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Abstract. In this work, we present a feature ranking method for multi-
label data. The method is motivated by the the practically relevant multi-
label applications, such as semantic annotation of images and videos,
functional genomics, music and text categorization etc. We propose a
feature ranking method based on random forests. Considering the suc-
cess of the feature ranking using random forest in the tasks of classifica-
tion and regression, we extend this method for multi-label classification.
We use predictive clustering trees for multi-label classification as base
predictive models for the random forest ensemble. We evaluate the pro-
posed method on benchmark datasets for multi-label classification. The
evaluation of the proposed method shows that it produces valid feature
rankings and that can be successfully used for performing dimensionality
reduction.
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1 Introduction

The problem of single-label classification is concerned with learning from exam-
ples, where each example is associated with a single label λi from a finite set
of disjoint labels L = {λ1, λ2, ..., λQ}, i = 1..Q,Q > 1. For Q > 2, the learning
problem is referred to as multi-class classification. On the other hand, the task of
learning a mapping from an example x ∈ X (X denotes the domain of examples)
to a set of labels Y ⊆ L is referred to as a multi-label classification (MLC). In
contrast to multi-class classification, alternatives in multi-label classification are
not assumed to be mutually exclusive: multiple labels may be associated with
a single example, i.e., each example can be a member of more than one class.
Labels in the set Y are called relevant, while the labels in the set L \ Y are
irrelevant for a given example.

Many different methods have been developed to solving MLC problems.
Tsoumakas and Katakis [15] summarize them into two main categories: a) algo-
rithm adaptation methods, and b) problem transformation methods. Algorithm
adaptation methods extend specific learning algorithms to handle multi-label
data directly. Problem transformation methods, on the other hand, transform



the MLC problem into one or more single-label classification problems. The
single-label classification problems are solved with a commonly used single-label
classification method and the output is transformed back into a multi-label rep-
resentation.

The issue of learning from multi-label data has recently attracted significant
attention from many researchers, motivated by an increasing number of new ap-
plications. The latter include semantic annotation of images and videos (news
clips, movies clips), functional genomics (gene and protein function), music cat-
egorization into emotions, text classification (news articles, web pages, patents,
emails, bookmarks, ...), directed marketing and others.

Albeit the popularity of the task of MLC, the tasks of feature ranking and
feature selection have not received much attention. The few available methods
are based on the label powerset (LP) method for MLC [15, 6] from the group of
problem transformation methods. The basis of the LP methods is to combine
entire label sets into atomic (single) labels to form a single-label problem (i.e.,
single-class classification problem). For the single-label problem, the set of possi-
ble single labels represents all distinct label subsets from the original multi-label
representation. In this way, LP based methods directly take into account the
label correlations. However, the space of possible label subsets can be very large.
To resolve this issue, Read [11] has developed a pruned problem transformation
(PPT) method, that selects only the transformed labels that occur more than
a predefined number of times. Tsoumakas et al [15] use the LP transformed
dataset to calculate simple χ2 statistic thus producing a ranking of the features.
Doquire and Verleysen [6] use the PPT transformed dataset to calculate mu-
tual information (MI) for performing feature selection and they show that this
method outperforms the χ2-based feature ranking.

Feature ranking for MLC with problem transformation has two major short-
comings. First, the label dependencies and interconnections are not fully ex-
ploited. Second, these methods are not scalable to domains with large num-
ber of labels because of the exponential growth of the possible label powersets.
Furthermore, the label powerset methods can yield a multi-class problem with
extremely skewed class distribution. To address these issues, we propose an algo-
rithm adaptation method for performing feature ranking. We extend the random
forest feature ranking method [3] to the task of MLC. More specifically, we con-
struct random forest that employs predictive clustering trees (PCTs) for MLC
as base predictive models [1], [8]. PCTs can be considered a generalization of
decision trees that are able to make predictions for structured outputs.

