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Abstract We address the task of hierarchical multi-label classification (HMC). HMC is a
task of structured output prediction where the classes are organized into a hierarchy and
an instance may belong to multiple classes. In many problems, such as gene function pre-
diction or prediction of ecological community structure, classes inherently follow these
constraints. The potential for application of HMC was recognized by many researchers and
several such methods were proposed and demonstrated to achieve good predictive perfor-
mances in the past. However, there is no clear understanding when is favorable to consider
such relationships (hierarchical and multi-label) among classes, and when this presents
unnecessary burden for classification methods. To this end, we perform a detailed com-
parative study over 8 datasets that have HMC properties. We investigate two important
influences in HMC: the multiple labels per example and the information about the hierarchy.
More specifically, we consider four machine learning tasks: multi-label classification, hier-
archical multi-label classification, single-label classification and hierarchical single-label
classification. To construct the predictive models, we use predictive clustering trees (a gen-
eralized form of decision trees), which are able to tackle each of the modelling tasks listed.
Moreover, we investigate whether the influence of the hierarchy and the multiple labels car-
ries over for ensemble models. For each of the tasks, we construct a single tree and two
ensembles (random forest and bagging). The results reveal that the hierarchy and the mul-
tiple labels do help to obtain a better single tree model, while this is not preserved for the
ensemble models.
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1 Introduction

Supervised learning is one of the most widely researched and investigated areas of machine
learning. The goal in supervised learning is to learn, from a set of examples with known
class, a function that outputs a prediction for the class of a previously unseen example.
The most widely studied machine learning task is binary classification where the goal is to
classify the examples into two groups. The task where the examples can belong to a single
class from a given set of m classes (m ≥ 3) is known as multi-class classification. The case
where the output is a real value is called regression.

However, in many real life problems of predictive modelling the output (i.e., the tar-
get) is structured, meaning that there can be dependencies between classes (e.g., classes are
organized into a tree-shaped hierarchy or a directed acyclic graph) or some internal rela-
tions between the classes (e.g., sequences). These types of problems occur very often in
various domains, such as life sciences (predicting gene function, finding the most impor-
tant genes for a given disease, predicting toxicity of molecules, etc.), ecology (analysis of
remotely sensed data, habitat modelling), multimedia (annotation and retrieval of images
and videos) and the semantic web (categorization and analysis of text and web pages).
Having in mind the needs of these application domains and the increasing quantities of
structured data, Kriegel et al. (2007) and Dietterich et al. (2008) listed the task of “min-
ing complex knowledge from complex data” as one of the most challenging problems in
machine learning.

A variety of methods, specialized in predicting a given type of structured output (e.g.,
a hierarchy of classes (Silla and Freitas 2011)), have been proposed (Bakır et al. 2007).
These methods can be categorized into two groups of methods for solving the problem of
predicting structured outputs (Silla and Freitas 2011; Bakır et al. 2007). Local methods
construct models for predicting component(s) of the output and then combine the individual
models to get the overall model (i.e., they construct an architecture of several simple(r)
models). Global methods that construct models for predicting the complete structure as a
whole (also known as ’big-bang’ approaches).

The global methods have several advantages over the local methods. First, they exploit
and use the dependencies that may exist between the components of the structured output in
the model learning phase, which can result in better predictive performance of the learned
models. Next, they are typically more efficient: it can easily happen that the number of
components in the output is very large (e.g., hierarchies in functional genomics can have
several thousands of components), in which case learning a model for each component is
not feasible. Furthermore, they produce models that are typically smaller than the sum of
the sizes of the models built for each of the components.

Despite the many developed methods and their interesting applications, it is not clear
when it is favorable (performance wise) to apply global and when local approaches. In this
work, we focus on clarifying this important issue for the task of hierarchical multi-label clas-
sification (HMC). HMC is a variant of classification, where a single example may belong
to multiple classes at the same time and the classes are organized in the form of a hierar-
chy. An example that belongs to some class c automatically belongs to all super-classes of
c: This is called the hierarchical constraint. Problems of this kind can be found in many
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domains including text classification, functional genomics, and object/scene classification.
Silla and Freitas (2011) give a detailed overview of the possible application areas and the
different approaches to HMC.

More specifically, we construct four types of predictive models that exploit different
amounts of the information provided by the output structure, i.e., the hierarchical organiza-
tion of the classes. This corresponds to four different machine learning tasks as depicted in
Fig. 1: binary classification, hierarchical single-label classification, multi-label classifica-
tion and hierarchical multi-label classification. The first two tasks construct (an architecture
of) local predictive models, while the last two tasks construct global models.

Orthogonally to the issue of using different sources of information about the output
structure, we also investigate the influence of constructing ensembles in such a setting.
Ensembles are a set of (base) predictive models that can be local or global. It is widely
accepted that, for basic machine learning tasks (regression and classification), ensembles
improve performance of its base models (Seni and Elder 2010). Kocev et al. (2013) recently
have showed that the same holds for tree ensembles for predicting structured outputs in
the case of hierarchical single-label classification and hierarchical multi-label classification.
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Fig. 1 Schematic representation of the four different modelling tasks we consider to investigate how
exploitation of label hierarchy affects the performance. Single label classification a, builds a separate model
for each of the leaf labels, while hierarchical single label classification b, builds a separate model for each
edge of the label hierarchy (each model is trained by using only data that is relevant to that edge). Multi-label
classification c and hierarchical multi-label classification d build one (global) model which considers all of
the classes at once: the former approach (c) is unaware of the taxonomic hierarchy, while the latter approach
(d) exploits information about the label hierarchy. For each of the four modelling task we build three types
of models (depicted as rectangles): single tree models, random forest ensemble and bagging ensemble. The
different kinds of output of the models are given at the pointed ends of the arrows
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The focus of the research in Kocev et al. (2013) was on the performance increase of
the ensemble models over their respective base predictive models. The issue of the inter-
play between the different information about the output structure and the influence on the
ensembles’ predictive performance has not received much attention.

In this work, we are focused on three important questions for the task of predicting
structured outputs, i.e., hierarchical multi-label classification. Firstly, we research the use of
different information about the output structure in the context of single models’ predictive
performance. Secondly, we research the same problem in the context of ensemble models’.
Finally, we investigate whether the conclusions from the investigation on single models
carry over to the ensemble models. Moreover, we discuss whether it is more beneficial to
use the structure of the output space or construct ensembles ignoring the output structure.

To properly evaluate the predictive performance of the different models one needs to
select predictive models from the same type that can solve the four tasks enumerated above.
To this end, we consider predictive clustering trees (PCTs) as predictive models. PCTs can
be viewed as a generalization of standard decision trees towards predicting structured out-
puts. PCTs offer a unifying approach for dealing with different types of structured outputs
and construct the predictive models very efficiently. They are able to make predictions for
several types of structured outputs: tuples of continuous/discrete variables, hierarchies of
classes, and time series (Kocev et al. 2013; Blockeel 1998; Vens et al. 2008). Furthermore,
we construct and compare two types of ensembles of decision trees: random forest (Breiman
2001) and bagging (Breiman 1996).

