

SIMILARITY CONSTRAINTS IN BEAM-SEARCH

INDUCTION OF PREDICTIVE CLUSTERING TREES

Dragi Kocev
1
, Sašo Džeroski

1
and Jan Struyf

2

1
Jožef Stefan Institute, Department of Knowledge Technologies, Jamova 39, SI-1000, Ljubljana,

Slovenia, {Saso.Dzeroski, Dragi.Kocev}@ijs.si
2
Katholieke Universiteit Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven,

Belgium, Jan.Struyf@cs.kuleuven.be

ABSTRACT

We investigate how inductive databases (IDBs) can support

global models, such as decision trees. We focus on pre-

dictive clustering trees (PCTs). PCTs generalize decision

trees and can be used for prediction and clustering, two of

the most common data mining tasks. Regular PCT induction

builds PCTs top-down, using a greedy algorithm, similar to

that of C4.5. We propose a new induction algorithm for

PCTs based on beam-search. This has three advantages over

the regular method: (1) it returns a set of PCTs satisfying the

user constraints instead of just one PCT; (2) it better allows

for pushing of user constraints into the induction algorithm;

and (3) it is less susceptible to myopia. In addition, we

propose similarity constraints for PCTs, which improve the

diversity of the resulting PCT set.

1. INTRODUCTION

Inductive databases (IDBs) [1][2] represent a database view

on data mining and knowledge discovery. IDBs contain not

only data, but also models. In an IDB, ordinary queries can

be used to access and manipulate data, while inductive

queries can be used to generate, manipulate, and apply

models. For example, “find a set of accurate decision trees

that have at most ten nodes” is an inductive query.

IDBs are closely related to constrained based mining [3].

Because the inductive queries can include particular con-

straints, the IDB needs constrained based mining algorithms

that can be called to construct the models that satisfy these

constraints. The above example query includes, for example,

the constraint that the trees can contain at most ten nodes.

Much research on IDBs focuses on local models, i.e.,

models that apply to only a subset of the examples, such as

item sets and association rules. We investigate how IDBs

can support global models. In particular, we consider pre-

dictive clustering trees (PCTs) [4]. PCTs generalize decision

trees and can be used for both prediction and clustering

tasks. We define PCTs in Section 2.

Regular PCT induction builds PCTs top-down using a

greedy algorithm similar to that of C4.5 [5]. This has three

main disadvantages w.r.t. inductive databases: (1) it returns

only one PCT. This is incompatible with the IDB view that

inductive queries should return the set of all models

satisfying the constraints in the query. (2) many useful

constraints cannot be pushed into the induction algorithm.

Size constraints, such as the one in our example query, must

be handled partly during post-pruning [6]. (3) because the

algorithm is greedy it is susceptible to myopia: it may not

find any tree satisfying the constraints even though several

exist in the hypothesis space.

In this paper, we propose a new induction algorithm for

PCTs that addresses these three problems to a certain

extent. The algorithm employs beam-search. Beam-search

considers at each step of the search the k best models

according to a particular evaluation score. Therefore, it

trivially returns a set of models instead of just one model.

Beam-search also supports pushing of size constraints into

the induction algorithm, as we will show in Section 3.

Finally, beam-search is known to be less susceptible to

myopia than regular greedy search.

An important disadvantage of using beam-search is that the

beam tends to fill up with small variations of the same PCT,

such as trees that differ only in one node. To alleviate this,

we propose similarity constraints for PCTs. We show that

these constraints improve beam diversity.

2. PREDICTIVE CLUSTERING TREES

PCTs [4] are generic decision trees that can be used for a

wide variety of data mining tasks including different types

of prediction and clustering. PCTs have been applied to

multi-objective classification and regression [7], hier-

archical and multi-label classification [8], and clustering of

time series [9].

A ≤ 3.2

B > 10

yes no

yes no

[0.9,0.85] [0.1,0.93]

[0.1,0.1]

Figure 1: A PCT predicting two numeric attributes.

An example of a multi-objective PCT predicting two

numeric attributes is show in Figure 1. Each leaf stores a

vector with as components the predictions for the different

target variables.

