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a  b  s  t  r  a  c  t

We  present  an  approach  to  modelling  interdependent  types  of  vegetation  that  support  different  functions
in a managed  ecosystem.  For  optimal  management,  plants  that  provide  economic  output  (e.g., crops)  and
those  that support  ecological  functions  (e.g.,  wild  plants  or ‘weeds’)  should  coexist  in  an  agroecosystem.
To  make  progress  with  understanding  how  such  plant  communities  interact  over  time,  we  analyse  paired
time  series  data  about  the  cover  of  crop  and  weed  vegetation  in  oilseed  rape  fields.  The  percentage  crop
and weed  cover  were  measured  every  7–14  days  at 128  sites  in  the  UK,  covering  a  wide  range  of localities
and  management  regimes.

To  analyze  the  data,  we  first  cluster  the  time  course  profiles  of  crop  cover  (using  the  k-medoids  cluster-
ing algorithm  and  the  dynamic  time  warping  distance  between  time  series).  The  clustering  revealed  five
typical  clusters  of  crop  cover  profiles  that  differed  in  terms  of  rate  of increase,  lag  phase  and  maximum
value,  but  were  largely  independent  of  the  type  of crop  (winter/spring  oil  seed  rape)  and  the  weed  man-
agement  regime.  Cluster  membership  for each  crop  cover  profile  was  used  as  an additional  independent
variable  (attribute)  in the  predictive  modelling  analysis  that  followed.

We then  constructed  predictive  clustering  trees  (a  generalized  form  of  decision  trees)  that  predict
the  weed  cover  profile  (time  series)  from  independent  (input)  variables  that  include  the  crop  cover
cluster,  other  crops  descriptors  and  environmental  variables.  The  crop  cover  cluster  was  more  infor-
mative  in  predicting  the  weed  cover  profile  than  any  other  input  variable,  including  the  type of crop
and  the  crop  transgenic  status  (conventional  or genetically  modified  / herbicide  tolerant).  The approach
was  successful  in identifying  the  interdependencies  between  the  two types  of  vegetation.  We  envisage
that  it will  have  plentiful  further  practical  use  in  relating  and interpreting  ecological  or  environmental
time  series.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is increasingly recognised that production ecosystems have
to satisfy several functions or outcomes in the same physical space
(Marshall et al., 2003; Hawes et al., 2009). They must balance, for
example, the needs of production leading to economic offtake with
the provision of sufficient energy, matter and structure to allow
essential ecological processes to be sustained. The ecological need
is for enough wild plants (weeds) to support an arable food web
consisting of a diversity of invertebrate functional types, includ-
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ing herbivores, omnivores, pollinators and predators (Hawes et
al., 2009). The economic need is for vigorous growth of the crop
together with minimal negative effects on offtake caused by com-
petition from the weeds. Ideally, cropping should not reduce weeds
to the point where the essential food web of arable land is impaired,
while weeds should not reduce the economic output of the
land.

At least a part of this co-habitation between crops and weeds
can be achieved by spatially separating them, maintaining areas
such as field margins, boundaries or woodlands, where biodiversity
is the primary aim, distinct from the disturbed, cultivated cen-
tres of fields. Since, however, the cultivated areas tend to be by
far the larger in size, and support a distinct flora, temporal co-
habitation within the cultivated fields is also essential (Squire et al.,
2009). A range of indicators in the soil seedbank, emerged veg-
etation, and sedentary and mobile invertebrate groups are being
developed to assess the relevant ecological and economic pro-
cesses within the cultivated areas (Hawes et al., 2010). There are
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major questions, however, as to how these indicators are related
to each other. For instance, time profiles or time series of cohab-
iting groups such as crops and weeds may  provide more useful
information than occasional measurements. There may  be an inter-
action at one point in the series that has ramifications for the
subsequent development of one or more series, while the multi-
ple functions might be satisfied through temporal complementarity
— for example, the presence of weeds for only a part of the year
might satisfy the ecological functions while having little effect on
yield.

If time series for the appropriate indicators could be compared
quantitatively, then several questions of practical significance
could be addressed. For example, to what extent are the time series
for crops and wild plants associated or influenced by each other?
Can ideal or near-ideal crop and wild plant time series be identified
(and can non-ideal series be identified)? If so, can they be attributed
to any causal factors of the site or the agronomy? Can forms of
management be devised to achieve the optimal combination of
time series? Before such questions can be considered, the feasi-
bility of comparing ecological time series has to be demonstrated
and a methodology tested on suitable data.

