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Abstract. In machine learning, the data available for analysis is becom-
ing more complex both in terms of high-dimensionality and the way it
is structured. This emphasises the need for developing machine learning
algorithms that are able to tackle both the high-dimensionality and the
complex structure of the data. Our work in this paper, focuses on extend-
ing a feature ranking algorithm that can be used as a filter method for a
specific type of structured data. More specifically, we adapt the RReliefF
algorithm for regression, for the task of hierarchical multi-label classifi-
cation (HMC). We evaluate this algorithm experimentally in a filter-like
setting by employing ensembles of predictive clustering trees for HMC
as a classifier. In the experimental evaluation, we consider datasets from
two prominent domains for HMC - functional genomics and image anno-
tation. The results show that HMC-ReliefF can identify the relevant fea-
tures present in the data and produces a ranking where they are placed
among the top ranked ones.

Keywords: Feature selection · Feature ranking · Feature relevance ·
Structured data · Hierarchical multi-label classification · Multi-label
classification · ReliefF

1 Introduction

The current trend in machine learning is that the data available for analysis is
becoming increasingly more complex. The complexity arises both from the data
being high-dimensional and from the data being more structured. On one hand,
high-dimensional data presents specific challenges for many machine learning
algorithms, especially with the stability of the produced results [11]. On the
other, mining complex data and extracting knowledge from it has been identified
as one of the most challenging problems in machine learning [6,17].

Various feature selectionmethods exist fordealingwith thehigh-dimensionality
of the data. They usually precede the induction of predictive models and can be
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classified as filter, wrapper and embedded methods [10]. Filter methods [3] are the
simplest ones and they usually involve a feature ranking algorithm that produces a
list of relevant features. Wrapper methods [15] rely on classification algorithms to
perform feature selection and are computationally expensive. Embedded methods
[10] are basically classification algorithms that have the feature selection embedded
in the model induction phase.

Learning in a supervised context, where the target is structured, has also
attracted much attention. Several algorithms that were previously employed
only for classification or regression purposes, have been extended to also work
with structured targets. These include decision trees for hierarchical targets [23],
SVMs for multi-label and hierarchical multi-label problems [9], as well as tree
ensembles that can be additionally employed for vectors of multiple targets [14].

Our work in this paper focuses on tackling the feature selection problem in
the context of structured targets. We consider this a relevant problem in machine
learning that relates to both of the previously discussed trends. So far, structured
prediction has not been extensively researched in the context of feature ranking
methods and we consider this a novel and interesting line of work to pursue.

More specifically, we focus on the ReliefF [20] algorithm for feature rank-
ing. This algorithm is an intuitive, instance based algorithm and its theoretical
properties have been extensively explored [20]. We extend ReliefF for a spe-
cific type of structured prediction problems, namely those from the Hierarchical
Multi-Label Classification (HMC) domain [21]. The target that is predicted for
these problems is defined with a hierarchy of classes and each instance in the
dataset can be labelled with more than one class at a time. By definition, when
an instance is labelled with one class it is also labelled with all of its parent
classes according to the given hierarchy.

In practice, this type of problems appear in different domains, for exam-
ple in biology for the task of gene function prediction or in image retrieval for
the task of image annotation. For the task of gene function prediction, each
gene can be annotated by multiple functions and the functions are organised
into a tree-shaped hierarchy or a directed acyclic graph such as the Gene Ontol-
ogy [2]. Thus, predicting the function of a gene from certain gene properties
would have to take into account the multi-label annotation of each gene and
also the hierarchical connections of these labels.

In the remainder of this paper, we present the details of our work organised
as follows. In Sect. 2, we define more formally the HMC setting and present
the distance measures appropriate for this setting. Next, in Sect. 3, we discuss
in depth the original RReliefF algorithm for regression and explain our HMC-
ReliefF extension of the algorithm. We present our experimental evaluation of
the proposed HMC-ReliefF algorithm in Sect. 4. Finally, in Sect. 5, we present
our conclusions and discuss directions of possible further work.

2 Hierarchical Multi-label Classification

In our work we extend the ReliefF algorithm for the task of hierarchical multi-
label classification (HMC). Hierarchical classification is a specific type of a
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classification task in which the classes are organised in a hierarchy. An example
that belongs to a given class automatically belongs to all its super-classes (this
is known as the hierarchy constraint). Furthermore, if an example can belong
simultaneously to multiple classes that can follow multiple paths from the root
class, then the task is called hierarchical multi-label classification (HMC) [21,23].

