Hierarchical Classification of Diatom Images using Predictive Clustering Trees

Ivica Dimitrovski¹, Dragi Kocev², Suzana Loskovska¹, Sašo Džeroski²

¹ Faculty of Electrical Engineering and Information Technologies, Department of Computer Science, Skopje, Macedonia

² Jožef Stefan Institute, Department of Knowledge Technologies, Ljubljana, Slovenia
Outline

- Hierarchical multi-label classification system for diatom image classification
- Contour and feature extraction from images
- Predictive Clustering Trees
- Ensembles: Bagging and random forests
- Experimental Design
- Results and Discussion
Diatom image classification (1)

- Diatoms: large and ecologically important group of unicellular or colonial organisms (algae)
- Variety of uses: water quality monitoring, paleoecology and forensics
Diatom image classification (2)

- 200,000 different diatom species, half of them still undiscovered

- Automatic diatom classification
 - image processing (feature extraction from images)
 - image classification (labels and groups the images)

- Labels can be organized in a hierarchy and an image can be labeled with more than one label

- Predict all different levels in the hierarchy of taxonomic ranks: genus, species, variety, and form

- Goal of the complete system: assist a taxonomist in identifying a wide range of different diatoms
Diatom image classification (3)

- Set of images with their visual descriptors and annotations
- Taxonomic rank with hierarchical structure

<table>
<thead>
<tr>
<th>Image</th>
<th>features/descriptors</th>
<th>taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heuristic shape descriptors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 24 59 66 37 ...</td>
<td>olyvaceum</td>
</tr>
<tr>
<td></td>
<td>36 25 53 45 15 ...</td>
<td>minutissimum</td>
</tr>
<tr>
<td></td>
<td>35 25 56 52 19</td>
<td>exigua</td>
</tr>
</tbody>
</table>
| ... | ... | ... | ...
Contour extraction from images

● Pre-segmentation of an image
 ● separate the diatom objects from dark or light debris
 ● identify the regions with structured objects
 ● merge nested regions

● Edge-based thresholding for contour extraction
 ● locate the boundary between the objects and the background
 ● produce a binary (black and white) image with the diatom contours

● Contour following
 ● trace the region borders in the binary image
Feature extraction from images

- Simple geometric properties
 - length, width, size and the length-width ratio

- Simple shape descriptors
 - rectangularity, triangularity, compactness, ellipticity, and circularity

- Fourier descriptors
 - 30 coefficients

- SIFT histograms
 - Invariant to changes in illumination, image noise, rotation, scaling, and small changes in viewpoint
Predictive Clustering Trees (PCTs)

- Standard Top-Down Induction of DTs
- Hierarchy of clusters
- Distance measure: minimization of intra-cluster variance
- Instantiation of the variance for different tasks
 - Multiple targets, sequences, hierarchies
CLUS

- System where the PCTs framework is implemented (KULeuven & JSI)
- The top-down induction algorithm for PCTs:

```plaintext
procedure PCT(I) returns tree
1: (t*, P*) = BestTest(I)
2: if t* ≠ none then
3:   for each I_k ∈ P* do
4:     tree_k = PCT(I_k)
5:   return node(t*, ∪_k{tree_k})
6: else
7:   return leaf(Prototype(I))
```

```plaintext
procedure BestTest(I)
1: (t*, h*, P*) = (none, 0, Ø)
2: for each possible test t do
3:   P = partition induced by t on I
4:   h = Var(I) - ∑_{I_k ∈ P} |I_k|/|I| Var(I_k)
5:   if (h > h*) ∧ Acceptable(t, P) then
6:     (t*, h*, P*) = (t, h, P)
7:   return (t*, P*)
```

- Selecting the tests: reduction in variance caused by partitioning the instances
PCTs for Hierarchical Multi-Label Classification

- HMLC: an example can be labeled with multiple labels that are organized in a hierarchy

\[
\{ 1, 2, 2.2 \} \quad \rightarrow \quad v_i = [1, 1, 0, 1, 0]
\]
PCTs for Hierarchical Multi-Label Classification

- Variance: average squared distance between each example’s label and the set’s mean label

- Weighted Euclidean distance: an error at the upper levels costs more than an error at the lower levels

\[
Var(S) = \frac{\sum_{i} d(v_i, \bar{v})^2}{|S|}
\]

\[
d(v_1, v_2) = \sqrt{\sum_{i} w(c_i)(v_{1,i} - v_{2,i})^2}
\]
Ensemble methods

- Ensembles are a set of predictive models
 - Unstable base classifiers

- Voting schemes to combine the predictions into a single prediction

- Ensemble learning approaches
 - Modification of the data
 - Bagging
 - Modification of the algorithm
 - Random Forest
Ensemble methods

