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Abstract. We address the task of learning models for predicting struc-
tured outputs. We consider both global and local approaches to the pre-
diction of structured outputs, the former based on a single model that
predicts the entire output structure and the latter based on a collec-
tion of models, each predicting a component of the output structure.
More specifically, we compare local and global approaches in terms of
predictive performance, learning time and model complexity. Moreover,
we discuss the interpretability of the obtained models. We evaluate the
predictive performance of the considered approaches on six case studies
from three domains: ecological modelling, text classification and image
classification. Finally, we identify the properties of the tasks at hand that
lead to the differences in performance.
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1 Introduction

Supervised learning is one of the most widely researched and investigated areas
of machine learning. The goal in supervised learning is to learn, from a set of
examples with known class, a function that outputs a prediction for the class
of a previously unseen example. If the examples belong to two classes (e.g., the
example has some property or not) the task is called binary classification. The
task where the examples can belong to a single class from a given set of m classes
(m ≥ 3) is known as multi-class classification. The case where the output is a
real value is called regression.

However, in many real life problems of predictive modelling the output (i.e.,
the target) is structured, meaning that there can be dependencies between classes
(e.g., classes are organized into a tree-shaped hierarchy or a directed acyclic
graph) or some internal relations between the classes (e.g., sequences). These
types of problems occur very often in various domains, such as life sciences
(predicting gene function, finding the most important genes for a given disease,
predicting toxicity of molecules, etc.), ecology (analysis of remotely sensed data,
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habitat modelling), multimedia (annotation and retrieval of images and videos)
and the semantic web (categorization and analysis of text and web pages). Hav-
ing in mind the needs of these application domains and the increasing quantities
of structured data, Kriegel et al. [1] and Dietterich et al. [2] listed the task of
“mining complex knowledge from complex data” as one of the most challenging
problems in machine learning.

A variety of methods, specialized in predicting a given type of structured
output (e.g., a hierarchy of classes [3]), have been proposed [4]. These methods
can be categorized into two groups of methods for solving the problem of pre-
dicting structured outputs [3,4]. Local methods construct models for predicting
component(s) of the output and then combine the individual models to get the
overall model (i.e., they construct an architecture of several simple(r) models).
Global methods that construct models for predicting the complete structure as
a whole (also known as ‘big-bang’ approaches).

The global methods have several advantages over the local methods. First,
they exploit and use the dependencies that may exist between the components
of the structured output in the model learning phase, which can result in better
predictive performance of the learned models. Next, they are typically more
efficient: it can easily happen that the number of components in the output is
very large (e.g., hierarchies in functional genomics can have several thousands of
components), in which case learning a model for each component is not feasible.
Furthermore, they produce models that are typically smaller than the sum of
the sizes of the models built for each of the components.

Despite the many developed methods and their interesting applications, it
is not clear when it is favorable (performance wise) to apply global and when
local approaches. In this work, we focus on clarifying this important issue for
the task of hierarchical multi-label classification (HMC). HMC is a variant of
classification, where a single example may belong to multiple classes at the same
time and the classes are organized in the form of a hierarchy. An example that
belongs to some class c automatically belongs to all super-classes of c: This is
called the hierarchical constraint. Problems of this kind can be found in many
domains including text classification, functional genomics, and object/scene clas-
sification. Silla and Freitas [3] give a detailed overview of the possible application
areas and the different approaches to HMC.

More specifically, we construct four types of predictive models that exploit
different amounts of the information provided by the output structure, i.e.,
the hierarchical organization of the classes. This corresponds to four different
machine learning tasks that can be formulated to solving the task of HMC:
binary classification, hierarchical single-label classification, multi-label classifi-
cation and hierarchical multi-label classification. The first two tasks construct
(an architecture of) local predictive models, while the last two tasks construct
global models.

To properly evaluate the predictive performance of the different models one
needs to select predictive models from the same type that can solve the four tasks
enumerated above. To this end, we consider predictive clustering trees (PCTs) as
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predictive models. PCTs can be viewed as a generalization of standard decision
trees towards predicting structured outputs. PCTs offer a unifying approach for
dealing with different types of structured outputs and construct the predictive
models very efficiently. They are able to make predictions for several types of
structured outputs: tuples of continuous/discrete variables, hierarchies of classes,
and time series [5–7].

