual data
that are usually stored on shared data storage resources.

ontology (the KD ontology, for short). The ontology defines
relationships among the components of knowledge discovery
scenarios, both declarative (various knowledge representations)
and algorithmic. The primary purpose of the KD ontology
is to enable the workflow planner to reason about which
algorithms can be used to produce the results required by a
specified knowledge discovery task and to query the results of
knowledge discovery tasks. In addition, the ontology can also be
used for automated annotation of manually created workflows
facilitating their reuse.

An illustrative part of the top-level structure of the ontology
is shown in Fig. 3. The three core concepts are: Knowledge,
capturing the declarative elements in knowledge discovery;
Algorithm, which serves to transform knowledge into
(another form of) knowledge; Knowledge discovery
task, which describes a task that the user wants to perform
mainly by specifying the available data and knowledge sources
and the desired outputs. The ontology is implemented in
semantic web language OWL-DL.9 The primary reasons for
this choice were OWL’s sufficient expressivity, modularity,
availability of ontology authoring tools and optimized
reasoners. The core part of the KD ontology currently contains
around 150 concepts and 500 instances and is available online.10

The structure of workflows is described using OWL-S.11

In the following sections, we describe Knowledge and
Algorithm concepts in more detail and provide information
on the annotation of algorithms available locally in the
Orange4WS toolkit and in the LATINO library.

4.1. Knowledge

All the declarative components of the knowledge discovery
process such as datasets, constraints, background knowledge,
rules, etc. are instances of the Knowledge class. In data
mining, many knowledge types can be regarded as sets of
more elementary pieces of knowledge [14], e.g. first-order logic
theories consist of formulas. This structure is accounted for
through the property contains, so e.g. a first-order theory
contains a set of first-order formulas.

Moreover, some knowledge types may be categorized
according to the expressivity of the language in which they
are encoded. For this purpose, we have designed a hierarchy
of language expressivity (see Fig. 3, Expressivity). We
further distinguish knowledge types that play special roles
in knowledge discovery, e.g. the Dataset class, defined as
Knowledge, that contains Examples. Expressivity can
also be defined for datasets to distinguish between propositional
datasets and relational datasets.

All the other types of knowledge such as pattern sets, models
and constraints are clustered under the class NonLogical-

9http://www.w3.org/TR/owl-semantics/.
10http://krizik.felk.cvut.cz/ontologies/2008/kd.owl.
11http://www.w3.org/Submission/OWL-S/.

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://www.w3.org/TR/owl-semantics/
http://krizik.felk.cvut.cz/ontologies/2008/kd.owl
http://www.w3.org/Submission/OWL-S/
http://comjnl.oxfordjournals.org/


88 V. Podpečan et al.

FIGURE 3. Part of the top level structure of the KD ontology (the whole ontology contains more than 150 concepts and 500 instances). Subclass
relations are shown through solid arrows. The relation between KnowledgeDiscoveryTask and Workflow, shown through a dashed arrow,
is defined as forTask relation. The Workflow class is a specialization of the OWL-S class CompositeProcess. The Algorithm class is
a specialization of the OWL-S class Process, while the NamedAlgorithm class is a specialization of the OWL-S class AtomicProcess.
The top-level classes shown in bold are subclasses of the predefined OWL class Thing.

Knowledge. It contains concept Generalization, which
describes knowledge produced by data mining algorithms. The
Generalization class currently contains two subclasses,
Patternset and Model which can be distinguished by the
property of decomposability and also by the type of algorithms
used to produce them.

4.2. Algorithms

The notion of an algorithm involves all executable routines
used in a knowledge discovery process, ranging from induc-
tive algorithms to knowledge format transformations. Any
algorithm turns a knowledge instance into another knowl-
edge instance, e.g. inductive algorithms will typically produce
a Generalization instance out of a Dataset instance.
The Algorithm class is a base class for all algorithms,
such as the APriori algorithm for association rule induc-
tion implemented in Orange or the GenerateBows algorithm
implemented in the LATINO text mining library for con-
structing the bag of words representation of a collection of
documents. For this work, we have refined the hierarchy of
fully defined classes, such as DecisionTreeAlgorithm
or DataPreprocessingAlgorithm for fine-grained cat-
egorization of data mining algorithms according to their func-
tionality. This fine-grained hierarchy allows for the formulation
of additional user constraints on the workflows. For example,
constraints can refer to some particular category of data mining
algorithms, e.g. DiscretizationAlgorithm, Format
ChangingAlgorithm, ClusteringAlgorithm, etc.

Each algorithm configuration is defined by its input and
output knowledge specifications and by its parameters. The
Algorithm class is a specialization of the OWL-S class

Process and an algorithm configuration is an instance of its
subclass NamedAlgorithm.12 Both the input knowledge and
the parameters are instances of AlgorithmParameter and
are defined using the input property. The output knowledge
specifications are instances of AlgorithmParameter and
defined using the output property. The parameter instances
are then mapped to the appropriate Knowledge subclasses
using the isRangeOf property.

4.3. Annotating algorithms

The KD ontology was used to annotate most of the algorithms
available in the Orange toolkit. More than 60 algorithms
have been annotated so far. We have also annotated the
components of the LATINO text mining library according to
their WSDL descriptions, using the approach described by
Kalyanpur et al. [15]. As an example, we present a definition of
the GenerateBows algorithm. GenerateBows is defined
as an algorithm that can be applied to a collection of documents
and produces a bag of words representation of these documents.
The settings are quite complex; therefore, they are provided
as a single input object. The definition in the description logic
notation using the extendedABox syntax [16] is shown in Fig. 4.

The locally available Orange4WS algorithms were annotated
manually, since no systematic description of these algorithms,

12The DataMiningAlgorithm class represents categories of data
mining algorithms, e.g. subgroup discovery algorithm or decision tree
induction algorithms, while the NamedAlgorithmClass represents
concrete algorithms, such as CN2 for subgroup discovery or C4.5 for decision
tree algorithms.

