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Abstract. The two most commonly addressed data mining tasks are
predictive modelling and clustering. Here we address the task of predic-
tive clustering, which contains elements of both and generalizes them to
some extent. Predictive clustering has been mainly evaluated in the con-
text of trees. In this paper, we extend predictive clustering toward rules.
Each cluster is described by a rule and different clusters are allowed to
overlap since the sets of examples covered by different rules do not need
to be disjoint. We propose a system for learning these predictive clus-
tering rules, which is based on a heuristic sequential covering algorithm.
The heuristic takes into account both the precision of the rules (compact-
ness w.r.t. the target space) and the compactness w.r.t. the input space,
and the two can be traded-off by means of a parameter. We evaluate our
system in the context of several multi-objective classification problems.

1 Introduction

Predictive modeling or supervised learning aims at constructing models that
can predict the value of a target attribute (dependent variable) from the known
values for a set of input attributes (independent variables). A wide array of
predictive modeling methods exist, which produce more or less (or not at all)
interpretable models. Typical representatives of the group of methods that result
in understandable and interpretable models are decision tree learning [14] and
rule learning [7].

Clustering [9], on the other hand, is an unsupervised learning method. It
tries to find subgroups of examples or clusters with homogeneous values for all
attributes, not just the target attribute. In fact, the target attribute is usually
not even defined in a clustering task. The result is a set of clusters and not
necessarily their descriptions or models; usually we can link new examples to
the constructed clusters based on e.g., proximity in the attribute space.

Predictivemodeling and clustering are therefore regarded as quite different tech-
niques. Nevertheless, different viewpoints also exist [10] which stress the many sim-
ilarities that some predictive modeling techniques, most notably techniques that
partition the example space, such as decision trees, share with clustering. Decision
trees partition the set of examples into subsets with homogeneous values for the
target attribute, while clustering methods search for subsets in which the examples
have homogeneous values for all the attributes.
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In this paper, we consider the task of predictive clustering [1, 2], which con-
tains elements of both predictive modelling and clustering and generalizes them
to some extent. In predictive clustering, one can simultaneously consider homo-
geneity along the target attribute and the input attributes, and trade-off one for
the other. It has been argued [1] that predictive clustering is useful in noisy do-
mains and in domains with missing values for the target attribute. Furthermore,
predictive clustering has been proven useful in applications with non-trivial tar-
gets such as multi-objective classification and regression [2, 17], ranking [20], and
hierarchical multi-classification [18].

Predictive clustering has been evaluated mainly in the context of trees. In this
paper we extend predictive clustering toward rules. We call the resulting frame-
work predictive clustering rules (PCRs). The task of learning PCRs generalizes
the task of rule induction, on one hand, and clustering, and in particular item
set constrained clustering [15, 16], on the other.

Since learning PCRs is a form of constrained clustering, it is directly related
to constraint-based data mining and inductive databases (IDBs). Constraint-
based clustering is an under-researched topic in constraint-based data mining
and the present research is a step towards rectifying this. Bringing the two most
common data mining tasks closer together (as done in predictive clustering)
moves us towards finding a general framework for data mining, which is also the
main goal of IDBs.

The rest of this paper is organized as follows. In the next section, we discuss
prediction, clustering and predictive clustering in more detail. Section 3 extends
predictive clustering toward rules and proposes the first system for building pre-
dictive clustering rules. The algorithm used in the system is a heuristic sequential
covering algorithm and the heuristic trades-off homogeneity w.r.t. the target at-
tributes and homogeneity w.r.t. the input attributes. We compare our system
to related approaches in Section 4. Section 5 evaluates the system on a number
of multi-objective classification and regression data sets. The paper ends with a
discussion of further work and a conclusion.

2 Prediction, Clustering, and Predictive Clustering

The tasks of predictive modelling and clustering are two of the oldest and most
commonly addressed tasks in data analysis and data mining. Here we briefly
introduce each of them and discuss predictive clustering, a task that combines
elements of both prediction and clustering.

2.1 Predictive Modelling

Predictive modeling aims at constructing models that can predict a target prop-
erty of an object from a description of the object. Predictive models are learned
from sets of examples, where each example has the form (D,T ), with D being an
object description and T a target property value. While a variety of languages
ranging from propositional to first order logic have been used for D, T is al-
most always considered to consist of a single target attribute called the class:
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if this attribute is discrete we are dealing with a classification problem and if
continuous with a regression problem.