PCTs can be constructed with a greedy top-down induction

algorithm. The algorithm is similar to that of C4.5 [5],

except that the heuristic for selecting the tests in the internal

nodes and the procedure for computing the labels in the

leaves is different. For example, to construct the PCT in

Figure 1, the heuristic for selecting the tests is minus the

intra-cluster variation (ICV) summed over the subsets

induced by the test and the label of a given leaf is the

average of the target vectors of the examples sorted in the

leaf. Intra-cluster variation is defined as

[]∑ =⋅= T
t tyVarNDICV
1

)(, with N the number of examples

in the subset D, T the number of target variables, and

[]tyVar the variance of target variable t in D. Minimizing

ICV results in homogeneous leaves, which in turn results in

accurate predictions.

PCTs are implemented in the CLUS system. CLUS supports

various types of PCTs. CLUS implements syntactic con-

straints and constraints on the size and/or accuracy of the

trees [7]. More information about PCTs and CLUS can be

found at: http://www.cs.kuleuven.be/~dtai/clus/.

3. BEAM-SEARCH

Fig. 1 shows the beam-search algorithm that we propose.

The beam is a set of PCTs ordered by their heuristic value.

The algorithm starts with a beam that contains precisely one

trivial PCT: a leaf covering all the training data D.

Each iteration of the main loop creates a new beam by

refining the PCTs in the current beam. That is, the algorithm

iterates over the trees in the current beam and computes for

each PCT its set of refinements. A refinement is a copy of

the given PCT in which one particular leaf is replaced by a

depth one sub-tree (i.e., an internal node with a particular

attribute-value test and two leaves). Note that a PCT can

have many refinements: a PCT with N leaves yields N × M

refined trees, with M the number of possible tests that can be

put in a new node. In CLUS, M is equal to the number of

attributes. That is, CLUS considers for each attribute only

the test that maximizes the heuristic value. This approach

limits the number of refinements of a given PCT and

increases the diversity of the trees in the beam
1
.

CLUS computes for each generated refinement its heuristic

value. If this value is larger than the value of the worst PCT

in the beam or if there are fewer than k trees (k is the beam-

width), then it adds the new PCT to the beam and, if this

exceeds the beam-width, removes the worst tree from the

beam.

The algorithm ends if a given stopping-criterion is met, such

as the beam no longer changes. Note that this occurs if none

of the trees in the beam yields any valid refinements. A

refinement is valid in CLUS if it does not violate any of the

1
 The number of possible tests on a numeric attribute A is

typically huge: one test A < ai, for each possible split point

ai. Clus only constructs one refined tree for the split that

yields the best heuristic value.

constraints imposed by the user, such as maximum depth,

maximum size, or minimum number of examples in each

cluster.

procedure Beam-Search(D,k) returns Beam

i := 0

leaf := create-leaf(D)

H := heuristic(leaf, D)

beam0 := { (H, leaf) }

while not stop-criterion(beami)

 beami+1 := beami

 for each tree ∈ beami

 R := refinements(tree, D)

 for each ref-tree ∈ R
 H := heuristic(ref-tree, D)

 Hmin := min-heuristic(beami+1)

 if H > Hmin or |beami+1| < k then

 beami+1 := beami+1 ∪ { (H, ref-tree) }
 if |beami+1| > k then

 beami+1 := remove-min(beami+1)

 i := i + 1

return beami

Figure 2: The beam-search algorithm of CLUS.

The heuristic value computed for a tree in beam-search

mode differs from the heuristic used in the top-down

algorithm from Section 1. The heuristic value in the latter is

local, i.e., computed only based on the examples in the node

that is being constructed. In beam search mode, the

heuristic is global, measuring the quality of the entire tree.

The heuristic that we use is:

() () ()TsizeDICV
D

TH Tleaf i
i

⋅−⋅−= ∑ ∈ α)(
1

,

with T the given tree, D all training data, and Di the

examples sorted into leafi. It has two components: the first

one is minus the intra-cluster variation of the PCT and the

second one is a size penalty. The latter biases the search to

smaller trees.

4. SIMILARITY CONSTRAINTS

So far, the heuristic value only takes the error (ICV) and the

size of the PCT into account (Section 3). In this section, we

define soft similarity constraints, which can be included in

the heuristic and bias the search to a set of trees that is less

similar.

