Chapter 15

Predicting Gene Function using
Predictive Clustering Trees

Celine Vens, Leander Schietgat, Jan Struyf, Hendrik Blockeel, Dragi Kocev, and
SaSo DZeroski

Abstract In this chapter, we show how the predictive clustering tree framework can
be used to predict the functions of genes. The gene function prediction task is an
example of a hierarchical multi-label classification (HMC) task: genes may have
multiple functions and these functions are organized in a hierarchy. The hierarchy
of functions can be such that each function has at most one parent (tree structure) or
such that functions may have multiple parents (DAG structure).

We present three predictive clustering tree approaches for the induction of deci-
sion trees for HMC, as well as an empirical study of their use in functional genomics.
We show that the predictive performance of the best of the approaches outperforms
C4.5H, a state-of-the-art decision tree system used in functional genomics, while
yielding equally interpretable results.

By upgrading our method to an ensemble learner, the predictive performances
outperform those of a recently proposed statistical learning method. The ensemble
method also scales better and is easier to use. Our evaluation makes use of precision-
recall-curves. We argue that this is a better evaluation criterion than previously used
criteria.
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15.1 Introduction

The completion of several genome projects in the past decade has generated the
full genome sequence of many organisms. Identifying genes in the sequences and
assigning biological functions to them has now become a key challenge in mod-
ern biology. This last step is often guided by automatic discovery processes, which
interact with the laboratory experiments.

More precisely, biologists have a set of possible functions that genes may have,
and these functions are organized in a hierarchy (see Fig. 15.1 for an example). It is
known that a single gene may have multiple functions. Machine learning techniques
are used to predict these gene functions. Afterwards, the predictions with highest
confidence can be tested in the lab.

There are two characteristics of the function prediction task that distinguish it
from common machine learning problems: (1) a single gene may have multiple
functions; and (2) the functions are organized in a hierarchy: a gene that is related
to some function is automatically related to all its parent functions (this is called
the hierarchy constraint). This particular problem setting is known as hierarchical
multi-label classification (HMC).

Several methods can be distinguished that handle HMC tasks. A first approach
transforms an HMC task into a separate binary classification task for each class in
the hierarchy and applies a known classification algorithm. We refer to it as the
SC (single-label classification) approach. This technique has several disadvantages.
First, it is inefficient, because the learner has to be run |C| times, with |C| the number
of classes, which can be hundreds or thousands in this application. Second, from the
knowledge discovery point of view, the learned models identify features relevant for
one class, rather than identifying features with high overall relevance. Finally, the
hierarchy constraint is not taken into account, i.e., it is not automatically imposed
that an instance belonging to a class should belong to all its superclasses.

A second approach is to adapt the SC method, so that this last issue is dealt with.
Some authors have proposed to hierarchically combine the class-wise models in the
prediction stage, so that a classifier constructed for a class ¢ can only predict posi-
tive if the classifier for the parent class of ¢ has predicted positive [4]. In addition,
one can also take the hierarchy constraint into account during training by restrict-
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Fig. 15.1 A small part of the hierarchical FunCat classification scheme [34].
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ing the training set for the classifier for class ¢ to those instances belonging to the
parent class of ¢ [11, 12]. This approach is called the HSC (hierarchical single-label
classification) approach throughout the text.

A third approach is to develop learners that learn a single multi-label model that
predicts all the classes of an example at once [16, 7]. In this way, the hierarchy
constraint can be taken into account and features can be identified that are relevant
to all classes. We call this the HMC approach.

In this work, we do not only consider tree structured class hierarchies, such as the
example shown in Fig. 15.1, but also support more complex hierarchies structured
as directed acyclic graphs (DAGs), where classes may have multiple parents. The
latter occurs for example in the widely used Gene Ontology classification scheme
[2].

Given our target application of functional genomics, we focus on decision tree
methods, because they yield models that are interpretable for domain experts. Deci-
sion trees are well-known classifiers, which can handle large datasets, and produce
accurate results. In Chapter 7 decision trees have been placed in the predictive clus-
tering tree (PCT) context. We show how the three HMC approaches outlined above
can be set in the PCT framework.

An experimental comparison shows that the approach that learns a single model
(the HMC approach) outperforms the other approaches on all fronts: predictive per-
formance, model size, and induction time. We show that the results obtained by this
method also outperform previously published results for predicting gene functions
in S. cerevisiae (baker’s or brewer’s yeast) and A. thaliana. Moreover, we show
that by upgrading our method to an ensemble technique, classification accuracy im-
proves further. Throughout these comparisons, we use precision-recall curves to
evaluate predictive performance, which are better suited for this type of problems
than commonly used measures such as accuracy, precision and ROC curves.

The text is organized as follows. We start by discussing previous work on HMC
approaches in gene function prediction in Section 15.2. Section 15.3 presents the
three PCT approaches for HMC in detail. In Section 15.4, we describe the precision-
recall based performance measures. Section 15.5 presents the classification schemes
and datasets used in the empirical study described in Section 15.6 and Section 15.7.
Finally, we conclude in Section 15.8.

15.2 Related Work

A number of HMC approaches have been proposed in the area of functional ge-
nomics. Several approaches predict functions of unannotated genes based on known
functions of genes that are nearby in a functional association network or protein-
protein interaction network [46, 13, 29, 15, 35, 30, 45]. These approaches are based
on label propagation, whereas the focus of this work is on learning global predictive
models.
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Deng et al. [20] predict gene functions with Markov random fields using protein
interaction data. They learn a model for each gene function separately and ignore
the hierarchical relationships between the functions. Lanckriet et al. [32] represent
the data by means of a kernel function and construct support vector machines for
each gene function separately. They only predict top-level classes in the hierarchy.
Lee et al. [33] have combined the Markov random field approach of [20] with the
SVM approach of [32] by computing diffusion kernels and using them in kernel
logistic regression.