In practice, D is most commonly a vector and each element of this vector
is the value for a particular attribute (attribute-value representation). In the
remainder of the paper, we will consider both D and T to be vectors of attribute
values (discrete or real-valued). If T is a vector with several target attributes,
then we call the prediction task multi-objective prediction. If T only contains
discrete attributes we speak of multi-objective classification. If T only contains
continuous attributes we speak of multi-objective regression.

Predictive models can take many different forms that range from linear equa-
tions to logic programs. Two commonly used types of models are decision trees
[14] and rules [7]. Unlike (regression) equations that provide a single predictive
model for the entire example space, trees and rules divide the space of examples
into subspaces and provide a simple prediction or predictive model for each of
these.

2.2 Clustering and Clustering Trees

Clustering [9] in general is concerned with grouping objects into classes of similar
objects. Given a set of examples (object descriptions), the task of clustering is
to partition these examples into subsets, called clusters. Note that examples do
not contain a target property to be predicted, but only an object description
(which is typically a vector of attribute-values D). The goal of clustering is
to achieve high similarity between objects within individual clusters and low
similarity between objects that belong to different clusters.

Conventional clustering focuses on distance-based cluster analysis. The notion
of a distance (or conversely, similarity) is crucial here: examples are considered
to be points in a metric space (a space with a distance measure). A prototype
(or prototypical example) may be used as a representative for a cluster. Usually,
the prototype is the point with the lowest average distance to all the examples
in the cluster, i.e., the mean or the medoid of the examples.

In conceptual clustering [12], a symbolic representation of the resulting clus-
ters is produced in addition to the partition into clusters: we can thus consider
each cluster to be a concept (much like a class in classification). In this context,
a decision tree structure may be used to represent a hierarchical clustering: such
a tree is called a clustering tree [1]. In a clustering tree each node represents a
cluster. The conjunction of conditions on the path from the root to that node
gives a symbolic representation of the cluster. Essentially, each cluster has a
symbolic description in the form of a rule (IF conjunction of conditions THEN
cluster), while the tree structure represents the hierarchy of clusters. Clusters
that are not on the same branch of a tree do not overlap.

Given the above, predictive modelling approaches which divide the set of ex-
amples into subsets, such as decision tree and rule induction, are in a sense
very similar to clustering. A major difference is that they partition the space
of examples into subsets with homogeneous values of the target attribute, while
(distance-based) clustering methods seek subsets with homogeneous values of
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Fig. 1. Predictive modelling (a), clustering (b), and predictive clustering (c)

the descriptive attributes. This is illustrated in Fig. 1. Assume that each ex-
ample has a description D ∈ D and is labeled with a target value T ∈ T . A
predictive tree learner will build a tree with leaves that are as pure as possi-
ble w.r.t. the target value, i.e., it will form clusters that are homogeneous in
T , as shown in Fig. 1.a. The reason is that the quality criterion that is used
to build the tree (e.g., information gain [14]) is based on the target attributes
only1. In unsupervised clustering, on the other hand, there is no target value
defined and the clusters that are generated will be homogeneous w.r.t. D, as
shown in Fig. 1.b. In the next section, we will consider predictive clustering,
which in general searches for clusters that are homogeneous w.r.t. to both D
and T (Fig. 1.c).

2.3 Predictive Clustering

The task of predictive clustering [2] combines elements from both prediction
and clustering. As is common in clustering, we seek clusters of examples that
are similar to each other (and dissimilar to examples in other clusters), but in
general taking both the descriptive and the target attributes into account. In
addition, a predictive model must be associated with each cluster; the model
gives a prediction of the target variables T in terms of the attributes D for all
examples that are established to belong to that cluster.

In the simplest and most common case, the predictive model associated to a
cluster would be the projection on T of the prototype of the examples that belong
to that cluster. This would be a simple average when T is a single continuous
variable. In the discrete case, it would be a probability distribution across the
discrete values or the mode thereof. When T is a vector, the prototype would be
a vector of averages and distributions/modes.