We perform the evaluation of the predictive models on eight practically relevant HMC
datasets. The datasets come from four different domains: habitat modelling, image clas-
sification, text classification and functional genomics. We consider habitat models for
Collembola communities in the soils of Denmark (Demšar et al. 2006) and communities
of organisms living in Slovenian rivers (Džeroski et al. 2000). Next, we use two datasets
from the 2007 CLEF cross-language image retrieval campaign (Dimitrovski et al. 2008),
where the goal is to annotate medical X-ray images. From the domain of text classifi-
cation, we use two well known datasets: categorization of e-mails from officials of the
Enron corporation (Klimt and Yang 2004) and categorization of Reuters newswire stories
(Lewis et al. 2004). From the functional genomics domain, we use two datasets concerned
with the task of gene function prediction for two model organisms: Arabidopsis thaliana
and Saccharomyces cerevisiae (baker’s or brewer’s yeast) (Clare 2003).

The work presented in this paper builds upon our previous work given in Levatić et al.
(2013, 2014). In Levatić et al. (2013), we investigated two datasets from the area of ecologi-
cal modelling and considered only cross-validated performance estimates for comparison. In
Levatić et al. (2014), we included four additional datasets from the area of image annotation
and text categorization. Next, we included a comparison over the training performance (i.e.,
we calculated an overfit score). Furthermore, we compared the efficiency of the used meth-
ods to obtain the different models and the model sizes. We extend this work in three major
directions. First, we included two other datasets from a new domain: functional genomics.
Second, we included ensemble methods in the study (bagging and random forest). Finally,
we have provided a more detailed analysis of the results. All in all, this study is qualitatively
and quantitatively improved over the previous studies.

The remainder of this paper is organized as follows. Section 2 describes existing
methods for HMC. Section 3 explains the predictive clustering trees framework and the
extensions for the different tasks considered here. The experimental setup is presented in
Section 4. Section 5 presents the obtained results. Finally, the conclusions are stated in
Section 6.
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2 Related work

In this section, we first briefly present an overview of existing methods which can deal
with the task of hierarchical multi-label classification. More specifically, we discuss kernel-
based, tree-based and other more application-specifically tailored methods for HMC. We
then motivate the selection of predictive clustering trees as predictive models.

Several kernel based methods for the task of HMC were proposed. In these methods,
SVMs are learned for each class separately and then combined so that the predictions are
consistent with the hierarchical relationships (Obozinski et al. 2008; Barutcuoglu et al.
2006; Guan et al. 2008; Valentini 2011). Rousu et al. (2006) present a more direct method
that does not require a second step to make sure that the hierarchy constraint is satisfied.
Their method is based on a large margin method for structured output prediction which
defines a joint feature map over the input and the output space. The kernel-based methods
for HMC produce predictive models that are not interpretable.

Decision tree based methods take a notable place among approaches for HMC. Contrary
to the previously described methods, decision trees are easily interpreted by domain experts.
Clare and King (2003) adapted the well-know decision tree algorithm C4.5 (Quinlan 1993)
for the task of HMC. This version of C4.5 (called C4.5H) uses the sum of entropies of
the class variables to select the best split. C4.5H predicts classes on several levels of the
hierarchy, assigning a larger cost to misclassification higher up in the hierarchy. Blockeel
et al. (2002, 2006) proposed the idea of using predictive clustering trees (Blockeel 1998)
for HMC tasks. The work of Blockeel et al. (2006) presents the first thorough empirical
comparison between an HMC and HSC decision tree method in the context of tree shaped
class hierarchies. Vens et al. (2008) extend the algorithm towards hierarchies structured as
directed acyclic graph and show that learning one decision tree for predicting all classes
simultaneously outperforms learning one tree per class (even if those trees are built by taking
the hierarchy into account). Related to PCTs are distance-based decision trees (DBDT)
(Estruch et al. 2006), where different distance metrics are associated to every attribute. This
allows DBDT to handle structured descriptive attributes, such as sets, lists or trees (in PCTs
different distance metrics are used to handle various types of outputs).

There are several other methods for HMC based on different approaches. Kiritchenko
et al. (2006) performed hierarchical text categorization by expanding label sets of training
examples to make them consistent with a given class hierarchy. Standard multi-class learn-
ing algorithm is then applied to modified multi-label data, followed by re-labeling of the
inconsistently classified test instances. Silla and Freitas adapted the naı̈ve Bayes approach
for HMC (Silla and Freitas 2009). Otero et al. (2010) and Cerri et al. (2012) used search
heuristics to discover HMC rules. In other work, Cerri et al. represented class hierarchy as
a sequence of connected artificial neural networks, where the output of the one network is
used as the input of the next network in the sequence (Cerri et al. 2014). Bi and Kwok (2012)
proposed a hierarchically aware loss function, appropriate for both tree and DAG hierarchies
and developed a Bayes-optimal classifier for HMC by using this loss function. Alaydie et al.
(2012) proposed a boosting-based method for HMC, where at each iteration the label hier-
archy is used to select the training set for each classifier. Recently, Barros et al. proposed
a method for HMC based on the probabilistic clustering with expectation-maximization
algorithm (Barros et al. 2013).

Finally, in this work, we investigate the effect of the label hierarchy and the multiple
labels per example to the performance of the predictive models. We do this by the means
of comparing the performance of the predictive models applied on four different modelling
tasks: HMC, HSC, multi- and single-label classification. To properly evaluate the predictive
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performance of the different models, one needs to select predictive models from the same
type that can solve the four tasks enumerated above, i.e., to eliminate the chance of intro-
ducing bias on the results by the types of models. The selected method thus needs to be able
to use label hierarchy and the multiple labels per examples for model construction and to be
able to produce both local and global models. Such prerequisites considerably narrow the
choice of possible methods. A framework that satisfies all of the conditions listed above is
the PCT framework. Consequently, we selected to use the PCT framework throughout this
study.

3 Predictive modelling for HMC

In this section, we present in more detail the methodology used to construct the predictive
models. We first present the predictive clustering trees. Namely, we give the PCTs that pre-
dict the complete output (i.e., a single model for all of the possible labels in the dataset)
with a single model. We then briefly describe local approaches that construct several mod-
els - each one predicting a part of the output (i.e., a model for each label separately). Finally,
we describe tree ensembles for predicting structured outputs, both for global and local
prediction of the structured output.

