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ABSTRACT 
 

In this paper, we show the application of Multi-Objective 
Decision Trees (MODTs) and Ensembles of MODTs to 
environmental modelling. MODTs have ability to make 
simultaneous prediction of several target attributes. One 
essential component of ecological studies and planning 
processes is the assessment of quality, condition or status of 
stands of the native vegetation or habitat. Recently, ‘Habitat 
Hectares’ was proposed as an approach for vegetation 
quality assessment. Habitat Hectares method includes 
assessments of the retention of characteristics within a site 
(site condition components) and the nature of the landscape 
surrounding the site (landscape context components). The 
data for this study consists of 16967 ‘homogenous’ sites that 
are described with a total of 40 variables (GIS and remote-
sensed data) that include biophysical and spectral data. The 
data were analyzed using multi-objective regression trees 
(MORTs) and ensembles of MORTs. The results show that 
ensembles have better predictive performance than the 
single MORT or single-objective regression tree (SORTs). 
Ensembles of MORTs and ensembles of SORTs have 
approximately equal performance, but ensembles of MORTs 
are faster to learn. Additionally, we learned predictive 
models (pruned trees) that can be used to better understand 
the resilience of indigenous vegetation and landscapes. 
 
1 INTRODUCTION 
 

Multi-Objective Regression Trees (MORTs) are decision 
trees capable of predicting several target attributes 
simultaneously [1]. The main advantages of this approach 
(over building a separate model for each target attribute) are: 
(1) a multi-objective model is smaller than the total size of 
the individual models for all target attributes, and (2) such a 
multi-objective model explicates dependencies between the 
different target attributes. 
Ensembles of MORTs can be used to lift the predictive 
performance of the MORTs [2]. Ensemble methods 
construct a set of classifiers for a given prediction task and 
classify new data instances by taking a vote over their 
predictions. Ensemble methods improve the predictive 
performance of their base classifier when used in a single 

target setting (learn an ensemble for each target attribute 
separately) [3]. In [2], it is shown that this applies also for 
the multi-target setting (learn one ensemble for all target 
attributes). In addition, the ensembles for multi-target 
predictions should be preferred because they are faster to 
learn.  
In this paper, we apply MORTs and ensembles of MORTs 
on environmental modelling dataset – modelling of remnant 
indigenous vegetation. 
Governments and other agencies (within Australia) are 
required to demonstrate their compliance with the policies 
and legislation that are related to remnant indigenous 
vegetation [4]. These policies may extend the requisite 
knowledge base and representation of vegetation beyond just 
‘extent’ and ‘type’, to incorporate the notion of ‘condition’ 
or ‘quality’. Concepts of vegetation condition are typically 
idiosyncratic and/or context-specific.  Recent attempts have 
been made to clarify these concepts, and develop general 
and widely applicable metrics and indices for assessing 
vegetation condition. Recently the habitat hectares approach, 
a rapid assessment technique, was proposed [5]. The 
‘vegetation quality’ in the ‘habitat hectares’ approach is 
defined as the degree to which the current vegetation differs 
from a ‘benchmark’ that represents the average 
characteristics of a mature and long-undisturbed stand of the 
same plant community. Therefore dissimilar community 
assemblages such as rainforests and savannah can be 
compared by employing the same general index. The overall 
‘habitat hectares’ index comprises 10 components. Seven of 
these are related to site characteristics (including structural, 
compositional and other ecological features). The remaining 
three components are related to the landscape characteristics 
(patch size, neighborhood and distance to core area).  
Employing the ‘habitat hectares’ approach, 16967 
‘homogenous’ sites within the study area were sampled. 
Each sampling point was described with a total of 40 
variables (GIS and remote-sensed data) that include 
biophysical and spectral data.  
For building predictive models from the data (the 
descriptions and ‘habitat hectares’ scores for the sampling 
sites) we used, both MORTs and ensembles of MORTs. 
MORTs were used in order to obtain models that can 



explain the problem at hand, while ensembles of MORTs to 
obtain models that have better predictive performance. 
The development of predictive models of condition will 
contribute towards an understanding of the resilience of 
indigenous vegetation types and landscapes and the relative 
importance of biophysical and landscape attributes that 
influence observed condition states.  In addition, spatially 
explicit models of condition, could when used in 
conjunction with other data, inform natural resource 
investment decisions, statutory protection and reserve 
design, while providing a basis for new forms of 
environmental accounting.    
 
