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Abstract. Ensemble methods are able to improve the predictive per-
formance of many base classifiers. Up till now, they have been applied to
classifiers that predict a single target attribute. Given the non-trivial in-
teractions that may occur among the different targets in multi-objective
prediction tasks, it is unclear whether ensemble methods also improve
the performance in this setting. In this paper, we consider two ensem-
ble learning techniques, bagging and random forests, and apply them
to multi-objective decision trees (MODTs), which are decision trees that
predict multiple target attributes at once. We empirically investigate the
performance of ensembles of MODTs. Our most important conclusions
are: (1) ensembles of MODTs yield better predictive performance than
MODTs, and (2) ensembles of MODTs are equally good, or better than
ensembles of single-objective decision trees, i.e., a set of ensembles for
each target. Moreover, ensembles of MODTs have smaller model size and
are faster to learn than ensembles of single-objective decision trees.

1 Introduction

In this work, we concentrate on the task of predicting multiple attributes. Ex-
amples thus take the form (x;,y;) where x; = (241,...,2%) is a vector of k
input attributes and y; = (yi1,...,yit) is a vector of ¢ target attributes. This
task is known under the name of multi-objective prediction. Existing learning
techniques have been extended to address this task by learning to predict all
target attributes at once [1-4]. This has two main advantages over building a
separate model for each target: first, a multi-objective model is usually much
smaller than the total size of the individual models for all target attributes, and
second, such a multi-objective model explicates dependencies between the dif-
ferent target attributes. Moreover, the cited literature reports similar or slightly
improved predictive performance results for the multi-objective models.

The goal of this paper is to investigate whether ensemble methods [5] can be
applied to multi-objective prediction problems in order to achieve better perfor-
mance. Ensemble methods construct a set of classifiers for a given prediction task
and classify new data instances by taking a vote over their predictions. Ensemble
methods typically improve the predictive performance of their base classifier [6].



Up till now, they have only been applied to single-objective prediction, i.e.,
predicting one target attribute. Given the non-trivial interactions between the
target attributes in a multi-objective domain, it is unclear whether ensembles are
also able to improve predictive performance in this non-standard setting. A pos-
itive answer would stimulate further research towards multi-objective problems,
which are present in many real world applications [1,7-12].

In this paper, we use decision trees as base classifiers. The ensemble meth-
ods that we investigate are bagging [6] and random forests [13]. More precisely,
the main questions we want to answer are (1) does building ensembles of multi-
objective decision trees improve predictive performance, and (2) how do ensem-
bles of multi-objective decision trees compare to ensembles of single-objective
decision trees, i.e., a set of separate ensembles for each target attribute. The last
comparison is made along three dimensions: predictive performance, model size,
and running times.

The paper is organized as follows. In Section 2, we briefly discuss ensemble
methods. Section 3 explains multi-objective decision trees in more detail. Sec-
tion4 presents a detailed experimental evaluation. Conclusions and some ideas
for further work are presented in Section 5.

2 Ensemble Methods

An ensemble is a set of classifiers constructed with a given algorithm. Each
new example is classified by combining the predictions of every classifier from
the ensemble. These predictions can be combined by taking the average (for
regression tasks) or the majority vote (for classification tasks), as described by
Breiman [6], or by taking more complex combinations [17,18].

A necessary condition for an ensemble to be more accurate than any of its
individual members, is that the classifiers are accurate and diverse [14]. An
accurate classifier does better than random guessing on new examples. Two
classifiers are diverse if they make different errors on new examples. There are
several ways to introduce diversity: by manipulating the training set (by changing
the weight of the examples [6,15] or by changing the attribute values of the
examples [16]), or by manipulating the learning algorithm itself [5].

In this paper, we consider two ensemble learning techniques that have pri-
marily been used in the context of decision trees: bagging and random forests.