3.1 Predictive clustering trees for HMC

3.1.1 Global predictive clustering trees

The Predictive Clustering Trees (PCTs) framework views a decision tree as a hierarchy of
clusters: the top-node corresponds to one cluster containing all data, which is recursively
partitioned into smaller clusters while moving down the tree. The PCT framework is imple-
mented in the CLUS system (Blockeel and Struyf 2002), which is available for download
at http://clus.sourceforge.net.

PCTs are induced with a standard top-down induction of decision trees (TDIDT) algo-
rithm (Breiman et al. 1984). The algorithm is presented in Table 1. It takes as input a set
of examples (E) and outputs a tree. The heuristic (h) that is used for selecting the tests (t)

is the reduction in variance caused by the partitioning (P) of the instances corresponding

Table 1 The top-down induction algorithm for PCTs

http://clus.sourceforge.net
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to the tests (t) (see line 4 of the BestTest procedure in Table 1). By maximizing the vari-
ance reduction, the cluster homogeneity is maximized and the predictive performance is
improved.

The main difference between the algorithm for learning PCTs and a standard decision
tree learner is that the former considers the variance function and the prototype function
(that computes a label for each leaf) as parameters that can be instantiated for a given learn-
ing task. So far, PCTs have been instantiated for the following tasks: multi-target prediction
(which includes multi-label classification) (Kocev et al. 2013), hierarchical multi-label clas-
sification (Vens et al. 2008) and prediction of time-series (Slavkov et al. 2010). In this
article, we focus on the first two tasks.

PCTs for multi-label classification. PCTs for multi-label classification can be considered
as PCTs that are able to predict multiple binary (and thus discrete) targets simultane-
ously. Therefore, the variance function for the PCTs for MLC is computed as the sum of
the Gini indices of the target variables, i.e., Var(E) = ∑T

i=1Gini(E, Yi). Alternatively,
one can also use the sum of the entropies of class variables as a variance function, i.e.,
Var(E) = ∑T

i=1 Entropy(E, Yi) (this definition has also been used in the context of multi–
label prediction (Clare 2003)). The CLUS system also implements other variance functions,
such as reduced error, gain ratio and the m-estimate. The prototype function returns a vector
of probabilities that an instance belongs to a given class for each target variable. Using these
probabilities, the most probable (majority) class value for each target can be calculated.

PCTs for hierarchical multi–label classification. CLUS-HMC is the instantiation (with
the distances and prototypes as defined below) of the PCT algorithm for hierarchical clas-
sification implemented in the CLUS system (Vens et al. 2008). The variance and prototype
are defined as follows. First, the set of labels of each example is represented as a vector with
binary components; the ith component of the vector is 1 if the example belongs to class
ci and 0 otherwise. It is easily checked that the arithmetic mean of a set of such vectors
contains as ith component the proportion of examples of the set belonging to class ci . The
variance of a set of examples E is defined as the average squared distance between each
example’s class vector (Li) and the set’s mean class vector (L), i.e.,

Var(E) = 1

|E| ·
∑

Ei∈E

d(Li, L)2.

In the HMC context, the similarity at higher levels of the hierarchy is more important
than the similarity at lower levels. This is reflected in the distance measure used in the above
formula, which is a weighted Euclidean distance:

d(L1, L2) =
√
√
√
√

|L|∑

l=1

w(cl) · (L1,l − L2,l)
2,

where Li,l is the lth component of the class vector Li of an instance Ei , |L| is the size
of the class vector, and the class weights w(c) decrease with the depth of the class in the
hierarchy. More precisely, w(c) = w0 · w(p(c)), where p(c) denotes the parent of class c

and 0 < w0 < 1).
For example, consider the toy class hierarchy shown in Fig. 2a,b, and two data examples:

(X1, S1) and (X2, S2) that belong to the classes S1 = {c1, c2, c2.2} (boldface in Fig. 2b)
and S2 = {c2}, respectively. We use a vector representation with consecutive components
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Fig. 2 Toy examples of a hierarchy structured as a tree. a Class label names contain information about the
position in the hierarchy, e.g., c2.1 is a subclass of c2. b The set of classes S1 = {c1, c2, c2.2}, shown in bold,
are represented as a vector (Lk)

representing membership in the classes c1, c2, c2.1, c2.2 and c3, in that order (preorder
traversal of the tree of class labels). The distance is then calculated as follows:

d(S1, S2) = d([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =
√

w0 + w2
0 .

Recall that the instantiation of PCTs for a given task requires a proper instantiation of the
variance and prototype functions. The variance function for the HMC task is instantiated
by using the weighted Euclidean distance measure (as given above), which is further used
to select the best test for a given node by calculating the heuristic score (line 4 from the
algorithm in Table 1). We now discuss the instantiation of the prototype function for the
HMC task.

A classification tree stores in a leaf the majority class for that leaf, which will be the
tree’s prediction for all examples that will arrive in the leaf. In the case of HMC, an example
may have multiple classes, thus the notion of majority class does not apply in a straightfor-
ward manner. Instead, the mean L̄ of the class vectors of the examples in the leaf is stored
as a prediction. Note that the value for the ith component of L̄ can be interpreted as the
probability that an example arriving at the given leaf belongs to class ci .

The prediction for an example that arrives at the leaf can be obtained by applying a
user defined threshold τ to the probability; if the ith component of L̄ is above τ then the
examples belong to class ci . When a PCT is making a prediction, it preserves the hierarchy
constraint (the predictions comply with the parent-child relationships from the hierarchy)
if the values for the thresholds τ are chosen as follows: τi ≤ τj whenever ci ≤h cj (ci is
ancestor of cj ). The threshold τ is selected depending on the context. The user may set the
threshold such that the resulting classifier has high precision at the cost of lower recall or
vice versa, to maximize the F-score, to maximize the interpretability or plausibility of the
resulting model etc. In this work, we use a threshold-independent measure (precision-recall
curves) to evaluate the performance of the models.

3.1.2 Local predictive clustering trees

Local models for predicting structured outputs use a collection of predictive models, each
predicting a component of the overall structure that needs to be predicted. For the task
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of predicting multiple targets, local predictive models are constructed by learning a pre-
dictive model for each of the targets separately. In the task of hierarchical multi-label
classification, however, there are four different approaches that can be used: flat classi-
fication, local classifiers per level, local classifiers per parent node, and local classifiers
per node.

We briefly describe these approaches, for more details see (Silla and Freitas 2011; Vens
et al. 2008). In flat classification, a separate local classifier is learnt for each node of the class
hierarchy, where examples labeled with label corresponding to that node are considered
as positive and all the others as negative. In other local approaches (local classifiers per
level, per parent node, and per node), hierarchical relationships among classes are taken
into account by virtue of training separate local classifiers only with the subset of examples
which are labeled with a specific part of the class hierarchy. More specifically, the local
classifier per level approach consists of training one multi-class classifier for each level of
the class hierarchy to differentiate between nodes at each level of class hierarchy. Next, the
local classifier per parent node approach builds a multi-class classifier for each parent node
in the class hierarchy to distinguish between its child nodes. Finally, the local classifier per
node approach consists of training one binary classifier for each node of the class hierarchy.