- Training set
- n bootstrap replicates

n classifiers → n predictions

Test set

L1 → L2 → L3 → L

Ensemble methods

Training set

1

2

3

... n

n bootstrap replicates

CLUS

CLUS
ADIAC diatom image database

- Three different subset of images:
 - 1099 images classified in 55 different taxa
 - 1020 images classified in 48 different taxa
 - 819 images classified in 37 different taxa

- The diatoms vary in shape and ornamentation
Experimental design – classifier

- Random Forests and Bagging of PCTs for HMLC:
 - Feature Subset Size: 10% of the number of descriptive attributes
 - Number of classifiers: 100 un-pruned trees
 - Combine the predictions output by the base classifiers: probability distribution vote
Results (1)

- Predictive performance of the feature extraction algorithms and their combination

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Descriptors</th>
<th># features</th>
<th>Overall recognition rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>55 diatom taxa</td>
</tr>
<tr>
<td>Bagging</td>
<td>Geometric and shape descriptors</td>
<td>9</td>
<td>76.3</td>
</tr>
<tr>
<td></td>
<td>Fourier descriptors</td>
<td>30</td>
<td>86.7</td>
</tr>
<tr>
<td></td>
<td>SIFT histograms</td>
<td>200</td>
<td>88.4</td>
</tr>
<tr>
<td></td>
<td>Geometric and shape desc.+Fourier desc.+SIFT hist.</td>
<td>239</td>
<td>96.2</td>
</tr>
<tr>
<td>Random Forests</td>
<td>Geometric and shape descriptors</td>
<td>9</td>
<td>76.3</td>
</tr>
<tr>
<td></td>
<td>Fourier descriptors</td>
<td>30</td>
<td>86.6</td>
</tr>
<tr>
<td></td>
<td>SIFT histograms</td>
<td>200</td>
<td>88.2</td>
</tr>
<tr>
<td></td>
<td>Geometric and shape desc.+Fourier desc.+SIFT hist.</td>
<td>239</td>
<td>96.2</td>
</tr>
</tbody>
</table>
Results (1)

- Predictive performance of the feature extraction algorithms and their combination