To summarize, in predictive clustering, each cluster has both a symbolic de-
scription (in terms of a language bias over D) and a predictive model (a prototype
1 Because the leaves of a decision tree have conjunctive descriptions in D, the cor-

responding clusters will also have some homogeneity w.r.t. D, but the latter is not
optimized by the system.
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in T ) associated to it, i.e., the resulting clustering is defined by a symbolic model.
If we consider a tree based representation, then this model is called a predictive
clustering tree. Predictive clustering trees have been proposed by Blockeel et al.
[2]. In the next section, we will propose predictive clustering rules, a framework
in which the clustering model is represented as a rule set.

3 Predictive Clustering Rules (PCRs)

This section presents the main contribution of this paper, which is the predictive
clustering rules (PCRs) framework. We start with a general definition of PCRs.
Then we apply this general definition to the multi-objective prediction setting.
Finally, we propose a system for learning PCRs in this setting.

3.1 Definition

The task of learning a set of PCRs is defined as follows.

Given:

– a target space T
– a description space D
– a set of examples E = {ei}, with ei ∈ D × T
– a declarative language bias B over D
– a distance measure d that computes the distance between two examples
– a prototype function p that computes the prototype of a set of examples

Find a set of clusters, where

– each cluster is associated with a description expressed in B
– each cluster has an associated prediction expressed as a prototype
– within-cluster distance is low (similarity is high) and
– between-cluster distance is high (similarity is low)

Each cluster can thus be represented as a so-called predictive clustering rule,
which is a rule of the form “IF cluster description THEN cluster prototype”.

Example 1. Consider the data set shown in Fig 2.a. It has two numeric at-
tributes: a is a descriptive attribute and b is the target attribute, i.e., D = T = R.
Suppose that the distance metric is the Euclidean distance over R

2. The corre-
sponding prototype is the vector average. If the language bias B allows conjunc-
tions of tests comparing a to a particular constant, then a possible set of PCRs
for this data set is shown in Fig 2.b.

Note that the description in the conditional part of a PCR only takes D into
account and not T . The reason is that it must be possible to apply the rule to
unseen examples later on for which T is not defined.

There are two main differences between PCRs and predictive clustering trees.
The first difference is that predictive clustering trees represent a hierarchical
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Fig. 2. A data set (left) and the corresponding set of predictive clustering rules (right)

clustering of the data whereas the clustering corresponding to a set of PCRs
is flat. The other difference is that the clusters defined by a set of PCRs may
overlap. In fact, there are two possible interpretations of a set of PCRs: the
rules can be ordered and treated as a decision list. In that case, a given example
belongs to the cluster of the first rule in the list that fires and the resulting
clustering is disjoint. On the other hand, if the rules are considered unordered,
then the clusters may overlap as several rules may apply to a given example.
If in the latter case a set of rules fire for a given example, then a method is
required for combining the predictions of the different rules. Such a method is
not required in predictive clustering trees since in that case the clusters are
guaranteed to be disjoint. We will propose a suitable combining method later in
the paper.

3.2 PCRs for Multi-objective Prediction (MOP)

In this section, we discuss the PCR framework in the context of multi-objective
prediction (MOP) tasks. This includes multi-objective classification and multi-
objective regression as discussed before. As a result, the examples will be of the
form (D,T ) with D and T both vectors of attribute-values. MOP has two main
advantages over using a separate model for each target attribute: (1) a single
MOP model is usually much smaller than the total size of the individual models
for all attributes, and (2) a MOP model may explicitate dependencies between
the different target variables [17].

The distance metric that we will use in the clustering process takes both D
and T into account and is defined as follows.

d = (1 − τ)dD + τdT . (1)

It has two components, one for the descriptive part dD and a second one for
the target part dT and the relative contribution of the two components can be
changed by means of the parameter τ .

In our rule induction algorithm, we will estimate the quality of a (partial)
rule that covers a set of examples S as the average distance of an example in S



240 B. Ženko, S. Džeroski, and J. Struyf

to the prototype of S. We will call this the “compactness” of the rule. Because
the attributes can in general be nominal or numeric, different measures for each
type are needed which are then combined (added) into a single measure.