This work is motivated by several factors. First, the number of possible appli-
cation domains for MLC and the size of the problems is increasing. For example,
in image annotation the number of available images and possible labels is grow-
ing rapidly; in functional genomics the measurement techniques have improved
significantly and there are high-dimensional genomic data available for analy-
sis. Second, in Madjarov et al. [10] we have shown that the random forests of
PCTs for MLC are among the best predictive models for the task of MLC. Next,
random forests as feature ranking algorithms are very successful on simple classi-



fication tasks [17, 19]. Finally, in Kocev et al. [8] we have shown that the random
forests of PCTs are among the most efficient methods for predicting structured
outputs. This is especially important, since many of the methods for MLC are
computationally expensive and thus are not able to produce a predictive model
for a given domain in a reasonable time (i.e., few weeks) [10].

We evaluate the proposed method on 4 benchmark datasets for MLC using
7 different evaluation measures. We compare the feature ranking produced by
the proposed method to a random feature ranking. The random feature ranking
is the worst feature ranking thus if the proposed method is able to capture the
feature relevances then it should outperform the random ranking. We assess the
performance of the obtained rankings and the random rankings by using error
testing curves [12]. The goal of this study is to investigate whether random forests
of PCTs for MLC can produce good feature rankings for the task of multi-label
classification. Moreover, we want to check whether the produced rankings can
be used to reduce the dimensionality of the considered multi-label domains.

The remainder of this paper is organized as follows. Section 2 presents the pre-
dictive clustering trees. The method for feature ranking using random forests is
described in Section 3. Section 4 outlines the experimental design, while Section
5 presents the results from the experimental evaluation. Finally, the conclusions
and a summary are given in Section 6.

2 Predictive clustering trees for multi-label classification

Predictive clustering trees (PCTs) [1] generalize decision trees [4] and can be
used for a variety of learning tasks, including different types of prediction and
clustering. The PCT framework views a decision tree as a hierarchy of clusters:
the top-node of a PCT corresponds to one cluster containing all data, which is
recursively partitioned into smaller clusters while moving down the tree. The
leaves represent the clusters at the lowest level of the hierarchy and each leaf is
labeled with its cluster’s prototype (prediction).

PCTs can be induced with a standard top-down induction of decision trees
(TDIDT) algorithm [4]. The algorithm is presented in Table 1. It takes as input
a set of examples (E) and outputs a tree. The heuristic (h) that is used for
selecting the tests (t) is the reduction in variance caused by partitioning (P)
the instances (see line 4 of BestTest procedure in Table 1). By maximizing the
variance reduction the cluster homogeneity is maximized and it improves the
predictive performance. If no acceptable test can be found (see line 6), that is, if
the test does not significantly reduces the variance, then the algorithm creates
a leaf and computes the prototype of the instances belonging to that leaf.

The main difference between the algorithm for learning PCTs and other
algorithms for learning decision trees is that the former considers the variance
function and the prototype function (that computes a label for each leaf) as
parameters that can be instantiated for a given learning task. So far, PCTs have
been instantiated for the following tasks: prediction of multiple targets [8], [14],
prediction of time-series [13] and hierarchical multi-label classification [18].



Table 1. The top-down induction algorithm for PCTs.

procedure PCT(E) returns tree

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ 6= none then
3: for each Ei ∈ P∗ do
4: treei = PCT(Ei)

5: return node(t∗,
⋃

i{treei})
6: else
7: return leaf(Prototype(E))

procedure BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = partition induced by t on E
4: h = Var(E)−

∑
Ei∈P

|Ei|
|E| Var(Ei)

5: if (h > h∗)∧Acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

One of the most important steps in the induction algorithm is the test se-
lection procedure. For each node, a test is selected by using a heuristic function
computed on the training examples. The goal of the heuristic is to guide the
algorithm towards small trees with good predictive performance. The heuris-
tic used in this algorithm for selecting the attribute tests in the internal nodes
is the reduction in variance caused by partitioning the instances. Maximizing
the variance reduction maximizes cluster homogeneity and improves predictive
performance.

In this work, we focus on the task of multi-label classification, which can be
considered as a special case of multi-target prediction. Therefore, the variance
function is computed as the sum of the Gini indices [4] of the variables from

the target tuple, i.e., Var(E) =
∑T

i=1 Gini(E ,Yi), Gini(E, Yi) = 1−
∑Ci

j=1 pcij ,
where T is the number of target attributes, cij is the j-th class of target attribute
Yi and Ci is the number of classes of target attribute Yi. The prototype function
returns a vector of probabilities for the set of labels that indicate whether an
example is labelled with a given label. For a detailed description of PCTs for
multi-target prediction the reader is referred to [1, 8]. The PCT framework is
implemented in the CLUS system1.