Obozinski et al. [36] present a two-step approach in which SVMs are first learned
independently for each gene function separately (allowing violations of the hier-
archy constraint) and are then reconciliated to enforce the hierarchy constraint.
Barutcuoglu et al. [4] have proposed a similar approach where unthresholded sup-
port vector machines are learned for each gene function separately (allowing vio-
lations of the hierarchy constraint) and then combined using a Bayesian network
so that the predictions are consistent with the hierarchical relationships. Guan et
al. [27] extend this method to an ensemble framework that is based on three classi-
fiers: a classifier that learns a single support vector machine for each gene function,
the Bayesian corrected combination of support vector machines mentioned above,
and a classifier that constructs a single support vector machine per gene function
and per data source and forms a Naive Bayes combination over the data sources.
Valentini and Re [48] also propose a hierarchical ensemble method that uses prob-
abilistic support vector machines as base learners and combines the predictions by
propagating the weighted true path rule both top-down and bottom-up through the
hierarchy, which ensures consistency with the hierarchy constraint.

Rousu et al. [41] present a more direct approach that does not require a second
step to make sure that the hierarchy constraint is satisfied. Their approach is based
on a large margin method for structured output prediction [44, 47]. Such work de-
fines a joint feature map ¥(x,y) over the input space X and the output space Y. In
the context of HMC, the output space Y is the set of all possible subtrees of the
class hierarchy. Next, it applies SVM based techniques to learn the weights w of
the discriminant function F (x,y) = (w,¥(x,y)), with (-, -) the dot product. The dis-
criminant function is then used to classify a (new) instance x as argmaxcy F (x,).
There are two main challenges that must be tackled when applying this approach
to a structured output prediction problem: (a) defining ¥, and (b) finding an effi-
cient way to compute the argmax function (the range of this function is ¥, which is
of size exponential in the number of classes). Rousu et al. [41] describe a suitable
¥ and propose an efficient method based on dynamic programming to compute the
argmax. Astikainen et al. [3] extend this work by applying two kernels for structured
output to the prediction of enzymatic reactions.

If a domain expert is interested in knowledge that can provide insight in the
biology behind the predictions, a disadvantage of using support vector machines is
the lack of interpretability: it is very hard to find out why a support vector machine
assigns certain classes to an example, especially if a non-linear kernel is used.

Clare [16] presents an HMC decision tree method in the context of predicting
gene functions of S. cerevisiae. She adapts the well-known decision tree algorithm
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C4.5 [39] to cope with the issues introduced by the HMC task. First, where C4.5
normally uses class entropy for choosing the best split, her version uses the sum of
entropies of the class variables. Second, she extends the method to predict classes
on several levels of the hierarchy, assigning a larger cost to misclassifications higher
up in the hierarchy. The resulting tree is transformed into a set of rules, and the
best rules are selected, based on a significance test on a validation set. Note that
this last step violates the hierarchy constraint, since rules predicting a class can be
dropped while rules predicting its subclasses are kept. The non-hierarchical version
of her method was later used to predict gene functions for A. thaliana [17]. Here the
annotations are considered one level at the time, which also results in violations of
the hierarchy constraint.

Geurts et al. [25] recently presented a decision tree based approach related to
predictive clustering trees. They start from a different definition of variance and
then kernelize this variance function. The result is a decision tree induction system
that can be applied to structured output prediction using a method similar to the
large margin methods mentioned above [47, 44]. Therefore, this system could also
be used for HMC after defining a suitable kernel. To this end, an approach similar
to that of Rousu et al. [41] could be used.

Blockeel et al. [7, 5] proposed the idea of using predictive clustering trees [6]
for HMC tasks. This work [7] presents the first thorough empirical comparison be-
tween an HMC and SC decision tree method in the context of tree shaped class
hierarchies. Vens et al. [49] extend the algorithm towards hierarchies structured as
DAGs and show that learning one decision tree for predicting all classes simulta-
neously, outperforms learning one tree per class (even if those trees are built taking
into account the hierarchy). In Schietgat et al. [42], the predictive performance of the
HMC method and ensembles thereof is compared to results reported in the biomed-
ical literature. The latter two articles form the basis for this chapter.

15.3 Predictive Clustering Tree Approaches for HMC

We start this section by defining the HMC task more formally (Section 15.3.1). Next,
we instantiate three decision tree algorithms for HMC tasks in the PCT framework:
an HMC algorithm (Section 15.3.2), an SC algorithm (Section 15.3.3), and an HSC
algorithm (Section 15.3.4).

15.3.1 Formal Task Description

We define the task of hierarchical multi-label classification as follows:
Given:

e an instance space X,
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e a class hierarchy (C, <), where C is a set of classes and <}, is a partial order
representing the superclass relationship (for all ¢, ¢ € C: ¢ <, ¢ if and only if
c1 is a superclass of ¢;),

e aset T of examples (xx,S;) with x; € X and Sy C C such that ¢ € Sy = V¢’ <, ¢
¢’ € Sk, and

e a quality criterion g (which typically rewards models with high predictive accu-
racy and low complexity).

Find: a function f : X — 2€ (where 2€ is the power set of C) such that f maximizes
g and ¢ € f(x) = V' <jc: ¢ € f(x). We call this last condition the hierarchy
constraint.

In our work, the function f is represented with predictive clustering trees.

15.3.2 Clus-HMC: An HMC Decision Tree Learner

The approach that we present is based on decision trees and is set in the predic-
tive clustering tree (PCT) framework [6], see Chapter 7. This framework views a
decision tree as a hierarchy of clusters: the top-node corresponds to one cluster con-
taining all training examples, which is recursively partitioned into smaller clusters
while moving down the tree. PCTs can be applied to both clustering and prediction
tasks. The PCT framework is implemented in the CLUS system, which is available
athttp://dtai.cs.kuleuven.be/clus.