For nominal attributes, the prototype is a vector with as components the
frequencies of each of the attribute’s values in the given set of examples S, i.e.,
for an attribute with k possible values (v1 to vk), the prototype is of the form
[f1, f2, . . . , fk], with fi the frequency of vi in S. The distance between an example
and the prototype is defined as follows: if the attribute value for the example
is vi, then the distance to the prototype is defined as (1 − fi). For numeric
attributes, the prototype is the mean of the attribute’s values and the distance
between an example and the prototype is computed as the absolute difference.
Numeric attributes are normalized during a preprocessing step such that their
mean is zero and their variance is one.

Example 2. Consider a data set with a nominal attribute a with possible values
⊕ and � and a numeric attribute b. There are three examples in S: [⊕, 1], [⊕, 2],
and [�, 1]. The prototype for a is the vector [2/3, 1/3] and the prototype for b is
2. The compactness of a is 4/9 and the compactness of b is 2/3. The combined
compactness is 2/3 + 4/9 = 10/9.

Note that our compactness measure is actually an “incompactness” measure,
since smaller values mean more compact sets of examples.

The declarative bias will restrict our hypothesis language to rules consisting
of conjunctions of attribute-value conditions over the attributes D. In particular,
we consider subset tests for nominal attributes and inequality tests for numeric
attributes. Additional language constraints are planned for consideration.

3.3 Learning Predictive Clustering Rules

This section describes our system for learning PCRs. The majority of rule in-
duction methods are based on a sequential covering algorithm and among these
the CN2 algorithm [4] is well known. Our system is based on this algorithm, but
several important parts are modified. In this section we first briefly describe the
original CN2 algorithm, and then we present our modifications.

Rule Induction with CN2. The CN2 algorithm iteratively constructs rules
that cover examples with homogeneous target variable values. The heuristic used
to guide the search is simply the accuracy of the rule under construction. After
a rule has been constructed, the examples covered by this rule are removed from
the training set, and the procedure is repeated on the new data set until the
data set is empty or no new rules are found. The rules constructed in this way
are ordered, meaning that they can be used for prediction as a decision list;
we test rules on a new example one by one and the first rule that fires is used
for prediction of the target value of this example. Alternatively, CN2 can also
construct unordered rules if only correctly classified examples are removed from
the training set after finding each rule and if rules are built for each class in
turn. When using unordered rules for prediction, several rules can fire on each
example and a combining method is required as discussed before.
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The Search Heuristic: Compactness. The main difference between CN2
and the approach presented in this paper is the heuristic that is used for guiding
the search for rules. The purpose of the heuristic is to evaluate different rules;
it should measure the quality of each rule separately and/or the quality of the
whole rule set.

One of the most important properties of rules (and other models) is their
accuracy, and standard CN2 simply uses this as a heuristic. Accuracy is only
connected to the target attribute. Our goal when developing predictive clustering
rules was (besides accuracy) that the induced rules should cover compact subsets
of examples, just as clustering does. For this purpose we need a heuristic which
takes into account the target attributes as well as the descriptive attributes.

As explained above, we will use the compactness (average distance of an ex-
ample covered by a rule to the prototype of this set of examples). The compact-
ness takes into account both the descriptive and the target attributes and is a
weighted sum of the compactness along each of the dimensions (the latter are
normalized to be between 0 and 1). At present only a general weight τ is applied
for putting the emphasis on the targets attributes (τ = 1) or the input attributes
(τ = 0): target attributes should in general have higher weights in order to guide
the search toward accurate rules.

Weighted Covering. The standard covering algorithm removes the examples
covered by a rule from the training set in each iteration. As a consequence, subse-
quent rules are constructed on smaller example subsets which can be improperly
biased and can have small coverage. To overcome these shortages we employ the
weighted covering algorithm [11]. The difference is that once an example is cov-
ered by a new rule, it is not removed from the training set but instead, its weight
is decreased. As a result, the already covered example will be less likely covered
in the next iterations. We use the additive weighting scheme, which means that
the weight of an example after being covered m times is equal to 1

1+m . Finally,
when the example is covered more than a predefined number of times (in our
experiments five), the example is completely removed from the training set.

