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ABSTRACT 

We investigate how inductive databases (IDBs) can support 

global models, such as decision trees. We focus on pre-

dictive clustering trees (PCTs). PCTs generalize decision 

trees and can be used for prediction and clustering, two of 

the most common data mining tasks. Regular PCT induction 

builds PCTs top-down, using a greedy algorithm, similar to 

that of C4.5. We propose a new induction algorithm for 

PCTs based on beam-search. This has three advantages over 

the regular method: (1) it returns a set of PCTs satisfying the 

user constraints instead of just one PCT; (2) it better allows 

for pushing of user constraints into the induction algorithm; 

and (3) it is less susceptible to myopia. In addition, we 

propose similarity constraints for PCTs, which improve the 

diversity of the resulting PCT set. 

1. INTRODUCTION 

Inductive databases (IDBs) [1][2] represent a database view 

on data mining and knowledge discovery. IDBs contain not 

only data, but also models. In an IDB, ordinary queries can 

be used to access and manipulate data, while inductive 

queries can be used to generate, manipulate, and apply 

models. For example, “find a set of accurate decision trees 

that have at most ten nodes” is an inductive query. 

IDBs are closely related to constrained based mining [3]. 

Because the inductive queries can include particular con-

straints, the IDB needs constrained based mining algorithms 

that can be called to construct the models that satisfy these 

constraints. The above example query includes, for example, 

the constraint that the trees can contain at most ten nodes. 

Much research on IDBs focuses on local models, i.e., 

models that apply to only a subset of the examples, such as 

item sets and association rules. We investigate how IDBs 

can support global models. In particular, we consider pre-

dictive clustering trees (PCTs) [4]. PCTs generalize decision 

trees and can be used for both prediction and clustering 

tasks. We define PCTs in Section 2. 

Regular PCT induction builds PCTs top-down using a 

greedy algorithm similar to that of C4.5 [5]. This has three 

main disadvantages w.r.t. inductive databases: (1) it returns 

only one PCT. This is incompatible with the IDB view that 

inductive queries should return the set of all models 

satisfying the constraints in the query. (2) many useful 

constraints cannot be pushed into the induction algorithm. 

Size constraints, such as the one in our example query, must 

be handled partly during post-pruning [6]. (3) because the 

algorithm is greedy it is susceptible to myopia: it may not 

find any tree satisfying the constraints even though several 

exist in the hypothesis space. 

In this paper, we propose a new induction algorithm for 

PCTs that addresses these three problems to a certain 

extent. The algorithm employs beam-search. Beam-search 

considers at each step of the search the k best models 

according to a particular evaluation score. Therefore, it 

trivially returns a set of models instead of just one model. 

Beam-search also supports pushing of size constraints into 

the induction algorithm, as we will show in Section 3. 

Finally, beam-search is known to be less susceptible to 

myopia than regular greedy search. 

An important disadvantage of using beam-search is that the 

beam tends to fill up with small variations of the same PCT, 

such as trees that differ only in one node. To alleviate this, 

we propose similarity constraints for PCTs. We show that 

these constraints improve beam diversity. 

2. PREDICTIVE CLUSTERING TREES 

PCTs [4] are generic decision trees that can be used for a 

wide variety of data mining tasks including different types 

of prediction and clustering. PCTs have been applied to 

multi-objective classification and regression [7], hier-

archical and multi-label classification [8], and clustering of 

time series [9].  
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Figure 1: A PCT predicting two numeric attributes. 

An example of a multi-objective PCT predicting two 

numeric attributes is show in Figure 1. Each leaf stores a 



vector with as components the predictions for the different 

target variables. 

PCTs can be constructed with a greedy top-down induction 

algorithm. The algorithm is similar to that of C4.5 [5], 

except that the heuristic for selecting the tests in the internal 

nodes and the procedure for computing the labels in the 

leaves is different. For example, to construct the PCT in 

Figure 1, the heuristic for selecting the tests is minus the 

intra-cluster variation (ICV) summed over the subsets 

induced by the test and the label of a given leaf is the 

average of the target vectors of the examples sorted in the 

leaf. Intra-cluster variation is defined as 

[ ]∑ =⋅= T
t tyVarNDICV
1

)( , with N the number of examples 

in the subset D, T the number of target variables, and 

[ ]tyVar  the variance of target variable t in D. Minimizing 

ICV results in homogeneous leaves, which in turn results in 

accurate predictions. 

PCTs are implemented in the CLUS system. CLUS supports 

various types of PCTs. CLUS implements syntactic con-

straints and constraints on the size and/or accuracy of the 

trees [7]. More information about PCTs and CLUS can be 

found at: http://www.cs.kuleuven.be/~dtai/clus/. 

3. BEAM-SEARCH 

Fig. 1 shows the beam-search algorithm that we propose. 

The beam is a set of PCTs ordered by their heuristic value. 