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Orange4WS Environment for Service-Oriented Data Mining 89

FIGURE 4. A definition of the GenerateBows method in the
description logic notation using the extended ABox syntax.

e.g. in PMML13 or WSDL14 was available. The algorithms
available in LATINO were also annotated manually based on
their WSDL descriptions. The annotated algorithms also served
as case studies to validate and extend the KD ontology, while
the development of a procedure for semi-automatic annotation
is a subject of future work.

5. AUTOMATED WORKFLOW CONSTRUCTION

The focus of this section is on automatic construction of
abstract workflows of data mining algorithms. The mapping
to concrete computational resources, particular data sets and
algorithm parameters are not taken into account during abstract
workflow construction. Each generated workflow is stored as an
instance of the Workflow class and can be instantiated with
a specific algorithm configuration either manually or using a
predefined default configuration. We treat automatic workflow
construction as a planning task, in which algorithms represent
operators, and their input and output knowledge types represent
preconditions and effects. However, since the information about
the algorithms, knowledge types and the specification of the
knowledge discovery task is encoded through the KD ontology,
we implemented a planning algorithm capable of directly
querying the KD ontology using the Pellet15 reasoner. The
main motivation for using Pellet was its ability to deal with
literals, its availability in Protégé,16 which we used for ontology
development, and processing of SPARQL-DL [17] queries.

Our work was originally motivated mainly by complex
relational data mining tasks, where the number of alternative
workflows, which can be produced, is quite small, due to use
of complex knowledge types and specialized algorithms [18].
This is also the case for the motivating text mining scenario
from Section 2. The LATINO web services, which were
annotated as specified in Section 4.3, can now be used
in the process of automated workflow construction. Our
planner was able to automatically (re)construct the workflow,
presented in Section 2, according to the given instance of
KnowledgeDiscoveryTask that specified the input data

13http://www.dmg.org/pmml-v4-0.html.
14www.w3.org/TR/wsdl.
15http://clarkparsia.com/pellet/.
16http://protege.stanford.edu/.

and the desired output. Note, however, that the Pathfinder
algorithm is not present in the automatically generated
workflow, as the corresponding web service is not yet annotated
in the KD ontology. Figure 5 shows the automatically generated
abstract workflow for the text mining scenario as well as an
executable instantiation of the same workflow in the Orange
Canvas inside Orange4WS.

As we have extended the KD ontology with annotations of
algorithms available in the Orange and Orange4WS toolkits, we
encountered the problem of having sets of algorithms, which—
on the basis of their inputs and outputs—subsume each other
or are even equivalent. For tasks such as inducing association
rules from a propositional dataset, this led to producing a large
number of workflows, a lot of which were very similar. In this
work, we alleviate this problem by exploiting the algorithm
subsumption hierarchy.

5.1. Exploiting algorithm hierarchy

The planning algorithm used to generate abstract workflows
automatically is based on the Fast-Forward (FF) planning
system [19]. We have implemented the basic architecture of
the FF planning system consisting of the enforced hill climbing
algorithm and the relaxed GRAPHPLAN. Since the planning
problem in workflow construction contains no goal ordering, no
mechanisms for exploiting goal ordering were implemented.

The planner obtains neighboring states during enforced hill-
climbing by matching preconditions of available algorithms
with currently satisfied conditions. Each matching is conducted
during the planning time by posing an appropriate SPARQL-
DL query to the KD ontology. In the original version of
the planner [18], there are no mechanisms for exploiting the
algorithms hierarchy. In this work, we have enhanced the
algorithm in two ways: a hierarchy of algorithms based on
defined classes and input/output specifications is computed,
and in searching for neighboring states the planner exploits the
algorithm hierarchy.

A hierarchy of algorithms is inferred before the actual
planning. It needs to be recomputed only when a new algorithm
is added to the ontology. The hierarchy of algorithms is based
on the inputs and outputs of the algorithms and on the defined
algorithm classes such as PreprocessingAlgorithm. It
holds that Aj � Ai if for every input Iik of Ai there is an input
Ijl of algorithm Aj such that range of Iik � Ijl . An algorithm
Ai ≡ Aj if Aj � Ai and Ai � Aj . The subsumption relation
on algorithms is used to construct a forest of algorithms with
roots given by the explicitly defined top-level algorithm classes,
e.g. DataPreprocessingAlgorithm.

The planning algorithm was adapted so that in the search
for the next possible algorithm, it traverses the forest structure
instead of only a list of algorithms and considers a set
of equivalent algorithms as a single algorithm. Currently,
only constraints on repetition of some kind of algorithms
(defined by a class or set of classes in the KD ontology)

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://www.dmg.org/pmml-v4-0.html
http://clarkparsia.com/pellet/
http://protege.stanford.edu/
http://comjnl.oxfordjournals.org/


90 V. Podpečan et al.

FIGURE 5. A schema of automatically generated abstract workflow and its executable instantiation in the Orange4WS environment. The underlying
knowledge discovery task is a text-mining scenario of Section 2 for the analysis of a graphs of terms, obtained by querying the PubMed database
using a publicly accessible web service.

FIGURE 6. A skeleton of the procedure for automatic workflow
composition using the KD ontology.

in a linear part of the workflow are built into the planner.
Additional constraints on workflows are used only for filtering
the generated workflows during post-processing (procedure
filterWorkflows). Workflows for all the members of an
equivalence set are generated using the expandWorfklows

procedure. The information about algorithms subsumption is
also used when presenting the workflows to the user. The whole
procedure for workflow generation is outlined in Fig. 6.

The generated workflows are presented to the user through
interactive visualization, which enables the user to browse
the workflows from the most abstract level to any specific
combination of algorithm instances. Workflows consisting of
the smallest number of steps are presented first. An example of
a set of workflows generated for discovering association rules
in Orange4WS is shown in Fig. 7.