Probabilistic Classification. As already mentioned, the original CN2 algo-
rithm can induce ordered or unordered rules. In case of ordered rules (i.e., a
decision list) the classification is straightforward. We scan the rules one by one
and whichever rule fires first on a given example is used for prediction. If no
rule fires, the default rule is used. When classifying with unordered rules, CN2
collects class distributions of all rules that fire on an example and uses them for
weighted voting. We use the same probabilistic classification scheme even though
our unordered rules are not induced for each possible class value separately.

4 Related Work

Predictive modeling and clustering are regarded as quite different tasks. While
there are many approaches addressing each of predictive modelling and cluster-
ing, few approaches look at both or try to relate them. A different viewpoint is
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taken by Langley [10]: predictive modeling and clustering have many similari-
ties and this has motivated some recent research on combining prediction and
clustering.

The approach presented in this paper is closely related to predictive clustering
trees [2], which also address the task of predictive clustering. The systems Tilde

[2] and Clus [3] use a modified top-down induction of decision trees algorithm
to construct clustering trees (which can predict values of more than one target
variables simultaneously). So far, however, distances used in Tilde and Clus

systems have considered attributes or classes separately, but not both together,
even though the idea was presented in [1].

Our approach uses a rule-based representation for predictive clustering. As
such, it is closely related to approaches for rule induction, and among these in
particular CN2 [4]. However, it extends rule induction to the more general task
of multi-objective prediction. While some work exists on multi-objective classi-
fication with decision trees (e.g., [19]), the authors are not aware of any work on
rule-induction for multi-objective classification. Also, little work exists on rule-
based regression (e.g., R2 [21] for propositional learning and FORS [8] for first
order logic learning), let alone rule-based multi-objective regression (or multi-
objective prediction in general, with mixed continuous and discrete targets).

Related to rule induction is subgroup discovery [11], which tries to find and
describe interesting groups of examples. While subgroup discovery algorithms
are similar to rule induction ones, they have introduced interesting innovations,
including the weighted covering approach used in our system.

Another related approach to combining clustering and classification is itemset
constrained clustering [15, 16]. Here the attributes describing each example are
separated in two groups, called feature items and objective attributes. Clustering
is done on the objective attributes, but only clusters which can be described in
terms of frequent item sets (using the feature items attributes) are constructed.
As a result each cluster can be classified by a corresponding frequent item set.

As in our approach, itemset classified clustering tries to find groups of ex-
amples with small variance of the objective attributes. As compared to itemset
classified clustering, our approach allows both discrete (and not only binary at-
tributes / items) and continuous variables on the feature/attribute side, as well
as the objective/target side. Itemset constrained clustering is also related to sub-
group discovery, as it tries to find interesting groups of examples, rather than
a set of (overlapping) clusters that cover all examples. A second important dif-
ference is that in itemset classified clustering the distance metric takes only the
objective attributes into account, whereas the rules constructed by our approach
are also compact w.r.t. the descriptive space.

5 Experiments

The current implementation of predictive clustering rules has been tested on
several classification problems with multiple target attributes. For each data
set two sets of experiments have been performed. First, we tried to test the
performance of our method when predicting multiple target attributes at once
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in comparison to single target attribute prediction task. In the second set of
experiments we investigated the influence of the target weighting parameter (τ)
on the accuracy and compactness of induced rules.

5.1 Data Sets

There are not a lot of publicly available data sets suitable for multi-target classi-
fication. However, some of the data sets from the UCI repository [13] can also be
used for this purpose, namely the data sets monks, solar-flare, and thyroid. The
first two data sets have three target attributes each, while the third has seven.

In addition to these UCI data sets we have also used Slovenian rivers water
quality data set (water-quality). The data set comprises biological and chemical
data that were collected through regular monitoring of rivers in Slovenia. The
data come from the Environmental Agency of the Republic of Slovenia that
performs water quality monitoring for most Slovenian rivers and maintains a
database of water quality samples. The data cover a six year period, from 1990
to 1995 and have been previously used in [5].