We perform the evaluation of the predictive models on six practically rele-
vant HMC datasets. The datasets come from three different domains: habitat
modelling, image classification and text classification. We consider habitat mod-
els for Collembola communities in the soils of Denmark [8] and communities
of organisms living in Slovenian rivers [9]. Next, we use two datasets from the
2007 CLEF cross-language image retrieval campaign [10], where the goal is to
annotate medical X-ray images. From the domain of text classification, we use
two well known datasets: categorization of e-mails from officials of the Enron
corporation [11] and categorization of Reuters newswire stories [12].

The remainder of this paper is organized as follows. Section 2 explains the
predictive clustering trees framework and the extensions for the different tasks
considered here. The experimental setup is presented in Sect. 3. Section 4 presents
the obtained results. Finally, the conclusions are stated in Sect. 5.

2 Predictive Modelling for HMC

In this section, we present in more detail methodology used to construct the
predictive models. We first present global approaches that predict the complete
output (i.e., a single model for all of the possible labels in the dataset) with a
single model. We then briefly describe local approaches that construct several
models - each one predicting a part of the output (i.e., a model for each label
separately).

2.1 Global Predictive Models

The Predictive Clustering Trees (PCTs) framework views a decision tree as a
hierarchy of clusters: the top-node corresponds to one cluster containing all data,
which is recursively partitioned into smaller clusters while moving down the tree.
The PCT framework is implemented in the CLUS system [13], which is available
for download at http://clus.sourceforge.net.

PCTs are induced with a standard top-down induction of decision trees
(TDIDT) algorithm [14]. The algorithm is presented in Table 1. It takes as input
a set of examples (E) and outputs a tree. The heuristic (h) that is used for
selecting the tests (t) is the reduction in variance caused by the partitioning (P)
of the instances corresponding to the tests (t) (see line 4 of the BestTest proce-
dure in Table 1). By maximizing the variance reduction, the cluster homogeneity
is maximized and the predictive performance is improved.

The main difference between the algorithm for learning PCTs and a standard
decision tree learner is that the former considers the variance function and the
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Table 1. The top-down induction algorithm for PCTs.

procedure PCT
Input: A dataset E
Output: A predictive clustering
tree

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ ∈= none then
3: for each Ei ∩ P∗ do
4: treei = PCT(Ei)

5: return
node(t∗,

⋃
i{treei})

6: else
7: return leaf(Prototype(E))

procedure BestTest
Input: A dataset E
Output: the best test (t∗), its heuristic
score (h∗) and the partition (P∗) it induces
on the dataset (E)

1: (t∗, h∗,P∗) = (none, 0, ≤)
2: for each possible test t do
3: P = partition induced by t on E
4: h = Var(E) − ∑

Ei∈P
|Ei|
|E| Var(Ei)

5: if (h > h∗) ∼ Acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

prototype function (that computes a label for each leaf) as parameters that can
be instantiated for a given learning task. So far, PCTs have been instantiated for
the following tasks: multi-target prediction (which includes multi-label classifi-
cation) [6], hierarchical multi-label classification [7] and prediction of time-series
[15]. In this article, we focus on the first two tasks.

PCTs for Multi-label Classification. PCTs for multi-label classification can
be considered as PCTs that are able to predict multiple binary (and thus dis-
crete) targets simultaneously. Therefore, the variance function for the PCTs for
MLC is computed as the sum of the Gini indices of the target variables, i.e.,
Var(E) =

∑T
i=1 Gini(E ,Yi). Alternatively, one can also use the sum of the

entropies of class variables as a variance function, i.e., Var(E) =
∑T

i=1 Entropy
(E ,Yi) (this definition has also been used in the context of multi–label predic-
tion [16]). The CLUS system also implements other variance functions, such as
reduced error, gain ratio and the m-estimate. The prototype function returns a
vector of probabilities that an instance belongs to a given class for each target
variable. Using these probabilities, the most probable (majority) class value for
each target can be calculated.