3 Feature ranking via random forests

We construct the random forest using predictive clustering trees as base classi-
fiers. We exploit the random forests mechanism [3] to calculate the variable im-
portance, i.e., the feature ranking. In the following subsections, first we present
the random forest algorithm and then we describe how it can be used to estimate
the importance of the descriptive variables.

3.1 Random Forests

An ensemble is a set of classifiers constructed with a given algorithm. Each new
example is classified by combining the predictions of every classifier from the

1 CLUS is available for download at http://clus.sourceforge.net



ensemble. These predictions can be combined by taking the average (for regres-
sion tasks) and the majority or probability distribution vote (for classification
tasks)[2], or by taking more complex combinations [9].

A necessary condition for an ensemble to be more accurate than any of its in-
dividual members, is that the classifiers are accurate and diverse [7]. An accurate
classifier does better than random guessing on new examples. Two classifiers are
diverse if they make different errors on new examples. There are several ways to
introduce diversity: by manipulating the training set (by changing the weight of
the examples [2] or by changing the attribute values of the examples [3]), or by
manipulating the learning algorithm itself [5].

A random forest [3] is an ensemble of trees, where diversity among the pre-
dictive models is obtained by using bootstrap replicates, and additionally by
changing the feature set during learning. More precisely, at each node in the
decision trees, a random subset of the input attributes is taken, and the best
feature is selected from this subset. The number of attributes that are retained
is given by a function f of the total number of input attributes x (e.g., f(x) = 1,
f(x) = b

√
x+ 1c, f(x) = blog2(x) + 1c . . . ). By setting f(x) = x, we obtain the

bagging procedure.

3.2 Feature ranking using random forests

Feature ranking of the descriptive variables can be obtained by exploiting the
mechanism of random forests. This method uses the internal out-of-bag esti-
mates of the error and noising the descriptive variables. To create each tree
from the forest, the algorithm first creates a bootstrap replicate (line 4, from
the Induce RF procedure, Table 2). The samples that are not selected for the
bootstrap are called out-of-bag (OOB) samples (line 7, procedure Induce RF ).
These samples are used to evaluate the performance of each tree from the forest.
The complete algorithm is presented in Table 2.

Suppose that there are T target variables and D descriptive variables. After
each tree from the forest is built, the values of the descriptive attributes for
the OOB samples are randomly permuted one-by-one thus obtaining D OOB
samples (line 3, procedure Update Imp). The predictive performance of each
tree is evaluated on the original OOB data (Err(OOBi)) and the permuted
versions of the OOB data (Erri(fd)). The performance is averaged across the T
target variables. Then the importance of a given variable (Ij) is calculated as the
relative increase of the mis-classification error that is obtained when its values
are randomly permuted. The importance is at the end averaged over all trees in
the forest. The variable importance is calculated using the following formula:

Importance(fd) =
1

k
·

k∑
i=1

Erri(fd)− Err(OOBk)

Err(OOBk)
(1)

where k is the number of bootstrap replicates and 0 < d ≤ D.



Table 2. The algorithm for feature ranking via random forests. E is the set of the
training examples, k is the number of trees in the forest, and f(x) is the size of the
feature subset that is considered at each node during tree construction.

procedure Induce RF(E, k, f(x))
returns Forest, Importances

1: F = ∅
2: I = ∅
3: for i = 1 to k do
4: Ei = Bootstrap sample(E)
5: Ti = PCT (Ei, f(x))
6: F = F

⋃
Ti

7: EOOB = E \ Ei

8: Update Imp(EOOB , T, I)

9: I = Average(I, k)
10: return F, I

procedure Update Imp(EOOB , T, I)

1: ErrOOB = Evaluate(T,EOOB)
2: for j = 1 to D do
3: Ej = Randomize(EOOB , j)
4: Errj = Evaluate(T,Ej)
5: Ij = Ij + (Errj − ErrOOB)/ErrOOB

6: return

procedure Average(I, k)

1: IT = ∅
2: for l = 1 to size(I) do
3: ITl = Il/k

4: return IT

4 Experimental design

4.1 Data description

We use four multi-label classification benchmark problems. Parts of the selected
problems were used in various studies and evaluations of methods for multi-label
learning. Table 3 presents the basic statistics of the datasets. We can note that
the datasets vary in size: from 391 up to 4880 training examples, from 202 up
to 2515 testing examples, from 72 up to 1836 features, from 6 to 159 labels, and
from 1.25 to 3.38 average number of labels per example (i.e., label cardinality
[16]). From the literature, these datasets come pre-divided into training and
testing parts: Thus, in the experiments, we use them in their original format.
The training part usually comprises around 2/3 of the complete dataset, while
the testing part the remaining 1/3 of the dataset.