2.1 Bagging

Bagging [6] is an ensemble method that constructs the different classifiers by
making bootstrap replicates of the training set and using each of these replicates
to construct one classifier. Each bootstrap sample is obtained by randomly sam-
pling training instances, with replacement, from the original training set, until
an equal number of instances is obtained.

Breiman [6] has shown that bagging can give substantial gains in predictive
performance, when applied to an unstable learner (i.e., a learner for which small



Table 1. The top-down induction algorithm for PCTs.

procedure PCT(E) returns tree procedure BestTest(E)
1: (t*,h*,P*) = BestTest(E) 1: (¢*,h",P*) = (none,0,0)
2: if t* # none then 2: for each possible test ¢ do

3: for each Ej;, € P* do 3 ‘P = partition induced by ¢ on E

4: treer, = PCT(E}) 4 h=Var(E) =Y g cp [ Var(Ey)
5: return node(t*, |J,{treex}) 5: if (h > h™) A Acceptable(t, P) then
6: else 6: (t*7h*77)*) = (t7h77))

7 return leaf(Prototype(FE)) 7: return (t*,h*, P*)

changes in the training set result in large changes in the predictions), such as
classification and regression tree learners.

2.2 Random Forests

A random forest [13] is an ensemble of trees, where diversity among the predictors
is obtained by using bagging, and additionally by changing the feature set during
learning. More precisely, at each node in the decision trees, a random subset of
the input attributes is taken, and the best feature is selected from this subset.
The number of attributes that are retained is given by a function f of the total
number of input attributes z (e.g., f(z) = 1, f(x) = vz, f(x) = [loga(z) +
1] ...). By setting f(z) = z, we obtain the bagging procedure.

3 Multi-Objective Decision Trees

Multi-objective decision trees (MODTs) [2] are decision trees capable of predict-
ing multiple target attributes at once. They are an instantiation of predictive
clustering trees (PCTs) [2] that are used for multi-objective prediction. In the
PCT framework, a tree is viewed as a hierarchy of clusters: the top-node corre-
sponds to one cluster containing all data, which is recursively partitioned into
smaller clusters while moving down the tree.

PCTs can be constructed with a standard “top-down induction of decision
trees” (TDIDT) algorithm [19]. The algorithm is shown in Table 1. The heuristic
that is used for selecting the tests is the reduction in variance caused by parti-
tioning the instances (see line 4 of BestTest). Maximizing the variance reduction
maximizes cluster homogeneity and improves predictive performance.

The main difference between the algorithm for learning PCTs and a stan-
dard decision tree learner is that the former treats the variance function and the
prototype function that computes a label for each leaf as parameters that can
be instantiated for a given learning task. In order to construct MODTs, these
functions have been instantiated towards multiple target attributes [2,20]. For
the classification case, the variance function is computed as the sum of the en-
tropies of class variables, i.e., Var(E) = S.'_, Entropy(E, v;) (this definition has
also been used in the context of multi-label prediction [21]), and the prototype



function returns a vector containing the majority class for each target attribute.
For multi-objective regression trees, the sum of the variances of the targets is
used, i.e., Var(E) = 25:1 Var(y;), and each leaf’s prototype is the vector mean
of the target vectors of it’s training examples.

The PCT framework is implemented in the TILDE [2] and CLUS [22,4] sys-
tems. In this work we use CLUS. More information about PCTs and CLUS can
be found at http://www.cs.kuleuven.be/~dtai/clus.

4 Experimental Evaluation

In this section, we empirically evaluate the application of bagging and random
forests to multi-objective decision trees. We describe the experimental method-
ology, the datasets, and the obtained results.

4.1 Ensembles for Multi-Objective Decision Trees

In order to apply bagging to MODTs, the procedure PCT(FE;) (Table1) is used
as a base classifier. For applying random forests, the same approach is followed,
changing the procedure BestTest (Table 1, right) to take a random subset of size
f(x) of all possible attributes.