The set of generated workflows shown in Fig. 7 illustrates the
use of the algorithm hierarchy for workflow presentation. Since
there are four discretization, four sampling, five ranking and six
continuization algorithms, it would be infeasible to present all
the generated workflows without using the algorithm hierarchy.
Automatic selection of a relevant subset of workflows is non-
trivial and is the subject of future work.

FIGURE 7. A set of automatically generated abstract workflows for discovering association rules in Orange4WS.

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Orange4WS Environment for Service-Oriented Data Mining 91

5.2. Integrating annotations and planning into
Orange4WS

We have developed a framework for integrating our method-
ology into the Orange4WS platform, so that the workflows,
which were constructed manually using the Orange4WS GUI
and which contain only algorithms represented in the KD ontol-
ogy, can be automatically annotated using the KD ontology. The
annotated workflows can then be used for querying and reason-
ing. All the information required for the Orange4WS represen-
tation is preserved in the annotation. Therefore, Orange4WS
workflows can be recreated from the annotations and executed
again in the Orange4WS toolkit. On the other hand, workflows
generated by the planner using KD annotations of Orange4WS
algorithms can be converted to the Orange4WS representation
and executed in Orange4WS.

An overview of the framework is shown in Fig. 8. The
Orange2Onto module, which acts as an interface between
Orange4WS and the ontology representation, does not work
directly with the internal representation of Orange4WS, but
works with the OWS format used in the standard Orange
distribution to store workflows in the XML format.

In order to formally capture the mapping between the
internal Orange4WS representation and the representation of
algorithms using the KD ontology, the Orange-Map (OM)
ontology was developed defining templates for mapping of
algorithms, data and parameters. The OM ontology is then used
for converting the automatically generated workflows into the
Orange representation. In order to facilitate the creation of the
mapping for new algorithms, the mapping can be specified using
an XML file. The corresponding instances in the ontology are
then generated automatically.

FIGURE 8. An overview of the framework for integration of
annotations and planning into Orange4WS.

Annotation of a new algorithm available in Orange4WS thus
requires the following steps:

(1) create instances of AlgorithmParameter for all
inputs and outputs;

(2) create an instance of NamedAlgorithm;
(3) for each instance of AlgorithmParameter create

a class defining its range (if not yet defined, add the
necessary subclasses of Knowledge - this should be
required only when a new type of algorithm is added);

(4) create an XML file defining a mapping between the
algorithm representation in Orange and in the KD
ontology;

(5) generate a mapping using the OM ontology by means
of the provided tools.

Annotations of Orange4WS workflows containing algorithms
not annotated using the KD ontology can also be created
automatically. The missing information about input/output
types of the algorithms is then either deduced from the links
with annotated algorithms or considered to be a form of
Knowledge expressed as a string. The annotations of such
workflows can therefore be used for querying and for repeating
the experiments; however, the generated annotation of the
unknown algorithm is not suitable for planning.

The procedures for converting the Orange4WS representation
to OWL and vice versa were implemented in Python using
JPype17 cross-language bridge to enable access to the Jena18

ontology API implemented in Java.

6. USE CASES ILLUSTRATING THE UTILITY OF
ORANGE4WS

This section presents three use cases from different domains,
which illustrate some of the capabilities of the Orange4WS
implementation. The presented workflows were not constructed
automatically since not all workflow components and services
were annotated in the KD ontology. Although the use cases
presented here are simple, they give an overview of what our
implementation is capable of, and illustrates the potential of
web services technology for knowledge discovery.

6.1. Use case illustrating the availability of WEKA
algorithms

A data mining practitioner would ideally like to have all the
standard data mining algorithms at his disposal. While some
of these are already provided in the Orange data mining
toolkit19 [2], data mining practitioners might also like to have

17http://jpype.sourceforge.net/.
18http://jena.sourceforge.net/.
19Implementations of classic data mining algorithms in Orange typically

include several improvements, but some additions are not well documented,
which is undesirable.

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://jpype.sourceforge.net/
http://jena.sourceforge.net/
http://comjnl.oxfordjournals.org/


92 V. Podpečan et al.

the classical Weka algorithms [3] available as well. Workflow
tools, which are based on the Java technology (e.g. KNIME,
RapidMiner, Taverna), typically include the Weka core (i.e.
algorithm implementations), and manually written wrappers.
In Orange4WS, this is simply achievable through Weka web
services already available on the internet, or created with our
tools described in Section 3.4. The advantage of a web-service-
based approach is twofold. First, through web services, the
computation is distributed among servers hosting the services.
Second, the latest versions of underlying software libraries are
provided automatically to all clients given that the services are
updated regularly.

A collection of Weka web services has been made
available by A. Bosin.20 There are eight services available:
atributeRank, attributeSelect, datasetFil-
ter, datasetDiscretize, modelTest, modelApply,
classifierBuild and clustererBuild. Although
these services currently have poor semantics (they operate
using string representations of native WEKA data types), major
functionality of Weka is available (attribute evaluation, data
filtering, model building and testing) and can be used in the
construction of data mining workflows.

This simple but illustrative use case implements the following
processing steps: (1) loading the data from a local file, (2)
ranking of attributes to manually select few best, (3) partitioning
the data into the training and testing set, (4) building a classifier
and evaluating it on the test set and (5) reporting the results to the
user. This is accomplished by connecting 16 processing entities,
6 of which are web services, 3 are native Orange widgets while
the rest are the supporting widgets provided by Orange4WS
(data transformation and creation of integral data types). Note,
however, that annotating the semantics of these services would
enable reasoning and automatic planning of such workflows,
and incorporation into larger and more complex scenarios.
The workflow, created and executed within the Orange4WS
platform, is shown in Fig. 9.

For illustrational purposes, we tested the created workflow
with the voting dataset. Seven most important attributes were
chosen and stratified random sampling was used to partition the
data into training (75% of all instances) and test (25% of all
instances) data. Weka’s J48 decision tree induction algorithm
was used to build a decision tree model, which was then applied
to the test data. The modelTestweb service provided Weka’s
model evaluation output, which was finally visualized locally
with a data viewer component.