The algorithm starts with a beam that contains precisely one 

trivial PCT: a leaf covering all the training data D.  

Each iteration of the main loop creates a new beam by 

refining the PCTs in the current beam. That is, the algorithm 

iterates over the trees in the current beam and computes for 

each PCT its set of refinements. A refinement is a copy of 

the given PCT in which one particular leaf is replaced by a 

depth one sub-tree (i.e., an internal node with a particular 

attribute-value test and two leaves). Note that a PCT can 

have many refinements: a PCT with N leaves yields N × M 

refined trees, with M the number of possible tests that can be 

put in a new node. In CLUS, M is equal to the number of 

attributes. That is, CLUS considers for each attribute only 

the test that maximizes the heuristic value. This approach 

limits the number of refinements of a given PCT and 

increases the diversity of the trees in the beam
1
. 

CLUS computes for each generated refinement its heuristic 

value. If this value is larger than the value of the worst PCT 

in the beam or if there are fewer than k trees (k is the beam-

width), then it adds the new PCT to the beam and, if this 

exceeds the beam-width, removes the worst tree from the 

beam. 

The algorithm ends if a given stopping-criterion is met, such 

as the beam no longer changes. Note that this occurs if none 

of the trees in the beam yields any valid refinements. A 

refinement is valid in CLUS if it does not violate any of the 

                                                 
1
 The number of possible tests on a numeric attribute A is 

typically huge: one test A < ai, for each possible split point 

ai. Clus only constructs one refined tree for the split that 

yields the best heuristic value. 

constraints imposed by the user, such as maximum depth, 

maximum size, or minimum number of examples in each 

cluster. 

procedure Beam-Search(D,k) returns Beam 

i := 0 

leaf := create-leaf(D) 

H := heuristic(leaf, D) 

beam0 := { (H, leaf) } 

while not stop-criterion(beami) 

 beami+1 := beami 

 for each tree ∈ beami 

  R := refinements(tree, D) 

  for each  ref-tree ∈ R 
   H := heuristic(ref-tree, D) 

   Hmin := min-heuristic(beami+1) 

   if H > Hmin or |beami+1| < k then 

    beami+1 := beami+1 ∪ { (H, ref-tree) } 
   if  |beami+1| > k then 

    beami+1 := remove-min(beami+1) 

 i := i + 1 

return beami 

 

 

Figure 2: The beam-search algorithm of CLUS. 

The heuristic value computed for a tree in beam-search 

mode differs from the heuristic used in the top-down 

algorithm from Section 1. The heuristic value in the latter is 

local, i.e., computed only based on the examples in the node 

that is being constructed. In beam search mode, the 

heuristic is global, measuring the quality of the entire tree. 

The heuristic that we use is: 

( ) ( ) ( )TsizeDICV
D

TH Tleaf i
i

⋅−⋅−= ∑ ∈ α)(
1

, 

with T the given tree, D all training data, and Di the 

examples sorted into leafi. It has two components: the first 

one is minus the intra-cluster variation of the PCT and the 

second one is a size penalty. The latter biases the search to 

smaller trees. 

4. SIMILARITY CONSTRAINTS 

So far, the heuristic value only takes the error (ICV) and the 

size of the PCT into account (Section 3). In this section, we 

define soft similarity constraints, which can be included in 

the heuristic and bias the search to a set of trees that is less 

similar.  

To quantify the similarity of two trees, we define a distance 

metric between trees. The distance metric is computed 

based on the predictions of the trees. We first define a 

distance metric for single-objective regression and 

classification. For regression, we have: 
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with ( )21 ,TTd  the distance between tree 1T  and 2T , 

( )ji tTp ,  the prediction of tree iT  for instance jt , N the 

number of instances in the training set, M the maximum 

value of ( )ji tTp , , and m the minimum value of ( )ji tTp , . 

This corresponds to the mean normalized Euclidean distance 

between the predictions. The normalization ensures that the 

distance will be in the interval (0,1). 

For classification, we use: 
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with ( )21 ,TTd  the distance between tree 1T  and 2T , 

( )ji tTp ,  the prediction of tree iT  for instance jt , N the 

number of instances in the training set, and  
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
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The heuristic value for a new candidate tree is modified by 

adding the average of the distances to all trees in the beam 

as follows: 
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similarity to the trees in the beam and the candidate tree, and 

k the beam-width. 

This heuristics is recomputed for each tree in the beam and 

the candidate tree. If the candidate tree has score greater 
than the minimal then it enters the beam and the tree with 

minimal score is left-out.  