Vens et al. (2008) investigated the performance of the last two approaches with local
classifiers over a large collection of datasets from functional genomics. The conclusion of
the study was that the last approach (called hierarchical single-label classification - HSC)
performs better in terms of predictive performance, smaller total model size and shorter
induction times.

In particular, the CLUS-HSC algorithm by Vens et al. (2008) constructs a decision tree
classifier for each edge (connecting a class c with a parent class par(c)) in the hierarchy,
thus creating an architecture of classifiers. The tree that predicts membership to class c is
learnt using the instances that belong to par(c). The construction of this type of trees uses
few instances, as only instances labeled with par(c) are used for training. The instances
labeled with class c are positive while the ones labeled with par(c), but not with c are
negative.

The resulting HSC tree architecture predicts the conditional probability P (c|par(c)). A
new instance is predicted by recursive application of the product rule P (c) = P (c|par(c))·
P (par(c)), starting from the tree for the top-level class. Again, the probabilities are thresh-
olded to obtain the set of predicted classes. To satisfy the hierarchy constraint, the threshold
τ should be chosen as in the case of CLUS-HMC.

In this work, we also consider the task of single-label classification. We consider this to
be a special case of multi-label classification where the number of labels is 1. To this end,
we use the same algorithm as for the multi-label classification trees. We call these models
single-label classification trees.

3.2 Ensembles of predictive clustering trees for HMC

We consider ensembles of PCTs for structured prediction, as implemented by Kocev et al.
(2013) in the CLUS system. The PCTs in the ensembles are constructed by using the bag-
ging (Breiman 1996) and random forests (Breiman 2001) methods that are often used in the
context of decision trees. The algorithms of these ensemble learning methods are presented
in Table 2. Bagging (Table 2, left) is an ensemble method that constructs the different clas-
sifiers by making bootstrap replicates of the training set and using each of these replicates
to construct a predictive model. Each bootstrap sample is obtained by randomly sampling
training instances, with replacement, from the original training set, until an equal number
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Table 2 The ensemble learning algorithms: bagging and random forests

Here, E is the set of the training examples, k is the number of trees in the forest, and f (D) is the size of the
feature subset considered at each node during tree construction for random forests.

of instances as in the training set is obtained. Breiman (1996) showed that bagging can
give substantial gains in predictive performance, when applied to an unstable learner (i.e., a
learner for which small changes in the training set result in large changes in the predictions),
such as classification and regression tree learners.

A random forest (Table 2, right) is an ensemble of trees, where diversity among the pre-
dictors is obtained by using bootstrap replicates as in bagging, and additionally by changing
the set of descriptive attributes during learning. To learn a random forest, the PCT algo-
rithm for tree construction (Table 1) is changed to PCT rnd: randomized version of the
selection of attributes, which replaces the standard selection of attributes. More precisely,
at each node in the decision trees, a random subset of the descriptive attributes is taken,
and the best attribute is selected from this subset. The number of attributes that are retained
is given by a function f of the total number of descriptive attributes D (e.g., f (D) = 1,
f (D) = �√D + 1�, f (D) = �log2(D) + 1� . . .). By setting f (D) = D, we obtain the
bagging procedure.

To construct global and local ensemble models, corresponding type of PCTs are used as
a base model, i.e., to construct global ensemble for the HMC task, PCTs for hierarchical
multi-label classification are used as a base model. Note that, for the HSC task, ensembles
can be constructed in two ways: an ensemble of architectures or an architecture of ensem-
bles. The first approach creates the ensemble by creating multiple architectures. These
multiple architectures can be created on different bootstrap replicates, on different feature
spaces, by different local classifiers etc. The second approach is simpler and, instead of a
single local classifier, uses an ensemble as a classifier at each branch of class hierarchy. The
HSC ensembles in this work are constructed by following the second approach, since it is
closer to the learning of local classifiers for predicting multiple target variables (separate
single-label model for each of the targets).

The prediction of an ensemble for a new instance is obtained by combining the predic-
tions of all the base predictive models from the ensemble. For classification tasks, different
aggregation schemes can be applied, such as majority of probability distribution voting. We
used probability distribution voting, as suggested by Bauer and Kohavi (1999). For global
models, per target probability distribution voting was used.

4 Experimental design

In this section, we present the design of the experimental evaluation of the predictive
models built for the four machine learning tasks considered. We begin by describing the
data used. We then outline the specific experimental setup for constructing the predictive
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models. Finally, we present the evaluation measure for assessing the predictive performance
of the models.

4.1 Data description

We use eight datasets, which come from four domains: habitat modeling, image classifi-
cation, text classification and functional genomics. The main statistics of the datasets are
given in Table 3. We can observe that the datasets vary in the size, number of attributes and
characteristics of the label hierarchy.

Habitat modelling (Džeroski 2009) focuses on spatial aspects of the distribution and
abundance of plants and animals. It studies the relationships between environmental vari-
ables and the presence/abundance of plants and animals. This is typically done under the
implicit assumption that both are observed at a single point in time for a given spatial unit
(i.e., sampling site). We investigate the effect of environmental conditions on communi-
ties of organisms in two different ecosystems, i.e., river and soil ecosystems. Namely, we
construct habitat models for water organisms living in Slovenian rivers (Džeroski et al.
2000) and for soil microarthropods from Danish farms (Demšar et al. 2006). The data
about the organisms that live in the water of Slovenian rivers was collected during six years
(1990 to 1995) of monitoring of water quality performed by the Hydro-meteorological
Institute of Slovenia (now Environmental Agency of Slovenia). The data for the soil
microarthropods from Danish farms describes four experimental farming systems (observed
during the period 1989-1993) and a number of organic farms (observed during the period
2002-2003). The structured output space in these case studies is the taxonomic hierarchy
of the species. Since different species are considered in the two domains, their respective
output spaces will be different.

