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a b s t r a c t

Habitat suitability modelling studies the influence of abiotic factors on the abundance or diversity of a
given taxonomic group of organisms. In this work, we investigate the effect of the environmental condi-
tions of Lake Prespa (Republic of Macedonia) on diatom communities. The data contain measurements
of physical and chemical properties of the environment as well as the relative abundances of 116 diatom
taxa. In addition, we create a separate dataset that contains information only about the top 10 most
abundant diatoms. We use two machine learning techniques to model the data: regression trees and
multi-target regression trees. We learn a regression tree for each taxon separately (from the top 10 most
abitat modelling
ulti-target modelling

egression trees
ake Prespa

abundant) to identify the environmental conditions that influence the abundance of the given diatom
taxon. We learn two multi-target regression trees: one for modelling the complete community and the
other for the top 10 most abundant diatoms. The multi-target regression trees approach is able to detect
the conditions that affect the structure of a diatom community (as compared to other approaches that can
model only a single target variable). We interpret and compare the obtained models. The models present
knowledge about the influence of metallic ions and nutrients on the structure of the diatom community,

but f
which is consistent with,

. Introduction

Ecology is frequently defined as the study of the distribu-
ions and abundances of organisms across space and time and
heir interactions with the environment (Begon et al., 2006).
abitat modelling focuses on the spatial aspects of the dis-

ribution and abundance of plants and animals. It studies the
elationships between some environmental variables and the pres-
nce/abundance of plants and animals. This is typically done under
he implicit assumption that both are observed at a single point in
ime for a given spatial unit.

The input to a habitat model (Džeroski, 2001, 2009) is a set of
nvironmental characteristics for a given spatial unit of analysis.
hese environmental characteristics (i.e., environmental variables)
ay be of three different types. The first type concerns abiotic prop-
rties of the environment, e.g., physical and chemical characteristic
hereof. The second type concerns some biological aspects of the
nvironment, which may be considered as an external impact on
he group of organisms under study. Finally, the variables of the
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third type are related to human activities and their impacts on the
environment. The output of a habitat model is a target property of
the given (taxonomic) group of organisms. Note that the type of
environmental variables, as well as the size of the spatial unit, can
vary considerably, depending on the context, and so can the target
property of the population (even though to a lesser extent). If we
take the abundance or density of the population as indicators of the
suitability of the environment for the group of organisms studied,
we talk about habitat suitability models: the output of these mod-
els can be interpreted as a degree of suitability. The abundance of
the population can be measured in terms of the number of indi-
viduals or their total size (e.g., the dry biomass of a certain species
of algae). If the (taxonomic) group is large enough, we can also
consider the diversity of the group (e.g., Shannon index, species
richness).

In the most general case of habitat modelling, we are interested
in the relation between the environmental variables and the struc-
ture of the population at the spatial unit of analysis (absolute and
relative abundances of the organisms in the group studied). One
approach to this is to build habitat models for each of the organisms
(or lower taxonomic units) in the group, then aggregate the out-

puts of these models to determine the structure of the population.
An alternative approach is to build a model that simultaneously
predicts the presence/abundance of all organisms in the group.

In this work, we explore the two afore mentioned possibili-
ties for habitat modelling of the diatom community in Lake Prespa

http://www.sciencedirect.com/science/journal/03043800
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Republic of Macedonia). To learn a model for each diatom taxon
eparately, we employ regression trees (Breiman et al., 1984). To
uild a model for the entire diatom community, we use multi-target
egression trees (Blockeel et al., 1998; Struyf and Džeroski, 2006).
he main advantages of the latter approach are: (1) the multi-
arget model is smaller and faster to learn than learning models
or each organism separately and (2) the dependencies between
he organisms are explicated and explained.

The data that we use were collected during the EU funded
roject TRABOREMA (FP6-INCO-CT-2004-509177). They describe
he diatom abundance in Lake Prespa. The measurements comprise
everal important parameters that reflect the physical, chemical
nd biological aspects of the water quality of the lake. These include
easurements of the relative abundance of algal taxa belonging to

he group Bacillariophyta (diatoms). The focus of this paper is the
nvestigation of the relationship between their relative abundance
nd the abiotic characteristics of the environment (Lake Prespa).