Quantification and comparison of time series are major prob-
lems, however. Typically, the measurements in an ecological time
series are taken at irregular time intervals. The time series may  have
different lengths and differ non-linearly in the intervals between
successive time points. Often the data are too variable to allow
one series to be related in a simple or direct way to the other.
In such a case, it may  be possible to look for similarities among
time series, i.e., whether the entire set of time series can be par-
titioned into groups or clusters, such that the time series within a
group are more similar to each other than to those in other groups.
The cluster, rather than the individual time series, may then be
used as an input variable to predict the time series of the second
variable.

There are several methods that analyse and cluster time series
data from the domain of environmental sciences (Liao, 2005;
Shumway and Stoffer, 2006). To model the time series data these
approaches typically use hidden Markov models, neural networks,
genetic programming, regression base approaches (e.g., autore-
gressive integrated moving average) or analyse the data in the
frequency domain. They are mainly concerned with forecasting
weather conditions (e.g. rainfall), predicting river water level (flood
protection), analysis of temporal remotely sensed data about land
use and land cover (Mari and Le Ber, 2006; Potter et al., 2007;
Viovy, 2000; Zhou et al., 2006), etc. For example, Li et al. (2001)
perform clustering on time series data using hidden Markov mod-
els. The data they analyze concern the ecological effects of mosquito
control by changing the drainage patterns in an area south of Bris-
bane, Australia. However, the aforementioned approaches have
some limitations regarding the type of variables that can be used,
make assumptions about, prior distributions or missing values and
offer limited interpretability. We  propose to use predictive clus-
tering trees that have no such prior assumptions and are readily
interpretable.

This paper applies several procedures, culminating in predic-
tive clustering trees, to analyse a comprehensive data set consisting
primarily of two time series—one for the percentage ground cover
of a crop, which is an indicator of the potential production of a
crop stand and the other for percentage ground cover of weeds,
which is an indicator of both the potential negative effects on the
crop and positive effects on the food web. The main aim of the
paper is to establish whether an approach to the examination of
time series on large agroecological data sets is feasible. In doing
this, the paper provides the first application of predictive cluster-
ing trees to the analysis of ecological time series in agricultural
systems.

2. Methods

2.1. Distance-based clustering of time series

In this study, we  perform distance-based clustering of ecolog-
ical time series. To achieve this, we need a distance measure on
time series. In the data examined here, measurements of crop cover
and height, as well as weed cover, occur at irregular time intervals,
while the time series at each location begins and ends at different
time points in the year. This has motivated us to use the dynamic
time warping (DTW) distance between two  time series.

Dynamic time warping (Sakoe and Chiba, 1978) can capture
non-linear distortion along the time axis. It accomplishes this by
assigning multiple values of one of the time series to a single value
of the other. As a result, DTW is suitable if the time series are not
properly synchronized, e.g., if one is delayed, or if the two  time
series are not of the same length, or if the measurements refer to
different time points.

Once we  have a distance measure, we can cluster the time series,
i.e., partition the entire set of time series into groups. We  want the
time series within a group to be similar to each other and time
series in different groups to be different/distant from each other.
This means we want to minimize cluster variance, defined as

Var(C) = 1
|C|

∑
X ∈ C

d2(X, c) (1)

where c is the cluster prototype, C is the cluster, X is an example
from C and d is the distance measure. The prototype is calculated
as

c = arg minq

∑
X ∈ C

d2(X, q) (2)

where q ranges over the examples/time series in C. The cluster pro-
totype c as defined above, is called the cluster medoid. The medoid
is an example (in this case time series) from the cluster, whose
average distance to the other examples in the cluster is minimal
(i.e., the example that is ‘most centrally’ located within the given
cluster).

Many different approaches exist to distance-based clustering.
Here we  discuss two, k-medoids clustering and predictive cluster-
ing trees. The latter are of special interest, as they also produce
descriptions of the clusters.

2.2. k-Medoids clustering of time series

The k-medoids algorithm is a partition-based clustering algo-
rithm that extends the famous k-means algorithm (which only
works for clustering vectors of real numbers). It requires as input
the number of clusters (k) that it should produce. The algo-
rithm begins with a random selection of k examples as temporary
medoids.