2 METHODOLOGY 
 
2.1 Multi-Objective Regression Trees 
 

Multi-Objective Regression Trees (MORTs) [1] are 
regression trees that can predict several numeric target 
variables at once (Figure 1 depicts a MORT). MORTs are a 
special instantiation of predictive clustering trees (PCTs) 
[6]. In the PCTs framework, the tree is viewed as a hierarchy 
of clusters: the top-node corresponds to one cluster 
containing all data, which is recursively partitioned into 
smaller clusters while moving down the tree. MORTs are 
constructed with a standard top-down induction algorithm. 
This algorithm uses heuristic that minimizes the intra-cluster 
variation to select an attribute test in the internal nodes. The 
heuristic score is calculated as sum over the subsets that are 
induces by the test. Minimization of the intra-cluster 
variation results in homogeneous leaves, which in turn 
results in accurate predictions. The predicted vector (that 
contains predictions for each target attribute) is the vector 
mean of the target vectors of the training examples 
belonging to it. More detailed explanations for MORTs can 
be found in [1,6]. 
 
2.2 Ensemble Methods 
 

Ensemble methods are learning algorithms that construct a 
set of classifiers (called ensembles) [7]. Each new data 
instance is classified by combining the prediction of each 
classifier from the ensemble. For regression tasks, the 
predictions can be combined using average, while for 
classification tasks using majority vote. Also, more complex 
combinations of the predictions can be used [8,9]. 
A condition for an ensemble to be more accurate than any of 
its individual members is that the individual classifiers are 
accurate and diverse [10]. An accurate classifier is one that 
does better than random guessing on new examples. Two 
classifiers are diverse if they make different errors on new 
examples. The diversity can be introduced in several ways: 
by manipulating the training set (changing the weight of 
examples [3,11] or changing the weight of attributes[12,13]) 
or by manipulating the learning algorithm itself [11]. 
Bagging [3] is an ensemble method that constructs the 
different classifiers by making bootstrap replicates of the 
training set that are used to construct individual classifiers. 
Each bootstrap sample is obtained by randomly sampling 

training instances, with replacement, from the original 
training set. The bootstrap sample and the training set have 
an equal number of instances. Bagging can give substantial 
gains in predictive performance, when applied to an unstable 
learner (i.e., a learner for which small changes in the training 
set result in large changes in the predictions), such as 
classification and regression tree learners [3]. 
Random Forest [11] is an ensemble method for trees, 
where the diversity among the individual classifiers is 
obtained from two sources: (1) by using bagging and (2) 
changing the feature set during learning. At each node in the 
decision tree, a random subset of the input features is taken 
and the best split is selected from this subset. The size of the 
random subset is given by a function f of the number of 
descriptive attributes x (e.g. ⎣ ⎦,1log)(,)(,1)( 2 +=== xxfxxfxf  

2
)( xxf =

…). If xxf =)( , then random forests are equal to 

bagging. 
The diversity between the individual classifiers, when using 
Random Subspaces [12] method, is obtained with random 
sampling of the feature space (each individual classifier is 
learned over randomly chosen feature subspace). The 
number of retained features is given by the function f of the 
number of descriptive attributes x as given above. 
Recently, combination of Bagging and Random Subspaces 
(SubBag algorithm) was proposed [13]. This method takes 
bootstrap replicates of the training set and randomly selects 
feature subspaces. The difference between this approach and 
random forests is that here feature subspace is used to learn 
the whole model (while in Random Forests feature subset is 
selected at each node). In addition, this method can use 
variety of learning algorithms as individual classifiers, and 
Random Forests can be constructed only with trees. 
The ensemble methods for multi-objective regression trees 
are obtained using MORT as a individual classifier. More 
detailed description can be found in [2].  
 