Diatoms have narrow tolerance ranges for many environmental
ariables and respond rapidly to environmental change. This makes
hem ideal bio-indicators (Reid et al., 1995; Round, 1991). They
re sensitive to changes in nutrient concentrations, supply rates
nd silica/phosphate ratios; they respond rapidly to eutrophica-
ion. Each taxon has a specific optimum and tolerance for nutrients
uch as phosphorus and nitrogen. Diatoms are widely used as bio-
ndicators in Europe (Krstić, 1995; Krstić et al., 1998; Krstić et al.,
007; Kelly et al., 1998; Prygiel and Coste, 1999), North America
Stevenson and Pan, 1999; Lowe and Pan, 1996), South America
Lobo et al., 1998; Loez and Topalian, 1999) and Australia (John,
998; Chessman et al., 1999). The geographical location of the
iatoms is not the limiting factor in the distribution of diatom
axa and the composition of communities; rather, the specific envi-
onmental variables prevailing at a particular location (Gold et al.,
002) are the limiting factors.

The remainder of this paper is organized as follows. In Sec-
ion 2, we describe the machine learning methodology that was
sed (regression trees and multi-target regression trees). Section
describes the data and Section 4 explains the experimental

esign that was employed to analyze the data at hand. Section 5
resents the obtained models and discusses them, while Section 6
oncludes.

. Machine learning for habitat modelling

.1. Machine learning basics

The input to a machine learning algorithm is most commonly
single table of data comprising a number of fields (columns) and

ecords (rows) (Džeroski, 2001, 2009). In general, each row rep-
esents an object and each column represents a property (of the
bject). In machine learning terminology, rows are called exam-
les and columns are called attributes (or sometimes features).
ttributes that have numeric (real) values are called continuous
ttributes. Attributes that have nominal values are called discrete
ttributes.

The tasks of classification and regression are the two most com-
only addressed tasks in machine learning. They are concerned
ith predicting the value of one field from the values of other
elds. The target field is called the target attribute or class (depen-
ent variable in statistical terminology). The other fields are called
escriptive attributes or just attributes (independent variables in
tatistical terminology). If the class is continuous, the task at hand

s called regression. If the class is discrete (it has a finite set of nom-
nal values), the task at hand is called classification. In both cases, a
et of data (dataset) is taken as input, and a predictive model is gen-
rated. This model can then be used to predict values of the class
or new data.
lling 221 (2010) 330–337 331

To estimate the performance of the model on unseen data, sev-
eral approaches can be used (Kohavi, 1995). One approach consists
of dividing the data in two parts (typically 2/3 and 1/3): train-
ing set (the bigger part) and testing set (smaller part). The most
commonly used approach is cross-validation. The division into a
training/testing set is recommended in the case of datasets that
contain many records (thousands); cross-validation is a better
choice otherwise.

2.2. A machine learning formulation of the habitat modelling task

In the case of habitat modelling, examples correspond to spatial
units of analysis. The attributes correspond to environmental vari-
ables describing the spatial units, as these are the inputs to a habitat
model. The class is a target property of the given (taxonomic) group
of organisms, such as presence, abundance or diversity.

The machine learning task of habitat modelling (Džeroski, 2009)
is thus defined as follows. Given is a set of data with rows
corresponding to spatial locations (units of analysis), attributes
corresponding to environmental variables, and the class corre-
sponding to a target property of the population studied. The goal is
to learn a predictive model that predicts the target property from
the environmental variables (from the given dataset). If we are only
looking at presence/absence or suitable/unsuitable as values of the
class (as is the case above), we have a classification problem. If
we are looking at the degree of suitability (density/abundance), we
have a regression problem.

2.3. Regression trees

Regression trees are decision trees that are capable of predicting
the value of a numeric target variable (Breiman et al., 1984). They
are hierarchical structures, where the internal nodes contain tests
on the input attributes. Each branch of an internal test corresponds
to an outcome of the test, and the predictions for the values of
the target attribute are stored in the leaves. Regression tree leaves
contain constant values as predictions for the target variable (they
represent piece-wise constant functions).

To obtain the prediction of a regression tree for a new data
record, the record is sorted down the tree, starting from the root
(the top-most node of the tree). For each internal node that is
encountered on the path, the test that is stored in the node is
applied, and depending on the outcome of the test, the path contin-
ues along the corresponding branch (to the corresponding subtree).
The procedure is repeated until we end up in a leaf. The resulting
prediction of the tree is taken from this leaf.