Biological samples are taken twice a year, once in summer and once in winter,
while physical and chemical analysis are performed several times a year for each
sampling site. The physical and chemical samples include the measured values
of 15 different parameters. The biological samples include a list of all taxa (plant
and animal species) present at the sampling site. All the attributes of the data
set are listed in Table 1. In total, 1060 water samples are available in the data

Table 1. The attributes of the river water quality data set

Independent attributes Target attributes
physical & chemical properties taxa – presences/absences
numeric type nominal type (0,1)

water temperature Cladophora sp.
alkalinity (pH) Gongrosira incrustans
electrical conductivity Oedogonium sp.
dissolved O2 Stigeoclonium tenue
O2 saturation Melosira varians
CO2 conc. Nitzschia palea
total hardness Audouinella(Chantransia) chalybea
NO2 conc. Erpobdella octoculata
NO3 conc. Gammarus fossarum
NH4 conc. Baetis rhodani
PO4 conc. Hydropsyche sp.
Cl conc. Rhyacophila sp.
SiO2 conc. Simulium sp.
chemical oxygen demand – KMnO4 Tubifex sp.
chemical oxygen demand – K2Cr2O7

biological oxygen demand (BOD)
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set. In our experiments we have considered the physical and chemical properties
as independent attributes, and presences/absences of taxa as target attributes.

5.2 Results

The first set of experiments was performed in order to test the appropriateness
of predictive clustering rules for multiple target prediction. In all experiments the
minimal number of examples covered by a rule was 20, and the weight of target at-
tributes (τ) was set to 1. The results of 10-fold cross validation can be seen for each
data set separately in Tables 2, 3, 4, and 5. The first columns in tables are the accu-
racies for each target attribute as predicted by the PCR multi-target models and
in the second columns are accuracies as predicted by the PCR single-target mod-
els. Third and fourth columns are accuracies for predictive clustering trees (PCT).
The last rows in the tables give the average accuracies across all target attributes.

Looking at these average accuracies we can see that the performance of models
predicting all classes together is comparable to the performance of single target
models. There are no significant differences for the monks, solar-flare and thyroid
data sets, while the multi-target model is somewhat worse than single-target
models on the water quality data set. When comparing predictive clustering
rules to predictive clustering trees, the performance of the latter is somewhat
better on the thyroid and water quality data set but a little worse on the monks
data set; there are no differences on the solar-flare data set.

Table 2. Monks data set. Accuracies of predictive clustering rules (PCR) and predic-
tive clustering trees (PCT) used for multi-objective prediction of all target attributes
together and for single target prediction of each target attribute separately.

PCR PCT
Target attribute All Indiv. All Indiv.

monk–1 0.803 0.810 0.711 0.764
monk–2 0.671 0.669 0.664 0.627
monk–3 0.935 0.935 0.972 0.972

Average accuracy 0.803 0.805 0.782 0.788

Table 3. Solar-flare data set. Accuracies of predictive clustering rules (PCR) and pre-
dictive clustering trees (PCT) used for multi-objective prediction of all target attributes
together and for single target prediction of each target attribute separately.

PCR PCT
Target attribute All Indiv. All Indiv.

class–c 0.828 0.829 0.829 0.826
class–m 0.966 0.966 0.966 0.966
class–x 0.995 0.995 0.995 0.995

Average accuracy 0.930 0.930 0.930 0.929
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Table 4. Thyroid data set. Accuracies of predictive clustering rules (PCR) and predic-
tive clustering trees (PCT) used for multi-objective prediction of all target attributes
together and for single target prediction of each target attribute separately.

PCR PCT
Target attribute All Indiv. All Indiv.

hyperthyroid 0.974 0.975 0.983 0.984
hypothyroid 0.941 0.947 0.989 0.989
binding protein 0.955 0.961 0.974 0.975
general health 0.970 0.972 0.984 0.985
replacement theory 0.961 0.963 0.985 0.990
antithyroid treatment 0.996 0.996 0.996 0.996
discordant results 0.979 0.979 0.987 0.989

Average accuracy 0.968 0.971 0.986 0.987

Table 5. Water quality data set. Accuracies of predictive clustering rules (PCR) and
predictive clustering trees (PCT) used for multi-objective prediction of all target at-
tributes together and for single target prediction of each target attribute separately.

PCR PCT
Target attribute All Indiv. All Indiv.