PCTs for Hierarchical Multi-label Classification. CLUS-HMC is the
instantiation (with the distances and prototypes as defined below) of the PCT
algorithm for hierarchical classification implemented in the CLUS system [7].
The variance and prototype are defined as follows. First, the set of labels of each
example is represented as a vector with binary components; the ith component
of the vector is 1 if the example belongs to class ci and 0 otherwise. It is easily
checked that the arithmetic mean of a set of such vectors contains as ith com-
ponent the proportion of examples of the set belonging to class ci. The variance
of a set of examples E is defined as the average squared distance between each
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Fig. 1. Toy examples of a hierarchy structured as a tree. (a) Class label names contain
information about the position in the hierarchy, e.g., c2.1 is a subclass of c2. (b) The
set of classes S1 = {c1, c2, c2.2}, shown in bold, are represented as a vector (Lk).

example’s class vector (Li) and the set’s mean class vector (L), i.e.,

Var(E) =
1

|E| ·
∑

Ei∈E

d(Li, L)2.

In the HMC context, the similarity at higher levels of the hierarchy is more
important than the similarity at lower levels. This is reflected in the distance
measure used in the above formula, which is a weighted Euclidean distance:

d(L1, L2) =

√
√
√
√

|L|∑

l=1

w(cl) · (L1,l − L2,l)2,

where Li,l is the lth component of the class vector Li of an instance Ei, |L| is the
size of the class vector, and the class weights w(c) decrease with the depth of the
class in the hierarchy. More precisely, w(c) = w0 · w(p(c)), where p(c) denotes
the parent of class c and 0 < w0 < 1).

For example, consider the toy class hierarchy shown in Fig. 1(a,b), and two
data examples: (X1, S1) and (X2, S2) that belong to the classes S1 = {c1, c2, c2.2}
(boldface in Fig. 1(b)) and S2 = {c2}, respectively. We use a vector representa-
tion with consecutive components representing membership in the classes c1, c2,
c2.1, c2.2 and c3, in that order (preorder traversal of the tree of class labels). The
distance is then calculated as follows:

d(S1, S2) = d([1, 1, 0, 1, 0], [0, 1, 0, 0, 0]) =
√

w0 + w2
0.

Recall that the instantiation of PCTs for a given task requires a proper
instantiation of the variance and prototype functions. The variance function for
the HMC task is instantiated by using the weighted Euclidean distance measure
(as given above), which is further used to select the best test for a given node
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by calculating the heuristic score (line 4 from the algorithm in Table 1). We now
discuss the instantiation of the prototype function for the HMC task.

A classification tree stores in a leaf the majority class for that leaf, which
will be the tree’s prediction for all examples that will arrive in the leaf. In the
case of HMC, an example may have multiple classes, thus the notion of majority
class does not apply in a straightforward manner. Instead, the mean L̄ of the
class vectors of the examples in the leaf is stored as a prediction. Note that the
value for the ith component of L̄ can be interpreted as the probability that an
example arriving at the given leaf belongs to class ci.

The prediction for an example that arrives at the leaf can be obtained by
applying a user defined threshold τ to the probability; if the ith component of
L̄ is above τ then the examples belong to class ci. When a PCT is making a
prediction, it preserves the hierarchy constraint (the predictions comply with
the parent-child relationships from the hierarchy) if the values for the thresholds
τ are chosen as follows: τi ≤ τj whenever ci ≤h cj (ci is ancestor of cj). The
threshold τ is selected depending on the context. The user may set the threshold
such that the resulting classifier has high precision at the cost of lower recall or
vice versa, to maximize the F-score, to maximize the interpretability or plausi-
bility of the resulting model etc. In this work, we use a threshold-independent
measure (precision-recall curves) to evaluate the performance of the models.

2.2 Local Predictive Models

Local models for predicting structured outputs use a collection of predictive
models, each predicting a component of the overall structure that needs to be
predicted. For the task of predicting multiple targets, local predictive models are
constructed by learning a predictive model for each of the targets separately. In
the task of hierarchical multi-label classification, however, there are four different
approaches that can be used: flat classification, local classifiers per level, local
classifiers per node, and local classifiers per parent node (see [3] for details).

Vens et al. [7] investigated the performance of the last two approaches with
local classifiers over a large collection of datasets from functional genomics. The
conclusion of the study was that the last approach (called hierarchical single-
label classification - HSC) performs better in terms of predictive performance,
smaller total model size and faster induction times.