Given a set of (temporary) cluster medoids, each example is
associated with the least distant medoid. Next, a non-medoid
example is randomly selected. Then, the algorithm checks whether
swapping one of the initial medoids with the one that was randomly
selected will result in more compact clusters. If more compact clus-
ters are obtained, then the randomly selected example is set as a
medoid and the other (non-medoid) examples are again reassigned.
The random selection of non-medoid examples is repeated until
replacing a medoid with the randomly selected example does not
improve the compactness of the clusters.
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2.3. Predictive clustering trees for time series

Predictive Clustering Trees (PCTs) (Blockeel et al., 1998) gen-
eralize decision trees (Breiman et al., 1984) and can be used for
a variety of learning tasks, including different types of predic-
tion and clustering. The PCT framework views a decision tree as
a hierarchy of clusters (see Figs. 4 and 5): the top-node of a PCT
corresponds to one cluster (group) containing all data, which is
recursively partitioned into smaller clusters while moving down
the tree. The leaves represent the clusters at the lowest level of
the hierarchy and each leaf is labeled with its cluster’s prototype
(prediction). PCTs can be learned by the system CLUS available at
http://www.cs.kuleuven.be/∼dtai/clus/.

PCTs are built with a greedy recursive top-down induction (TDI)
algorithm, similar to that of C4.5 (Quinlan, 1993) or CART (Breiman
et al., 1984). The learning algorithm starts by selecting a test for
the root node. Based on this test, the training set is partitioned into
subsets according to the test outcome. This is recursively repeated
to construct the subtrees. The partitioning process stops when a
stopping criterion is satisfied (e.g., the number of records in the
induced subsets is smaller than some predefined value; the length
of the path from the root to the current subset exceeds some prede-
fined value, etc.). In that case, the prototype is calculated and stored
in a leaf.

One of the most important steps in the TDI algorithm is the test
selection procedure. For each node, a test is selected by using a
heuristic function computed on the training examples. The goal of
the heuristic is to guide the algorithm towards small trees with
good predictive performance.

The heuristic used in this algorithm for selecting the attribute
tests in the internal nodes is intra-cluster variation summed over
the subsets induced by the test. Lower intra-subset variance results
in more accurate predictions. The cluster variance is calculated as
the sum of the squared pairwise distances between the cluster
elements, i.e.,

Var(C) = 1
2|C|2

∑
X ∈ C

∑
Y ∈ C

d2(X, Y) (3)

Note that, no cluster prototypes are required for the computa-
tion of variance in this case.

The predictive clustering trees approach has a number of desir-
able properties. No prior assumptions are made on the probability
distributions of the dependent and the independent variables. PCTs
can handle discrete or continuous independent variables, as well as
missing values. In addition, they are tolerant to redundant variables
and noise. Furthermore, they are computationally inexpensive and
are easily interpretable. Also, from a clustering point of view, the
PCTs are unique in the sense that they provide cluster descriptions
while constructing the clusters. All in all, PCTs are robust, efficient
and interpretable models with satisfactory predictive performance.

3. Data description

The data set consists of paired time series of percentage crop
and weed cover from 128 experimental sites throughout the UK.
These were the sites that grew oilseed rape in the farm scale eval-
uations of genetically modified herbicide tolerant (GMHT) crops,
about half of them growing winter oilseed rape (WOR) and half
spring oilseed rape (SOR). At each site, a split field design (Perry
et al., 2003) was used to compare weed management using con-
ventional and GMHT practice (Bohan et al., 2005; Champion et al.,
2003). The experiments were run over a wide range of localities
and management regimes.

The two crops, conventional and GMHT, in each field were sown
and harvested at the same time. They differed only in weed man-
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Fig. 1. Examples of time series data of the percentage of ground cover for a winter
oilseed rape crop, spring oilseed rape crop, weeds in winter oilseed rape and weeds
in  spring oilseed rape, all from conventional treatments.

agement, all other field operations being the same. In conventional
weed management, weeds were treated in the manner usual for
the field and crop, generally with a pre-emergence herbicide that
targeted weeds around the time the crop itself emerged. In GMHT
management, the crop and weeds were allowed to emerge. Later
when GM crop plants were still small (no more than a few leaves
on each plant), the herbicide glufosinate ammonium was  applied
to control the weeds. The GM crop plants were little affected by the
herbicide, but the weeds were variously set back or killed. Full infor-
mation on the weed management practices has been published
elsewhere (Champion et al., 2003; Bohan et al., 2005).