The tests in the internal nodes can have more than two out-
comes (this is usually the case when the test is on a discrete-valued
attribute, where a separate branch/subtree is created for each
value). Typically, each test has two outcomes: the test has suc-
ceeded or the test has failed. The trees in this case are called binary
trees.

2.4. Multi-target regression trees

Multi-target regression trees are an instantiation of predictive
clustering trees (PCTs) (Blockeel et al., 1998), where a tree is viewed
as a hierarchy of clusters. The top-node of a PCT corresponds to a
cluster that contains all the data. This cluster is then recursively
partitioned into smaller clusters while moving down the tree. The
leaves represent the clusters at the lowest level of the hierarchy

and each leaf is labelled with its prototype.

Multi-target regression trees (Blockeel et al., 1998; Struyf and
Džeroski, 2006) are a generalization of regression trees, because
they can predict the values of several numeric target attributes
simultaneously. Instead of storing a single numeric value, the leaves
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soil contamination from uncontrolled use of pesticides, lake silta-
tion and uncontrolled urban development. Monitoring of the state
of Lake Prespa is necessary to prevent major catastrophes in the
Prespa ecosystem (Krstić, 2006).

Table 1
Basic statistics of the data on physico-chemical water properties obtained from the
measurements: minimal value, maximal value, mean value and standard deviation.

Minimum Maximum Mean value Standard
deviation

Temperature (◦C) 2.90 26.80 15.56 6.61
Saturated O2 (mg/dm3) 6.60 114.19 83.07 19.54
Secchi Depth (m) 1.80 5.40 3.09 0.76
Conductivity (�S/cm) 142.50 318.00 196.23 27.84
pH 5.50 9.27 8.17 0.647
NO2 (mg/dm3) 0.00 0.44 0.03 0.05
NO3 (mg/dm3) 0.00 13.40 2.07 2.13
NH4 (mg/dm3) 0.01 1.07 0.29 0.18
Total N (mg/dm3) 0.32 9.21 2.53 1.28
Organic N (mg/dm3) 0.02 8.41 1.83 1.10
SO4 (mg/dm3) 2.68 266.10 29.47 22.98
Total P (�g/dm3) 1.15 83.13 18.63 15.31
Na (mg/dm3) 0.75 13.15 4.36 2.10
Fig. 1. Position of Lake Prespa (le

f a multi-target regression tree store a vector. Each component of
his vector is a prediction for one of the target attributes. Examples
f multi-target regression trees can be found in Sections 5 and 6.

A multi-target regression tree (of which a regression tree is a
pecial case) is usually constructed by a recursive partitioning algo-
ithm from a training set of records. The algorithm is known as
op-down induction of decision trees (TDIDT). The records include

easured values of the descriptive and the target attributes. The
ests in the internal nodes of the tree refer to the descriptive, while
he predicted values in the leaves refer to the target attributes.

The TDIDT algorithm starts by selecting a test for the root node.
ased on this test, the training set is partitioned into subsets accord-

ng to the test outcome. In the case of binary trees, the training set
s split into two subsets: one containing the records for which the
est succeeds (typically the left subtree) and the other contains the
ecords for which the test fails (typically the right subtree). This
rocedure is recursively repeated to construct the subtrees.

The partitioning process stops if a stopping criterion is satisfied
e.g., the number of records in the induced subsets is smaller than
ome predefined value; the depth/size of the tree exceeds some
redefined value, etc.). In that case, the prediction vector is calcu-

ated and stored in a leaf. The components of the prediction vector
re the mean values of the target attributes calculated over the
ecords that are sorted into the leaf.

One of the most important steps in the tree induction algorithm
s the test selection procedure. For each node, a test is selected by
sing a heuristic function computed on the training data. The goal
f the heuristic is to guide the algorithm towards small trees with
ood predictive performance. The multi-target regression trees are
mplemented in the system CLUS (Blockeel and Struyf, 2002) avail-
ble at http://www.cs.kuleuven.be/∼dtai/clus/. The heuristic used
n this algorithm for selecting the attribute tests in the internal
odes is intra-cluster variation summed over the subsets induced
y the test. Intra-cluster variation is defined as

∑T

t=1
Var[yt]
ith N the number of examples in the cluster, T the number of
arget variables, and Var[yt] the variance of target variable yt in the
luster. Lower intra-subset variance results in predictions that are
ore accurate. The variance function is standardized so that the
d the sampling locations (right).

relative contribution of the different targets to the heuristic score
is equal.