Before explaining the approach in more detail, we show an example of a (partial)
predictive clustering tree predicting the functions of S. cerevisiae using homology
data from Clare [16] (Fig. 15.2). The homology features are based on a sequence
similarity search for each gene in yeast against all the genes in SwissProt. The func-
tions are taken from the FunCat classification scheme [34]. Each internal node of
the tree contains a test on one of the features in the dataset. Here, the attributes are
binary and have been obtained after preprocessing the relational data with a fre-
quent pattern miner. The root node, for instance, tests whether there exists a Swis-
sProt protein that has a high similarity (e-value < 1.0-10~%) with the gene under
consideration G, is classified into the rhizobiaceae group and has references to the
database Interpro. In order to predict the functions of a new gene, the gene is routed
down the tree according to the outcome of the tests. When a leaf node is reached,
the gene is assigned the functions that are stored in it. Only the most specific func-
tions are shown in the figure. In the rest of this section, we explain how the PCT is
constructed. A detailed explanation is given in Vens et al. [49].

PCTs [6] are explained in Chapter 7 and can be constructed with a standard “top-
down induction of decision trees” (TDIDT) algorithm, similar to CART [10] or C4.5
[39]. The algorithm (see Fig. 7.1) takes as input a set of training instances (i.e., the
genes and their annotations). It searches for the best acceptable test that can be put
in a node. If such a test can be found then the algorithm creates a new internal
node and calls itself recursively to construct a subtree for each subset (cluster) in



15 Predicting Gene Function using Predictive Clustering Trees 371

Is G strongly homologous to a protein
in rhizobiaceae with dbref interpro?
(e-value < 1.0e-8)

Yo mo
. Y Is G strongly homologous to a protein in

desulfurococcales? (e-value < |.0e-8)
yes ho
Is G strongly homologous to a protein with
dbref aarhus/ghent_2dpage? (e-value < |.0e-8)

yes no

/mmologous to a protein in
6/13/1,40/7, bacteria with dbref rebase? (e-value
40/10 between 4.0e-4 and 4.5e-2)

es

Is G strongly homologous to a protein with
molecular weight between 53922 and 74079
and dbref transfac? (e-value < |.0e-8)

< yes
4/1/1,4/3/1,4/5/1/1, @
5/1,40/3,40/10
Fig. 15.2 Example of a predictive clustering tree, where the functions of a gene G are predicted,
based on homology data.

the partition induced by the test on the training instances. To select the best test,
the algorithm scores the tests by the reduction in variance (which is to be defined
further) they induce on the instances. Maximizing variance reduction maximizes
cluster homogeneity and improves predictive performance. If no acceptable test can
be found, that is, if no test significantly reduces variance, then the algorithm creates
a leaf and labels it with a representative case, or prototype, of the given instances.

To apply PCTs to the task of hierarchical multi-label classification, the variance
and prototype are instantiated as follows [49].

First, the set of labels of each example is represented as a vector with binary
components; the i’th component of the vector is 1 if the example belongs to class ¢;
and O otherwise. It is easily checked that the arithmetic mean of a set of such vectors
contains as i’th component the proportion of examples of the set belonging to class
c¢i. We define the variance of a set of examples as the average squared distance
between each example’s class vector v and the set’s mean class vector v, i.e.,

)2
Var(S) _ de(vlﬂv) )
S|

In HMC applications, it is generally considered more important to avoid making
mistakes for terms at higher levels of the hierarchy than for terms at lower levels. For
example in gene function prediction, predicting an “energy”” gene function (i.e. Fun-
Cat class 1, see Fig. 15.1) while the gene is involved in “metabolism” (FunCat class
2) is worse than predicting “biosynthesis of glutamine” (FunCat class 1.1.3.1.1) in-
stead of “degradation of glutamine” (FunCat class 1.1.3.1.2). To that aim, we use a
weighted Euclidean distance
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Fig. 15.3 (a) A toy hierarchy.

Class label names reflect the @ /T\ ®
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as a vector.

d(vi,v) = \/ZW(Ci) S(vii—vai)?,

where vy ; is the i’th component of the class vector v; of an instance x;, and the
class weights w(c) decrease with the depth of the class in the hierarchy. We choose
w(c) = wg - avg w(parj(c)), where par;(c) denotes the j’th parent of class ¢ (the
top-level classes have an artificial root class with weight w(rootr) = 1) and 0 < wg <
1. Note that our definition of w(c) allows the classes to be structured in a DAG,
as is the case with the Gene Ontology. Consider for example the class hierarchy
shown in Fig. 15.3, and two examples (x,S;) and (x2,S5>) with S} ={1,2,2/2} and
S» = {2}. Using a vector representation with consecutive components representing
membership of class 1, 2, 2/1, 2/2 and 3, in that order,

d([1,1,0,1,0],[0,1,0,0,0]) = 1/ wo + w2.

The heuristic for choosing the best test for a node of the tree is then maximization
of the variance reduction as discussed before, with the above definition of variance.

Second, a classification tree stores in a leaf the majority class for that leaf; this
class will be the tree’s prediction for examples arriving in the leaf. But in our case,
since an example may have multiple classes, the notion of “majority class” does
not apply in a straightforward manner. Instead, the mean v of the class vectors of the
examples in that leaf is stored. Recall that ¥; is the proportion of examples in the leaf
belonging to ¢;. An example arriving in the leaf can therefore be predicted to belong
to class c; if ¥; is above some threshold #;, which can be chosen by a domain expert.
To ensure that the predictions fulfil the hierarchy constraint (whenever a class is
predicted its superclasses are also predicted), it suffices to choose #; < t; whenever
c; is a superclass of c¢;. The PCT that is shown in Fig. 15.2 has a threshold of #; = 0.4
for all i.

We call the resulting instantiation of the PCT algorithm in the CLUS system
CLUs-HMC.

