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Abstract. We propose a new set of meta-level features to be used for
learning how to combine classifier predictions with stacking. This set
includes the probability distributions predicted by the base-level classi-
fiers and a combination of these with the certainty of the predictions.
We use these features in conjunction with multi-response linear regres-
sion (MLR) at the meta-level. We empirically evaluate the proposed ap-
proach in comparison to several state-of-the-art methods for construct-
ing ensembles of heterogeneous classifiers with stacking. Our approach
performs better than existing stacking approaches and also better than
selecting the best classifier from the ensemble by cross validation (unlike
existing stacking approaches, which at best perform comparably to it).

1 Introduction

An ensemble of classifiers is a set of classifiers whose individual predictions are
combined in some way (typically by voting) to classify new examples. One of the
most active areas of research in supervised learning has been to study methods
for constructing good ensembles of classifiers [3]. The attraction that this topic
exerts on machine learning researchers is based on the premise that ensembles
are often much more accurate than the individual classifiers that make them up.

Most of the research on classifier ensembles is concerned with generating en-
sembles by using a single learning algorithm [5], such as decision tree learning
or neural network training. Different classifiers are generated by manipulating
the training set (as done in boosting or bagging), manipulating the input fea-
tures, manipulating the output targets or injecting randomness in the learning
algorithm. The generated classifiers are then typically combined by voting or
weighted voting.

Another approach is to generate classifiers by applying different learning al-
gorithms (with heterogeneous model representations) to a single data set (see,
e.g., [8]). More complicated methods for combining classifiers are typically used
in this setting. Stacking [15] is often used to learn a combining method in addi-
tion to the ensemble of classifiers. Voting is then used as a baseline method for
combining classifiers against which the learned combiners are compared. Typi-
cally, much better performance is achieved by stacking as compared to voting.
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The work presented in this paper is set in the stacking framework. We propose
a new set of meta-level features. We use them in conjunction with multi-response
linear regression at the meta-level, and show that this combination does perform
better than other combining approaches. We argue that selecting the best of the
classifiers in an ensemble generated by applying different learning algorithms
should be considered as a baseline to which the stacking performance should be
compared. Our empirical evaluation of several recent stacking approaches shows
that they perform comparably to the best of the individual classifiers as selected
by cross validation, but not better. The approach we propose here performs
better than selecting the best individual classifier.

Section 2 first summarizes the stacking framework, then surveys some recent
results and finally introduces our stacking approach based on classification via
linear regression. The setup for the experimental comparison of several stacking
methods, voting and selecting the best classifier is described in Section 3. Sec-
tion 4 presents and discusses the experimental results and Section 5 concludes.

2 Stacking

We first give a brief introduction to the stacking framework, introduced by
Wolpert [15]. We then summarize the results of several recent studies in stack-
ing [8, 11, 12, 10, 13]. Motivated by these, we introduce a modified stacking
approach based on classification via linear regression [11].

2.1 The Stacking Framework

Stacking is concerned with combining multiple classifiers generated by using
different learning algorithms L1, . . . , LN on a single data set S, which consists of
examples si = (xi, yi), i.e., pairs of feature vectors (xi) and their classifications
(yi). In the first phase, a set of base-level classifiers C1, C2, . . . CN is generated,
where Ci = Li(S). In the second phase, a meta-level classifier is learned that
combines the outputs of the base-level classifiers.

To generate a training set for learning the meta-level classifier, a leave-one-
out or a cross validation procedure is applied. For leave-one-out, we apply each
of the base-level learning algorithms to almost the entire data set, leaving one
example for testing: ∀i = 1, . . . , n : ∀k = 1, . . . , N : Ci

k = Lk(S−si). We then use
the learned classifiers to generate predictions for si: ŷk

i = Ci
k(xi). The meta-level

data set consists of examples of the form ((ŷ1
i , . . . , ŷN

i ), yi), where the features
are the predictions of the base-level classifiers and the class is the correct class
of the example at hand. When performing, say, ten-fold cross validation, instead
of leaving out one example at a time, subsets of size one-tenth of the original
data set are left out and the predictions of the learned classifiers obtained on
these. We use ten-fold cross validation in all our experiments for generating the
meta-level training set.

In contrast to stacking, no learning takes place at the meta-level when com-
bining classifiers by a voting scheme (such as plurality, probabilistic or weighted
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voting). The voting scheme remains the same for all different training sets and
sets of learning algorithms (or base-level classifiers). The simplest voting scheme
is the plurality vote. According to this voting scheme, each base-level classifier
casts a vote for its prediction. The example is classified in the class that collects
the most votes.