Ground cover and crop height were estimated as described by
Champion et al. (2003) at locations throughout each field every
7–14 days during the growing season. The means per treatment
(half field) per sample occasion are used subsequently in this anal-
ysis. Fig. 1 shows representative examples of the time series data
where zero is the time the crop was sown. SOR was sown around
day 100 in the harvesting year (mid-April). Measurements began
around day 120, continued throughout growth and ceased at typ-
ically day 240 (end of August) just before harvest. WOR  was sown
around 140 days before the beginning of the year of harvest. Mea-
surements continued on typically two  to four occasions in that year,
ceased over the winter, resumed in early spring and continued until
around day 200, just before harvest.

Variation in the time series therefore had the following potential
sources: winter vs. spring cropping as indicated in Fig. 1; GMHT  vs.
conventional treatments in each half field; and differences among
sites related to weather, soil and field management. Previous anal-
yses have shown that the mean crop cover did not differ between
conventional and GMHT treatments (Champion et al., 2003); the
treatments however, had effects on weeds (Bohan et al., 2005;
Champion et al., 2003). Notably, the weed cover in the GMHT  treat-
ment in SOR was  on average about half that of the conventional,
while the weed cover in GMHT and conventional treatments in
WOR were similar. The variation among sites has not hitherto been
systematically examined, but visual inspection of the data indi-
cated that such variation may  be greater than that between crops
and treatments.

In total, the dataset consisted of 2665 individual measurements
of percentage cover (1322 conventional and 1333 GMHT) which
were then converted to 254 time series. Accompanying these mea-
surements of crop and weed cover for each half-field were data
describing the site (e.g., field size, soil texture, soil carbon and nitro-
gen) and the management (e.g., soil cultivation, herbicide, fertiliser,
harvesting). For illustration, these data were used as inputs to some
of the analyses presented here, but understanding their effects on
percentage cover is not the primary aim of the paper. Examples of
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Fig. 2. The medoids of the five clusters for crop cover. The sizes of the clusters (|CCi|)
and the intra-cluster variances (ICV) are given in the legend.

the use of such data in another application are given by Debeljak
et al. (2008).

4. Results

4.1. Clustering of crop cover and crop height time series

Time series data for crop height and cover were clustered to
include the information about crop height (CH) and crop cover (CC)
in the induction process. We  applied the k-medoids algorithm as
described in the previous section.

The k-medoids clustering algorithm requires as input k, the
number of clusters that the algorithm should output. This value
was set to 3, 4, 5, 6, 7, 8 and 9 for both crop cover and crop height.
The clusters were inspected for the intra cluster variance (how
homogenous the clusters were). The clusterings with least vari-
ance were those of 5 clusters for crop cover (CC1, CC2, CC3, CC4 and
CC5) and 6 for crop height (CH1, CH2, CH3, CH4, CH5 and CH6). The
cluster medoids for each of the two clusterings are presented in
Figs. 2 and 3.

The clusters of crop cover time series differed largely in the
shape of the profiles as affected by the length of the period of slow
growth at the beginning of the season (causing an offset rightwards
of the period of rapid growth), the steepness of slope of the rapid
growth phase, the duration of this early growth and the overall
period of growth and the maximum cover. The obtained clusters
present an interesting finding in that each of the clusters included
both WOR  and SOR as well as GM and conventional, suggesting
that the shape of the crop cover profile varied systematically and
independently of the crop unit (Table 1).
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Table 1
The composition of the five clusters for crop cover (Fig. 2). For each cluster, the total
number of sites is shown first, and then is broken down into winter oilseed rape
(WOR) or spring oilseed rape (SOR) and conventional (C) or GM.

Cluster Total WOR  SOR C GM

1 67 37 30 34 33
2  19 3 16 9 10
3  101 57 44 53 48
4  36 15 21 20 16
5  31 13 18 12 19

Each time series in the dataset is therefore assigned two more
explanatory variables, one for each of the CC and CH clusterings,
that indicate the cluster memberships for a given sample. For exam-
ple, if a sample has values CC4 and CH5 for the CC and CH variables,
this means that this sample belongs to the 2nd cluster of CC and
5th cluster of CH.