We formally define the hierarchical multi-label classification setting as
follows:

– A description space X that consists of tuples of values of primitive data types
(discrete or continuous), i.e., ∀Xi ∈ X,Xi = (xi1 , xi2 , ..., xiD ), where D is the
size of the tuple (or number of descriptive variables),

– a target space S, defined with a class hierarchy (C,≤h), where C is a set of
classes and ≤h is a partial order (e.g., structured as a rooted tree) representing
the superclass relationship (∀ c1, c2 ∈ C : c1 ≤h c2 if and only if c1 is a
superclass of c2),

– a set E, where each example is a pair of a tuple and a set, from the descriptive
and target space respectively, and each set satisfies the hierarchy constraint,
i.e., E = {(Xi, Si)|Xi ∈ X,Si ⊆ C, c ∈ Si ⇒ ∀c∈ ≤h c : c∈ ∈ Si, 1 ≤ i ≤ N}
and N is the number of examples in E (N = |E|)

Two toy examples of classes organised in hierarchies can be seen in Fig. 1. The
first hierarchy in Fig. 1(a) consists of five classes {c1, c2, c3, c2.1, c2.2}, organised
in a tree-like structure. The other hierarchy in Fig. 1(c), contains six classes
(c1 − c6) and they are organised in a directed acyclic graph (DAG), where each
class can have multiple parents.

Calculating the distance between two different instances of the target space
S1 and S2, can be done in different ways. These distances include: a weighted
Euclidean distance for HMC [23], Jaccard distance (also known as Union-
intersection distance/score) [12], simGIC (Similarity for Graph Information Con-
tent) [18] and ImageCLEF (evaluation score of the ImageCLEF image annotation
task) [5]. An experimental evaluation comparing these distances in the context
of HMC [1] has shown that learning predictive models that use the different
distances, does not produce statistically significant differences in predictive per-
formance.

In our work, we chose to extend the RReliefF algorithm by using a weighted
Euclidean distance for HMC [23]. With this weighted Euclidean distance, the
hierarchical aspect is incorporated by relating the class weight with the depth
of the class within the hierarchy. Extending RReliefF with this distance is the
most straightforward choice, considering that the original algorithm uses the
Euclidean distance for calculating the distance for the target variable.

Before calculating the distance between two instances of the hierarchy, they
are first represented as a vector of binary values [23]. The vector is created
by traversing the tree or DAG that is representing the hierarchy in pre-order
and assigning a 1 or 0 sequentially in the vector for a present or absent label
respectively. For example, consider an instance of the toy class hierarchy S1,
given in boldface in Fig. 1(b). This particular instance consists of three classes,
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(a)

c2c1 c3

c2.1 c2.2

(b)

c2(2)c1(1) c3 (5)

c2.1 (3) c2.2 (4)

(1)(2)(3)(4)(5)

Lk =[1,1,0,1,0]

(c)

c2c1

c6

c3

ca c5

Fig. 1. Toy examples of hierarchies structured as a tree and a DAG. (a) Class label
names contain information about the position in the hierarchy, e.g., c2.1 is a subclass of
c2. (b) The set of classes S1 = {c1, c2, c2.2}, shown in bold in the hierarchy, represented
as a vector (Lk). (c) A class hierarchy structured as a DAG. The class c6 has two
parents: c1 and c4.

namely {c1, c2, c2.2} and its corresponding vector representation would be L1 =
[1, 1, 0, 1, 0].

If we additionally consider another instance S2, labelled just with class {c2},
with a vector representation L2 = [0, 1, 0, 0, 0], then the distance between S1

and S2 would be obtained by simply comparing the two binary vectors. In our
HMC-ReliefF algorithm we use a weighted Euclidean distance measure given
with the following equation:

d(L1, L2) =
√∑

i

w(ci)(L1,i − L2,i)2, (1)

The weighting function w(c) allows for the hierarchical structure of the classes
to be taken into account by making the value dependent on the depth of the
hierarchy:

w(c) = w
depth(c)
0 , 0 < w0 < 1. (2)

This scheme ensures that the differences higher in the hierarchy have larger
influence on the total distance.

For the specific case of comparing S1 and S2, the distance is calculated as
follows:

d(S1, S2) = d([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =
√

w0 + w2
0.

where w(c1) = w0 and w(c3) = w2
0.