6.2. Relational data mining use case

This use case is built upon the propositionalization-based
approach to relational subgroup discovery. The implementation
of the relational subgroup discovery algorithm RSD, developed
by Železný and Lavrač [13], is used to illustrate the use

20http://www.dsf.unica.it/∼andrea/webservices.html.

FIGURE 9. A workflow of Weka data mining services and local
processing elements constructed within the Orange4WS platform.
Components number 6, 7, 12, 13, 14, 15 are Weka web services;
components 1, 2, and 5 are native Orange widgets. Other components
are the supporting widgets provided by Orange4WS.

of our platform in a relational data mining scenario. The
input to the RSD algorithm consists of a relational database
containing (a) one main relation defined by a set of ground
facts (training examples), each corresponding to a unique
individual and having one argument specifying the class,
and (b) background knowledge in the form of a Prolog program
including functions, recursive predicate definitions, syntactic
and semantic constraints, defined for the purpose of first-order
feature construction.

Relational data mining and inductive logic programming are
relatively separate research areas from standard propositional
data mining. The main reason is the background of this
research in logic programming, typically requiring a Prolog
execution environment. Also, the data representation formalism
is different (Prolog clauses), and taking into account relational
background knowledge into the learning process requires a
conceptually different approach from propositional learning,
which only accepts tabular data as the input to a data mining
algorithm. Consequently, standard data mining environments
do not deal with relational data mining, and only once a
service-oriented approach is considered, the two data mining
frameworks can be handled within the same data mining
environment.

The implementation of RSD, although efficient and stable,
requires a YAP Prolog interpreter and specific implementation-
related knowledge. Therefore, in order to be used in the
Orange4WS environment, web services were created, which
expose its abilities to the outside world. More specifically, using
our tools for service development described in Section 3.4,
we created a service for propositionalization and rule
induction, respectively. In this use case, however, only the
propositionalization service was used as we combined it
with other, classic propositional data mining algorithms, also
available as services. We employed the CN2-SD subgroup
discovery algorithm [20], the SD algorithm [21], which
implements beam search, and the APRIORI-SD algorithm [22].
It is worth noting that all three implementations are able to

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://www.dsf.unica.it/~andrea/webservices.html
http://comjnl.oxfordjournals.org/


Orange4WS Environment for Service-Oriented Data Mining 93

FIGURE 10. A workflow combining propositionalization of rela-
tional data, feature ranking, and subgroup discovery. Workflow com-
ponents for propositionalization, APRIORI-SD, CN2-SD
and BeamSearch-SD are web services, respectively.

produce results in the PMML21 format, which makes them
compatible with processing components outside Orange4WS.

The workflow of this use case, shown in Fig. 10, is
illustrated on the Trains dataset [23], which is well-known
in the area of relational data mining and Inductive Logic
Programming.Altogether, 125 features were generated from the
given relational data. As this was too much for the APRIORI-
SD algorithm, feature selection was performed to obtain 10
best features (the other two algorithms were able to handle the
complete feature set). For example, the highest ranked feature
f8 is as follows:

f8(Train) :- hasCar(Train,Car),

carShape(Car,rectangle),

carLength(Car,short),

hasSides(Car,not_double).

Two example subgroups (one for each class), that are generated
by the CN2-SD algorithm are shown as follows.

class = eastboundTrain IF f8 = true AND

f82 = false AND

f25 = false AND

f40 = false

class = westboundTrain IF f121 = false AND

f5 = true AND

f62 = false AND

f65 = false

6.3. Complex real-life systems biology use case

This use case is built upon two tools used in systems biology:
the SEGS algorithm [11] and the Biomine system [24]. The
combination of these systems, both of which make use of

21The Predictive Model Markup Language (PMML) is an XML-based
markup language that enables applications to define models related to predictive
analytics and data mining and to share those models between PMML-compliant
applications.

publicly available databases such as GO, Entrez, KEGG,
PubMed, UniGene, OMIM and KEGG, enables novel scenarios
for knowledge discovery from biological data.

In data mining terms, the SEGS (Search for Enriched
Gene Sets) algorithm [11] is a specialized semantic subgroup
discovery algorithm capable of inducing descriptions of groups
of differentially expressed genes in terms of conjunctions
of first-order features constructed from ontological relations
available in public biological ontologies. The novelty of SEGS
is that the method does not only test existing gene sets
for differential expression but it also generates new gene
sets that represent novel biological hypotheses. In short, in
addition to testing the enrichment of individual GO and KEGG
terms, this method tests the enrichment of newly defined gene
sets constructed by the intersection and conjunctions of GO
ontology terms and KEGG pathways.

The two new operators, interact() and intersect(), can yield
to the discovery of gene sets that cannot be found by any other
currently available gene set enrichment analysis software. They
can be formalized as follows. If S is a gene set and ENTREZ is
a database of gene–gene interactions, then the new interacting
geneset INT(S) is defined as

INT(S) = {g : ∃g′ ∈ S : ∃ENTREZ(g, g′)}. (1)

Additionally, if S1 is a term from the molecular function domain
of the GO ontology, and S2 belongs to the cellular component
domain, and S3 belongs to the biological process domain, and K

is a KEGG pathway, then the gene setS defined by the intersect()
operator is constructed as follows:

SS1,S2,S3,K = {g : g ∈ {S1 ∩ S2 ∩ S3 ∩ K}}. (2)

As a result, the SEGS algorithm is able to discover complex
rules that cannot be found by any other gene set enrichment
analysis method or tool.