In particular, the CLUS-HSC algorithm by Vens et al. [7] constructs a deci-
sion tree classifier for each edge (connecting a class c with a parent class par(c))
in the hierarchy, thus creating an architecture of classifiers. The tree that predicts
membership to class c is learnt using the instances that belong to par(c). The
construction of this type of trees uses few instances, as only instances labeled
with par(c) are used for training. The instances labeled with class c are positive
while the ones labeled with par(c), but not with c are negative.

The resulting HSC tree architecture predicts the conditional probability
P (c|par(c)). A new instance is predicted by recursive application of the product
rule P (c) = P (c|par(c))·P (par(c)), starting from the tree for the top-level class.
Again, the probabilities are thresholded to obtain the set of predicted classes.
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To satisfy the hierarchy constraint, the threshold τ should be chosen as in the
case of CLUS-HMC.

In this work, we also consider the task of single-label classification. We con-
sider this to be a special case of multi-label classification where the number
of labels is 1. To this end, we use the same algorithm as for the multi-label
classification trees. We call these models single-label classification trees.

3 Experimental Design

In this section, we present the design of the experimental evaluation of the
predictive models built for the four machine learning tasks considered. We begin
by describing the data used. We then outline the specific experimental setup for
constructing the predictive models. Finally, we present the evaluation measure
for assessing the predictive performance of the models.

3.1 Data Description

We use six datasets, which come from three domains: habitat modeling, image
classification and text classification. The main statistics of the datasets are given
in Table 2. We can observe that the datasets vary in the size, number of attributes
and characteristics of the label hierarchy.

Habitat modelling [17] focuses on spatial aspects of the distribution and
abundance of plants and animals. It studies the relationships between environ-
mental variables and the presence/abundance of plants and animals. This is
typically done under the implicit assumption that both are observed at a single
point in time for a given spatial unit (i.e., sampling site). We investigate the
effect of environmental conditions on communities of organisms in two different
ecosystems: river and soil. Namely, we construct habitat models for river water
organisms living in Slovenian rivers [9] and for soil microarthropods from Danish
farms [8]. The data about the organisms that live in the water of Slovenian rivers
was collected during six years (1990 to 1995) of monitoring of water quality per-
formed by the Hydro-meteorological Institute of Slovenia (now Environmental
Agency of Slovenia). The data for the soil microarthropods from Danish farms
describes four experimental farming systems (observed during the period 1989–
1993) and a number of organic farms (observed during the period 2002–2003).
The structured output space in these case studies is the taxonomic hierarchy
of the species. Since different species are considered in the two domains, their
respective output spaces will be different.

In image classification, the goal is to automatically annotate the image con-
tent with labels. The labels typically represent visual concepts that are present in
the images. In this work, we are concerned with the annotation of medical X-ray
images. We use two datasets from the 2007 CLEF cross-language image retrieval
campaign [10]: ImCLEF07A and ImCLEF07D. The goal in these datasets is to
recognize which part of the human anatomy is present in the image or the ori-
entation of the body part, respectively. Images are represented by using edge
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Table 2. Characteristics of the datasets: N is the number of instances, D/C is the
number of descriptive attributes (discrete/continuous), L is the number of labels (leafs
in the hierarchy), |H| is the number of nodes in the hierarchy, Hd is the maximal depth
of the hierarchy, LL is the average number of labels per example.

Domain N D/C L |H| Hd LL

Slovenian rivers [9] 1060 0/16 491 724 4 25
Danish farms [8] 1944 132/5 35 72 3 7
ImCLEF07A [10] 11006 0/80 63 96 3 1
ImCLEF07D [10] 11006 0/80 26 46 3 1
Enron [11] 1648 0/1001 50 54 3 2.84
Reuters [12] 6000 0/47236 77 100 4 1.2

histograms. An edge histogram represents the frequency and the directionality
of the brightness changes in the image. The structured output space consists of
labels organized in hierarchy. They correspond to the anatomical (ImCLEF07A)
and directional (ImCLEF07D) axis of the IRMA (Image Retrieval in Medical
Applications) code [18].