If the hierarchy is represented with a DAG, this scheme needs to be modified.
In this case, more than one path from the root to a given class may exist and
thus a node can have different depths. This problem is solved with the following
recursive equation:
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w(c) = w0 · avg(w(parentj(c))). (3)

By using this weighting function, the weight of the different possible parents is
averaged. This is recommended [23] as a good way to take into account multiple
inheritance which occurs in DAGs.

3 HMC-ReliefF Algorithm

Algorithms from the Relief family are instance-based methods for estimating
feature relevance. The original Relief algorithm [13] is formulated for binary
classification problems. The algorithm was extended [16] to deal with multi-
class problems and the extension was named ReliefF. Later, it was also adapted
for regression problems [19] and named RReliefF.

In general, the feature relevance value assigned by the Relief algorithm to a
feature F is an approximation of the following difference of probabilities [16]:

W [F ] = P (diff. value of F |nearest inst. from diff. class)− (4)
P (diff. value of F |nearest inst. from same class)

In the case of classification, the basic intuition behind the ReliefF algorithm
is to estimate the relevance of a feature according to how well it distinguishes
between neighbouring instances. If the feature has different values for neigh-
bouring instances that are of different class (nearest miss), then it is awarded a
higher relevance values. However, if the values of the class for the neighbouring
instances are the same (nearest hit), then the relevance value is decreased.

Although the hierarchical multi-label setting is a classification one, extending
the ReliefF algorithm is not a good idea. Namely, if we simply treat two instances
annotated by different parts of the hierarchy in a simple hit/miss scenario, we
would simply translate the HMC problem to a multi-class one, therefore ignor-
ing both the hierarchical and the multi-label aspect. Having in mind that the
definition of the HMC distance in Sect. 2 is actually weighted Euclidean, it is
more suited to be included in the RReliefF algorithm, originally designed for
regression.

In a regression setting, the target space is continuous and the concept of
nearest hit/miss does not apply. Therefore, the feature relevance W [F ] is refor-
mulated as the difference between the following probabilities:

W [F ] = P (diff. value of F |nearest inst. with diff. prediction)− (5)
P (diff. value of F |nearest inst. with same prediction)

Additionally, if we introduce the following probabilities:

PdiffF (diff. value of F|nearest instance)

and
PdiffC(diff. prediction|nearest instance),



ReliefF for Hierarchical Multi-label Classification 153

as well as the conditional probability:

PdiffC|diffF (diff. prediction|diff. value of F and nearest instances).

Finally, by using the Bayes rule, we obtain:

W [F ] =
PdiffC|diffFPdiffF

PdiffC
− (1 − PdiffC|diffF )PdiffF

1 − PdiffC
(6)

The details of the RReliefF algorithm are given in pseudocode form in
Algorithm 1. The algorithm begins by selecting a random instance (Ri) and find-
ing the k nearest instances Ij to it. From these instances, it then approximates
the relevance W [F ] from Eq. 6 of each feature by calculating NdC , NdF [F ] and
NdC&dF [F ], described in lines 6,8 and 9 of Algorithm 1. The estimations of these
values is based on the distance calculation in the feature space, diff(F,Ri, Ij),
(lines 8 and 9) and in the target space, diff(τ(·), Ri, Ij), (lines 6 and 9).

Algorithm 1. Pseudocode for the RReliefF algorithm, taken from [20].
Input: for each training instance a vector of feature values x and predicted value τ(x)
Output: the vector W of estimations of the relevance of features
1: set all NdC ,NdF [F ],NdC&dF [F ],W [F ] to 0
2: for i = 1 to m do
3: randomly select an instance Ri

4: select k instances Ij nearest to Ri

5: for j = 1 to m do
6: NdC = NdC + diff(τ(·), Ri, Ij) · d(i, j)
7: for F = 1 to f do
8: NdF [F ] = NdF [F ] + diff(F, Ri, Ij) · d(i, j)
9: NdC&dF [F ] = NdC&dF [F ] + diff(τ(·), Ri, Ij) · diff(F, Ri, Ij) · d(i, j)

10: end for
11: end for
12: end for
13: for F = 1 to f do
14: W [F ] = NdC&dF [F ]/NdC − (NdF [F ] − NdC&dF [F ])/(m − NdC)
15: end for