3 DATA DESCRIPTION 
 

The dataset contains 16967 samples. Each sample is 
described with a total of 40 independent variables (GIS and 
remote-sensed data) and 7 dependant variables (the ‘habitat 
hectares’ score). The ‘habitat hectares’ score was 
represented with the following components: Large Trees, 
Tree (canopy) cover, Understorey (non-tree) strata, Lack of 
weeds, Recruitment, Organic litter and Logs. Each score was 
calculated comparing the current status of the vegetation 
with the benchmark (average characteristics of a mature and 
long-undisturbed stand of the same vegetation community).  
The large tree score represents the number of large trees 
(both living and dead) that are present at the measuring site. 
Tree canopy score assesses the projective foliage cover of 
canopy trees in the stand, while the understorey score 
assesses the abundance of various shrubs and forb/herb 
strata of a community. The understorey assessment includes 
only indigenous plant species. The lack of (indigenous) 
weeds score is calculated from the coverage of non-
indigenous and native weed plant species. The recruitment 



score gives the potential for the recruitment of plant species 
(that is essential part of the long-term site viability). Litter 
represents both fine and coarse plant debris less than 10 cm 
diameter, while logs represent the fallen timber or branches 
of trees that are substantially detached from the parent tree. 
More detailed description of the ‘habitat hectares’ scores can 
be found in [5]. 
 
4 EXPERIMENT SETUP 
 

Two sets of experiments were performed. With the first set 
of experiments we opted for interpretability of the models, 
so we learned highly pruned MORT (for prediction of all 
target variables simultaneously) and regression trees (for 
prediction of each target attribute separately). The pruning 
was controlled with setting the parameter minimum 
instances in a leaf to 2048. The second set of experiments 
consists of un-pruned MORTs, ensembles of MORTs, 
regression trees and ensembles of regression trees. With this 
experimental setting the goal was to obtain models that are 
as accurate as possible, so later on can be used for drawing 
maps of the quality of remnant indigenous vegetation. 
For combination of the predictions output (voting scheme) 
of the base classifiers from the ensemble, average was used. 
The ensembles consisted of 100 un-pruned trees. For 
building Random Forests, Random Subspaces and SubBag 
the parameter was set to ⎦)(xf ⎣ 1log)( 2 += xxf  as suggested in 
[11]. 
The obtained models were validated using 10-fold cross-
validation. For assessing the predictive performance of the 
obtained models we report the correlation coefficient and 

root mean squared error (RMSE) in the next section. 
 
5 RESULTS AND DISCUSSION 
 

Table 1 shows the predictive performance of the pruned 
models. From these results we can note that the MORT has 
comparable performance with the regression trees for each 
target attribute. Note that, MORT is smaller than all models 
together and is faster to learn. The size (sum of internal 
nodes and leafs) of obtained MORT was 11, while the size 
of each SORT was 11(except the SORT for LargeTreeScore 
that had size 13). 
 
Table 1: Correlation coefficient and RMSE (MORT – Multi-
Objective Regression Tree, SORT – Single-Objective 
Regression Tree) 
 

Correlation RMSE Target 
MORT SORT MORT SORT 

LargeTreeScore  0.502 0.520 2.905 2.871 
TreeCanopyScore 0.671 0.677 1.665 1.652 
UnderstoreyScore 0.702 0.707 5.103 5.064 
LitterScore  0.715 0.699 1.428 1.461 
LogsScore  0.698 0.712 1.491 1.461 
WeedsScore  0.784 0.789 3.811 3.773 
RecruitmentScore 0.607 0.614 2.592 2.574 

 
Figure 1 depicts the pruned MORT. The predictions for the 
target attributes are the vectors at each leaf. The ordering of 
the target attributes in the vector of predictions is given in 
Table 1.