4.2. Predictive clustering trees for weed cover

Two different predictive clustering trees were built to cluster the
weed cover profiles (time series). In the first, the input attributes
were crop cover, crop unit (WOR, SOR, C, GM), and the member-
ship in the crop cover and crop height clusters. To increase the
efficiency of the clustering process, and to prevent the tree from
forming many small clusters, each leaf of the PCTs was  required
to contain a minimum number of 32 instances (i.e., time series).
The tree and the cluster prototypes for each leaf are given in
Fig. 4.

The induced tree illustrates higher importance of cover and
height cluster membership as compared to nominal crop units
(i.e., WOR/SOR, GM/conventional) in determining the target
variable—weed cover. The first partition in the tree (Fig. 4) is indeed
between two groups of crop clusters: CC1, CC2 and CC3 in one
group and CC4 and CC5 in the other. CC1, CC2 and CC3 all exhibit
faster initial growth than CC4 and CC5, and weed cover was  much
smaller in CC1, CC2 and CC3 than in CC4 and CC5. Within the
group comprising CC1, CC2 and CC3, the next division was between
SOR and WOR, beyond which further divisions were identified in
terms of crop clusters. The group that comprised CC4 and CC5 was
divided by treatment, conventional or GM,  the weed cover being
smaller for the GM treatment. No influence was seen of the crop
height cluster membership. These finer divisions defined six weed
time series clusters of which the medoids are shown in Fig. 4 in
the boxes to the right (from C1 to C6). In summary, CC cluster
membership was  a stronger determinant of the weed cover time
series than either crop type (WOR, SOR) or herbicide treatment
(conventional, GM).

In the second predictive clustering tree (Fig. 5), agricultural and
soil parameters were used as descriptive variables in addition to
those used in Fig. 4. The crop clusters representing slow growing
crops (i.e., not CC1, CC2 or CC3) and then the crop unit again dis-
tinguished two  weed clusters (C6 and C7) which were similar in
composition to the corresponding ones (C5, C6) in Fig. 4. Therefore,
crop cover cluster membership still had a greater influence on the
initial division than any of the other variables. For the time profiles
representing the fast growing crops (CC1, CC2, CC3), the weed time
series was influenced by several variables including field size, pre-
vious crops (probably indicative of the crop rotation at the site), soil
nitrogen and soil carbon. While we  do not investigate these rela-
tions further in this paper, they are all probably indicative of the
intensity of crop production and field management. The outcome
of this analysis is that all the environmental and agronomic fac-
tors had less influence on the weed time series than the crop cover
cluster membership.
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Fig. 4. A predictive clustering tree for weed cover time series, defining the clusters in terms of crop type, crop unit and crop cover/height cluster membership. The average
intra-cluster variance (ICV) for this tree is 21.02. On the graphs for each of the clusters (C1 through C6) the x-axis denotes the days since sowing (ranging from 0 to 350) and
the  y-axis is percentage weed cover (ranging from 0 to 100).

Fig. 5. A predictive clustering tree for weed cover time series, defining the clusters in terms of crop type, crop unit, crop cover/height cluster membership, and agricultural
and  soil parameters as descriptive variables. The average intra-cluster variance (ICV) for this tree is 19.91. On the graphs for each of the clusters (C1 through C7), the x-axis
denotes the days since sowing (ranging from 0 to 350) and the y-axis the percentage weed cover (ranging from 0 to 100). Abbreviations for previous crops: L, linseed; SA, set
aside;  P, peas; SB, spring barley; SW,  spring wheat; W,  wheat undefined; WB,  winter barley; WR,  winter rape; WW,  winter wheat.

5. Discussion

The results presented above offer new insights into and knowl-
edge about the coupling between the two types of vegetation
considered – crop cover and weed cover – during their growing
seasons. The clustering of the time profiles exhibited by the first
variable, crop cover, had not been previously suspected and was
mostly independent of whether the crop was winter or spring
oilseed rape. The analysis revealed distinct shapes in the profiles
(time series) of percentage crop cover, characterized combinations
of morphological variables such as rate of increase, lag and maxi-
mum.