15.3.3 Clus-SC: Learning a Separate Tree for Each Class

The second approach that we consider builds a separate tree for each class in the hi-
erarchy. Each of these trees is a single-label binary classification tree. Assume that
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the tree learner takes as input a set of examples labeled positive or negative. To con-
struct the tree for class ¢ with such a learner, we label the class ¢ examples positive
and all the other examples negative. The resulting tree predicts the probability that
a new instance belongs to c. We refer to this method as single-label classification
(SO).

In order to classify a new instance, SC thresholds the predictions of the different
single-label trees, similar to CLUS-HMC. Note, however, that this does not guaran-
tee that the hierarchy constraint holds, even if the thresholds are chosen such that
t; < tj whenever ¢; <j, Cj.

The class-wise trees can be constructed with any classification tree induction al-
gorithm. Note that CLUS-HMC reduces to a single-label binary classification tree
learner when applied to such data; its class vector then reduces to a single compo-
nent and its heuristic reduces to CART’s Gini index [10]. We can therefore use the
same induction algorithm (CLUS-HMC) for both the HMC and SC approaches.
This makes the results easier to interpret. It has been confirmed [7] that on binary
classification tasks, CLUS-HMC performs comparably to state-of-the-art decision
tree learners. We call the SC approach with CLUS-HMC as decision tree learner
CLus-SC.

15.3.4 Clus-HSC: Learning a Separate Tree for Each Hierarchy
Edge

Building a separate decision tree for each class has several disadvantages, such as
the possibility of violating the hierarchy constraint. In order to deal with this issue,
the CLUS-SC algorithm can be adapted as follows.

For a non top-level class c in a tree structured hierarchy, it holds that an instance
can only belong to c if it belongs to ¢’s parent par(c). An alternative approach to
learning a tree that directly predicts c, is therefore to learn a tree that predicts ¢ given
that the instance belongs to par(c). Learning such a tree requires fewer training
instances: only the instances belonging to par(c) are relevant. The subset of these
instances that also belong to ¢ become the positive instances and the other instances
(those belonging to par(c) but not to ¢) the negative instances. The resulting tree
predicts the conditional probability P(c | par(c)). W.r.t. the top-level classes, the
approach is identical to CLUS-SC, i.e., all training instances are used.

To make predictions for a new instance, we use the product rule P(c) =
P(c| par(c)) - P(par(c)) (for non top-level classes). This rule applies the trees re-
cursively, starting from the tree for a top-level class. For example, to compute the
probability that the instance belongs to class 2.2, we first use the tree for class 2
to predict P(2) and next the tree for class 2.2 to predict P(2.2]|2). The resulting
probability is then P(2.2) = P(2.2]2)- P(2). For DAG structured hierarchies, the
product rule can be applied for each parent class separately, and will yield a valid
estimate of P(c) based on that parent. To obtain an estimate of P(c) based on all
parent classes, we aggregate over the parent-wise estimates. In order to fulfil the
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hierarchy constraint, we use as aggregate function the minimum of the parent-wise
estimates, i.e., P(c) = min; P(c| par;(c)) - P(par;(c)).

Again, these probabilities are thresholded to obtain the predicted set of classes.
As with CLUS-HMC, to ensure that this set fulfills the hierarchy constraint, it suf-
fices to choose a threshold 7; < t; whenever ¢; <, ¢;. We call the resulting algorithm
CLUS-HSC (hierarchical single-label classification).

15.3.5 Ensembles of Predictive Clustering Trees

Ensemble methods are learning methods that construct a set of classifiers for a given
prediction task and classify new examples by combining the predictions of each
classifier. In this chapter, we consider bagging, an ensemble learning technique that
has primarily been used in the context of decision trees.

Bagging [8] is an ensemble method where the different classifiers are constructed
by making bootstrap replicates of the training set and using each of these replicates
to construct one classifier. Each bootstrap sample is obtained by randomly sampling
training instances, with replacement, from the original training set, until an equal
number of instances is obtained. The individual predictions given by each classifier
can be combined by taking the average (for numeric targets) or the majority vote (for
nominal targets). Breiman [8] has shown that bagging can give substantial gains
in predictive performance of decision tree learners. Also in the case of learning
PCTs for predicting multiple targets at once, decision tree methods benefit from the
application of bagging [31]. However, it is clear that, by using bagging on top of the
PCT algorithm, the learning time of the model increases significantly, resulting in
a clear trade-off between predictive performance and efficiency to be considered by
the user.

The algorithm for bagging the PCTs takes an extra parameter k as input that de-
notes the number of trees in the ensemble. In order to make predictions, the average
of all class vectors predicted by the k trees in the ensemble is computed, and then
the threshold is applied as before. This ensures that the hierarchy constraint holds.

In the experiments, we will use bagged CLUS-HMC trees. We call the resulting
instantiation of the bagging algorithm around the CLUS-HMC algorithm CLUS-
HMC-ENSs.

15.4 Evaluation Measure

We will report our predictive performance results with precision-recall curves. Pre-
cision is the probability that a positive prediction is correct, and recall is the proba-
bility that a positive instance is predicted positive. Remember that every leaf in the
tree contains a vector v with for each class the probability that the instance has this
class. When decreasing CLUS-HMC’s prediction threshold #; from 1 to 0, an in-
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creasing number of instances is predicted as belonging to class c¢;, causing the recall
for ¢; to increase whereas precision may increase or decrease (with normally a ten-
dency to decrease). Thus, a tree with specified threshold has a single precision and
recall, and by varying the threshold a precision-recall curve (PR curve) is obtained.
Such curves allow us to evaluate the predictive performance of a model regardless
of ¢. In the end, a domain expert can choose a threshold according to the point on
the curve which is most interesting to him.