3. Data description

Lake Prespa is located at the border intersection of Macedo-
nia, Albania and Greece (see Fig. 1). It covers an area of 301 km2

at 850 m above sea level. The whole region that surrounds the
lake was recently proclaimed a transboundary park (Prespa Park).
The Prespa Park is well known for its great biodiversity, natural
beauty and populations of rare water birds. However, the ecological
integrity of the region is threatened by the increasing exploitation
of the natural resources (inappropriate water management, forest
destruction leading to erosion, overgrazing), inappropriate land-
use practices, ecologically unsound irrigation practices, water and
K (mg/dm3) 0.23 4.80 1.50 0.66
Mg (�g/dm3) 1.11 19.45 5.70 2.84
Cu (�g/dm3) 1.04 23.30 3.97 2.79
Mn (�g/dm3) 0.88 230.00 7.88 16.79
Zn (�g/dm3) 0.27 22.70 5.23 4.42

http://www.cs.kuleuven.be/~dtai/clus/
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Table 2
Performance of the regression trees (RT) for predicting the abundance of the top 10
most abundant diatoms on training data and on unseen data (estimated by 10-fold
cross-validation).

F-value CC RMSE Size

Train Xval Train Xval

Amphora pediculus (APED) 0.001 0.48 0.18 2.47 2.91 7
Cyclotella juriljii nom. nud. (CJUR) 0.050 0.69 0.12 5.34 8.09 17
Cyclotella ocellata (COCE) 0.001 0.68 0.35 15.70 21.18 21
Cocconeis placentula (CPLA) 0.050 0.78 −0.04 3.14 6.74 21
Cavinula scutelloides (CSCU) 0.001 0.47 0.22 7.75 8.98 9
Diploneis mauleri (DMAU) 0.001 0.42 0.23 2.42 2.69 5
Navicula prespanense (NPRE) 0.001 0.64 0.37 2.17 2.73 11
Navicula rotunda (NROT) 0.001 0.44 0.18 3.15 3.63 13

each diatom, we can note that for some cases (e.g., Navicula subro-
tundata – NSROT and Staurosirella pinnata – STPNN) the single trees
have equal or even slightly better predictive performance than the
ensembles.

Table 3
Performance of the multi-target regression tree (MTRT) for predicting the abun-
dance of the top 10 most abundant diatoms on training data and on unseen data
(estimated by 10-fold cross-validation).

F-value CC RMSE Size

Train Xval Train Xval

Amphora pediculus (APED)

0.01

0.36 0.18 2.63 2.82

13

Cyclotella juriljii nom. nud. (CJUR) 0.42 0.26 6.73 7.20
Cyclotella ocellata (COCE) 0.53 0.34 18.23 20.43
Cocconeis placentula (CPLA) 0.62 0.04 3.95 5.17
Cavinula scutelloides (CSCU) 0.45 0.27 7.83 8.66
Diploneis mauleri (DMAU) 0.40 0.15 2.44 2.73
D. Kocev et al. / Ecological

Monitoring of the state of Lake Prespa was performed during
he EU project TRABOREMA. The measurements cover a one and

half year period (from March 2005 to September 2006). Sam-
les for analysis were taken from the surface water of the lake
t 14 locations. The lake sampling locations are distributed in the
hree countries (see Fig. 1) as follows: eight in Macedonia, three in
lbania and three in Greece. The selected sampling locations are
epresentative for determining the eutrophication impact (Krstić,
005).

Through the lake measurements, a total of 218 water samples
ere collected. On these water samples, both physico-chemical and

iological analyses were performed. The physico-chemical proper-
ies of the samples provided the environmental variables for the
abitat models, while the biological samples provided information
n the relative abundance of the studied diatoms. The following
hysico-chemical properties of the water samples were measured:
emperature, dissolved oxygen, Secchi depth, conductivity, alkalin-
ty (pH), nitrogen compounds (NO2, NO3, NH4, inorganic nitrogen),
ulphur oxide ions SO4, and sodium (Na), potassium (K), magne-
ium (Mg), copper (Cu), manganese (Mn) and zinc (Zn). The basic
tatistics for these variables are given in Table 1.