Cladophora sp. 0.594 0.629 0.630 0.648
Gongrosira incrustans 0.733 0.729 0.722 0.665
Oedogonium sp. 0.713 0.717 0.723 0.710
Stigeoclonium tenue 0.795 0.790 0.796 0.771
Melosira varians 0.569 0.611 0.638 0.643
Nitzschia palea 0.688 0.662 0.714 0.708
Audouinella chalybea 0.751 0.756 0.747 0.712
Erpobdella octoculata 0.721 0.741 0.712 0.691
Gammarus fossarum 0.628 0.654 0.664 0.688
Baetis rhodani 0.676 0.723 0.686 0.700
Hydropsyche sp. 0.584 0.604 0.614 0.630
Rhyacophila sp. 0.686 0.710 0.708 0.709
Simulium sp. 0.633 0.635 0.593 0.642
Tubifex sp. 0.728 0.745 0.735 0.739

Average accuracy 0.679 0.693 0.692 0.690

The task of the second set of experiments was to evaluate the influence of
the target weighting parameter (τ) on the accuracy and cluster compactness of
induced rules (Tables 6, 7, 8, and 9). Rules were induced for predicting all target
attributes together with six different values of the τ parameter. At the bottom
of each table are the average accuracies of 10-fold cross-validation and average
compactness of subsets of examples (clusters) covered by rules in each model.
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Table 6. Monks data set. The accuracy and cluster compactness of predictive clustering
rules used for multiple target prediction of all target attributes together with different
target attributes weightings (τ).

τ
Target attribute 0.5 0.7 0.8 0.9 0.95 1

monk–1 0.843 0.840 0.806 0.833 0.831 0.803
monk–2 0.671 0.671 0.671 0.671 0.671 0.671
monk–3 0.949 0.965 0.975 0.958 0.938 0.935

Average accuracy 0.821 0.826 0.817 0.821 0.813 0.803
Average compactness 0.487 0.486 0.486 0.495 0.506 0.516

Table 7. Solar flare data set. The accuracy and cluster compactness of predictive
clustering rules used for multiple target prediction of all target attributes together
with different target attributes weightings (τ).

τ
Target attribute 0.5 0.7 0.8 0.9 0.95 1

class–c 0.829 0.829 0.829 0.829 0.829 0.828
class–m 0.966 0.966 0.966 0.966 0.966 0.966
class–x 0.995 0.995 0.995 0.995 0.995 0.995

Average accuracy 0.930 0.930 0.930 0.930 0.930 0.930
Average compactness 0.158 0.159 0.161 0.181 0.207 0.239

Table 8. Thyroid data set. The accuracy and cluster compactness of predictive clus-
tering rules used for multiple target prediction of all target attributes together with
different target attributes weightings (τ).

τ
Target attribute 0.5 0.7 0.8 0.9 0.95 1

hyperthyroid 0.974 0.974 0.974 0.974 0.974 0.974
hypothyroid 0.927 0.927 0.927 0.927 0.928 0.941
binding protein 0.955 0.955 0.955 0.955 0.955 0.955
general health 0.938 0.938 0.938 0.938 0.939 0.970
replacement theory 0.961 0.961 0.961 0.961 0.961 0.961
antithyroid treatment 0.996 0.996 0.996 0.996 0.996 0.996
discordant results 0.979 0.979 0.979 0.979 0.979 0.979

Average accuracy 0.961 0.961 0.961 0.961 0.962 0.968
Average compompactness 1739 1797 1705 1591 1603 1605

The rules induced with larger weighting of the non-target attributes (smaller
τ) are on average more compact on the monks and solar-flare data sets (smaller
number for compactness means more compact subsets) while there is no clear
trend for the thyroid data set and no influence at all on the water quality data
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Table 9. Water quality data set. The accuracy and cluster compactness of predictive
clustering rules used for multiple target prediction of all target attributes together with
different target attributes weightings (τ).