Our decision to conduct a precision-recall based evaluation is motivated by the
following three observations: (1) precision-recall evaluation was used in earlier ap-
proaches to gene function prediction [20, 15], (2) it allows one to simultaneously
compare classifiers for different classification thresholds, and (3) it suits the charac-
teristics of typical HMC datasets, in which many classes are infrequent (i.e., typi-
cally only a few genes have a particular function). Viewed as a binary classification
task for each class, this implies that for most classes the number of negative in-
stances by far exceeds the number of positive instances. We are more interested in
recognizing the positive instances (i.e., that a gene has a given function), rather than
correctly predicting the negative ones (i.e., that a gene does not have a particular
function). ROC curves [38] are less suited for this task, exactly because they reward
a learner if it correctly predicts negative instances (giving rise to a low false posi-
tive rate). This can present an overly optimistic view of the algorithm’s performance
[19].

Although a PR curve helps in understanding the predictive behavior of the model,
a single performance score is more useful to compare models. A score often used
to this end is the area between the PR curve and the recall axis, the so-called “area
under the PR curve” (AUPRC). The closer the AUPRC is to 1.0, the better the model
is.

With hundreds of classes, each of which has its own PR curve, there is the ques-
tion of how to evaluate the overall performance of a system. We can construct a
single “average” PR curve for all classes together by transforming the multi-label
problem into a binary single-label one, i.e., by counting instance-class-couples in-
stead of instances [49]. An instance-class couple is (predicted) positive if the in-
stance has (is predicted to have) that class, it is (predicted) negative otherwise. The
definition of precision and recall is then as before. We call the corresponding area
the “area under the average PR curve” (AU(PRC)).

15.5 Datasets

Gene functions are categorized into ontologies for several reasons. First, they pro-
vide biologists with a controlled vocabulary; second, they reflect biological interde-
pendences; and third, they ease the use of computational analysis. In this work, we
consider two such ontologies: the Functional Catalogue and the Gene Ontology.
The MIPS Functional Catalogue (FunCat, http://mips.gsf.de/
projects/funcat) [34] is a tree structured vocabulary with functional descrip-
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Table 15.1 Saccharomyces cerevisiae data set properties: number of instances |D|, number of
attributes |A|.

Data set Dl |A] Data set |D| |A|
D, Sequence [16] (seq) 3932 478 D7 DeRisietal. [21] (derisi) 3733 63
D, Phenotype [16] (pheno) 1592 69 Dg Eisenetal. [22] (eisen) 2425 79

D3 Secondary structure [16] (struc) 3851 19628 D9 Gasch et al. [24] (gaschl) 3773 173
D4 Homology search [16] (hom) 3867 47034 Djo Gasch et al. [23] (gasch2) 3788 52
Ds Spellman et al. [43] (cellcycle) 3766 77 Dp; Chuetal. [14] (spo) 3711 80
Dg Roth et al. [40] (church) 3764 27 Dj All microarray [16] (expr) 3788 551

tions of gene products, consisting of 28 main categories. A small part of it is shown
in Fig.15.1.

The structure of the Gene Ontology (GO, http://www.geneontology.
org) [2] scheme differs substantially from FunCat, as it is not strictly hierarchical
but organized as directed acyclic graphs, i.e. it allows more than one parent term per
child. Another difference of the GO architecture is that it is organized as three sepa-
rate ontologies: biological process, molecular function, and cellular localization. As
can be seen in Table 15.3, GO has much more terms than FunCat.

Next to using two different classification schemes, we predict gene functions
of two organisms: Saccharomyces cerevisiae and Arabidopsis thaliana, two of
biology’s classic model organisms. We use datasets described in [4], [16], and
[17], with different sources of data that highlight different aspects of gene func-
tion. All datasets are available at the following webpage: http://dtai.cs.
kuleuven.be/clus/hmc—ens.

15.5.1 Saccharomyces cerevisiae datasets

The first dataset we use (Dgy) was described by Barutcuoglu et al. [4] and is a com-
bination of different data sources. The input feature vector for a gene consists of
pairwise interaction information, membership to colocalization locale, possession
of transcription factor binding sites and results from microarray experiments, yield-
ing a dataset with in total 5930 features. The 3465 genes are annotated with function
terms from a subset of 105 nodes from the Gene Ontology’s biological process hi-
erarchy.

We also use the 12 yeast datasets (D1 —Dy3) from [16] (Table 15.1). The datasets
describe different aspects of the genes in the yeast genome. They include five types
of bioinformatics data: sequence statistics, phenotype, secondary structure, homol-
ogy, and expression. The different sources of data highlight different aspects of gene
function. The genes are annotated with functions from the FunCat classification
schemes. Only annotations from the first four levels are given.
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Table 15.2 Arabidopsis thaliana data set properties: number of instances |D|, number of attributes
Al

Data set D] |A] Data set D] |A]

D3 Sequence (seq) 3719 4450 D)4 Expression (exprindiv) 3496 1251
Dys SCOP superfamily (scop) 3097 2003 D, Secondary structure (struc) 3719 14804
D7 InterProScan data (interpro) 3719 2815 D;g Homology search (hom) 3473 72870

D, (seq) records sequence statistics that depend on the amino acid sequence of
the protein for which the gene codes. These include amino acid frequency ratios,
sequence length, molecular weight and hydrophobicity.

D, (pheno) contains phenotype data, which represents the growth or lack of
growth of knock-out mutants that are missing the gene in question. The gene is
removed or disabled and the resulting organism is grown with a variety of media to
determine what the modified organism might be sensitive or resistant to.

D3 (struc) stores features computed from the secondary structure of the yeast
proteins. The secondary structure is not known for all yeast genes; however, it can be
predicted from the protein sequence with reasonable accuracy, using Prof [37]. Due
to the relational nature of secondary structure data, Clare performed a preprocessing
step of relational frequent pattern mining; D3 includes the constructed patterns as
binary attributes.

D4 (hom) includes for each yeast gene, information from other, homologous
genes. Homology is usually determined by sequence similarity; here, PSI-BLAST
[1] was used to compare yeast genes both with other yeast genes and with all genes
indexed in SwissProt v39. This provided for each yeast gene a list of homologous
genes. For each of these, various properties were extracted (keywords, sequence
length, names of databases they are listed in, ...). Clare preprocessed this data in a
similar way as the secondary structure data to produce binary attributes.