The biological variables were the relative abundances of 116
ifferent diatom taxa (for a complete list of diatom names and
cronyms see Table A1 in the Appendix). Diatom cells were col-
ected with a planktonic net or as attached growth on submerged
bjects (plants, rocks or sand and mud). This is the usual approach
n studies for environmental monitoring and screening of diatom
bundance. The sample, afterwards, is preserved and the cell con-
ent is cleaned. The sample is examined with a microscope, and the
iatom taxa and abundance in the samples are obtained by count-

ng 200 cells per sample. The specific taxon abundance is then given
s the percent of the total diatom count per sampling site (Levkov
t al., 2006).

. Machine learning experiments and results

.1. Methodology for constructing models

In this section, we describe the experimental setup used to con-
truct models of the diatom community from the data at hand.
he problem we are considering here is the modelling of multi-
le target variables (responses). As mentioned in Section 1, one
pproach is to learn a separate model for each target (i.e., diatom
axon) and another one is to learn a single model for all targets (i.e.,
he complete diatom community).

We analyze the data according to three scenarios: (1) learning
multi-target regression tree for all 116 diatoms (complete com-
unity), (2) learning a multi-target regression tree for the top 10
ost abundant diatoms and (3) learning regression trees for each

iatom separately.
To prevent over-fitting of the models to the training data, we

mployed ‘F-test pruning’. This pruning method applies the statis-
ical F-test (Lomax, 2007) to check whether a given split reduces
he variance significantly at a given significance level. The signifi-
ance level is a user defined parameter: We employ internal 10-fold
ross-validation to select an optimal value for this parameter from
he following set of values: 0.001, 0.005, 0.01, 0.05, 0.1, 0.125, 0.25,
.5, 0.75, 1.0. In addition, to obtain even smaller trees, we set a con-
traint that does not allow the trees to grow more than four levels
n depth.
.2. Predictive power of the models

For each of the learned models, we estimate its predictive per-
ormance on both the training data and on unseen data (by 10-fold
ross-validation). We use two metrics to evaluate the performance:
Navicula subrotundata (NSROT) 0.005 0.65 0.04 3.53 5.26 17
Staurosirella pinnata (STPNN) 0.010 0.69 0.08 2.17 3.49 25

CC: correlation coefficient; RMSE: root mean squared error.

correlation coefficient and root mean squared error (RMSE). In addi-
tion, we inspect the selected models in detail and interpret the
knowledge contained therein and compare it to existing knowledge
held by a domain expert in the area (S. Krstić).

The performance figures for the models learned for the 10 most
abundant diatoms are listed in Tables 2 and 3. Each of these tables
presents the selected significance level for the F-test pruning, the
performance (correlation coefficient and RMSE) and the size (total
number of nodes, including leaves and internal nodes) of the pro-
duced tree. Table 2 presents the performance of the regression trees
and Table 3 of the multi-target regression tree.

A quick inspection of the results shows that the prediction prob-
lem is very difficult: even on the training data, the performance
is low. In order to investigate how much we can improve the
predictive performance, we employed ensembles (bagging and ran-
dom forests) of both regression trees (Breiman, 1996, 2001) and
multi-target regression trees (Kocev et al., 2007). It is well known
that ensemble methods perform better than individual trees and
are amongst the top performing methods for predictive modelling
(Caruana and Niculescu-Mizil, 2006). The results are presented in
Tables A2 and A3 in the Appendix.

The ensemble models have better predictive performance over-
all. The best correlation coefficient (on unseen data) is 0.54 (bagging
and random forest of regression trees), as compared to 0.37 for
the regression trees (the tree for the Navicula prespanense – NPRE
diatom) and 0.34 for the multi-target regression tree (for Cyclotella
ocellata – COCE diatom). However, if we inspect the performance of
Navicula prespanense (NPRE) 0.44 0.16 2.55 2.88
Navicula rotunda (NROT) 0.41 0.24 3.20 3.44
Navicula subrotundata (NSROT) 0.32 0.17 4.39 4.60
Staurosirella pinnata (STPNN) 0.24 0.15 2.90 2.97

CC: correlation coefficient; RMSE: root mean squared error.