In image classification, the goal is to automatically annotate images with labels. The
labels typically represent visual concepts that are present in the images. In this work, we are
concerned with the annotation of medical X-ray images. We use two datasets from the 2007
CLEF cross-language image retrieval campaign (Dimitrovski et al. 2008): ImCLEF07A and
ImCLEF07D. The goal in these datasets is to recognize which part of the human anatomy
is present in the image and the orientation of the body part, respectively. Images are rep-
resented by using edge histograms. An edge histogram represents the frequency and the
directionality of the brightness changes in the image. The structured output space consists

Table 3 Characteristics of the datasets: N is the number of instances, D/C is the number of descriptive
attributes (discrete/continuous), L is the number of labels (leafs in the hierarchy), |H| is the number of nodes
in the hierarchy, Hd is the maximal depth of the hierarchy, LL is the average number of labels per example

Domain N D/C L |H| Hd LL

Slovenian rivers (Džeroski et al. 2000) 1060 0/16 491 724 4 25

Danish farms (Demšar et al. 2006) 1944 132/5 35 72 3 7

ImCLEF07A (Dimitrovski et al. 2008) 11006 0/80 63 96 3 1

ImCLEF07D (Dimitrovski et al. 2008) 11006 0/80 26 46 3 1

Enron (Klimt and Yang 2004) 1648 0/1001 50 54 3 2.84

Reuters (Lewis et al. 2004) 6000 0/47236 77 100 4 1.2

SeqAra-FunCat (Clare 2003) 3718 2/4448 148 196 4 0.94

ExprYeast-FunCat (Clare 2003) 3783 4/547 161 417 4 2.28
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of labels organized in a hierarchy. They correspond to the anatomical (ImCLEF07A) and
directional (ImCLEF07D) axis of the IRMA (Image Retrieval in Medical Applications)
code (Lehmann et al. 2003).

Text classification is the problem of automatic annotation of textual documents with one
or more categories. We used two datasets from this domain: Enron and Reuters. Enron is a
labeled subset of the Enron corpus (Klimt and Yang 2004), prepared and annotated by the
UCBerkeley Enron Email Analysis Project.1 The e-mails are categorized into several hier-
archically organized categories concerning the characteristics of the e-mail, such as genre,
emotional tone or topic. Reuters is a subset of the ’Topics’ category of the Reuters Cor-
pus Volume I (RCV1) (Lewis et al. 2004). RCV1 is a collection of English language stories
published by the Reuters agency between August 20, 1996, and August 19, 1997. Stories
are categorized into hierarchical groups according to the major subjects of a story, such as
Economics, Industrial or Government. In both domains, the text documents are described
with their respective bag-of-words representation.

In functional genomics, various data (e.g., DNA microarray measurements) are used to
describe gene and protein functions. Machine learning methods are valuable tools for pre-
dicting gene functions, taken from a predefined set of functions (Schietgat et al. 2010).
Predicted functions with highest confidence can be used to guide lab experiments and
reduce the number of needed tests. We used two datasets concerned with two important
model organisms: the SeqAra-FunCat dataset (Clare 2003) is concerned with gene func-
tions for the plant Arabidopsis thaliana, whereas ExprYeast-FunCat dataset (Clare 2003)
is concerned with gene functions for S. cerevisiae or baker’s yeast. Descriptive attributes
for the former dataset consist of features calculated from amino acid sequences, such as
amino acid ratios, molecular weight and sequence length. Descriptive attributes for the latter
dataset consist of microarray gene expression levels measured under various experimen-
tal conditions, such as heat shock or nitrogen depletion. Gene functions for both datasets
come from FunCat catalogue of gene functions (Ruepp et al. 2004), which has a tree-shaped
hierarchy.

4.2 Experimental design

We constructed predictive models corresponding to four types of modelling tasks, as
described in the previous section: single-label classification trees (separate model for each
leaf in the label hierarchy), hierarchical single-label classification (architecture of models),
multi-label classification (one model for all of the leaf labels, without using the hierarchy)
and hierarchical multi-label classification (one model for all of the labels by using the hier-
archy). For each modelling task, we constructed single tree model(s), random forest tree
ensembles and ensembles of bagged classification trees. In total, twelve predictive models
for each of the case studies were built.

For single predictive clustering trees, we used F-test pruning to ensure that the produced
models are not overfitted and have better predictive performance (Vens et al. 2008). The
exact Fisher test is used to check whether a given split/test in an internal node of the tree
results in a statistically significant reduction in variance. If there is no such split/test, the
node is converted to a leaf. A significance level is selected from the values 0.125, 0.1, 0.05,
0.01, 0.005 and 0.001 to optimize predictive performance by using internal 3-fold cross
validation.

1http://bailando.sims.berkeley.edu/enron email.html

http://bailando.sims.berkeley.edu/enron_email.html
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Ensemble models (random forests and bagging) were constructed with 100 trees. Trees
were not pruned and the number of random features used in random forest was set to⌊

log2(D) + 1
⌋

, where D is the total number of features, as recommended by Breiman
(2001).

We evaluate the predictive performance of the models on the classes/labels that are leafs
in the target hierarchy. We made this choice in order to ensure a fair comparison across the
different tasks. Namely, if we consider all labels (the leaf labels and the inner node labels),
the single-label classification task will be very close to the task of hierarchical single-label
classification; similarly, the task of multi-label classification becomes very close to the task
of hierarchical multi-label classification. Moreover, by evaluating only the performance on
leaf labels, we are measuring more precisely the influence of the inclusion of the different
kinds of information in the learning process on the predictive performance of the models.
To further ensure this, we set the w0 parameter for the weighted Euclidean distance for
HMC to the value of 1: all labels in the hierarchy contribute equally. By doing this, we
measure only the effect of including the multi-label information (considering the multiple
labels simultaneously) and the hierarchy information.

4.3 Evaluation measures

We evaluate the algorithms by using as performance measure the area under the Precision-
Recall curve (AUPRC), and in particular, the area under the average Precision-Recall curve
(AUPRC) as suggested by Vens et al. (2008). The points in the Precision-Recall (PR) space
are obtained by changing the value of the threshold τ from 0 to 1 with step 0.02. For each
value of the threshold τ , precision and recall values are micro-averaged as follows: Prec =∑

i T P i∑
i T P i+∑

i FP i
, and Rec =

∑
i T P i∑

i T P i+∑
i FNi

, where i ranges over all classes that are leafs in

the output hierarchies.
AUPRC is a general and a threshold independent performance measure, closely related to

it is the area under the receiver operating characteristic curve (AUROC). However, AUROC
rewards predictive models for correctly predicting negative examples, which can give an
overly optimistic estimate of the performance when there is a large skew in the class dis-
tribution (i.e., the number of positive and negative examples is imbalanced) (Davis and
Goadrich 2006). Since this is the case in the datasets considered here, we have chosen to
evaluate the studied methods by using the AUPRC measure.

We measure the performance of the predictive models along several dimensions. First,
we estimate the predictive performance of the models by using 10-fold cross-validation..
Second, we assess the descriptive power of the models by evaluating them on the training
set. Next, we measure how much the different models tend to overfit the training data. To
this end, we use the relative decrease of performance from the one on the training set to the
one obtained with 10-fold cross-validation. We define the overfit score as:

OS = AUPRCtrain − AUPRCtest

AUPRCtrain

.