In order to combine the predictions output by the base classifiers, we take
the average for regression, and apply a probability distribution vote instead of a
simple majority vote for classification, as suggested by Bauer and Kohavi [23].
These combining functions generalize trivially to the multi-objective case. Each
ensemble consists of 100 trees, which are unpruned [23]. For building random
forests, the parameter f(z) was set to [loga(x) + 1] as in Breiman [13].

4.2 Datasets

Table 2 lists the datasets that we use, together with their properties. Most
datasets are of ecological nature. Each dataset represents a multi-objective pre-
diction problem. Of the 13 listed datasets, 8 are used both for multi-objective
regression and for multi-objective classification (after discretizing the target at-
tributes), resulting in 21 datasets in total.

4.3 Results

We assess the predictive performance of the algorithms comparing the accuracy
for classification, and RRMSE (relative root mean squared error) for regression.
The results are obtained by a 10-fold cross validation procedure', using the same
folds for all experiments.

! When using bagging or random forests, one could also use the out-of-bag error
measure [13]. In order to obtain a fairer comparison with the (non-ensemble) decision
tree methods, we instead used 10-fold cross validation.



Table 2. Dataset properties: domain name, number of instances (N), number of input
attributes (Attr), number of target attributes (7"), and whether used as multi-objective
classification (Class) or regression (Regr) dataset.

Domain Task N Attr T Class Regr

E, Bridges [24] 85 7T 5

E, EDM -1 [7] 154 16 2
E5 Monks [24] 432 6 3

E, Sigmea real [8] with coordinates 817 6 2 Vv
Es without coordinates 817 4 2 4
Es Sigmea simulated [9] 10368 1 2 v
Er Soil quality 1 [10]  Acari/Coll./Biodiv. 1944 142 3 v
Eg Solar-flare 1 [24] 323 10 3 4
Ey Solar-flare 2 [24] 1066 10 3 v
Ero Thyroid [24] o172 29 T o/

E11 Water quality [11,12] Plants 1060 6 7 v
Ei Animals 1060 6 7 Vv
Ers Plants & Animals 1060 16 14 / V4

Table 3. Wilcoxon test outcomes (SO Single-Objective, MO Multi-Objective; DT
Decision Tree, Bag Bagging, RF Random Forest).

Classification Regression Classification Regression
MOBag > MODT MOBag > MODT  MOBag > SOBag MOBag > SOBag
p=>514%x10"°% p=244%10"3 p = 0.301 p=128%10"6
MORF > MODT MORF > MODT MORF > SORF MORF > SORF

p=661%x10""7 p=203%10""° p = 0.451 p = 0.094

Here, we discuss the results along two dimensions of interest: comparing
ensembles of MODTs to single multi-objective decision trees, and to ensembles of
single-objective decision trees. Afterwards, we investigate ensembles of MODTs
in more detail, and compare bagging and random forests in the multi-objective
setting. For testing whether the difference in predictive performance between
different methods is statistically significant over all datasets and all targets, we
use the Wilcoxon test [25]. The results are summarized in Table 3. In the results,
A > B means that method A has a better predictive performance than method
B. The significance is reported by the corresponding p-value.

Ensembles of Multi-Objective Decision Trees versus Multi-Objective
Decision Trees. The left part of Table3 shows the outcome of the Wilcoxon
test comparing ensembles of MODTs to MODTs. The results show that the
predictive performance of ensembles of MODTs is better than MODTs, which
is the same as for ensembles in the single-objective setting.

A preliminary empirical evaluation of boosting of multi-objective regression
trees has been performed by Sain and Carmack [26]. Experimental results on a
single dataset yielded the same conclusion.



Table 4. Total model size (number of nodes) for the different methods (SO Single-
Objective, MO Multi-Objective; Bag Bagging, RF Random Forest).