334 D. Kocev et al. / Ecological Modelling 221 (2010) 330–337

icting

t
p
t
t
n
m

r
l
t
–
i
m
r

c
s
u
t
i
r
w
c
t
t
p

Fig. 2. A multi-target regression tree pred

A comparison of the performance of multi-target regression
rees and regression trees shows that multi-target regression trees
erform better than the regression trees on unseen data. But, on
raining data, regression trees have better performance. This means
hat the regression trees tend to over-fit, although the selected sig-
ificance levels for the F-test pruning are quite low (0.001 in the
ajority of cases – 6/10).
We can also compare the regression trees and the multi-target

egression tree by their size (total number of internal nodes and
eaves). The size of the multi-target regression tree is 13, while
he size of the regression trees ranges from 5 (for Diploneis mauleri

DMAU) to 25 (for S. pinnata – STPNN), with the 10 trees hav-
ng a total of 146 nodes. The total size of all single-target trees is

uch larger that the size of the multi-target tree when we learn a
egression tree for each of the 116 diatoms.

In this domain, classical statistical approaches, such as canonical
orrespondence analysis (CCA), detrended correspondence analy-
is (DCA) and principal component analysis (PCA), are most widely
sed as modelling techniques (Stroemer and Smol, 1999). Although
hese techniques provide useful insights in the data, they are lim-
ted in terms of interpretability. On the other hand, multi-target
egression trees offer models that are readily interpreted. Also,

ith these models we are able to identify some environmental

onditions that influence the structure of the diatom communi-
ies. To summarize, the multi-target regression trees are models
hat are easily interpretable, with reasonable size and predictive
erformance.

Fig. 3. A multi-target regression tree predicting the rela
the structure of the diatom community.

5. Models of relative abundance of diatom taxa

We applied the methods described in Section 2, according to the
methodology described in Section 4, to the data at hand. With the
modelling procedure (with the different scenarios and the differ-
ent pruning algorithms) we obtained several models. From these
models we select the ones that have better predictive power and
reasonable size (in most cases, the tree size is 9).

5.1. Models for the diatom community

Fig. 2 shows the tree that describes the complete diatom com-
munity structure relative to given environmental conditions. It
presents nine different diatom communities. The tree has nine
leaves/clusters that correspond to different community structures.
We can note that the most influential factors for the diatom com-
munity are K (potassium) and Mg (magnesium), as well as the
temperature and the oxygen. This model defines the environmen-
tal conditions (concentration of potassium, magnesium, saturated
oxygen, temperature, etc.) under which certain diatom taxa are
dominant over the other taxa.

There are two different types of clusters: clusters where C. ocel-

lata (COCE) is dominant (the ratio of its abundance to the abundance
of the second taxon in the leaf nodes is between 2.4 and 4.5) and
clusters where Cocconeis placentula (CPLA) and Cymbella lanceolata
(CLAN) are dominant over the other taxa. When COCE is dominant,
it is (in most cases) followed by Cavinula scutelloides (CSCU). The

tive abundance of the 10 most abundant diatoms.
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abundance of the diatom Cyclotella ocellata (COCE).
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dance (habitat suitability) for each of the 10 most abundant diatom
taxa separately. We will discuss here the models for C. ocellata
(COCE, Fig. 4), C. scutelloides (CSCU, Fig. 5) and N. prespanense (NPRE,
Fig. 6): The models for the remaining seven of the top 10 diatoms
Fig. 4. A regression tree predicting the relative

chnanthidium minutissimum (AMSS) and Cyclotella juriljii (CJUR)
iatoms can also be dominant under some specific environmen-
al conditions. The dominant diatom taxa C. ocellata (COCE), C.
cuteloides (CSCU) and C. placentula (CPLA) are all known for their
reference towards higher trophic levels (van Dam et al., 1994;
rstić, 2005) and are regarded as precise indicators of high trophic
tatus of the waterbody.