Text classification is the problem of automatic annotation of textual doc-
uments to one or more categories. We used two datasets from this domain:
Enron and Reuters. Enron is a labeled subset of the Enron corpus [11], prepared
and annotated by the UCBerkeley Enron Email Analysis Project1. The e-mails
are categorized into several hierarchically organized categories concerning the
characteristics of the e-mail, such as genre, emotional tone or topic. Reuters is
a subset of the ‘Topics’ category of the Reuters Corpus Volume I (RCV1) [12].
RCV1 is a collection of English language stories published by the Reuters agency
between August 20, 1996, and August 19, 1997. Stories are categorized into hier-
archical groups according to the major subjects of a story, such as Economics,
Industrial or Government. In both domains, the text documents are described
with their respective bag-of-words representation.

3.2 Experimental Design

We constructed four types of predictive models, as described in the previous
section, for each of the case studies. First, we constructed single-label classi-
fication trees for each label (i.e., leaf in the label hierarchy) separately. Next,
we constructed hierarchical single-label classification tree architecture. Further-
more, we constructed a multi-label classification tree for all of the leaf labels,
without using the hierarchy. Finally, we constructed a hierarchical multi-label
classification tree for all of the labels by using the hierarchy.

We used F -test pruning to ensure that the produced models are not over-
fitted and have better predictive performance [7]. The exact Fisher test is used
to check whether a given split/test in an internal node of the tree results in a

1 http://bailando.sims.berkeley.edu/enron email.html
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statistically significant reduction in variance. If there is no such split/test, the
node is converted to a leaf. A significance level is selected from the values 0.125,
0.1, 0.05, 0.01, 0.005 and 0.001 to optimize predictive performance by using
internal 3-fold cross validation.

We evaluate the predictive performance of the models on the classes/labels
that are leafs in the target hierarchy. We made this choice in order to ensure a fair
comparison across the different tasks. Namely, if we consider all labels (the leaf
labels and the inner nodes labels), the single-label classification task will be very
close to the task of hierarchical single-label classification; similarly, the task of
multi-label classification becomes very close to the task of hierarchical multi-label
classification. Moreover, by evaluating only the performance on leaf labels, we are
measuring more precisely the influence of the inclusion of the different kinds of
information in the learning process on the predictive performance of the models.
To further ensure this, we set the w0 parameter for the weighted Euclidean
distance for HMC to the value of 1: all labels in the hierarchy contribute equally.
By doing this, we measure only the effect of including the multi-label information
(considering the multiple labels simultaneously) and the hierarchy information.

3.3 Evaluation Measures

We evaluate the algorithms by using the Area Under the Precision-Recall Curve
(AUPRC), and in particular, the Area Under the Average Precision-Recall Curve
(AUPRC) as suggested by Vens et al. [7]. The points in the PR space are obtained
by varying the value for the threshold τ from 0 to 1 with step 0.02. For each
value of the threshold τ , precision and recall are micro-averaged as follows:

Prec =
∑

i TPi∑
i TPi +

∑
i FPi

, and Rec =
∑

i TPi∑
i TPi +

∑
i FNi

where i ranges over all classes that are leafs in the output hierarchies.
We measure the performance of the predictive models along several dimen-

sions. First, we estimate the predictive performance of the models using 10-fold
cross-validation. Second, we assess the descriptive power of the models by evalu-
ating them on the training set. Next, we measure how much the different models
tend to over-fit on the training data. To this end, we use the relative decrease
of the performance from the training set to the one obtained with 10-fold cross-
validation. We define this as over-fit score (OS = AUPRCtrain−AUPRCtest

AUPRCtrain
). The

smaller values of this score mean that the overfitting of the models is smaller.
Finally, we measure the model complexity and the time efficiency of the predic-
tive models. The model complexity for the global models is the number of nodes
in a given tree, while the model complexity for the local models is the sum of
all nodes from all trees. Similarly, the running time of the global models is the
time needed to construct the model, while the running time for the local models
is the time needed to construct all of the models.

We adopt the recommendations by Demšar [19] for the statistical evaluation
of the results. We use the corrected non-parametric Friedman test for statisti-
cal significance on the per-fold-data for the folds of 10-fold cross validation for
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each dataset separately. Afterwards, to check where the statistically significant
differences appear (between which methods), we use the Nemenyi post-hoc test
(Nemenyi, 1963). We present the result from the Nemenyi post hoc test with an
average ranks diagram as suggested by Demšar [8]. The ranks are depicted on
the axis, in such a manner that the best ranking algorithms are at the right-
most side of the diagram. The algorithms that do not differ significantly (in
performance) are connected with a line.