Classification Regression

MOBag SOBag MORF SORF MOBag SOBag MORF SORF
Ei 4344 6996 4614 8910
FEy 4102 4916 5014 5930 4780 5900 5746 7390
Fs 18580 20360 17222 22362
Es 29586 37906 30360 38988 46482 70896 46866 71842
Fs 29936 38082 29422 38312 46816 71660 44896 69928
E¢ 6184 6544 13104 13990 153994 192038 164814 203416

Er 53586 160506 24722 73356
Es 5158 7742 4364 6588 9330 15562 7840 13842
Eq 23196 33264 15248 24018

Fro 55454 77244 83506 126916

E11 68560 137860 71258 163948 78310 221832 79606 257122
Fio 69484 137514 72590 164484 80034 229990 81122 267364
Fh3 80804 275374 81568 328432 82842 451822 83036 524486

Ensembles of Multi-Objective Decision Trees versus Ensembles of
Single-Objective Decision Trees. Ensembles of single-objective decision trees
are ensembles that predict one target attribute. Results of the Wilcoxon test
comparing a ensemble of MODTs to building ensembles for each target attribute
separately are presented in the right part of Table 3. For regression, ensembles
of MODTs are significantly better than ensembles of single-objective decision
trees in case of bagging, and, to a lesser extent, in the case of random forests.
For classification, the two methods perform comparably.

In addition, we have compared the total sizes of ensembles of multi-objective
and single-objective decision trees. While the number of trees will be smaller
for ensembles of MODTSs (with a factor equal to the number of targets), the
effect on the total number of nodes of all trees is less obvious. Table 4 presents
the results. We see that ensembles of MODTs yield smaller models, with an
increased difference in the presence of many target attributes.

We have also compared the running times of the different methods. Except
for dataset E7, the multi-objective ensemble method is always faster to learn
than its single-objective counterpart, with an average speed-up ratio of 2.03.

Multi-Objective Bagging versus Multi-Objective Random Forests. We
compared the performance of the two multi-objective ensemble methods. The
test concludes that multi-objective random forests have a better predictive per-
formance than multi-objective bagging (p-values of 0.025 for classification and
0.060 for regression). Note that, also in terms of efficiency, random forests are
to be preferred, since they are faster to learn.

The obtained results are similar to results obtained in single-objective setting.
In their experimental comparison, Banfield et al. [27] obtain significantly better
results for random forests on 8 of 57 datasets. Also for our datasets, random



forests perform better than bagging in the single-objective case (p-values of
0.047 for classification and 2.37 x 107° for regression).

5 Conclusions and Further Work

In this paper, an empirical study is presented on applying ensemble methods to
multi-objective decision trees. As such, the interaction between two dimensions
(multi-objective learning and ensemble learning) was investigated. The results
can be summarized as follows. First, the performance of a multi-objective tree
learner is significantly improved by learning an ensemble (using bagging or ran-
dom forests) of multi-objective trees. This suggests that the non-trivial relations
that may be present between the different target attributes are preserved when
combining predictions of several classifiers or when injecting some source of
randomness in the learning algorithm. Second, ensembles of MODTSs perform
equally good as or significantly better than single-objective ones. In addition,
ensembles of MODTs are faster to learn and reduce the total model size. Third,
multi-objective random forests are significantly better than multi-objective bag-
ging, which is consistent with results in the single-objective context.

As future work, we plan to extend the empirical evaluation along two dimen-
sions: (a) to other ensemble methods, such as boosting; one research question
here is how to adapt boosting’s reweightening scheme to the multi-objective case;
and (b) to multi-objective datasets with mixed nominal and numeric targets.

A different line of work that we consider is to develop methods for directly
controlling the model diversity of predictive clustering trees. Model diversity im-
proves the predictive performance of ensemble methods [14]. In particular, Kocev
et al. [28] show that beam search with a heuristic that explicitly incorporates
the diversity of the trees can be used to this end. We plan to investigate if beam
search can yield more accurate ensembles than bagging or random forests.
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