Ds,...,Dy2. Many microarray datasets exist for yeast and several of these were
used [16]. Attributes for these datasets are real valued, representing fold changes in
expression levels.

15.5.2 Arabidopsis thaliana datasets

We use six datasets from [17] (Table 15.2), originating from different sources: se-
quence statistics, expression, predicted SCOP class, predicted secondary structure,
InterPro and homology. Each dataset comes in two versions: with annotations from
the FunCat classification scheme and from the Gene Ontology’s molecular function
hierarchy. Again, only annotations for the first four levels are given. We use the
manual annotations for both schemes.

D3 (seq) records sequence statistics in exactly the same way as for S. cerevisiae.
Dj4 (exprindiv) contains 43 experiments from NASC’s Affymetrix service “Affy-
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Table 15.3 Properties of the two classification schemes for the updated yeast datasets. |C| is the
average number of classes actually used in the data sets (out of the total number of classes defined
by the scheme). |S| is the average number of labels per example, with between parentheses the
average number counting only the most specific classes of an example.

FunCat GO
Scheme version 2.1 (2007/01/09) 1.2 (2007/04/11)
Yeast annotations 2007/03/16 2007/04/07
Total classes 1362 22960
Data set average |C| 492 (6 levels) 3997 (14 levels)

Data set average |S| 8.8 (3.2 most spec.) 35.0 (5.0 most spec.)

watch” (http://affymetrix.arabidopsis.info/AffyWatch.html),
taking the signal, detection call and detection p-values. Dy5 (scop) consists of SCOP
superfamily class predictions made by the Superfamily server [26]. D¢ (struc)
was obtained in the same way as for S. cerevisiae. D17 (interpro) includes features
from several motif or signature finding databases, like PROSITE, PRINTS, Pfam,
ProDom, SMART and TIGRFAMs, calculated using the EBI’s stand-alone Inter-
ProScan package [51]. To obtain features, the relational data was mined in the same
manner as the structure data. D1g (hom) was obtained in the same way as for S. cere-
visiae, but now using SWISSPROT v41.

15.6 Comparison of Clus-HMC/SC/HSC

In order to compare the three PCT approaches for HMC tasks, we use the 12 yeast
data sets Dy to Dy, from Clare [16], but with new and updated class labels. We
construct two versions of each data set. The input attributes are identical in both
versions, but the classes are taken from the two different classification schemes
FunCat and GO (we use GO’s “is-a” relationship between terms). GO has an or-
der of magnitude more classes than FunCat for our data sets: the FunCat datasets
have 1362 classes on average, spread over 6 levels, while the GO datasets have
3997 classes, spread over 14 levels, see Table 15.3. The 24 resulting datasets can be
found on the following webpage: http://dtai.cs.kuleuven.be/clus/
hmcdatasets.html.

CLUS-HMC was run as follows. For the weights used in the weighted Euclidean
distance in the variance calculation, wy was set to 0.75. The minimal number of
examples a leaf has to cover was set to 5. The F-test stopping criterion takes a
“significance level” parameter s, which was optimized as follows: for each out of
6 available values for s, CLUS-HMC was run on 2/3 of the training set and its PR
curve for the remaining 1/3 validation set was constructed. The s parameter yielding
the largest area under this average validation PR curve was then used to train the
model on the complete training set. The results for CLUS-SC and CLUS-HSC were
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Table 15.4 Predictive performance (AU(PRC)) of CLUS-HMC, CLUS-SC and CLUS-HSC.

FunCat labels GO labels
Dataset HMC HSC SC HMC HSC SC

seq 0.211 0.091 0.095 0.386 0.282 0.197
pheno 0.160 0.152 0.149 0337 0.416 0.316
struc 0.181 0.118 0.114  0.358 0.353 0.228
hom 0.254 0.155 0.153  0.401 0.353 0.252
cellcycle 0.172 0.111 0.106  0.357 0.371 0.252
church  0.170 0.131 0.128  0.348 0.397 0.289
derisi 0.175 0.094 0.089  0.355 0.349 0.218
eisen 0.204 0.127 0.132  0.380 0.365 0.270
gaschl 0.205 0.106 0.104  0.371 0.351 0.239
gasch2  0.195 0.121 0.119  0.365 0.378 0.267
spo 0.186 0.103 0.098  0.352 0371 0.213
expr 0.210 0.127 0.123  0.368 0.351 0.249

Average: 0.194 0.120 0.118 0.365 0.361 0.249

obtained in the same way as for CLUS-HMC, but with a separate run for each class
(including separate optimization of s for each class).

Each algorithm was trained on 2/3 of each data set and tested on the remaining
1/3.

Table 15.4 shows the AU(PRC) of the three decision tree algorithms. Table 15.5
shows summarizing Wilcoxon outcomes comparing the AU(PRC) of CLUS-HMC
to CLUS-SC and CLUS-HSC'. We see that CLUS-HMC performs better than
CLUS-SC and CLUS-HSC, both for FunCat and GO. We see also that CLUS-HSC
performs better than CLUS-SC on FunCat and on GO.

Table 15.6 shows the average number of leaves in the trees. We see that the SC
trees are smaller than the HMC trees, because they each model only one class. Nev-
ertheless, the total size of all SC trees is on average a factor 398 (FunCat) and 1392
(GO) larger than the corresponding HMC tree. This difference is bigger for GO
than for FunCat because GO has an order of magnitude more classes and therefore
also an order of magnitude more SC trees. Comparing HMC to HSC yields similar
conclusions.