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Descriptors</th>
<th># features</th>
<th>Overall recognition rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>55 diatom taxa</td>
</tr>
<tr>
<td>Bagging</td>
<td>Geometric and shape descriptors</td>
<td>9</td>
<td>76.3</td>
</tr>
<tr>
<td></td>
<td>Fourier descriptors</td>
<td>30</td>
<td>86.7</td>
</tr>
<tr>
<td></td>
<td>SIFT histograms</td>
<td>200</td>
<td>88.4</td>
</tr>
<tr>
<td></td>
<td>Geometric and shape desc.+Fourier desc.+SIFT hist.</td>
<td>239</td>
<td>96.2</td>
</tr>
<tr>
<td>Random Forests</td>
<td>Geometric and shape descriptors</td>
<td>9</td>
<td>76.3</td>
</tr>
<tr>
<td></td>
<td>Fourier descriptors</td>
<td>30</td>
<td>86.6</td>
</tr>
<tr>
<td></td>
<td>SIFT histograms</td>
<td>200</td>
<td>88.2</td>
</tr>
<tr>
<td></td>
<td>Geometric and shape desc.+Fourier desc.+SIFT hist.</td>
<td>239</td>
<td>96.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Descriptors</th>
<th>Classifier</th>
<th>Evaluation</th>
<th>Recognition Rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td># Images</td>
<td># Taxa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1099</td>
<td>55 geometric and shape; Fourier; SIFT</td>
<td>Bagging of predictive clustering trees</td>
<td>10-fold cross-validation</td>
<td>96.2</td>
</tr>
<tr>
<td>1020</td>
<td>48 geometric and shape; Fourier; SIFT</td>
<td>Bagging of predictive clustering trees</td>
<td>10-fold cross-validation</td>
<td>98.1</td>
</tr>
<tr>
<td>1009</td>
<td>48 contour profiling; Legendre polynomials</td>
<td>Decision trees; Neural networks; syntactical classifier</td>
<td>Random separation (50/50) to train and test set</td>
<td>82</td>
</tr>
<tr>
<td>808</td>
<td>38 geometric; shape; Fourier; image moments; ornamentation and morphological</td>
<td>Bagging of Decision Trees</td>
<td>Leave One Out</td>
<td>94.9</td>
</tr>
<tr>
<td>819</td>
<td>37 geometric and shape; Fourier; SIFT</td>
<td>Bagging of predictive clustering trees</td>
<td>10-fold cross-validation</td>
<td>98.8</td>
</tr>
<tr>
<td>781</td>
<td>37 contour; segment; global</td>
<td>nearest -mean classifier</td>
<td>set swapping (complex pseudo cross-validation)</td>
<td>82.9</td>
</tr>
<tr>
<td>781</td>
<td>37 Gabor; Legendre polynomials; ornamentation</td>
<td>Decision trees; Bayesian classifier</td>
<td>Random separation (50/50) to train and test set</td>
<td>88</td>
</tr>
<tr>
<td>781</td>
<td>37 contour; ornamentation</td>
<td>Bagging of Decision Trees</td>
<td>10 times random separation (75/25) train and test</td>
<td>89.6</td>
</tr>
<tr>
<td>781</td>
<td>37 Gabor; Legendre polynomials; ornamentation; contour; global; geometric; shape; Fourier; image moments; morphological</td>
<td>Bagging of Decision Trees</td>
<td>10 times random separation (75/25) train and test</td>
<td>96.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data # Images</th>
<th># Taxa</th>
<th>Descriptors</th>
<th>Classifier</th>
<th>Evaluation</th>
<th>Recognition Rate [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1099</td>
<td>55</td>
<td>geometric and shape; Fourier; SIFT</td>
<td>Bagging of predictive clustering trees</td>
<td>10-fold cross-validation</td>
<td>96.2</td>
</tr>
<tr>
<td>1020</td>
<td>48</td>
<td>geometric and shape; Fourier; SIFT</td>
<td>Bagging of predictive clustering trees</td>
<td>10-fold cross-validation</td>
<td>98.1</td>
</tr>
<tr>
<td>1009</td>
<td>48</td>
<td>contour profiling; Legendre polynomials</td>
<td>Decision trees; Neural networks; syntactical classifier</td>
<td>Random separation (50/50) to train and test set</td>
<td>82</td>
</tr>
<tr>
<td>808</td>
<td>38</td>
<td>geometric; shape; Fourier; image moments; ornamentation and morphological</td>
<td>Bagging of Decision Trees</td>
<td>Leave One Out</td>
<td>94.9</td>
</tr>
<tr>
<td>819</td>
<td>37</td>
<td>geometric and shape; Fourier; SIFT</td>
<td>Bagging of predictive clustering trees</td>
<td>10-fold cross-validation</td>
<td>98.8</td>
</tr>
<tr>
<td>781</td>
<td>37</td>
<td>contour; segment; global</td>
<td>nearest-mean classifier</td>
<td>set swapping (complex pseudo cross-validation)</td>
<td>82.9</td>
</tr>
<tr>
<td>781</td>
<td>37</td>
<td>Gabor; Legendre polynomials; ornamentation</td>
<td>Decision trees; Bayesian classifier</td>
<td>Random separation (50/50) to train and test set</td>
<td>88</td>
</tr>
<tr>
<td>781</td>
<td>37</td>
<td>contour; ornamentation</td>
<td>Bagging of Decision Trees</td>
<td>10 times random separation (75/25) train and test</td>
<td>89.6</td>
</tr>
<tr>
<td>781</td>
<td>37</td>
<td>Gabor; Legendre polynomials; ornamentation; contour; global; geometric; shape; Fourier; image moments; morphological</td>
<td>Bagging of Decision Trees</td>
<td>10 times random separation (75/25) train and test</td>
<td>96.9</td>
</tr>
</tbody>
</table>
Results (2)

- The presented approach has very high predictive performance (ranging from 96.2% to 98.7%)

- Recognition rates of 100% for the majority of taxa

- Lower recognition rates are achieved for taxa that are very similar to each other and difficult to distinguish
 - *Eunotia diatoms* (presented on image), *Fallacia diatoms*

- Our results are better than the ones obtained from human annotators (63.3% recognition rate)
Conclusion

- Novel approach to taxonomic identification of taxa from microscopic images
- Different feature extraction approaches and hierarchical multi-label classification
- Very high predictive performance - the best reported performance on this dataset