In the scope of the Biomine project, data from several
publicly available databases were merged into a large graph
(currently, ∼2 million nodes and 7 million edges) and a
method for link discovery between entities in queries was
developed. In the Biomine framework, nodes correspond to
entities and concepts (e.g. genes, proteins, GO terms), and
edges represent known, probabilistic relationships between
nodes. A link (a relation between two entities) is manifested
as a path or a subgraph connecting the corresponding nodes.
The Biomine graph data model consists of various biological
entities and annotated relations between them. Large, annotated
biological data sets can be readily acquired from several
public databases and imported into the graph model in a
relatively straightforward manner. Currently used databases
are: EntrezGene, GO, HomoloGene, InterPro, MIM, STRING,
SwissProt, Trembl and UniProt.

The Biomine project provides the Biomine search web
service (more specifically, a web API based on the HTTP

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


94 V. Podpečan et al.

FIGURE 11. A workflow implementing the knowledge discovery scenario using the SEGS algorithm and the Biomine system. The component for
computing rule distance and the interactive widget for hierarchical clustering are provided by Orange, other components are part of Orange4WS.
The SEGS rule discovery algorithm is available as a SOAP web service while the Biomine search service is based on JSON.

protocol and JSON22), interactive web application and a
powerful platform independent graph visualizer, implemented
as a Java applet. The presented use case employs the Biomine
search web service as well as the graph visualizer, which runs
locally as an Orange4WS widget.

The original implementation of the SEGS algorithm was
transformed into a SOAP 1.1 compatible web service using
our tools described in Section 3.4. This greatly improved its
flexibility and portability since the actual processing is now
performed on more powerful server-side hardware employing
massive parallel processing, and can be accessed from any
workflow tool capable of calling web services. Moreover,
publicly available databases, used by SEGS, can now be
regularly updated by an automated update mechanisms. For
space limitations, we do not provide a complete description
of the SEGS service because it has a lot of input parameters
but rather a short description of the provided functions and
sample results.

As the SEGS algorithm has a large time complexity,
the corresponding web service is designed as a partially
stateful service. The SEGS service is actually a batch
(job) processing service that stores the results of rule
discovery; so they can be retrieved later using an unique
user identifier. Apart from this, no consumer-specific context
is stored or shared, and the invocations have no correlation
to prior interactions. The service is able to report progress,
and stores computed results indefinitely. It offers three
functions: runSEGS, getProgress and getResult. The
getResults function returns constructed rules, evaluated

22JSON is an acronym for JavaScript Object Notation, a lightweight text-
based open standard designed for human-readable data interchange.

with the SEGS’s built-in gene set enrichment tests (currently,
Fisher’s exact test, GSEA and PAGE).

A typical general scenario of knowledge discovery from gene
expression data by using the SEGS algorithm and the Biomine
system consists of the following steps:

(1) raw data preprocessing (normalization, missing values
removal, merging, etc.);

(2) gene ranking (most typically, the Relief ranker or t-test
is used);

(3) rule discovery using the SEGS algorithm;
(4) postprocessing of obtained SEGS rules (e.g. clustering);
(5) employing the Biomine system to discover interesting

links, thus providing insights into the underlying
biological processes.

The presented scenario, implemented as a workflow in the
Orange4WS toolkit, is shown in Fig. 11. It is composed of local
Orange4WS widgets, Orange components (clustering, example
distances computation) and web services (the SEGS algorithm,
Biomine search). First, the data are loaded and parsed, and the
present genes are ranked. Then, the cutoff is applied to remove
genes that seem not be involved in the observed biological
processes. The resulting list of genes is fed to the SEGS
algorithm to discover and evaluate rules composed of GO
ontology terms, KEGG pathways as well as term interactions.
The induced rules (if any) are sent to interactive hierarchical
clustering component. The rules as well as clusters can be
displayed in a user-friendly HTML browser where the user can
select an interesting cluster or individual rule to be sent to the
Biomine system.

The Biomine search web service returns the most reliable
subgraph, which can be visualized using the provided interactive
graph visualizer component. Such graphs offer non-trivial

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


Orange4WS Environment for Service-Oriented Data Mining 95

FIGURE 12. The top three rules describing the class of differentially
expressed genes from a classical acute lymphoblastic leukemia (ALL)
dataset. The rules are composed of terms from the GO ontology and
KEGG pathways.

insights into biological relations that are of interest to domain
experts, and can potentially reveal previously unknown links
(literature search is also included in Biomine).

For illustrative purposes, the presented knowledge discovery
scenario was tested on a sample microarray dataset, a classical
acute lymphoblastic leukemia (ALL) dataset [25]. The top three
rules (according to the P-value obtained by permutation testing)
that describe the class of differentially expressed genes are
shown in Fig. 12. The rules are composed of terms from the
GO ontology and KEGG pathways, respectively.

7. RELATED WORK

This section presents the work related to the key components
of our framework: knowledge discovery domain formalization
for workflow construction and reuse, workflow editing and
execution environment and service-oriented architecture for
knowledge discovery.

Construction of analytic workflows has been the topic of
substantial research and development in the recent years.
The best known systems include the Triana [7] workflow
environment for P2P and Grid containing a system for
integrating various types of middleware toolkits, and the
Taverna [6] environment for workflow development and
execution (primarily used in bioinformatics). However, these
two system currently do not provide means for automatic
workflow construction. Although Triana and Taverna are not
specialized to support data mining tasks, there are projects
aimed to incorporate general data mining components into these
two sotfware systems. In the context of the DataMiningGrid
project [26], which used Triana as a front end, generic and
sector-independent data mining tools and services for the
grid were developed. Similarly, a number of systems biology
related data mining web services have become available in
the myExperiment Virtual Research Environment23 which can
be used in Taverna (or any other tool capable of using web
services).

23http://www.myexperiment.org/

On the other hand, the specialized data mining platforms
Weka [3], KNIME [4], RapidMiner [5] and Orange [2] have
mostly failed to recognize and adopt the web services computing
paradigm, and the need for unification and formalization of
the field of data mining. Currently, only RapidMiner offers
some support for service-oriented computing through the Web
Extension component, while none integrates an ontology of
data, algorithms and tasks.