Observe that the HSC trees are smaller than the SC trees. We see two reasons
for this. First, HSC trees encode less knowledge than SC ones because they are
conditioned on their parent class. That is, if a given feature subset is relevant to all

! Given a pair of methods X and Y, the input to the Wilcoxon test is the test set performance
(AUPRC) of the two methods on the 12 data sets. The null-hypothesis is that the median of the
performance difference Z; = Y; — X; is zero. Briefly, the test orders the Z; values by absolute value
and then assigns them integer ranks such that the smallest |Z;| is ranked 1. It then computes the
rank sum of the positive (W) and negative (W) Z;. If W > W™, then Y is better than X because
the distribution of Z is skewed to the right. Let S = min(W+,W ™). The p-value of the test is the
probability of obtaining a sum of ranks (W' or W) smaller than or equal to S, given that the
null-hypothesis is true. In the results, we report the p-value together with W+ and W~
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Table 15.5 Comparison of the AU(PRC) of CLUS-HMC, CLUS-SC and CLUS-HSC. A ‘@’
(‘©’) means that the first method performs better (worse) than the second method according to
the Wilcoxon signed rank test. The table indicates the rank sums and corresponding p-values. Dif-
ferences significant at the 0.01 level are indicated in bold.

HMC vs. SC HMC vs. HSC HSC vs. SC

Score P Score )4 Score )4

FunCat @©78/0 49-10* ©78/0 49.-10* @©62/16 7.7-1072
GO @78/0 49-10* ©43/35 79-100' ©78/0 49-10~*

classes in a sub-lattice of the hierarchy, then CLUS-SC must include this subset in
each tree of the sub-lattice, while CLUS-HSC only needs them in the trees for the
sub-lattice’s most general border. Second, HSC trees use fewer training examples
than SC trees, and tree size typically grows with training set size.

We also measure the total induction time for all methods. CLUS-HMC requires
on average 3.3 (FunCat) and 24.4 (GO) minutes to build a tree. CLUS-SC is a factor
58.6 (FunCat) and 129.0 (GO) slower than CLUS-HMC. CLUS-HSC is faster than
CLUS-SC, but still a factor 6.3 (FunCat) and 55.9 (GO) slower than CLUS-HMC.

Table 15.6 Average tree size (number of tree leaves) for FunCat and GO datasets. For CLUS-SC
and CLUS-HSC we report both the total number of leaves in the collection of trees, and the average
number of leaves per tree.

CLUS-HMC CLUS-SC CLUS-HSC
Total Average Total Average

FunCat 19.8 7878 159 3628 7.3
GO 222 30908 7.6 16988 3.0

15.7 Comparison of (Ensembles of) CLUS-HMC to
State-of-the-art Methods

15.7.1 Comparison of CLUS-HMC to Decision Tree based
Approaches

The previous section clearly showed the superiority of CLUS-HMC over CLUS-
HSC and CLUS-SC. We now investigate how this method performs compared to
state-of-the-art decision tree methods for functional genomics. As explained in Sec-
tion 15.2, Clare [16] has presented an adaptation of the C4.5 decision tree algorithm
towards HMC tasks. We compare our results to the results reported by Clare and
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King [18] on S. cerevisiae (D; to Dy2), and by Clare et al. [17] on A. thaliana Dy3
to Dyg. The datasets that we use in this evaluation are exactly those datasets that are
used in the mentioned articles. For the 18 datasets that are annotated with FunCat
classes, we will compare to the hierarchical extension of C4.5 [18], which we will
refer to as C4.5H. For the 6 datasets with GO annotations, we will use the non-
hierarchical version [17], as C4.5H cannot handle hierarchies structured as a DAG.
We refer to this system as C4.5M. For CLUS-HMUC, all parameters were set as in
the previous experiment.

For evaluating their systems, Clare et al. [17] report average precision. Indeed,
as the biological experiments required to validate the learned rules are costly, it is
important to avoid false positives. However, precision is always traded off by recall:
a classifier that predicts one example positive, but misses 1000 other positive ex-
amples may have a precision of 1, although it can hardly be called a good classifier.
Therefore, we also computed the average recall of the models obtained by C4.5H/M.
These models were presented as rules derived from the trees, which enables us to
plot only one point in PR space.

For each of the datasets these PR points are plotted against the average PR curves
for CLUS-HMC. As we are comparing curves with points, we speak of a “win” for
CLUS-HMC when its curve is above C4.5H/M’s point, and of a “loss” when it
is below the point. Under the null hypothesis that both systems perform equally
well, we expect as many wins as losses. We observed that only in one case out of
24, C4.5H/M outperforms CLUS-HMC. For all other cases there is a clear win for
CLuUs-HMC. Representative PR curves can be found in Fig. 15.4 (left) and 15.5.
For each of these datasets, we also compared the precision of C4.5H/M and CLUS-
HMC, at the recall obtained by C4.5H/M. The results can be found in Fig. 15.6.
The average gain in precision w.r.t. C4.5H/M is 0.209 for CLUS-HMC. Note that
these figures also contain the results for the ensemble version of CLUS-HMC (see
further).

Every leaf of a decision tree corresponds to an if ... then ... rule. When comparing
the interpretability and precision/recall of these individual rules, CLUS-HMC also
performs well. For instance, take FunCat class 29, with a prior frequency of 3%.
Figure 15.4 (right) shows the PR evaluation for the algorithms for this class using
homology dataset D4. The PR point for C4.5H corresponds to one rule, shown in
Fig. 15.7. This rule has a precision/recall of 0.55/0.17. CLUS-HMC’s most precise
rule for 29 is shown in Fig. 15.8. This rule has a precision/recall of 0.90/0.26.
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We can conclude that if interpretable models are to be obtained, CLUS-HMC is
the system that yields the best predictive performance. Compared with other existing
methods, we are able to obtain the same precision with higher recall, or the same
recall with higher precision. Moreover, the hierarchy constraint is always fulfilled,
which is not the case for C4.5H/M.