The presented MTRT model of the diatom community structure
aithfully reflects the relation of the dominant diatom taxa to the
utrients and physical conditions in the lake. At the top two lev-
ls of the tree, we find metallic ions (potassium and magnesium):
hese are a crucial part of enzymes that play an important role in the
ife of diatoms. This corresponds to the findings of a previous study
rom Gold et al. (2002): metal pollution (in particular, cadmium
nd zinc) affected and changed the diatom community. The model
lso corresponds to observed diatom flora succession through sea-
ons. The obvious trend of ecological deterioration during summers
the correlation to oxygen content and temperature) is reflected in
he increased abundance of eutrophic diatom taxa for Lake Prespa
Krstić and Levkov, 2007).

Fig. 3 depicts the MTRT for the top 10 (most) abundant diatoms
n the lake samples. Similar to the model for all diatoms, this model

ostly defines clusters where COCE is the dominant taxon (the ratio
ith the abundance of the second ranked taxon in the leaf nodes

s between 1.3 and 3.75). Also, in the majority of these cases (4
ut of 6), the second most abundant taxon in the community is
he C. scuteloides (CSCU) diatom. There is only one cluster where C.
lacentula (CPLA) is dominant.

The model presented in Fig. 3 actually explains more precisely
he relations that dominant diatoms in Lake Prespa have with the
hysico-chemical parameters according to their trophic prefer-
nces. Nitrates, as one of the basic external nutrients for the algae
nd a chemical indicator of higher trophic levels, are the major
actor for increasing the relative abundance of C. ocellata (COCE);
his is yet another piece of evidence of the indicator status of this
articular taxon.

The relation of potassium content with the diatom community
s more complicated to explain: It may be a result of several factors
r their mutual interactions, or even its toxic effects on biota. Thus,
he obtained model deserves further attention and investigations,
.e., more broadly conducted research in line with the ‘ecosystem
pproach’ that will collect a much more comprehensive database
f samples and would consequently yield more precise/accurate
odels.
Note the difference in the most important factors for predict-
ng the structure of the entire community (Fig. 2) versus the top 10
iatom taxa (Fig. 3). For the top 10 diatom taxa, the nutrients (NO3)
re most important. For the structure of the entire community,
owever, metal ions play a key role. While the nutrients (nitro-
en and phosphorus) are components of proteins, metals such as
Fig. 5. A regression tree predicting the relative abundance of the diatom Cavinula
scutelloides (CSCU).

potassium, magnesium and zinc are parts of (co-)enzymes that also
play an important role in cellular processes.

5.2. Models for individual diatoms

We also learned regression trees that predict the relative abun-
Fig. 6. A regression tree predicting the relative abundance of the diatom Navicula
prespanense (NPRE).
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an be found in Figure A1 in the Appendix. Our choice of the three
iatoms to discuss here was motivated as follows: The model for
. prespanense (NPRE) is the most accurate one on unseen data, fol-

owed closely by C. ocellata (COCE), and then with some distance D.
auleri (DMAU) and C. scutelloides (CSCU) (see Table 2). Of the lat-

er two, we chose C. scutelloides (CSCU) as it is the most dominant
axon after C. ocellata (COCE).

The most abundant diatom according to the measured data, C.
cellata (COCE), is mostly influenced by the nitrogen compounds,
he conductivity of the water and the potassium concentration.
ther parameters (e.g., NH4, Cu, Mg, pH, etc., as seen on Fig. 4),

pecify further where the C. ocellata (COCE) diatom is more or
ess abundant. The absence of C. ocellata (COCE) is expected

hen the concentrations of metals (K and Mg) is low, although
here are higher concentrations of nitrogen compounds (NO3
nd NH4).

The temperature and concentration of nitrates (NO3) and
itrites (NO2) are most important for the abundance of the C. scutel-

oides (CSCU) and N. prespanense (NPRE) diatoms (see Figs. 5 and 6).
hese diatoms are most abundant at higher water temperatures
higher than 19.3 ◦C for C. scutelloides – CSCU and 25.1 ◦C for N.
respanense – NPRE). These temperatures are typical for summer
eriods (especially the one for N. prespanense – NPRE). The lowest
bundance of CSCU diatoms is encountered at low temperatures,
itrates concentrations between 2.08 and 6.27 and copper con-
entrations higher than 2.3. The N. prespanense (NPRE) diatoms
re absent (or present in very small numbers) at lower tem-
eratures (lower than 21 ◦C), with low concentration of nitrites
NO2 less than 0.12) and high conductivity of the water (more
han 181). In addition, these models identify the limiting role
f copper for C. scutelloides (CSCU) and of sulphates (SO4) for
. prespanense (NPRE): higher concentrations result in lower
bundance.