To quantify the similarity of two trees, we define a distance

metric between trees. The distance metric is computed

based on the predictions of the trees. We first define a

distance metric for single-objective regression and

classification. For regression, we have:

()
() ()()

N

tTptTp

M-m
 ,TTd

N

j
jj∑

=
−

= 1

2
21

21

,,
1

with ()21 ,TTd the distance between tree 1T and 2T ,

()ji tTp , the prediction of tree iT for instance jt , N the

number of instances in the training set, M the maximum

value of ()ji tTp , , and m the minimum value of ()ji tTp , .

This corresponds to the mean normalized Euclidean distance

between the predictions. The normalization ensures that the

distance will be in the interval (0,1).

For classification, we use:

()
() ()()

N

tTptTp

 ,TTd

N

j
jj∑

== 1
21

21

,,,δ

with ()21 ,TTd the distance between tree 1T and 2T ,

()ji tTp , the prediction of tree iT for instance jt , N the

number of instances in the training set, and

()




≠

=
=

baif

baif
ba

1

0
,δ .

The heuristic value for a new candidate tree is modified by

adding the average of the distances to all trees in the beam

as follows:

() ())()(
1

TSIMTsizeDICV
D

TH
Tleaf

i

i

⋅−⋅−









⋅−= ∑

∈

βα

with

() ()

k

TTdTTd

TSIM

k

j

jcand ∑
=

+

−= 1

,,

1)(the average

similarity to the trees in the beam and the candidate tree, and

k the beam-width.

This heuristics is recomputed for each tree in the beam and

the candidate tree. If the candidate tree has score greater
than the minimal then it enters the beam and the tree with

minimal score is left-out.

5. EXPERIMENTAL SETUP

We have implemented the beam-search algorithm and the

similarity constraints in the CLUS system. We compare

CLUS with the regular top-down induction algorithm (TD)
for PCTs to CLUS with beam-search (BS) and beam-search

with similarity constraints (BS-s) on 9 regression and 8

classification data sets from the UCI machine learning

repository [10]. We set the parameters of the beam-search

algorithms ad-hoc to the following values k = 10, α = 0.1,

and β = 1. For TD, we set a size constraint so that the trees
can contain at most 7 nodes [6]. This value is set such that

the trees are approximately the same size as the trees

obtained with beam-search.

Note that the heuristics defined in Section 2-3 are designed

for regression data. For the classification data sets, we use
different heuristics that are obtained by replacing in the

regression variants ICV(Di) by)(ii DEntropyD ⋅ with

)(iDEntropy the class entropy of the set Di.

For each algorithm, we measure the predictive performance

of the resulting PCT and its size. For classification data we

report accuracy and for regression data the Pearson

correlation coefficient. The values listed for the beam-

search algorithms are those of the best scoring model.

To quantify the effect of the similarity constraints, we

report for the two beam-search algorithms the Beam

Similarity, which is the average similarity of the trees in the

beam. Beam Similarity is computed as follows:

()

k

TS

SimilarityBeam

k

i
i∑

== 1 ,

with

()
k

TTd

TS

k

j
ji

i

∑
=−= 1

,

1)(the similarity of tree Ti w.r.t. the

other trees in the beam, ()21 ,TTd the distance between

tree 1T and 2T , and k the beam-width.

6. RESULTS AND DISCUSSION

Table 1 and Table 2 present the results. For most data sets,

the results are accuracy or correlation-wise comparable.

The most noticeable differences are obtained for the

datasets pyrim, pollution and segment. Here the correlation

or the accuracy of beam-search with similarity constraints is

considerably better than that of top-down tree induction.

The effect of including the similarity constraints can be

seen from the reported beam similarity. For all data sets,

beam similarity reduces by using the similarity constraints.

7. CONCLUSIONS AND FURTHER WORK

We propose a new algorithm for inducing predictive

clustering trees (PCTs) that employs beam-search. The

main advantages of this algorithm are that it induces a set of

PCTs instead of just one PCT, that it supports pushing of

user constraints, and that it is less susceptible to myopia.

Furthermore, we propose soft similarity constraints based

on the predictions of the PCTs. The similarity constraints

improve beam diversity.

A preliminary experimental evaluation illustrates some of

the advantages of the approach. In the future, we plan a

more extensive evaluation, among others, quantifying the

influence of the similarity constraints on the heuristic value

(the effect of the β parameter).

Note that diversity, which is obtained by means of our

heuristic, has been shown to increase the predictive

performance of classifier ensembles. Therefore, we plan to

investigate if beam-search with the similarity constraints

can be used to construct an ensemble of PCTs.