There has been some work on workflows for distributed
data mining using a service-oriented architecture, e.g. Guedes
et al. [27] and Ali et al. [28]. These systems focus on
demonstrating the feasibility of a service-oriented approach
for distributed data mining with regard to parallelization and
distributed data sources, while none of these approaches enable
automated data mining workflow construction.

Also relevant for our work is Weka4WS [29], a framework
that extends the Weka toolkit to support distributed data mining
on the Grid. TheWeka4WS user interface supports the execution
of both local and remote data mining tasks but only native Weka
components and extensions are available, and the framework
does not support arbitrary web services that can be found on the
internet.

There exist several systems using a formal representation
of data mining (DM) operators for automated workflow
composition and ranking, including IDEA [30], NExT [31] and
KDDVM [32], which focus solely on propositional data mining,
and do not offer a general scientific workflow environment for
data mining, whereas our approach allows also for the inclusion
of complex relational data mining and text mining algorithms
in a general workflow-based data mining environment.

Other efforts to provide a systematic formalization of
the data mining tasks include projects MiningMart [33],
DataMiningGrid [26], and a system described by Li et al. [34].
The first two focus on mining propositional patterns from data
stored in a relational database. None of the systems provide
means for automated workflow construction.

Another, very practically oriented approach to the generaliza-
tion data mining algorithm implementations was introduced by
Zaki et al. [35]. The proposed Data Mining Template Library is
built using the principle of generic programming.24 The library
is generic with respect to the algorithm, data source and format,
data structure, storage management and pattern to be mined.
Nevertheless, this approach focuses solely on frequent pattern
mining, and only provides generic templates in implementation-
specific programming language instead of a general and inde-
pendent ontology.

Parallel to our work, the OntoDM [36] ontology is currently
being developed, adopting a principled top-down approach
aimed at achieving maximal generality of the developed
ontology. Given the complexity of the domain subject to be

24The Generic Programming paradigm focuses on finding suitable
abstractions so that a single, generic algorithm can cover many concrete
implementations.

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://www.myexperiment.org/
http://comjnl.oxfordjournals.org/


96 V. Podpečan et al.

modeled, the ontology is currently not sufficiently refined for the
purpose of automated workflow construction. Also, unlike our
ontology, OntoDM is not compatible with OWL-S. Recent work
aimed at the development of a data mining ontology includes
also [37, 38], where the work by Hilario et al. [37] has been
influenced also by the knowledge discovery ontology described
in this paper.

Solutions to the problem of web service composition in the
context of planning are also relevant for our work. The work of
Lecue et al. [39] relies on computing a causal link matrix for all
the available services. In contrast, we work with a more general,
non-linear notion of a plan. Work by Sirin et al. [40], Klusch
et al. [41] and Liu et al. [42] translate an OWL description to a
planning formalism based on PDDL. While the work presented
in [41] and [42] use classical STRIPS planning, Sirin et al. [40]
employ Hierarchical Task Network (HTN) planning. HTN is not
applicable in our framework as it is not constrained to tree-based
task decomposition. The approach presented by Liu et al. [42]
and Klusch et al. [41] uses a reasoner in the pre-processing
phase; we take a step further by integrating the reasoning
engine directly with the planner. Planning directly in description
logics is addressed by Hoffmann [43]. Currently, the algorithm
can only deal with DL-Lite descriptions with reasonable
efficiency.

8. CONCLUSIONS

This paper proposes a third-generation knowledge discovery
framework and its implementation in a service-oriented data
mining platform named Orange4WS. Based on the Orange
data mining toolkit, which supports the execution of workflows
of processing components, our new platform upgrades its
capabilities by transparent integration of web services. As web
services are an extremely versatile and powerful concept that
is becoming more and more popular, we believe their use in
data mining and knowledge discovery will increase rapidly.
We have added semantic capabilities to the framework by
proposing a methodology for integrating semantic annotation
and planning into our data mining platform by means of the
developed KD ontology. We have developed a planner, which
exploits the hierarchy of algorithms annotated using the KD
ontology.

In summary, the described service-oriented knowledge
discovery paradigm shift, implemented in the Orange4WS
platform, was achieved through the integration of latest
achievements in the field of service-oriented approaches to
knowledge discovery, knowledge discovery ontologies and
automated composition of scientific workflows. This paradigm
shift can potentially lead to the development of a novel
intelligent knowledge discovery process model for data mining,
extending the current CRISP-DM data mining methodology.25

25http://www.crisp-dm.org/

This paradigm shift will enable the orchestration of web-
based data mining services and fusion of information of
various formats, as well as design of repeatable data mining
and information fusion workflows used in novel life science,
bioinformatics and e-science applications.

Similarly to all other service-based solutions, a potential
drawback of the presented platform is that the execution of
workflows depends on the availability and reliability of remote
services. As a result, the enactment of a selected workflow
is not entirely under the control of the user, and there is no
guarantee of successful completion of experiments. Also, the
presented platform is still conventional in the sense that it
does not support Web 2.0 collaborative work functionalities.
Finally, our platform is platform-independent but system
independence is not addressed. Note that this would require
a complete reimplementation of the user interface and local
processing components using web technologies only. Such
reimplementation would allow for employing Orange4WS on
any system equipped with a modern web browser, including
mobile devices.

In future work, we will explore adding means for semantic
web service discovery and their semi-automatic annotation. The
planner will also be a subject of future improvements as we aim
to incorporate the ability of satisfying user-defined constraints
and preferences. We will add support for web service libraries
other than ZSI such as the WSO2 web service framework (based
on Apache Axis2/C), lightweight SOAP client SUDS and the
pysimplesoap library, which will greatly expand the range of
supported web services.

Finally, the proposed SoKD framework and its implemen-
tation in the Orange4WS platform will enable also for meta-
mining of data mining workflows, which is a challenging topic
of future research.

REFERENCES

[1] Finin, T. et al. (2007). National Science Foundation Symposium
on Next Generation of Data Mining and Cyber-Enabled
Discovery for Innovation (NGDM’07). Final Report.