15.7.2 Comparison of Ensembles of CLUS-HMC to an SVM
based Approach

As explained in Sect. 15.3.5, we have extended CLUS-HMC to an ensemble induc-
tion algorithm (referred to as CLUS-HMC-ENS) in order to increase its predictive
performance. More precisely, we built a bagging procedure around the PCT induc-
tion algorithm, each bag containing 50 trees in all experiments. As can be seen in
Figures 15.4, 15.5, and 15.6, the improvement in predictive performance that is ob-
tained by using ensembles carries over to the HMC setting.

We now compare CLUS-HMC-ENS to Bayesian-corrected SVMs [4]. This
method was discussed in Sect. 15.2, and we refer to it as BSVM.

Barutcuoglu et al. [4] have used one dataset (Dy) to evaluate their method. It is a
combination of different data sources. The input feature vector for each S. cerevisiae
gene consists of pairwise interaction information, membership to colocalization lo-
cale, possession of transcription factor binding sites, and results from microarray
experiments. The genes are annotated with function terms from a subset of 105
nodes from the Gene Ontology’s biological process hierarchy. They report class-
wise area under the ROC convex hull (AUROC) for these 105 functions. Although
we have argued that precision-recall based evaluation is more suited for HMC prob-
lems, we adopt the same evaluation metric for this comparison. We also use the
same evaluation method, which is based on out-of-bag estimates [9].

Fig. 15.9 compares the classwise out-of-bag AUROC estimates for CLUS-HMC-
ENSs and BSVM outputs. CLUS-HMC-ENS scores better on 73 of the 105 functions,
while BSVM scores better on the remaining 32 cases. According to the (two-sided)
Wilcoxon signed rank test [50], the performance of CLUS-HMC-ENS is signifi-
cantly better (p = 4.37-107°).
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Moreover, CLUS-HMC-ENS is faster than BSVM. Run times are compared for
one of the previously used datasets having annotations from Gene Ontology’s com-

if  the ORF is NOT homologous to another yeast protein (e > 0.73)
and homologous to a protein in rhodospirillaceae (e < 1.0-107%)

and NOT homologous to another yeast protein (5.0-10~* < e <
3.3.1072) and homologous to a protein in anabaena (e > 1.1)

and homologous to another yeast protein (2.0- 1077 < e < 5.0-10~%)
and homologous to a protein in beta_subdivision (e < 1.0-107%)

and NOT homologous to a protein in sinorhizobium with keyword
transmembrane (e > 1.1)

and NOT homologous to a protein in entomopoxvirinae with dbref pir
(e>1.1)

and NOT homologous to a protein in t4-like_phages with molecular weight
between 1485 and 38502 (4.5-1072 < e < 1.1)

and NOT homologous to a protein in chroococcales with dbref prints
(1.0-108 <e<4.0-107%)

and NOT homologous to a protein with sequence length between 344 and 483
and dbref tigr (e < 1.0-107%)

and homologous to a protein in beta_subdivision with sequence length between
16 and 344 (e < 1.0-107%)

then class 29/0/0/0 "transposable elements, viral and plasmid proteins”

Fig. 15.7 Rule found by C4.5H on the D4 homology dataset.

if  the ORF is NOT homologous to a protein in rhizobiaceae_group
with dbref interpro (¢ < 1.0-107%)

and NOT homologous to a protein in desulfurococcales (e < 1.0-10~%)

and homologous to a protein in ascomycota with dbref transfac
(e<1.0-107%)

and homologous to a protein in viridiplantae with sequence length > 970
(e<1.0-107%)

and homologous to a protein in rhizobium with keyword plasmid
(1.0-107% <e<4.0-107%)

and homologous to a protein in nicotiana with dbref interpro (¢ < 1.0-10~%)

then class 29/0/0/0 "transposable elements, viral and plasmid proteins”

Fig. 15.8 Rule found by CLUS-HMC on the D4 homology dataset.
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plete biological process hierarchy (in particular, we used Dy¢ from Sect. 15.7.1,
which is annotated with 629 classes). Run on a cluster of AMD Opteron processors
(1.8 - 2.4GHz, >2GB RAM), CLUS-HMC-ENS required 34.8 hours, while SVM-
light [28], which is the first step of BSVM, required 190.5 hours for learning the
models (i.e., CLUS-HMC-ENS is faster by a factor 5.5 in this case).

15.8 Conclusions

An important task in functional genomics is to assign a set of functions to genes.
These functions are typically organized in a hierarchy: if a gene has a particular
function, it automatically has its superfunctions. This setting where instances can
have multiple classes and where these classes are organized in a hierarchy is called
hierarchical multi-label classification (HMC) in machine learning.

In this chapter, we have presented three instantiations of the predictive clustering
tree framework for HMC: (1) an algorithm that learns a single tree that predicts all
classes at once (CLUS-HMC), (2) an algorithm that learns a separate decision tree
for each class (CLUS-SC), and (3) an algorithm that learns and applies such single-
label decision trees in a hierarchical way (CLUS-HSC). The three algorithms are
designed for problems where the class hierarchy is either structured as a tree or as a
directed acyclic graph (DAG).

An evaluation of these approaches on functional genomics datasets shows that
CLUS-HMC outperforms the other approaches on all fronts: predictive perfor-
mance, model size, and induction times. We also show that CLUS-HMC outper-
forms a known decision tree learner (C4.5H). Moreover, it is possible to maximize
predictive performance by constructing an ensemble of CLUS-HMC-trees. We show
that the latter outperforms an approach based on SVMs, while still being efficient
and easy to use.

Our evaluation makes use of precision-recall curves, which give the domain ex-
pert more insight into the relation between precision and recall. We argued that
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PR-based evaluation measures are best suited for HMC problems, since they do not
reward the negative predictions, i.e., predicting an example not to have particular
labels (like ROC curves do).

We conclude that predictive clustering tree based methods are currently the most
efficient, easy-to-use, and flexible approach to gene function prediction, flexible in
the sense that they cover the spectrum from highly interpretable to highly accurate
models.
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