Our original purpose is to extend the RReliefF algorithm for hierarchical
multi-label classification problems. Considering that the HMC refers to the tar-
get space, we extend the RReliefF algorithm by changing the way that diff(τ(·),
Ri, Ij), from lines 6 and 9, is calculated. From Sect. 2 and Eq. 1 we obtain:

diff(τ(·), Ri, Ij) = diff(Si, Sj) =
√∑

k

w(ck)(Li,k − Lj,k)2 (7)

where Si and Sj are the target descriptions of Ri and Ij correspondingly, while
Li,k and Lj,k are their binary representations. In this way, by changing the way
the distance is calculated, the original RReliefF algorithm is extended to work
for HMC problems and we name this extension HMC-ReliefF.
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4 Experiments

Our experimental evaluation of the HMC-ReliefF is based on the intuition of
what is the expected output of a good feature ranking algorithm. Namely, a
good feature ranking algorithm would output the relevant features on top of the
ranked list of features. A bad ranking algorithm would not necessarily be the one
that gives an inverse ranking according to relevance, but the one that outputs a
random ranking. In the random ranking, the distribution of the relevant features
is expected to be uniform throughout the list.

Having this in mind, we employ a stepwise filter-like procedure [22] to evalu-
ate our HMC-ReliefF algorithm. The idea is that starting from the ranked list of
features, we construct classifiers for different numbers of top-k ranked features.
If there are relevant features on top of the feature ranking, then we can construct
a classifier that has a good predictive performance. If the ranking is random then
the number of relevant features in the top-k ranked features is expected to be
smaller.

Formally, if we have a feature ranking algorithm r that we use on a dataset
D , then the output would be a feature ranking R, namely:

r(D) → R.

The feature ranking R is defined as an ordered list of features F , more specifi-
cally:

R = (Fr1, . . . , Frj , . . . , Frk)

where:
rank(Fr1) ≤ · · · ≤ rank(Frj) ≤ · · · ≤ rank(Frk)

If we assume that we can induce and evaluate a predictive model M (Ri, Ft),
where Ri ⊆ R and Ft is a target feature, then our whole evaluation procedure
can be described as in Algorithm 2.

Algorithm 2. Stepwise evaluation of the top-k ranked features
Input: Feature Ranking, R = {Fr1, . . . , Frn}; Target Feature, Ft

Output: FFA Curve, FFA, where |FFA| = n
RS ⇐ ∅
for k = 1 to n do

RS ⇐ RS ∪ feature(R, i)
FFA[i] = qual(M (RS , Ft))

end for
return FFA

For each step k of the filtering, i.e., for each subset of top-k ranked feature
subsets, we induce a classification model and evaluate its performance. This
process of generating feature sets from the feature ranking is performed in a
forward manner, by adding more and more of the top ranked features, which we
name forward feature addition (FFA). At the end, we obtain a vector of model
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Table 1. Properties of the datasets with hierarchical targets; Ntr is the number of
instances in the training dataset, D/C is the number of descriptive attributes (dis-
crete/continuous), |H | is the number of classes in the hierarchy, Hd is the maximal
depth of the classes in the hierarchy, L is the average number of labels per example,
and L L is the average number of leaf labels per example. Note that the values for Hd

are not always a natural number because the hierarchy has a form of a DAG and the
maximal depth of a node is calculated as the average of the depths of its parents.

Domain Ntr |D|/|C| |H | Hd L LL

Diatoms 1098 0/200 107 2.0 1.98 0.98
ImCLEF07D 10006 0/80 46 3.0 3.0 1.0
ImCLEF07A 10006 0/80 96 3.0 3.0 1.0
SCOP-GO 9843 0/2003 572 5.5 6.26 0.95
SCOP-FUN 3097 0/2003 250 4.0 3.41 0.95
Yeast-GO 2310 5588/342 133 6.33 5.63 0.64

quality estimates that we can plot as a curve, thus obtaining a FFA curve that
we use to estimate the performance of the feature ranking algorithm. In order
to say that the FFA curve of a certain feature ranking algorithm is better than
that of a random ranking, the model quality estimates of the ranking must be
larger than those of the models from the random ranking. Visually, this would
mean that the FFA curve of the algorithm would be above the FFA curve of the
random ranking.

4.1 Experimental Setup

In the HMC-ReliefF algorithm, given in Algorithm 1, there are two basic parame-
ters that can be specified by users and which influence the relevance estimation.
These are the number of random instances m that are chosen and the number
of nearest neighbours k that are used to calculate the feature relevance values.
Therefore, in our experiments, we decided to explore a reasonable set of values
of these parameters in order to evaluate the algorithm performance.