[2] Demšar, J., Zupan, B., Leban, G. and Curk, T. (2004) Orange:
From Experimental Machine Learning to Interactive Data
Mining. In Boulicaut, J.-F., Esposito, F., Giannotti, F. and
Pedreschi, D. (eds), PKDD, Lecture Notes in Computer Science
3202, pp. 537–539. Springer.

[3] Witten, I.H., Frank, E. and Hall, M.A. (2011) Data Mining:
Practical Machine Learning Tools and Techniques (3rd edn).
Morgan Kaufmann, Amsterdam.

[4] Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T.,
Meinl, T., Ohl, P., Sieb, C., Thiel, K. and Wiswedel, B.
(2007) KNIME: The Konstanz Information Miner. In Preisach,
C., Burkhardt, H., Schmidt-Thieme, L. and Decker, R. (eds),
GfKl, Studies in Classification, Data Analysis, and Knowledge
Organization, pp. 319–326. Springer.

[5] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M. and Euler, T.
(2006) YALE: Rapid Prototyping for Complex Data Mining

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://www.crisp-dm.org/
http://comjnl.oxfordjournals.org/


Orange4WS Environment for Service-Oriented Data Mining 97

Tasks. In Eliassi-Rad, T., Ungar, L.H., Craven, M. and Gunopulos,
D. (eds) KDD, pp. 935–940. ACM.

[6] Roure, D.D., Goble, C.A. and Stevens, R. (2009) The design and
realisation of the myExperiment virtual research environment for
social sharing of workflows. Future Gener. Comput. Syst., 25,
561–567.

[7] Taylor, I., Shields, M., Wang, I. and Harrison, A. (2007) The
Triana workflow environment: architecture and applications.
Workflows e-Sci., 1, 320–339.

[8] Fielding, R.T. (2000) Architectural styles and the design of
network-based software architectures. PhD Thesis, University of
California, Irvine CA 92697, USA.

[9] Zupan, B., Leban, G., Demšar, J. and Curk, T. (2003) Widgets
and Visual Programming. Technical Report. Bioinformatics
Laboratory, Faculty of Computer and Information Science,
University of Ljubljana, Ljubljana, Slovenia.

[10] Hull, D., Wolstencroft, K., Stevens, R., Goble, C.A., Pocock,
M.R., Li, P. and Oinn, T. (2006) Taverna: a tool for building
and running workflows of services. Nucleic Acids Res., 34,
729–732.

[11] Trajkovski, I., Lavrač, N. and Tolar, J. (2008) SEGS: search
for enriched gene sets in microarray data. J. Biomed. Inf., 41,
588–601.

[12] Erl, T. (2005) Service-Oriented Architecture: Concepts, Technol-
ogy, and Design. Prentice Hall PTR, Upper Saddle River, NJ,
USA.

[13] Zelezný, F. and Lavrač, N. (2006) Propositionalization-based
relational subgroup discovery with RSD. Mach. Learn., 62,
33–63.

[14] Dzeroski, S. (2006) Towards a General Framework for Data
Mining. In Dzeroski, S. and Struyf, J. (eds), KDID, Lecture Notes
in Computer Science 4747, pp. 259–300. Springer.

[15] Kalyanpur, A., Pastor, D.J., Battle, S. and Padget, J.A. (2004)
Automatic Mapping of OWL Ontologies into Java. In Maurer, F.
and Ruhe, G. (eds) SEKE, pp. 98–103.

[16] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D. and Patel-
Schneider, P.F. (eds) (2003) The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge Univer-
sity Press.

[17] Sirin, E. and Parsia, B. (2007) SPARQL-DL: SPARQL Query
for OWL-DL. In Golbreich, C., Kalyanpur, A. and Parsia, B.
(eds), OWLED, CEUR Workshop Proceedings, Vol. 258. CEUR-
WS.org.

[18] Žáková, M., Křemen, P., Železný, F. and Lavrač, N. (2008)
Planning to Learn with a Knowledge Discovery Ontology.
Planning to Learn Workshop (PlanLearn 2008) at ICML 2008.
Helsinki, Finland.

[19] Hoffmann, J. and Nebel, B. (2001) The FF planning system:
fast plan generation through heuristic search. J. Artif. Intell. Res.
(JAIR), 14, 253–302.

[20] Lavrač, N., Kavšek, B., Flach, P.A. and Todorovski, L. (2004)
Subgroup discovery with CN2-SD. J Mach. Learn. Res., 5,
153–188.

[21] Gamberger, D. and Lavrač, N. (2002) Expert-guided subgroup
discovery: methodology and application. J. Artif. Intell. Res.
(JAIR), 17, 501–527.

[22] Kavšek, B. and Lavrač, N. (2006) Apriori–SD: adapting
association rule learning to subgroup discovery. Appl. Artif.
Intell., 20, 543–583.

[23] Michie, D., Muggleton, S., Page, D. and Srinivasan, A. (1994)
To the International Computing Community: A New East–
West Challenge. Technical Report. Oxford University Computing
laboratory, Oxford, UK.

[24] Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K. and
Toivonen, H. (2006) Link Discovery in Graphs Derived from
Biological Databases. In Leser, U., Naumann, F. and Eckman,
B.A. (eds), DILS, Lecture Notes in Computer Science 4075,
pp. 35–49. Springer.

[25] Chiaretti, S., Li, X., Gentleman, R., Vitale, A., Vignetti, M.,
Mandelli, F., Ritz, J. and Foa, R. (2004) Gene expression profile of
adult T-cell acute lymphocytic leukemia identifies distinct subsets
of patients with different response to therapy and survival. Blood,
103, 2771–2778.

[26] Stankovski, V., Swain, M.T., Kravtsov, V., Niessen, T.,
Wegener, D., Kindermann, J. and Dubitzky, W. (2008) Grid-
enabling data mining applications with DataMiningGrid: An
architectural perspective. Future Gener. Comput. Syst., 24,
259–279.