Smaller values of this score mean less overfitting. Finally, we measure the complexity of
the predictive models and the time efficiency of learning them. The model complexity for
the global models is the number of nodes in a given tree, while the model complexity for
the local models is the number of all nodes from all trees. Similarly, the running time of
the global models is the time needed to construct the model, while the running time for the
local models is the time needed to construct all of the models.
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For the statistical evaluation of the results, we employed the corrected Friedman test
and the post hoc Nemenyi test as recommended by Demšar (2006). The Friedman test is
a non-parametric test for multiple hypotheses testing. It ranks the algorithms according
to their performance, thus the best performing algorithm gets the rank of 1, second best
the rank of 2 etc., and in case of ties it assigns average ranks. Then, the Friedman test
compares the average ranks of the algorithms and calculates the Friedman statistic χ2

F ,
distributed according to the χ2

F distribution with k − 1 degrees of freedom (k being the
number of algorithms). If there is a statistically significant difference in the performance,
than we can proceed with a post hoc test. The Nemenyi post-hoc test is used to compare
all the classifiers to each other. In this procedure, the performance of two classifiers is
significantly different if their average ranks differ more than some critical distance. The
critical distance depends on the number of algorithms, number of datasets and critical value
(for a given significance level) that is based on the Studentized range statistic and can be
found in statistical textbooks. We present the result from the Nemenyi post hoc test with an
average ranks diagram as suggested by Demšar (2006). The ranks are depicted on the axis,
in such a manner that the best ranking algorithms are at the right-most side of the diagram.
The algorithms that do not differ significantly (in performance) for a significance level of
0.05 are connected with a line.

We test statistical significance of the differences in performance (1) for each dataset
separately and (2) across all datasets. For the per-dataset comparison (Figs. 4, 6 and 7),
we perform a Friedman test for each dataset on the folds of 10-fold cross validation (i.e.,
the methods are ranked by their per-fold performance). For the overall comparison (Figs. 3
and 5), we perform Friedman test by considering all eight datasets at once (i.e., the methods
are ranked by their cross validation performance).

5 Results and discussion

In this section, we present the results from the experimental evaluation. We discuss the
obtained models first in terms of their predictive performance and efficiency, and then in
terms of their interpretability.

5.1 Performance of single tree models

The results from the evaluation of the single tree predictive models are given in Table 4. A
quick inspection of the performance reveals that the best results are obtained by models that
exploit the information about the underlying output hierarchy. Next, the models that include
the hierarchy information tend to overfit less as compared to the other models. Moreover,

Fig. 3 Average ranks diagram
for the performance of all single
tree models in terms of AUPRC
across all of the datasets. Better
algorithms are positioned on the
right-hand side, the ones that
differ by less than the critical
distance for a p-value = 0.05 are
connected with a line

4 3 2 1

HMC

HSC

Single-label

Multi-label

Critical Distance = 1.65828
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Table 4 Performance of single tree models in terms of AUPRC, relative decrease between training set perfor-
mance and test set performance (overfit score - OS), Learning time (LT , in seconds) and model complexity
(the number of nodes in the decision trees)

Dataset Method AUPRC OS LT Complexity

Single-label 0.239 0.692 23.3 15336

Slovenian HSC 0.309 0.591 10.2 25035

rivers Multi-label 0.322 0.007 9.4 1

HMC 0.374 0.132 0.6 37

Single-label 0.790 0.099 3.7 2605

Danish HSC 0.808 0.083 1.3 2873

farms Multi-label 0.801 0.112 0.7 265

HMC 0.815 0.065 0.4 259

Single-label 0.571 0.375 74.4 3957

ImCLEF07A HSC 0.665 0.324 27.3 10054

Multi-label 0.530 0.462 13.5 3553

HMC 0.592 0.182 3.4 635

Single-label 0.515 0.483 35.4 7418

ImCLEF07D HSC 0.631 0.361 20.1 9764

Multi-label 0.511 0.484 7.8 3675

HMC 0.615 0.198 3.0 685

Single-label 0.398 0.495 114.7 1740

Enron HSC 0.466 0.434 25.1 3168

Multi-label 0.385 0.584 13.8 1259

HMC 0.488 0.110 3.3 55

Single-label 0.431 0.546 970.8 3591

Reuters HSC 0.481 0.510 781.4 7004

Multi-label 0.332 0.654 191.8 2949

HMC 0.373 0.365 42.5 593

Single-label 0.152 0.837 2159.9 2678

SeqAra-FunCat HSC 0.158 0.836 1999.7 6558

Multi-label 0.129 0.864 3030.0 1839

HMC 0.143 0.511 213.7 157

Single-label 0.154 0.589 4045.9 1727

ExprYeast-FunCat HSC 0.120 0.868 421.4 14323

Multi-label 0.148 0.766 2122.8 2013

HMC 0.167 0.187 50.6 65

The best predictive performance for each dataset is shown in bold.
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the results indicate that the HMC trees overfit the least on these datasets. Finally, the global
models (especially HMC) are more efficient than their local counterparts, in terms of both
running time and model complexity.

We further examine the results by performing a statistical significance test. In particular,
we performed the Friedman test to check whether the observed differences in performance
among the studied methods are statistically significant, when taken over all datasets. We
present the result of this test in Fig. 3. It reveals that the HMC trees are overall the best
performing method and their performance is statistically significantly better than the multi-
label classification trees. We can also see that methods that exploit the hierarchy information
perform better than the ones that do not exploit this information.

We further discuss the results in terms of statistical tests for each dataset separately.
Figure 4 presents the average ranks from the Nemenyi post-hoc test for single tree models.
The diagrams show that the HMC models are best performing on four domains (Slovenian

4 3 2 1

HMC

Multi-labelHSC

Single-label

Critical Distance = 1.48321

4 3 2 1

HMC

HSCMulti-label

Single-label

Critical Distance = 1.48321
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HMCSingle-label

Multi-label

Critical Distance = 1.48321

4 3 2 1

HSC
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Critical Distance = 1.48321
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HSCSingle-label

Multi-label

Critical Distance = 1.48321
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Multi-label

Critical Distance = 1.48321

4 3 2 1

HSC

Single-labelHMC

Multi-label

Critical Distance = 1.48321
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Fig. 4 Average ranks diagrams for the performance of the single tree PCTs in terms of AUPRC for each of
the eight datasets. Better algorithms are positioned on the right-hand side, the ones that differ by less than
the critical distance for a p-value = 0.05 are connected with a line
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rivers, Danish farms, Enron and ExprYeast-FunCat), while on the other four domains
(ImCLEF07A, ImCLEF07D, Reuters and SeqAra-FunCat) the best performing type of
model is the HSC architecture. We next discuss the statistically significant differences in
more detail.