Table 3. Description of the benchmark problems in terms of number of training
(#tr.e.) and test (#t.e.) examples, the number of features (D), the total number of la-
bels (Q) and label cardinality (lc). The problems are ordered by their overall complexity
roughly calculated as #tr.e.×D ×Q.

#tr.e. #t.e. D Q lc

emotions 391 202 72 6 1.87
medical 645 333 1449 45 1.25
enron 1123 579 1001 53 3.38
bibtex 4880 2515 1836 159 2.40

The datasets come from the domains of multimedia and text categorization.
Emotions is a dataset from the multimedia domain where each instance is a piece



of music. Each piece of music can be labelled with six emotions: sad-lonely, angry-
aggressive, amazed-surprised, relaxing-calm, quiet-still, and happy-pleased. The
domain of text categorization is represented with 3 datasets: medical, enron and
bibtex. Medical is a dataset used in the Medical Natural Language Processing
Challenge2 in 2007. Each instance is a document that contains brief free-text
summary of a patient symptom history. The goal is to annotate each document
with the probable diseases from the International Classification of Diseases. En-
ron is a dataset that contains the e-mails from 150 senior Enron officials cat-
egorized into several categories. The labels can be further grouped into four
categories: coarse genre, included/forwarded information, primary topics, and
messages with emotional tone. Bibtex contains metadata for bibtex items, such
as the title of the paper, the authors, book title, journal volume, publisher, etc.
These datasets are available for download at the web page of the Mulan project3.

4.2 Experimental design

We evaluate the proposed method using seven evaluation measures: accuracy ,
micro precision, micro recall , micro F1, macro precision, macro recall , and macro
F1. These measures are typically used for evaluation of the performance of multi-
label classification methods. The micro averaging implicitly includes information
about the label frequency, while macro averaging treats all the labels equally.
Due to the space limitations, we only show the results for micro F1 because the
F1 score unites the values for precision and recall. Moreover, the results and
the discussion are similar if the other measures were used. These measures are
discussed in detail in [10] and [16].

We asses the performance of the proposed method using error curves [12].
The error curves are based on the idea that the ”correctness” of the feature
rank is related to predictive accuracy. A good ranking algorithm would put on
top of a list a feature that is most important, and at the bottom a feature that
is least important w.r.t. some target concept. All the other features would be
in-between, ordered by decreasing importance. By following this intuition, we
evaluate the ranking by performing a stepwise feature subset evaluation, which
is used for obtaining an error curve.

We generate two types of curves: forward feature addition (FFA) and reverse
feature addition (RFA) curve. Examples of these curves are shown in Figures 1,
2, 3, and 4. The FFA curve is constructed from the top-k ranked features, i.e.,
from the beginning of the ranking. In contrast, the RFA curve is constructed
from the bottom-k ranked features. For the FFA curves, we can expect that
as the number of features used to construct the predictive model increases, the
accuracy of the predictive models also increases. This can be interpreted as
follows: By adding more and more of the top-ranked features, the feature subsets
constructed contain more relevant features, reflected in the improvement of the
error measure.

2 http://www.computationalmedicine.org/challenge/
3 http://mulan.sourceforge.net/datasets.html



On the other hand, for the RFA curves, we can expect a slight difference at
the beginning of the curve, which considering the previous discussion, is located
at the end of the x-axis. Namely, the accuracy of the models constructed with
the bottom ranked features is minimal, which means the ranking is correct in the
sense that it puts irrelevant features at the bottom of the ranking. As the number
of bottom-k ranked features used to construct the predictive model increases,
some relevant features get included and the accuracy of the models increases.
In summary, at each point k, the FFA curve gives us the error of the predictive
models constructed with the top-k ranked features, while the RFA curve gives
us the error of the bottom-k ranked features. The algorithm for constructing the
curves is given in Table 4.