. Conclusions

Summary. In this work, we modelled the influence of environ-
ental factors on diatom communities in Lake Prespa. The diatom

ommunities were represented with the relative abundances of the
iatom taxa. We applied regression trees and multi-target regres-
ion trees to the measured data to model how the structure of
iatom communities varies under different environmental condi-
ions.

We first assessed the predictive performance of the obtained
odels, which were then interpreted for content. The interpreta-

ion was done by a domain expert, a biologist who has studied the
iatoms in Lake Prespa and collected and processed the samples (S.
rstić). A comparison of the models was then performed along two
imensions. First, we compare the predictive performance of the
odels both on training data and unseen data. Second, we com-

are the models by their interpretation in terms of structure and
ontent.

Predictive power. The predictive power of the models on unseen
ases is weak (as estimated with 10-fold cross-validation). Since we
uspected that over-fitting might play an important role in this, we
pplied ‘F-test pruning’ to prevent over-fitting. However, despite
his the predictive power remained poor. On the other hand, the
erformance on the training data and thus the explanatory power

s much better; the tests that are in the nodes produce statistically
ignificant reduction in the variance at a given significance level.
To investigate the limits of predictive performance on the data at
and, we also built ensembles of tree-based models. These are well
nown for their predictive power and are top performers, at the
ost of producing models that are not easy to interpret. This yielded
redictive performance that was better than that of a single tree,
lling 221 (2010) 330–337

but still not that high (maximum correlation reached was 0.54).
We can thus conclude that the low predictive performance

achieved is not a consequence of using an inappropriate method-
ology, but rather a consequence of the difficulty of the problem
addressed. The modelling problem at hand is very difficult, because
the lake is a complex ecosystem and the data available was of lim-
ited quantity and quality. In order to obtain models with better
predictive power, more measurements are needed. These mea-
surements should include additional locations, a longer period of
observation and a wider range of measured environmental param-
eters.

Model interpretation. Multi-target regression trees are a special
case of predictive clustering trees, where the tree is viewed as a
hierarchy of clusters. In our study, we focus on the clustering part
(how the models describe the training data). All in all, the multi-
target regression trees are models that offer easy interpretability
and are able to detect the environmental conditions that influence,
modify and shape the diatom community as a whole, rather than
influence individual taxa.

The developed models clearly reflect and improve the hitherto
known ecological preferences of the diatom taxa in Lake Prespa.
The dominant lake diatom flora is composed of taxa indicative
for increased eutrophication levels and their abundance is directly
related to specific physico-chemical parameters. We built models
that relate environmental conditions to the relative abundance of
the 10 most abundant diatom taxa, as well as to the structure of the
entire diatom community.

The models reflect clearly the factors that most influence the
abundance of the dominant taxa and the entire community. Met-
als, nutrients, and temperature are the most important factors for
the formation of the community overall. While the nutrients are of
key importance for the dominant taxa, it is the metals that most
influence the overall community structure.

Conclusion. By using machine learning methods for multi-target
prediction, we have improved our understanding of the influence
of environmental factors on the diatom community in Lake Prespa.
While the learned models do not have strong predictive power,
they provide useful explanations that can be related to and can
improve upon existing ecological knowledge. The difference of rela-
tive importance of environmental factors on the dominant diatoms
and the overall diatom community structure is a nice illustration
of this.

Multi-target regression trees have been used so far to investigate
terrestrial communities, e.g., soil insects (Demšar et al., 2006); to
predict chemical parameters of river water quality from bioindica-
tor data (Blockeel et al., 1999) and to predict the condition/quality
of indigenous vegetation (Kocev et al., 2009). However, to our
knowledge, this is the first use of multi-target regression trees to
study lake ecosystems and to investigate/predict the composition
of aquatic ecosystem communities.

Future work. In the future, we plan to investigate several
research scenarios. One possibility is to take the diatom com-
munity as an indicator of water quality and use the diatom
abundances as descriptive and the environmental properties as
target variables. Another possibility is to represent the diatom
community together with its taxonomic structure. The taxo-
nomic structure of the community could then be predicted
with hierarchical multi-label classification (Vens et al., 2008)
approaches.
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