Of the five crops clusters defined by percentage crop cover
(Fig. 2, Table 1) CC2, containing only 19 time series, is the one cluster
that contained mostly one type of crop, SOR. The cluster incorpo-
rates those SOR crops that grew rapidly, reaching mostly 60–80%
cover after 50–60 days, after which cover did not systematically
change. The three WOR  crops in this cluster grew, in effect, untypi-
cally for a winter crop but in a similar way to the SOR in this cluster,
nearing their maximum cover before the winter and then changing
little during the next year’s potential growing period.

Two of the crop cover clusters, CC4 and CC5, were characterised
by both slower growth and low maximum cover than the others.
They differ mainly in the maximum cover, 40–60% in CC5 compared
to 60–80% in CC4. Both are indicative of crops that were not suc-
cessful or ‘failed’ in agronomic terms, whether SOR or WOR. Highly
productive, dense stands of oilseed rape were included in CC1 and
CC3. These two clusters expanded more slowly than CC2, but faster
than CC4 and CC5. Both reached 80–100% crop cover, but CC3 did
so earlier in the season.

The crop cover profile membership in one of the above clusters
was then a strong predictor of the shape of the weed cover profile
(time series). Take, for example, the two crop clusters CC4 and CC5
(Fig. 2) representing crops of slow expansion and low final cover;

The associated weed cover time series in Fig. 4 (i.e. C5 and C6) both
had a similar shape characterized by a long lag with low weed cover,
followed by a substantial rise in weed cover later in the growing
season. A likely explanation for this profile is that herbicide man-
agement controlled the weeds initially, but because the crops did
not attain high cover (not because they were suppressed by weeds
but for some other reason) later germinating weed cohorts were
able to exploit the space and themselves reached high cover.

The second partition in this part of the tree in Fig. 4 refers to
herbicide treatment. It shows the effect of GMHT management
reducing weed cover below that achieved in conventional manage-
ment. This partition is due to the main effect of the GMHT treatment
found in the original comparison of treatments in spring oilseed
rape (Heard et al., 2003).

The other crop clusters (CC1, CC2 and CC3) containing crops that
would be considered successful, were associated with much lower
weed cover in the left hand side partition of Fig. 4. This implies
suppression of weeds by those crops. At this second partition, the
season of sowing, and therefore the potential duration of weed
growth, had an influence: it was  associated with much shorter
weed time profiles for spring than winter crops.

6. Conclusions

This paper describes a successful application of predictive clus-
tering trees in the analysis of time series in a large, complex
ecological data set. The questions addressed were (1) whether the
substantial variation that existed within a large set of time series
for one biological variable (crop cover) could be reduced by finding
groups, or clusters, each of which comprised time series of a gener-
ally similar shape; and (2) whether the clusters were a predictor of
the time series of a second biological variable (weed cover). Three
methods were combined to address the question: Dynamic Time
Warping to define the distance between two time series; the k-
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medoids algorithm to partition the time series into clusters with
minimal within-cluster variance; and predictive clustering trees
to relate a target variable, in this case the second time series, to
independent variables (input attributes), including membership in
the clusters defined for the first time series. To the best of the
knowledge of the authors, such an approach has never been used
to analyze time series in environmental or agricultural data.

The study raises questions as to what determines the different
crop time series, the associated weed time series and the conditions
under which the two can coexist. The clusters were formed largely
independently of whether the crop was spring or winter oilseed
rape and genetically modified or conventional. The findings divert
attention from crop type and weed management treatment as the
main determinants of crop yield and the ecological role of weeds
to more pervasive factors, such as the local combination of site,
weather and field management. If these factors were understood, it
may  be possible to manipulate them to satisfy multiple objectives
of (achieve multiple outputs from) agroecosystems or to counter
any negative effects of a new technology (e.g., May et al., 2005).

This successful application of machine learning provides
encouragement for the further development, and especially the
application, of the methodology used here to ecological modelling
in general. The results have confirmed that the applied method
is robust with respect to the complexity of the data, which had
missing values, time series with measurements at different time
intervals, time series with different length and both numeric and
discrete attributes in some of the associated agronomic and envi-
ronmental variables. In addition, the sampling sites were widely
spread across the territory of the UK and different personnel were
involved in data collection for the different regions. Many environ-
mental time series datasets are similar to the one analyzed here
and our methodology may  be used to analyze them.
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