τ
Target attribute 0.5 0.7 0.8 0.9 0.95 1

Cladophora sp. 0.586 0.593 0.597 0.599 0.600 0.594
Gongrosira incrustans 0.733 0.733 0.733 0.733 0.733 0.733
Oedogonium sp. 0.716 0.719 0.716 0.717 0.718 0.713
Stigeoclonium tenue 0.792 0.793 0.793 0.793 0.793 0.795
Melosira varians 0.580 0.584 0.578 0.581 0.575 0.569
Nitzschia palea 0.656 0.664 0.657 0.655 0.661 0.688
Audouinella chalybea 0.753 0.753 0.753 0.753 0.753 0.751
Erpobdella octoculata 0.738 0.742 0.742 0.741 0.742 0.721
Gammarus fossarum 0.628 0.641 0.629 0.630 0.632 0.628
Baetis rhodani 0.676 0.676 0.676 0.676 0.676 0.676
Hydropsyche sp. 0.566 0.564 0.568 0.567 0.565 0.584
Rhyacophila sp. 0.684 0.685 0.685 0.685 0.685 0.686
Simulium sp. 0.639 0.640 0.640 0.640 0.646 0.633
Tubifex sp. 0.732 0.729 0.725 0.730 0.731 0.728

Average accuracy 0.677 0.680 0.678 0.679 0.679 0.679
Average compactness 0.348 0.348 0.348 0.348 0.348 0.350

set. Larger weighting of the non-target attributes has very little effect on the
accuracy of the models except in case of the monks data set, where it improves
accuracy.

6 Conclusions and Further Work

In this paper, we have considered the data mining task of predictive cluster-
ing. This is a very general task that contains many features of (and thus to
a large extent generalizes over) the tasks of predictive modelling and clus-
tering. While this task has been considered before, we have defined it both
more precisely and in a more general form (i.e., to consider distances on both
target and attribute variables and to consider clustering rules in addition to
trees).

We have introduced the notion of clustering rules and focused on the task
of learning predictive clustering rules for multi-objective prediction. The task
of inducing PCRs generalizes the task of rule induction, extending it to multi-
objective classification, regression and in general prediction. It also generalizes
some forms of distance-based clustering and in particular itemset constrained
clustering (e.g., it allows both discrete and continuous variables on the fea-
ture/attribute side, as well as the objective/target side).

LearningPCRs andpredictive clustering in general canbe viewed as constrained
clustering, where clusters that have an explicit representation in a language of
constraints are sought. At present PCR clusters are arbitrary rectangles in the
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attribute space, as arbitrary conjunctions of conditions are allowed in the rule an-
tecedents. However, one can easily imagine additional language constraints being
imposed on rule antecedents.

Viewing precitive clustering as constrained clustering makes it directly related
to constraint-based data mining and inductive databases (IDBs). Constraint-
based clustering is an under-researched topic in constraint-based data mining
and the present research is a step towards rectifying this. Bringing the two most
common data mining tasks closer together (as done in predictive clustering)
moves us towards finding a general framework for data mining, which is also the
main goal of IDBs.

We have implemented a preliminary version of a system for learning PCRs for
multi-objective classification. We have also performed some preliminary exper-
iments on several data sets. The results show that a single rule-set for MOC
can be as accurate as the collection of rule-sets for individual prediction of
each target. The accuracies are also comparable to those of predictive clus-
tering trees. Experiments in varying the weight of target vs. non-target at-
tributes in the compactness heuristic used in the search for rules show that
non-zero weights for non-targets increase overall compactness and sometimes also
accuracy.

Note, however, that many more experiments are necessary to evaluate the
proposed paradigm and implementation. These would include experiments on
additional data sets for multi-objective prediction, where classification, regres-
sion and a mixture thereof should be considered. Also, a comparison to other
approaches to constrained clustering would be in order.

Other directions for further work concern further development of the PCR
paradigm and its implementation. At present, our implementation only considers
multi-objective classification, but can be easily extended to regression problems,
and also to mixed, classification/regression problems. Currently, the heuristic
guiding the search for rules does not take the number of covered examples in
consideration. Consequently, construction of overly specific rules can only be
prevented by means of setting the minimum number of examples covered by a
rule. Adding a coverage dependent part to the heuristic would enable the induc-
tion of compact rules with sufficient coverage. Another possibility is the use of
some sort of significance testing analogous to significance testing of the target
variable distribution employed by CN2.

Finally, the selection of weights for calculating the distance measure (and the
compactness heuristic) is an open issue. One side of this is the weighting of tar-
get vs. non-target variables. Another side is the assignment of relevance-based
weights to the attributes: while this has been considered for single-objective
classification, we need to extend it to multi-objective prediction.
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