Table 4. The algorithm for generating forward feature addition (FFA) and reverse
feature addition (RFA) curves.R = {Fr1, . . . , Frn} is the feature ranking and Ft is the
target feature.

procedure ConstructErrorCurve(R, Ft)
returns Error Curve Err

RS ⇐ ∅
for i = 1 to n do
RS ⇐ RS ∪ feature(R, i)
Err[i] = Err(M(RS , Ft))

return Err

for FFA curve:
feature(R, i) = {Fri}
for RFA curve:
feature(R, i) = {Fr(n−i+1)}

We compare the performance of the proposed method to the performance of
a random ranking. We base this comparison on the idea that the random ranking
is the worst ranking possible [12]. This is similar to the notion of random pre-
dictive model in predictive modelling. If our algorithm indeed is able to capture
the variable importance correctly, then its error curves should be better than the
curves of a random ranking. In this work, we generate 100 random feature rank-
ings for each dataset and we show the averaged error curves. We opted for the
comparison with the random rankings instead with the methods presented in [6]
and [15] because of the un-stable results produced by these rankings (especially
for the Emotions dataset). Moreover, the reported accuracies for the emotions
dataset is in the range of 0.3 to 0.5, and in our experiments the accuracy for the
emotions dataset is in the range of 0.6 to 0.8.

4.3 Parameter instantiation

The feature ranking algorithm with random forests of PCTs for MLC take as
input two parameters: the number of base predictive models in the forest and
the feature subset size. In these experiments, we constructed the feature rank-
ings using a random forest with 500 PCTs for MLC. Each node in a PCT was
constructed by randomly selecting 10% of the features (as suggested in [8]).



For construction of the error curves, we selected random forests of PCTs for
MLC as predictive models. The random forests model in this case consists of 100
PCTs for MLC and each node was constructed using 10% of the features. Both
the predictive models and the feature rankings were constructed on the training
set, while the performance for the error curves is the one obtained on the testing
set.

5 Results and discussion

In this section, we present the results from the experimental evaluation of the
proposed method. We explain the results with respect to the variable importance
scores for the features, the FFA curves and the RFA curves. The FFA and RFA
curves are constructed using the micro F1, however, the conclusions are still
valid if we consider the other evaluation measures. In the remainder, we discuss
the results for each of the datasets considered in this study.

The results for the Emotions dataset are given in Figure 1. They show that
the obtained ranking performs slightly better than the random ranking. Both
FFA curves increase with a similar rate and have a similar shape. However, on
a larger part the FFA curve of the ranking is above the curve of the random
ranking. The RFA curve shows that the obtained ranking places more non-
relevant features at the bottom of the ranking.
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Fig. 1. The performance of random forests of PCTs for MLC feature ranking algorithm
on the Emotions dataset. (a) feature importances reported by the ranking algorithm,
(b) FFA curve and (c) RFA curve.

This finding can be confirmed and explained with the variable scores (Fig-
ure 1(a)). Namely, the curve with the variable scores is somewhat parallel to the
x-axis. This means that the majority of features in this dataset are approximately
equally relevant for the target concept (i.e., the multiple labels). Moreover, this
could indicate that there are redundant features that are present in the dataset.
All in all, selecting randomly a feature subset with a reasonable size (e.g., 25-30



features) is good enough to produce a predictive model with satisfactory pre-
dictive performance (i.e., the dimensionality can be easily reduced without a
significant loss of information).

The results for the Bibtex (Figure 2) and Enron (Figure 3) datasets are
somewhat similar to each other, thus we discuss them together. We can see
from the figures that the obtained ranking is clearly better than the random
ranking. The FFA curve of the obtained ranking is always above the FFA curve
of the random ranking, and, conversely, the RFA curve of the obtained ranking
is always bellow the RFA curve of the random ranking. Hence, more relevant
features are placed at the top and more non-relevant features are placed at the
bottom.
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Fig. 2. The performance of random forests of PCTs for MLC feature ranking algorithm
on the Bibtex dataset. (a) feature importances reported by the ranking algorithm, (b)
FFA curve and (c) RFA curve.