4 Results and Discussion

In this section, we present the results from the experimental evaluation. We
discuss the obtained models first in terms of their performance (predictive and
efficiency) and then in terms of their interpretability.

The results from the evaluation of the predictive models are given in Table 3.
A quick inspection of the performance reveals that the best results are obtained
by models that exploit the information about the underlying output hierarchy.
Next, the models that include the hierarchy information tend to over fit less
as compared to the other models. Moreover, the results indicate that the HMC
trees over-fit the least on these datasets. Finally, the global models (especially
HMC) are more efficient than their local counterparts, in terms of both running
time and model complexity.

We further examine the results by performing a statistical significance test. In
particular, we performed the Friedman test to check whether the observed differ-
ences in performance are statistically significant for each dataset separately. The
results from this analysis show that the difference in performance is statistically
significant for each dataset with p-value smaller than 3 · 10−5.

Figure 2 presents the average ranks from the Nemenyi post-hoc test for all
types of models. The diagrams show that the HMC models are best perform-
ing on three domains (Slovenian rivers, Danish farms and Enron), while on the
other three domains (ImCLEF07A, ImCLEF07D and Reuters) the best per-
forming type of model is the HSC architecture. We next discuss the statistically
significant differences in the datasets in more detail.

When HMC trees are the best performing method, they are statistically
significantly better than the single-label trees. In the remaining cases, the dif-
ferences are not statistically significant (although HMC trees are better than
single-label trees also on ImCLEF07A and ImCLEF07D). HMC trees are sta-
tistically significantly better than HSC tree architecture only on the Slovenian
rivers dataset, and HSC tree architecture is statistically significantly better than
HMC trees on the Reuters dataset.

We further complement the information on the performance with the dataset
properties from Table 2. HMC trees perform best on datasets with a large number
of labels per example (25, 7 and 2.84 labels per example for the Slovenian rivers,
Danish farms and Enron datasets, respectively). Conversely, HSC tree architec-
tures perform better on datasets with a small number of labels per example
(1.2, 1 and 1 for Reuters, ImCLEF07A and ImCLEF07D datasets, respectively).
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Table 3. Performance of the methods in terms of AUPRC, decrease of training set
performance relative to test set performance. (OS), Learning time (in seconds) and
model complexity (the number of nodes in the decision trees). The best predictive
performance for each dataset is shown in bold.

Dataset Method AUPRC OS Learning time Complexity

Slovenian rivers Single-label 0.239 0.692 23.3 15336
HSC 0.309 0.591 10.2 25035
Multi-label 0.322 0.007 9.4 1
HMC 0.374 0.132 0.6 37

Danish farms Single-label 0.790 0.099 3.7 2605
HSC 0.808 0.083 1.3 2873
Multi-label 0.801 0.112 0.7 265
HMC 0.815 0.065 0.4 259

ImCLEF07A Single-label 0.571 0.375 74.4 3957
HSC 0.665 0.324 27.3 10054
Multi-label 0.530 0.462 13.5 3553
HMC 0.592 0.182 3.4 635

ImCLEF07D Single-label 0.515 0.483 35.4 7418
HSC 0.631 0.361 20.1 9764
Multi-label 0.511 0.484 7.78 3675
HMC 0.615 0.198 3.0 685

Enron Single-label 0.398 0.495 114.7 1740
HSC 0.466 0.434 25.1 3168
Multi-label 0.385 0.584 13.8 1259
HMC 0.488 0.110 3.3 55

Reuters Single-label 0.431 0.546 970.8 3591
HSC 0.481 0.510 781.4 7004
Multi-label 0.332 0.654 191.8 2949
HMC 0.373 0.365 42.5 593

The output hierarchy is much more populated in the former case, thus, allowing
the learning of HMC trees to fully exploit the dependencies between the labels.
This in turn provides predictive models with better predictive power. Similar
behavior can be observed for the models that do not exploit the output hierar-
chy: the multi-label trees are better on datasets with more labels per example,
while the single-label tree are better on datasets with fewer labels per example.

We next discuss the poor performance of the global models on the Reuters
dataset. This is the only dataset where HMC trees have worse predictive perfor-
mance than single-label trees. The poor predictive performance is mainly due to
two reasons: (1) the dataset has a small number of labels per examples and (2)
the dataset is extremely high-dimensional and sparse. However, this prompts
for additional investigation and analysis using more benchmark datasets that
exhibit similar properties.