When HMC trees are the best performing method, they are statistically significantly bet-
ter than the single-label trees (with the exception of ExprYeast-FunCat dataset where there
is no statistically significant difference between the two methods). In the remaining cases,
the differences are not statistically significant (although HMC trees are better than single-
label trees also on ImCLEF07A and ImCLEF07D). HMC trees are statistically significantly
better than HSC tree architecture on the Slovenian rivers and ExprYeast-FunCat datasets,
and HSC tree architecture is statistically significantly better than HMC trees on the Reuters
dataset.

We further relate the performance of the methods with the dataset properties from
Table 3. HMC trees perform best on datasets with a large number of labels per example
(25, 7, 2.84 and 2.28 labels per example for the Slovenian rivers, Danish farms, Enron and
ExprYeast-FunCat datasets, respectively). Conversely, HSC tree architectures perform bet-
ter on datasets with a small number of labels per example (1.2, 1, 1 and 0.94 for Reuters,
ImCLEF07A and ImCLEF07D and SeqAra-FunCat datasets, respectively). The output hier-
archy is much more populated in the former case, thus, allowing the learning of HMC trees
to fully exploit the dependencies between the labels. This in turn provides predictive models
with better predictive power. Similar behavior can be observed for the models that do not
exploit the output hierarchy: the multi-label trees are better on datasets with more labels per
example, while the single-label tree are better on datasets with fewer labels per example.

We next discuss the poor performance of the global models on the Reuters dataset. This
is the only dataset where HMC trees have worse predictive performance than single-label
trees. The poor predictive performance is mainly due to two reasons: (1) the dataset has
a small number of labels per example and (2) the dataset is extremely high-dimensional
and sparse. However, this prompts for further investigation and analysis using additional
benchmark datasets that exhibit similar properties.

5.2 Performance of ensemble models

The results from the evaluation of the ensemble models are given in Table 5. There are two
major findings that are made apparent by the results: the ensembles clearly outperform their
single model counterparts and the performance of the ensembles with different information
about the output structure is approximately the same. The first finding is somewhat expected
and similar results were previously obtained (Kocev et al. 2013; Schietgat et al. 2010). The
second finding, however, prompts further examination.

Kocev et al. (2013) showed that tree ensembles for both HMC and HSC perform equally
well. Here, we can add that also tree ensembles for single-label classification and multi-label
classification perform equally well as HMC and HSC ensembles. Moreover, the single-
label tree ensembles often perform better than the competition. This could be due to the
fact that ensembles are very powerful predictive models, whose performance is limited by
the data quality rather than their inability to discover regularities in the data. In such cases,
the hierarchical relationships among classes are less helpful (or even not helpful at all)
for improving predictive performance than in the case of single tree models. However, we
would like to emphasize that there is a notable difference between global and local ensemble
models in terms of learning time: global ensembles are learnt much faster than the local
ensembles.
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Table 5 Performance of random forests and bagging in terms of AUPRC, relative decrease between training
set performance and test set performance (overfit score - OS) and Learning time (LT , in seconds)

Random forest Bagging

Dataset Method AUPRC OS LT AUPRC OS LT

Single-label 0.442 0.558 703.9 0.432 0.568 1201.1

Slovenian HSC 0.444 0.542 1115.9 0.434 0.555 2770.0

rivers Multi-label 0.446 0.551 253.8 0.439 0.558 732.3

HMC 0.446 0.552 56.6 0.439 0.559 132.4

Single-label 0.806 0.055 67.9 0.801 0.087 193.6

Danish HSC 0.810 0.061 65.3 0.816 0.091 176.0

farms Multi-label 0.798 0.052 5.3 0.801 0.086 56.2

HMC 0.815 0.058 6.1 0.812 0.098 20.2

Single-label 0.884 0.116 513.1 0.871 0.129 4160.1

ImCLEF07A HSC 0.851 0.145 190.5 0.846 0.151 1499.6

Multi-label 0.860 0.140 137.8 0.849 0.151 808.5

HMC 0.858 0.142 35.4 0.850 0.150 297.9

Single-label 0.870 0.130 221.9 0.861 0.139 1839.0

ImCLEF07D HSC 0.831 0.164 324.2 0.836 0.143 984.0

Multi-label 0.853 0.147 61.4 0.849 0.145 507.5

HMC 0.852 0.148 102.3 0.843 0.154 208.9

Single-label 0.565 0.371 149.5 0.568 0.425 4191.4

Enron HSC 0.561 0.331 173.1 0.564 0.408 1507.7

Multi-label 0.544 0.356 14.8 0.562 0.423 638.9

HMC 0.555 0.369 16.9 0.563 0.426 263.2

Single-label 0.485 0.448 1189.8 0.718 0.282 50517.5

Reuters HSC 0.176 0.313 570.9 0.675 0.320 32480.4

Multi-label 0.439 0.264 54.9 0.623 0.376 12600.2

HMC 0.330 0.309 185.9 0.642 0.358 3345.2

Single-label 0.341 0.658 727.6 0.396 0.604 132347.8

SeqAra- HSC 0.262 0.731 918.9 0.314 0.680 82598.1

FunCat Multi-label 0.287 0.712 472.2 0.375 0.625 160563.2

HMC 0.269 0.731 57.6 0.341 0.661 20389.0

Single-label 0.248 0.744 2215.2 0.240 0.733 178879.9

ExprYeast- HSC 0.227 0.754 618.4 0.232 0.757 26255.1

FunCat Multi-label 0.230 0.731 1797.9 0.250 0.684 132862.1

HMC 0.239 0.755 265.3 0.250 0.741 13408.4

The best predictive performance for each dataset is shown in bold.
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We further examine the results by performing a statistical significance test. In particular,
we performed the Friedman test to check whether the observed differences in performance
among the ensemble methods are statistically significant when taken over all datasets. We
present the result of this test in Fig. 5. The test did not find a statistically significant dif-
ference in the performance of the different ensemble models. However, the single-label
classification ensembles are on average the best performing.

Next, we discuss the overfit score and of the models. The results show that all of the
ensemble models overfit approximately the same on the training data as measured by the
overfit score. Moreover, the overfit score is typically smaller for the ensemble models than
the single-tree models. Since the ensemble models are not interpretable, we do not look
at the model size (although global ensemble models have typically smaller size than local
ensemble models).

We then compare the performance of the two ensemble construction methods: random
forests and bagging. The performance of random forest and bagging is very close to each
other, with the exception of the sparse Reuters datasets. The random forest method is not
suitable for sparse datasets due to the relatively small number of randomly selected features
in each node of the tree. These features could have zeros for each example value in a given
leaf (due to the sparsity) which will lead to performance deterioration.