0.0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Im
p
o
rt
an
ce

0 200 400 600 800 1000

Features

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m
ic
ro

F
1

0 200 400 600 800 1000

Number of added features

RForest

Random

0.25

0.3

0.35

0.4

0.45

0.5

0.55

m
ic
ro

F
1

0 100 200 300 400 500 600 700 800 900 1000

Number of removed features

RForest

Random

(a) (b) (c)

Fig. 3. The performance of random forests of PCTs for MLC feature ranking algorithm
on the Enron dataset. (a) feature importances reported by the ranking algorithm, (b)
FFA curve and (c) RFA curve.



This is also confirmed with the variable importance scores. We can note
that the curve of the variable importances drops linearly, which means that
there are multiple features in the dataset that are more relevant for the target
concept than the remaining features. The dimensionality in these cases can be
significantly reduced. We will still obtain very good predictive performance if we
select the 500 top-ranked features (out of 1836) for the Bibtex dataset and the
50 top-ranked features (out of 1001) for the Enron dataset.

Finally, we discuss the results for the Medical dataset (given in Figure 4).
We can note that the obtained ranking is significantly better than the random
ranking. The FFA and RFA curves of the obtained ranking exhibit very steep
increase and decrease, respectively. On the other hand, the FFA and RFA curves
of the random ranking have linear increase and decrease. This means that there
are a few features that are very relevant for the target concept and that these
features carry the majority of the information for the target concept. This is fur-
ther confirmed with the curve of the variable importances: this curve descends
exponentially. Considering all of this, we can drastically reduce the dimension-
ality of this dataset. The good predictive performance will be preserved even if
we select the 35 top-ranked features (out of 1449).
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Fig. 4. The performance of random forests of PCTs for MLC feature ranking algorithm
on the Medical dataset. (a) feature importances reported by the ranking algorithm, (b)
FFA curve and (c) RFA curve.

6 Conclusions

In this work, we presented and evaluated a feature ranking method for the task of
multi-label classification (MLC). The proposed method is based on the random
forest feature ranking mechanism. The random forests are already proven as a
good method for feature ranking on the simpler tasks of classification and regres-
sion. Here, we propose and extension of the method to the task of MLC. To this
end, we use predictive clustering trees (PCTs) for MLC as base predictive mod-
els. The random forests of PCTs have state-of-the-art predictive performance for



the task of MLC. Here, we investigate whether this method can be also successful
for the task of feature ranking for MLC.

We evaluated the method on 4 benchmark multi-label datasets using 7 evalu-
ation measures. The quality of the feature ranking was assessed by using forward
feature addition and reverse feature addition curves. To investigate whether the
obtained feature ranking is valid, i.e., that it places the more relevant features
closer to the top of the ranking and the non-relevant features closer to the bottom
of the ranking, we compare it to the performance of a random feature ranking.

We summarize the results as follows. First, we show that in a datasets where
many of the features are relevant for the target concept the produced ranking can
slightly outperform the random ranking. This is due to the fact that if several
features are (randomly) selected then the predictive model will have satisfactory
predictive performance. Next, in the datasets where there are several relevant
features for the target concept the produced ranking clearly outperforms the
random ranking. This means that the ranking algorithm is able to detect these
features and place them at the top of the ranking. Furthermore, in the datasets
where there are only few features of high relevance for the target concept, the
obtained ranking drastically outperforms the random ranking and satisfactory
predictive performance can be obtained by using only 2−3% of the features. All
in all, the experimental evaluation demonstrates that the random forests feature
ranking method can be successfully applied to the task of MLC.

We plan to extend this work in future along three major dimensions. First,
we plan to include other measures for predictive performance in the ranking
algorithm. In the current version, we use mis-classification rate. However, we
will consider MLC specific evaluation measures. Next, we will extend the pro-
posed method for other structured output prediction tasks, such as multi-target
regression and hierarchical multi-label classification. Finally, we could estimate
the relevance of a feature by considering the reduction of the variance the feature
causes when selected for a test in a given node.
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17. Čehovin, L., Bosnić, Z.: Empirical evaluation of feature selection methods in clas-
sification. Intelligent Data Analysis 14(3), 265–281 (2010)
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