Besides the predictive power of the models, their interpretability is often
a highly desired property, especially in domains such as habitat modelling.
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Fig. 2. Average ranks diagrams for the performance of the four methods in terms of
AUPRC for each of the six datasets. Better algorithms are positioned on the right-
hand side, the ones that differ by less than the critical distance for a p-value = 0.05
are connected with a line.

We discuss the interpretability of the models from the perspective of this domain.
The predictive models that we consider here (PCTs) are readily interpretable.
However, the difference in the interpretability of the local and global models is
easy to notice. Firstly, global models, especially HMC trees , have considerably
smaller complexity than the (collections of) local models (Table 3). In Fig. 3, we
present illustrative examples of the predictive models for the Slovenian rivers
dataset. We show several PCTs for single-label classification, a tree for multi-
label classification and a tree for hierarchical multi-label classification.

We can immediately notice the differences between the local and global pre-
dictive models. The local models2 offer information only for a part for the output
2 Note that the hierarchical single-label classification models will be similar to the

single-label classification models, with the difference that the predictive models are
organized into a hierarchical architecture. This makes the interpretation of the HSC
models an even more difficult task.
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NO3 > 2.13

yes no

K > 0.89

yes no

Temperature > 19.3

yes no

0.44 0.57

0.71

Conductivity > 192

yes no

NH4 > 0.18

yes no

0.17 0.53

Temperature > 17

yes no

0.02 0.77

Bacillariophyta Cyclotella Comta

NO2 > 0.04

yes no

NO2 > 0.07

yes no

0.88 0.55

Cl > 3.76

yes no

PH > 8.02

yes no

0.0 0.94

CO2 > 6.22

yes no

0.23 0.18

Bacillariophyta Nitzschia Palea

Temperature > 19.3

yes no

SiO2 > 6.13

yes no

SiO2 > 9.44

yes no

0.94 0.59

0.33

NO3 > 2.08

yes no

BPK > 2.3

yes no

0.08 0.58

KMnO4 > 0.8

yes no

0.35 0.33

Diptera Chironomidae Zeleni

Temperature > 15.5

yes no

NH4 > 6.13

yes no

KMnO4 > 0.68

yes no

0.19 0.69

Hardness > 13.5

yes no

0.31 0.34

NO2 > 0.08

yes no

0.76 Cl > 5.7

yes no

0.49 0.20

Bacillariophyta Navicula Cryptocephala Vcryptoceph

. . .

(a)

KMnO4 > 2.5

yes no

BPK > 7.5

yes no

Temperature > 15.2

yes no

Diptera Melanochelia 0.66 Gammarus Fossarum 0.74

Cyclotella Comta 0.73

Temperature > 15.5

yes no

Oscillatoria Putrida 0.87Chydrurus Foetidus 0.86
Cryptocephala Vcryptoceph 0.51

Nitzschia Palea 0.52
Chironomidae Zeleni 0.82
Oligochaeta Tubifex 0.63

Diptera Pedicia 0.87
Diptera Orthocladiinae 0.63
Chironomidae Zeleni 0.51

Gomphonema Olivaceum 0.74
Synedra Ulna 0.50

Cryptocephala Vcryptoceph 0.91
Nitzschia Palea 0.87

Plecoptera Nemoura 0.71
Coleoptera Elmis 0.96
Hemiptera Corixa 0.63

Cryptocephala Vcryptoceph 0.85
Euglena Viridis 0.62
Baetis Rhodani 0.69
Physa Fontinalis 0.70

(b)

KMnO4 > 2.5

yes no

BPK > 7.5

yes no

Bacillariophyta 0.99 Amphipoda 0.69

CO2 > 0.4

yes no

NO3 > 2.6

yes no

Rhodophyta 0.55 none

Temp > 11.1

yes no

Diptera 0.83 Chrysophyta 0.76

- Cymbella 0.83
- Gomphonema 0.71
- Navicula 0.67

- Cryptocephala 0.63
- Vcryptoceph 0.43

- Nitzschia 0.51
- Palea 0.33

Diptera 0.88
- Chironomidae 0.71
- Chironomus 0.27
Oligochaeta 0.76
- Tubifex 0.61