For the number of random instances m, instead of considering an absolute
number, we consider sampling a percentage of the datasets instance space, while
for the number of nearest neighbours k we consider absolute values. More specif-
ically, we consider the following parameters:

– m = {1%, 5%, 10%, 20%, 25%}
– k = {5, 10, 25, 50}.

As a baseline for our comparisons, we use a set of 50 random rankings for each
different dataset. For each of these rankings, we perform the previously described
procedure in Sect. 4 and generate a separate FFA curve. For the random rank-
ings, we average the results of the 50 individual FFA curves, thus generating an
expected FFA curve for a given dataset.

As a predictive model which we induce and evaluate, we use random forests
of so-called predictive clustering trees for hierarchical multi-label classification
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(PCT-HMCs) [14,23]. The specific parameters that we used for the random
forests of PCTs were 100 trees and a feature subset size of 10 % of the all features
in the dataset. For estimating the PCT-HMCs performance, we use ten-fold cross
validation.

In the HMC context, there are various error measures that can be considered.
We use the area of a variant of a precision-recall curve, namely the Pooled Area
Under the Precision-Recall Curve (AU(PRC)), details discussed in [23]. For
this measure, the precision and recall are micro averaged for all classes from
the hierarchy. In the datasets domains that we consider, the positive examples
for a given class are only few as compared to the negative ones. The Precision-
Recall evaluation of these algorithms is most suitable in this context, because
we are more interested in correctly predicting the positive examples (i.e., that
an example belongs to a given class), rather than correctly predicting negative
instances.

For the experiments, we use datasets from two domains which have classes
organised in a hierarchy. We use 6 datasets from 2 domains, more specifically:
biology (Yeast-GO [4], SCOP-GO [4] and SCOP-FUN [4]) and image annota-
tion/classification (Diatoms [8], ImCLEF07D [7] and ImCLEF07A [7]). The rel-
evant properties that characterize each dataset are given in Table 1. Note that
the Yeast-GO and the SCOP-GO datasets have a hierarchy organised as a DAG,
while the remaining datasets have tree-shaped hierarchies. For more details on
the datasets, we refer the reader to the referenced literature.

4.2 Results and Discussion

In this section, we present the results from our experimental evaluation. In Fig. 2,
we give the FFA curves for the datasets from the image annotation domain, while
in Fig. 3, we present the FFA curves for datasets from the functional genomics
domain. The graphs on the left-hand side of Figs. 2 and 3 represent the FFA
curves for a fixed value of m, while the value of k is varied. Correspondingly, the
graphs on the right-hand side contain FFA curves for a fixed value of k, while
the value of m is varied. The fixed values of m and k are chosen for the best
FFA curves.

Overall, it can be observed that all of the FFA curves of the HMC-ReliefF
algorithm are most of the time above the FFA curves of the random rankings.
This means that at the top of the rankings produced by HMC-ReliefF, for dif-
ferent settings of m and k, relevant features can be found. It also means that
this is not by chance, as the AU(PRC) of the produced models is larger than
the expected value of a random ranking. However, there are differences in the
obtained curves for the different datasets, which we will discuss in detail.

We first consider the datasets from the image annotation domain, given in
Fig. 2. It can be noticed that all of the FFA curves produced by HMC-ReliefF,
are only slightly higher, i.e., are only slightly better, than the expected FFA
curves of the random rankings. Also, there is no great variability of the FFA
curves with respect to the different number of m and k. This is expected if we
take into account this specific domain and the way the features are produced.
Namely, most of the features are image descriptors, which are informative about
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Fig. 2. Comparison of different FFA curves obtained by varying the number of m and
k for datasets from the image annotation domain

the image and most of them are relevant. This can also be concluded if we observe
just the expected FFA curve of the random rankings.

Next, if we consider the results from the functional genomics domain in
Fig. 3, a more complex interpretation is necessary. First, the FFA curves of the
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Fig. 3. Comparison of different FFA curves obtained by varying the number of m and
k for datasets from the functional genomics domain

Yeast-GO dataset in Fig. 3a and b, show only slight improvement over the
random FFA curves at the beginning of the ranking (top 1 % of the features).
After that, seemingly irrelevant or redundant features are added, up to 75 % of
the features. After this point there is a jump in the number of relevant features
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that are added, as the AU(PRC) values become larger. For a fixed k in Fig. 3b,
this effect is more pronounced as the percent of sampled instances m increases.