Acknowledgments: Jan Struyf is a postdoctoral fellow of

the Fund for Scientific Research of Flanders (FWO-

Vlaanderen).

Table 1. Results for the regression data sets (TD is regular top-down induction, BS is beam-search, and BS-s is beam-search

with similarity constraints).

Correlation Size Beam Similarity

No. of

Attributes TD BS BS-s TD BS BS-s BS BS-s

autoPrice 16 0.8839 0.8464 0.7965 7 3 5 0.8408 0.7247

bodyfat 15 0.9366 0.8748 0.8748 7 5 5 0.9004 0.7803

cpu 8 0.9240 0.8438 0.8438 7 5 5 0.9387 0.9290

housing 14 0.7960 0.7496 0.7496 7 5 5 0.8261 0.7902

pollution 16 0.5012 0.5647 0.9910 7 5 5 0.7296 0.6771

servo 5 0.8885 0.9104 0.9104 7 7 7 0.8933 0.8161

cpu_act 22 0.9568 0.9431 0.9443 7 5 5 0.9482 0.9293

pyrim 28 0.6752 0.6146 0.9021 7 5 3 0.9540 0.6728

machine_cpu 7 0.8395 0.8335 0.7356 7 5 3 0.9324 0.9181

Table 2. Results for the classification tasks (TD is regular top-down induction, BS is beam-search, and BS-s is beam-search

with similarity constraints).

Accuracy Size Beam Similarity No. of

Attributes TD BS BS-s TD BS BS-s BS BS-s

car 7 0.7917 0.7917 0.7922 7 5 9 0.6175 0.5824

mushroom 23 0.9941 0.9941 0.9941 5 5 5 0.9741 0.8105

segment 20 0.5558 0.8108 0.8095 7 11 11 0.9256 0.4367

vowel 14 0.2515 0.2818 0.2747 7 9 5 0.4111 0.2677

vehicle 19 0.5118 0.6017 0.6028 7 7 7 0.9101 0.3449

iris 5 0.9400 0.9600 0.9600 7 5 5 0.8978 0.6438

ionosphere 35 0.8860 0.8718 0.8718 7 5 5 0.6824 0.5851

kr-vs-kp 37 0.9043 0.9309 0.8833 7 9 7 0.5663 0.4248

REFERENCES

[1] T. Imielinski and H. Mannila. A database perspective on

knowledge discovery. Communications of the ACM,

39(11):58-64, 1996.

[2] L. De Raedt. A perspective on inductive databases.

SIGKDD Explorations, 4(2):69-77, 2002.

[3] J-F. Boulicaut, B. Jeudy. Constraint-based data mining.

The Data Mining and Knowledge Discovery Handbook, O.

Maimon and L. Rokach (Eds.), Springer, pp. 399-416, 2005.

[4] H. Blockeel, L. De Raedt and J. Ramon. Top-down

induction of clustering trees. In Proceedings of the 15th

International Conference on Machine Learning, p. 55-63, 1998.

[5] J. R. Quinlan. C4.5: Programs for Machine Learning.

Morgan Kaufmann series in Machine Learning. Morgan

Kaufmann, 1993.

[6] M. Garofalakis, D. Hyun, R. Rastogi and K. Shim.

Building decision trees with constraints. Data Mining and

Knowledge Discovery, 7(2):187-214, 2003.

[7] J. Struyf and S. Dzeroski, Constraint based induction of

multi-objective regression trees. In proceedings of the 4th

International Workshop on Knowledge Discovery in Inductive

Databases, p. 110-121. 2005.

[8] H. Blockeel, L. Schietgat, J. Struyf, S. Dzeroski, and A.

Clare, Decision trees for hierarchical multilabel classification:

A case study in functional genomics, Proceedings of the 10th

European Conference on Principles and Practice of Knowledge

Discovery in Databases, p. 18-29, 2006.

[9] S. Dzeroski, I. Slavkov, V. Gjorgjioski and J. Struyf,

Analysis of time series data with predictive clustering trees. In

proceedings of the 5th International Workshop on Knowledge

Discovery in Inductive Databases, p. 47-58. 2006.

[10] D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz. UCI

repository of machine learning databases.

http://www.ics.uci.edu/~mlearn/MLRepository.html.