- Gammarus 0.56
- Fossarum 0.53

Bacillariophyta 0.87
- Cocconeis 0.35
- Cyclotella 0.77

- Comta 0.43
- Diatoma 0.81

- Vulgare 0.64
- Nitzschia 0.14

- Acicularis 0.73
- Palea 0.78

- Synedra 0.57

- Audouinella 0.45
- Chalybea 0.33
Trichoptera 0.94
- Limnephilidae 0.67
- Rhyacophila 0.67

- Chironomidae 0.70
- Zeleni 0.64

Ephemeroptera 0.64
- Baetis 0.50
- Ephemerella 0.23

- Hydrurus 0.70
- Foetidus 0.64

(c)

Fig. 3. Illustrative examples of decision trees (PCTs) learnt for the Slovenian rivers
dataset. Single-label classification (a) produces a separate model for each of the species,
whereas multi-label classification (b) and hierarchical multi-label classification (c) con-
sider all of the species in a single tree.

space, i.e., they are valid just for a single species. In order to reconstruct the
complete community model, one needs to look at the separate models and then
try to make some overall conclusions. However, this could be very tedious or
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even impossible in domains with high biodiversity where there are hundreds of
species present, such as the domain we consider here - Slovenian rivers.

On the other hand, the global models are much easier to interpret. The single
global model is valid for the complete structured output, i.e., for the whole com-
munity of species present in the ecosystem. The global models are able to capture
the interactions present between the species, i.e., which species can co-exist at
a locations with given physico-chemical properties. Moreover, the HMC models,
as compared to the multi-label models, offer additional information about the
higher taxonomic ranks. For example, the HMC model could state that there is
a low probability (0.27) that the species Diptera chironomus is present under
the given environmental conditions, while the is a high probability (0.88) that
the genus Diptera is present (left-most leaf of the HMC tree in Fig. 3).

5 Conclusions

We address the task of learning predictive models for hierarchical multi-label
classification, which take as input a tuple of attribute values and predict a set of
classes organized into a hierarchy. We consider both global and local approaches
for prediction of structured outputs. The former are based on a single model that
predicts the entire output structure, while the latter are based on a collection of
models, each predicting a component of the output structure.

We investigate the differences in performance and interpretability of the local
and global models. More specifically, we examine whether including information
in the form of hierarchical relationships among the labels and considering the
multiple labels simultaneously helps to improve the performance of the predic-
tive models. To this end, we consider four machine learning tasks: single-label
classification, hierarchical single-label classification, multi-label classification and
hierarchical multi-label classification.

We use predictive clustering trees as predictive models, since they can be
used for solving all of the four tasks considered here. We construct and evaluate
four types of trees: single-label trees, hierarchical single-label trees, multi-label
trees and hierarchical multi-label trees.

We compare the performance of local and global predictive models on six
datasets from three practically relevant tasks: habitat modelling, image classifi-
cation and text classification. The results show that the inclusion of the hierar-
chical information in the model construction phase, i.e., for HMC trees and for
HSC tree architecture, improves the predictive performance. The improvement
in performance for HMC trees is more pronounced on domains that have a more
populated hierarchy, i.e., on datasets with a larger number of labels per example.
On the other hand, HSC tree architecture perform better in the domains where
the number of labels per example is closer to one. Moreover, the models that
take the hierarchy into account tend to over-fit less than the models that do not
include such information (this is especially true for the HMC trees). Finally, the
global methods produce less complex models and are much easier to interpret
than the local models offering an overview of the complete output hierarchy.
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All in all, the inclusion of hierarchy information improves the performance of
the predictive models and the global models are more efficient and easier to
interpret than local models.
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17. Džeroski, S.: Machine learning applications in habitat suitability modeling. In:
Haupt, S.E., Pasini, A., Marzban, C. (eds.) Artificial Intelligence Methods in the
Environmental Sciences, pp. 397–412. Springer, Berlin (2009)



The Use of the Label Hierarchy in HMC Improves Performance 177

18. Lehmann, T., Schubert, H., Keysers, D., Kohnen, M., Wein, B.: The IRMA code for
unique classification of medical images. In: Medical Imaging 2003: PACS and Inte-
grated Medical Information Systems: Design and Evaluation, pp. 440–451 (2003)
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