[27] Guedes, D., Meira, W. and Ferreira, R. (2006)Anteater: a service-
oriented architecture for high-performance data mining. IEEE
Internet Comput., 10, 36–43.

[28] Ali, A.S., Rana, O.F. and Taylor, I.J. (2005) Web Services
Composition for Distributed Data Mining. ICPP Workshops,
pp. 11–18. IEEE Computer Society. Oslo, Norway.

[29] Talia, D., Trunfio, P. and Verta, O. (2005) Weka4WS: A WSRF-
Enabled Weka Toolkit for Distributed Data Mining on Grids. In
Jorge, A., Torgo, L., Brazdil, P., Camacho, R. and Gama, J. (eds),
PKDD, Lecture Notes in Computer Science 3721, pp. 309–320.
Springer.

[30] Bernstein, A., Provost, F.J. and Hill, S. (2005) Toward intelligent
assistance for a data mining process: an ontology-based approach
for cost-sensitive classification. IEEE Trans. Knowl. Data Eng.,
17, 503–518.

[31] Bernstein, A. and Dänzer, M. (2007) The NExT System:
Towards True Dynamic Adaptations of Semantic Web Service
Compositions. In Franconi, E., Kifer, M. and May, W. (eds), The
Semantic Web: Research and Applications, Chapter 52, Lecture
Notes in Computer Science 4519, pp. 739–748. Springer, Berlin,
Heidelberg.

[32] Diamantini, C., Potena, D. and Storti, E. (2009) Ontology-Driven
KDD Process Composition. In Adams, N.M., Robardet, C.,
Siebes, A. and Boulicaut, J.-F. (eds), IDA, Berlin, Lecture Notes
in Computer Science 5772, pp. 285–296. Springer.

[33] Morik, K. and Scholz, M. (2003) The MiningMart Approach to
Knowledge Discovery in Databases. In Zhong, N. and Liu, J.
(eds), Intelligent Technologies for Information Analysis, pp. 47–
65. Springer.

[34] Li, Y. and Lu, Z. (2004) Ontology-based universal knowledge
grid: enabling knowledge discovery and integration on the grid.
IEEE SCC, pp. 557–560. IEEE Computer Society. Shanghai,
China.

[35] Hasan, M.A., Chaoji, V., Salem, S., Parimi, N. and Zaki, M.J.
(2005) DMTL: A Generic Data Mining Template Library. Proc.
Workshop on Library-Centric Software Design, Object-Oriented

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/


98 V. Podpečan et al.

Programming, Systems, Languages and Applications Conf.
(OOPSLA ’05), San Diego, CA, USA, pp. 53–63. Rensselaer
Polytechnic Institute.

[36] Panov, P., Džeroski, S. and Soldatova, L.N. (2008) OntoDM: An
Ontology of Data Mining. ICDM Workshops, pp. 752–760. IEEE
Computer Society. Pisa, Italy.

[37] Hilario, M., Kalousis, A., Nguyen, P. and Woznica, A.
(2009) A Data Mining Ontology for Algorithm Selection
and Meta-Mining. Proc. 2nd Workshop on Service-Oriented
Knowledge Discovery (SoKD ’09): Third Generation Data
Mining: Towards Service-Oriented Knowledge Discovery,
ECML PKDD Conf., Bled, Slovenia, September 7–11,
pp. 76–87.

[38] Diamantini, C., Potena, D. and Storti, E. (2009) KDDONTO:
An Ontology for Discovery and Composition of KDD
Algorithms. Proc. 2nd Workshop on Service-Oriented
Knowledge Discovery (SoKD ’09): Third Generation Data
Mining: Towards Service-Oriented Knowledge Discovery,
ECML PKDD Conf., Bled, Slovenia, September 7–11,
pp. 13–24.

[39] Lécué, F., Delteil, A. and Léger, A. (2007) Applying Abduction
in Semantic Web Service Composition. ICWS, pp. 94–101. IEEE
Computer Society. Salt Lake City, Utah, USA.

[40] Sirin, E., Parsia, B., Wu, D., Hendler, J.A. and Nau, D.S. (2004)
HTN planning for web service composition using SHOP2. J. Web
Sem., 1, 377–396.

[41] Klusch, M. and Gerber, A. (2005) Semantic Web Service
Composition Planning with OWLS-XPlan. Proc. 1st Int. AAAI
Fall Symp. Agents and the Semantic Web, pp. 55–62. Arlington,
Virginia, USA.

[42] Liu, Z., Ranganathan, A. and Riabov, A. (2007) A planning
approach for message-oriented semantic web service composi-
tion. AAAI, pp. 1389–1394. Proc. of the Twenty-Second AAAI
Conference on Artificial Intelligence, July 22–26, 2007, Vancou-
ver, British Columbia, Canada.

[43] Hoffmann, J. (2008) Towards Efficient Belief Update for
Planning-Based Web Service Composition. In Ghallab, M.,
Spyropoulos, C.D., Fakotakis, N. and Avouris, N.M. (eds), ECAI,
Frontiers in Artificial Intelligence and Applications 178, pp. 558–
562. IOS Press.

The Computer Journal, Vol. 55 No. 1, 2012

 at Jozef Stefan Institute on M
arch 25, 2013

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from
 

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 A sample text mining use case
	3 The Orange4WS platform
	3.1 Technological background
	3.2 Platform design
	3.3 Composition and execution of workflows
	3.4 Creation of new web services

	4 Knowledge Discovery ontology
	4.1 Knowledge
	4.2 Algorithms
	4.3 Annotating algorithms

	5 Automated workflow construction
	5.1 Exploiting algorithm hierarchy
	5.2 Integrating annotations and planning into Orange4WS

	6 Use cases illustrating the utility of Orange4WS
	6.1 Use case illustrating the availability of WEKA algorithms
	6.2 Relational data mining use case
	6.3 Complex real-life systems biology use case

	7 Related work
	8 Conclusions