 

 
Figure 1: Pruned MORT 

 
Tables 2 and 3 show the correlation coefficients and RMSEs 
of the obtained models. The ensemble methods show better 
predictive performance than the MORT and SORTs. All 
ensemble methods have comparable predictive performance, 
but Random Forests are fastest to learn. Additionally, 
Random Forests of Multi-Objective Regression Trees are 
faster to learn, compared to the time needed for learning 
ensemble for each target attribute separately. 
 
6 CONCLUSIONS 
 

Traditionally most people have thought of native vegetation 
in terms of extent and type, with relatively few considering 

its condition or quality. However, the new Government 
policies (in Australia) increasingly require environmental 
managers to also consider native vegetation condition. As a 
result of these policies new ways of measuring the condition 
of native vegetation have been developed (e.g. Habitat 
Hectares). These metrics provide simple methods to obtain a 
score for a site, and to enable comparisons of condition 
between locations in different vegetation communities. 
While this point-based data provides a useful tool for land 
managers, maps of the condition of native vegetation are an 
obvious extension to assist identifying the priority areas for 
restoration and conservation activities. With the modeling 



approach it is possible to extrapolate point-based native 
vegetation condition data into a map of remnant native 
vegetation condition.  
Different modeling techniques were used, and their 
performances were compared. In terms of predictive 
performances, the ensembles produced approximately equal 

results. But, Random Forests with multi-objective regression 
trees should be preferred because they are faster to learn. 
Also, in this study interpretable models were learned 
(pruned trees). These models will be used to further 
understand the resilience of indigenous vegetation and 
landscapes. 

 
Table 2. Correlation Coefficients of the obtained models (MO – Multi-Objective, SO – Single-Objective; RT – Regression 
Trees, Bag – Bagging, RF – Random Forests, RSub – Random Subspaces, BSub – Bagging and Random Subspaces – SubBag) 
 

Target MORT SORT MOBag SOBag MORF SORF MORSub SORSub MOBSub SOBSub 
LargeTreeScore  0.627 0.601 0.685 0.684 0.690 0.690 0.669 0.667 0.686 0.684 
TreeCanopyScore  0.754 0.728 0.798 0.802 0.802 0.803 0.788 0.788 0.798 0.801 
UnderstoreyScore  0.779 0.765 0.827 0.826 0.827 0.828 0.812 0.812 0.827 0.826 
LitterScore  0.768 0.753 0.812 0.815 0.816 0.815 0.802 0.801 0.812 0.814 
LogsScore  0.765 0.744 0.802 0.798 0.800 0.801 0.788 0.786 0.801 0.798 
WeedsScore  0.830 0.824 0.872 0.871 0.872 0.873 0.860 0.861 0.872 0.871 
RecruitmentScore  0.692 0.677 0.743 0.744 0.744 0.748 0.728 0.728 0.743 0.745 

 
Table 3. RMSEs of the obtained models (MO – Multi-Objective, SO – Single-Objective; RT – Regression Trees, Bag – 
Bagging, RF – Random Forests, RSub – Random Subspaces, BSub – Bagging and Random Subspaces – SubBag) 
 

Target MORT SORT MOBag SOBag MORF SORF MORSub SORSub MOBSub SOBSub 
LargeTreeScore  2.618 2.718 2.448 2.451 2.439 2.437 2.527 2.530 2.445 2.451 
TreeCanopyScore  1.476 1.563 1.355 1.343 1.344 1.342 1.405 1.407 1.355 1.344 
UnderstoreyScore  4.492 4.649 4.034 4.040 4.040 4.023 4.255 4.257 4.033 4.034 
LitterScore  1.310 1.352 1.195 1.185 1.186 1.186 1.242 1.244 1.194 1.188 
LogsScore  1.340 1.399 1.245 1.256 1.249 1.247 1.290 1.294 1.247 1.255 
WeedsScore  3.426 3.506 3.011 3.015 3.013 2.999 3.196 3.181 3.009 3.017 
RecruitmentScore  2.357 2.423 2.184 2.180 2.183 2.170 2.262 2.262 2.184 2.176 
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