Upon closer inspection of the produced rankings of the Yeast-GO dataset, all
of the numerical features were located among the top-ranked 1 % of the features
and the bottom 25 % of the features, while the binary features were in the remain-
ing part of the ranking. Although most of the numerical features were relevant,
the corresponding relevance values for part of them seemed to be underesti-
mated. This problem of underestimation of numerical attributes was also noted
by Robnik-Šikonja and Kononenko [20], especially in the domains with both
numeric and nominal features. To alleviate this issue, the use of a ramp function
was proposed when calculating the distance between the numerical attributes. In
our implementation a ramp function was also used, however different threshold
parameters of this function were not explored. Robnik-Šikonja and Kononenko
in [20], noted that for different domains, different thresholds might be appropri-
ate and we believe that this is the probable cause of the underestimation of the
relevance for part of the numeric features.

The FFA curves of the SCOP-FUN dataset, in Fig. 3c and d are the only
ones that show variability of the curves with respect to m and k. Unlike the
other datasets, the best FFA curves were obtained for a small number of m and
of k. This is consistent with the analysis of ReliefF in [20] where it is stated that
the values of m and k are often problem dependent and often smaller values
might be better in order to preserve “locality” of the relevance estimations.

The best results were obtained for the SCOP-GO dataset, which we present
in Fig. 3e and f. Both for a fixed m and k, the values of the FFA curves produced
by HMC-ReliefF are much higher than those of the random rankings. For a fixed
m varying the values of k does not influence the results (Fig. 3e). For a large
fixed k, there is only a difference for the FFA curve produced for m = 1% of the
instance space, which produces lower AU(PRC) values than the other values of
the parameter m.

5 Conclusions and Further Work

In this paper, we presented the HMC-ReliefF algorithm, which is an extension of
the RReliefF algorithm for the task of Hierarchical Multi-label Classification. We
believe that this is both an interesting and novel line of work, in the context of
feature ranking algorithms. To the best of our knowledge, there has not been any
work for feature ranking within the context of structured data. We specifically
focused on the ReliefF algorithm, due to its success in both classification and
regression settings. The specific type of structured problems that we considered
(HMC), was motivated by the fact that this kind of data can be found in various
domains including biology and image annotation.

We evaluated the HMC-ReliefF algorithm on datasets from different domains
and with different properties of the hierarchies. We first investigated if our algo-
rithm was able to detect relevant features in a dataset and put them on top of the
ranking. We consider this to be a minimum requirement of any feature ranking
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algorithm. Additionally, we also explored a reasonable set of parameter settings
of HMC-ReliefF, which have influence on the feature relevance estimations.

The results of our experiments showed that, for various datasets, the HMC-
ReliefF algorithm performed well, as evaluated by a stepwise filter like approach
of constructing FFA curves. This performance was compared to an expected FFA
curve, obtained from a set of random rankings. The exploration of the various
parameters of HMC-ReliefF showed the following. For the image annotation
datasets, large values of m and k were preferred and the FFA curves did not show
much variability with respect to the parameters. The FFA curves produced by
HMC-ReliefF were above the expected FFA curves with small differences. This
was due to the nature of the domain and due to the fact that most of the features
in the image annotation datasets were relevant.

For the functional genomics datasets, the results were more complex. The
effect of underestimation of relevance of numeric features with respect to binary
ones was observed, which has also been noted in the original ReliefF. The FFA
curves of one of the datasets, were sensitive to the change of m and k, producing
better FFA curves for smaller values. Finally, the last investigated dataset from
this domain provided the best FFA curves, with values significantly larger than
those of the expected FFA curves.

With this paper and the results presented we performed an initial investiga-
tion of the HMC-ReliefF algorithm. The directions for further work regarding
our HMC-ReliefF algorithm are numerous. One major direction would be to
define an artificial, controlled setting for investigating HMC problems in the
context of feature ranking. Different types of hierarchies should be considered,
which are also differently structured (balanced vs. unbalanced, different width,
different depth), or differently populated by instances (sparse vs. non-sparse).
Within this setting, the effects of the various parameters of HMC-ReliefF can be
investigated and the advantages and limitations of the algorithm can be explored.
Another major direction is to consider different types of structured outputs, such
as multi-label or multi-target classification.
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