5. EXPERIMENTAL SETUP 

We have implemented the beam-search algorithm and the 

similarity constraints in the CLUS system. We compare 

CLUS with the regular top-down induction algorithm (TD) 
for PCTs to CLUS with beam-search (BS) and beam-search 

with similarity constraints (BS-s) on 9 regression and 8 

classification data sets from the UCI machine learning 

repository [10]. We set the parameters of the beam-search 

algorithms ad-hoc to the following values k = 10, α = 0.1, 

and β = 1. For TD, we set a size constraint so that the trees 
can contain at most 7 nodes [6].  This value is set such that 

the trees are approximately the same size as the trees 

obtained with beam-search. 

Note that the heuristics defined in Section 2-3 are designed 

for regression data. For the classification data sets, we use 
different heuristics that are obtained by replacing in the 

regression variants ICV(Di) by )( ii DEntropyD ⋅ with 

)( iDEntropy the class entropy of the set Di. 

For each algorithm, we measure the predictive performance 

of the resulting PCT and its size. For classification data we 

report accuracy and for regression data the Pearson 

correlation coefficient. The values listed for the beam-

search algorithms are those of the best scoring model. 

To quantify the effect of the similarity constraints, we 

report for the two beam-search algorithms the Beam 

Similarity, which is the average similarity of the trees in the 

beam. Beam Similarity is computed as follows: 
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1)(  the similarity of tree Ti w.r.t. the 

other trees in the beam, ( )21 ,TTd  the distance between 

tree 1T  and 2T , and k the beam-width. 

6. RESULTS AND DISCUSSION 

Table 1 and Table 2 present the results. For most data sets, 

the results are accuracy or correlation-wise comparable.  

The most noticeable differences are obtained for the 

datasets pyrim, pollution and segment. Here the correlation 

or the accuracy of beam-search with similarity constraints is 

considerably better than that of top-down tree induction.  

The effect of including the similarity constraints can be 

seen from the reported beam similarity. For all data sets, 

beam similarity reduces by using the similarity constraints. 

7. CONCLUSIONS AND FURTHER WORK 

We propose a new algorithm for inducing predictive 

clustering trees (PCTs) that employs beam-search. The 

main advantages of this algorithm are that it induces a set of 

PCTs instead of just one PCT, that it supports pushing of 

user constraints, and that it is less susceptible to myopia. 

Furthermore, we propose soft similarity constraints based 

on the predictions of the PCTs. The similarity constraints 

improve beam diversity. 

A preliminary experimental evaluation illustrates some of 

the advantages of the approach. In the future, we plan a 

more extensive evaluation, among others, quantifying the 

influence of the similarity constraints on the heuristic value 

(the effect of the β parameter). 

Note that diversity, which is obtained by means of our 

heuristic, has been shown to increase the predictive 

performance of classifier ensembles. Therefore, we plan to 

investigate if beam-search with the similarity constraints 

can be used to construct an ensemble of PCTs.  
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Table 1. Results for the regression data sets (TD is regular top-down induction, BS is beam-search, and BS-s is beam-search 

with similarity constraints). 

 

Correlation Size Beam Similarity 
 

No. of 

Attributes TD BS BS-s TD BS BS-s BS BS-s 

autoPrice 16 0.8839 0.8464 0.7965 7 3 5 0.8408 0.7247 

bodyfat 15 0.9366 0.8748 0.8748 7 5 5 0.9004 0.7803 

cpu 8 0.9240 0.8438 0.8438 7 5 5 0.9387 0.9290 

housing 14 0.7960 0.7496 0.7496 7 5 5 0.8261 0.7902 

pollution 16 0.5012 0.5647 0.9910 7 5 5 0.7296 0.6771 

servo 5 0.8885 0.9104 0.9104 7 7 7 0.8933 0.8161 

cpu_act 22 0.9568 0.9431 0.9443 7 5 5 0.9482 0.9293 

pyrim 28 0.6752 0.6146 0.9021 7 5 3 0.9540 0.6728 

machine_cpu 7 0.8395 0.8335 0.7356 7 5 3 0.9324 0.9181 

 

 

 

 

 

Table 2. Results for the classification tasks (TD is regular top-down induction, BS is beam-search, and BS-s is beam-search 

with similarity constraints). 

  

Accuracy Size Beam Similarity  No. of  

Attributes TD BS BS-s TD BS BS-s BS BS-s 

car 7 0.7917 0.7917 0.7922 7 5 9 0.6175 0.5824 

mushroom 23 0.9941 0.9941 0.9941 5 5 5 0.9741 0.8105 

segment 20 0.5558 0.8108 0.8095 7 11 11 0.9256 0.4367 

vowel 14 0.2515 0.2818 0.2747 7 9 5 0.4111 0.2677 

vehicle 19 0.5118 0.6017 0.6028 7 7 7 0.9101 0.3449 

iris 5 0.9400 0.9600 0.9600 7 5 5 0.8978 0.6438 

ionosphere 35 0.8860 0.8718 0.8718 7 5 5 0.6824 0.5851 

kr-vs-kp 37 0.9043 0.9309 0.8833 7 9 7 0.5663 0.4248 
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