A closer inspection of the results reveals that the small differences in performance of
the different types of ensemble models are connected to the number of labels per example,
similarly as for the single tree models. On datasets with a less populated class hierarchy
(ImCLEF07A, ImCLEF07D, Reuters and SeqAra-FunCat) the single-label models achieve
better predictive performance than other models. On datasets with a more populated class
hierarchy (Danish farms, Slovenian rivers, Enron and ExprYeast-FunCat) the difference
between local and global models are less pronounced. On these datasets, there is no statisti-
cally significant difference (Figs. 6 and 7) between single-label model and methods which
use the class hierarchy (HSC and HMC), with exception of random forest on ExprYeast-
FunCat dataset, where single-label is significantly better than HSC but not than HMC. On
datasets with a less populated hierarchy, single-label models are significantly better than
HMC and HSC.

8 7 6 5 4 3 2 1

RForest-Single-label

Bagging-Single-label

Bagging-HMC

Bagging-Multi-label

RForest-HMC

Bagging-HSC

RForest-Multi-label

RForest-HSC

Critical Distance = 3.7122

Fig. 5 Average ranks diagrams for the performance of all ensemble models in terms of AUPRC for all of the
datasets. Better algorithms are positioned on the right-hand side, the ones that differ by less than the critical
distance for a p-value = 0.05 are connected with a line
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Fig. 6 Average ranks diagrams for the performance of random forests in terms of AUPRC for each of the
eight datasets. Better algorithms are positioned on the right-hand side, the ones that differ by less than the
critical distance for a p-value = 0.05 are connected with a line

5.3 Interpretability of predictive models

Besides the predictive power of the models, their interpretability is often a highly desired
property, especially in domains such as habitat modelling. We discuss the interpretability
of the models from the perspective of this domain. The single tree predictive models that
we consider here (PCTs) are readily interpretable (ensemble models are not interpretable,
and are not considered in this section). However, the difference in the interpretability of the
local and global models is easy to notice. Firstly, global models, especially HMC trees, have
considerably smaller complexity than the (collections of) local models (Table 4).

In Fig. 8, we present illustrative examples of the predictive models for the Slovenian
rivers dataset. We show several PCTs for single-label classification, a tree for multi-label
classification and a tree for hierarchical multi-label classification.
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Fig. 7 Average ranks diagrams for the performance of bagging in terms of AUPRC for each of the eight
datasets. Better algorithms are positioned on the right-hand side, the ones that differ by less than the critical
distance for a p-value = 0.05 are connected with a line

We can immediately notice the differences between the local and global predictive mod-
els. The local models2 offer information only for a part for the output space, i.e., they are
valid just for a single species. In order to reconstruct the complete community model, one
needs to look at the separate models and then try to make some overall conclusions. How-
ever, this could be very tedious or even impossible in domains with high biodiversity where
there are hundreds of species present, such as the domain we consider here - Slovenian
rivers.

2Note that the hierarchical single-label classification models will be similar to the single-label classification
models, with the difference that the predictive models are organized into a hierarchical architecture. This
makes the interpretation of the HSC models an even more difficult task.
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Fig. 8 Illustrative examples of decision trees (PCTs) learnt for the Slovenian rivers dataset. Single-label
classification (a) produces a separate model for each of the species, whereas multi-label classification (b)
and hierarchical multi-label classification (c) consider all of the species in a single tree

On the other hand, the global models are much easier to interpret. The single global
model is valid for the complete structured output, i.e., for the whole community of
species present in the ecosystem. The global models are able to capture the interac-
tions present between the species, i.e., which species can co-exist at locations with given
physico-chemical properties. Moreover, the HMC models, as compared to the multi-label
models, offer additional information about the higher taxonomic ranks. For example, the
HMC model could state that there is a low probability (0.27) that the species Diptera
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chironomus is present under the given environmental conditions, while there is a high
probability (0.88) that the genus Diptera is present (left-most leaf of the HMC tree in
Fig. 8).

6 Conclusions

We address the task of learning predictive models for hierarchical multi-label classifica-
tion, which take as input a tuple of attribute values and predict a set of classes organized
into a hierarchy. We consider both global and local approaches for prediction of structured
outputs. The former are based on a single model that predicts the entire output structure,
while the latter are based on a collection of models, each predicting a part of the output
structure.

We investigate the differences in performance and interpretability of the local and global
models. More specifically, we examine whether including information in the form of hier-
archical relationships among the labels and considering the multiple labels simultaneously
helps to improve the performance of the predictive models. Moreover, we investigate
whether inclusion of the information on the output structure also improves the performance
of ensemble models. To this end, we consider four machine learning tasks: single-label clas-
sification, hierarchical single-label classification, multi-label classification and hierarchical
multi-label classification; and two types of models able to solve those tasks: single-trees
and ensembles.

We use predictive clustering trees as predictive models, since they can be used for solving
all of the four tasks considered here. We construct and evaluate four types of single tree
models: single-label trees, hierarchical single-label trees, multi-label trees and hierarchical
multi-label trees. Additionally, for each of the mentioned tree types, we construct two types
of ensembles: random forests and bagging.

We compare the performance of local and global predictive models on eight datasets
from four practically relevant tasks: habitat modelling, image classification, text classifica-
tion and functional genomics. The results show that the inclusion of the information about
the class hierarchy has different importance for single tree models and ensemble models.
Ensemble models are in general more accurate than single tree models, but are uninter-
pretable. Therefore, if the models needs to be interpreted, single tree models should be
used.

The inclusion of the hierarchical information in the model construction phase for
single trees improves the predictive performance irregardless of whether we use HMC
trees or HSC tree architecture. HMC trees should be used on domains with a well-
populated class hierarchy (L > 2), while the HSC tree architecture will perform
better if the number of labels per example is closer to one. We would like to note
that HSC architectures are complex and not easy to interpret; therefore, a HMC
model is still the best choice if interpretability is of more importance than predictive
performance.

Inclusion of the information on the output structure (i.e., class hierarchy) brings less (or
no) advantage in terms of predictive performance to ensemble methods as compared to sin-
gle tree methods. However, there are considerable differences in the learning time between
global and local ensemble methods. While, the single-label ensembles achieved the best
predictive performance, HMC ensembles are much more efficient in terms of learning time
than the single-label ensembles and should be used if time is an issue (especially random
forests, since they are faster than bagging).
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using hierarchical multi-label decision tree ensembles. BMC Bioinformatics, 11(2), 1–14.

Seni, G., & Elder, J.F. (2010). Ensemble methods in data mining: Improving accuracy through combining
predictions: Morgan & Claypool Publishers.

Silla, C., & Freitas, A. (2011). A survey of hierarchical classification across different application domains.
Data Mining and Knowledge Discovery, 22(1-2), 31–72.

Silla, C.N., & Freitas, A.A. (2009). A global-model naive bayes approach to the hierarchical prediction of
protein functions. In Proceeding of the 9th IEEE international conference on data mining (pp. 992–997).
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