2.2 Recent Advances

The most important issues in stacking are probably the choice of the features
and the algorithm for learning at the meta-level. Below we review some recent
research on stacking that addresses the above issues.

It is common knowledge that ensembles of diverse base-level classifiers (with
weakly correlated predictions) yield good performance. Merz [8] proposes a stack-
ing method called SCANN that uses correspondence analysis to detect correla-
tions between the predictions of base-level classifiers. The original meta-level
feature space (the class-value predictions) is transformed to remove the depen-
dencies, and a nearest neighbor method is used as the meta-level classifier on
this new feature space.

Ting and Witten [11] use base-level classifiers whose predictions are proba-
bility distributions over the set of class values, rather than single class values.
The meta-level attributes are thus the probabilities of each of the class values re-
turned by each of the base-level classifiers. The authors argue that this allows to
use not only the predictions, but also the confidence of the base-level classifiers.
Multi-response linear regression (MLR) is recommended for meta-level learning,
while several learning algorithms are shown not to be suitable for this task.

Seewald and Fürnkranz [10] propose a method for combining classifiers called
grading that learns a meta-level classifier for each base-level classifier. The meta-
level classifier predicts whether the base-level classifier is to be trusted (i.e.,
whether its prediction will be correct). The base-level attributes are used also
as meta-level attributes, while the meta-level class values are + (correct) and
− (incorrect). Only the base-level classifiers that are predicted to be correct are
taken and their predictions combined by summing up the probability distribu-
tions predicted.

Todorovski and Džeroski [12] introduce a new meta-level learning method
for combining classifiers with stacking: meta decision trees (MDTs) have base-
level classifiers in the leaves, instead of class-value predictions. Properties of the
probability distributions predicted by the base-level classifiers (such as entropy
and maximum probability) are used as meta-level attributes, rather than the
distributions themselves. These properties reflect the confidence of the base-level
classifiers and give rise to very small MDTs, which can (at least in principle) be
inspected and interpreted.

Todorovski and Džeroski [13] report that stacking with MDTs clearly outper-
forms voting and stacking with decision trees, as well as boosting and bagging
of decision trees. On the other hand, MDTs perform only slightly better than
SCANN and selecting the best classifier with cross validation (SelectBest). Ženko
et al. [16] report that MDTs perform slightly worse as compared to stacking with
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MLR. Overall, SCANN, MDTs, stacking with MLR and SelectBest seem to per-
form at about the same level.

It would seem natural to expect that ensembles of classifiers induced by
stacking would perform better than the best individual base-level classifier: oth-
erwise the extra work of learning a meta-level classifier doesn’t seem justified.
The experimental results mentioned above, however, do not show clear evidence
of this. This has motivated us to seek new stacking methods and investigate their
performance relative to state-of-the-art stacking methods and SelectBest, in the
hope of achieving performance that would be clearly superior to SelectBest.

2.3 Stacking with Multi-response Linear Regression

The experimental evidence mentioned above indicates that although SCANN,
MDTs, stacking with MLR and SelectBest seem to perform at about the same
level, stacking with MLR has a slight advantage over the other methods. It
would thus seem as a suitable starting point in the search for better method for
meta-level learning to be used in stacking.

MLR is an adaptation of linear regression. For a classification problem with m
class values {c1, c2, . . . cm}, m regression problems are formulated: for problem j,
a linear equation LRj is constructed to predict a binary variable which has value
one if the class value is cj and zero otherwise. Given a new example x to classify,
LRj(x) is calculated for all j, and the class k is predicted for which LRk(x) is
the highest.

In seeking to improve upon stacking with MLR, we have explored two possible
directions that correspond to the major issues in stacking. Concerning the choice
of the algorithm for learning at the meta-level, we have explored the use of model
trees instead of LR [6]since model trees naturally extend LR to construct piece-
wise linear approximations. In this paper, we consider the choice of the meta-level
features used for stacking.

2.4 An Extended Set of Meta-level Features for Stacking

We assume that each base-level classifier predicts a probability distribution over
the possible class values. Thus, the prediction of the base-level classifier C when
applied to example x is a probability distribution:

pC(x) =
(

pC(c1|x), pC(c2|x), . . . pC(cm|x)
)

,

where {c1, c2, . . . cm} is the set of possible class values and pC(ci|x) denotes the
probability that example x belongs to class ci as estimated (and predicted) by
classifier C. The class cj with the highest class probability pC(cj |x) is predicted
by classifier C.

The meta-level attributes as proposed by [11] are the probabilities predicted
for each possible class by each of the base-level classifiers, i.e.,

pCj (ci|x)
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for i = 1, . . . , m and j = 1, . . . , N .
In our approach, we use two additional sets of meta-level attributes: proba-

bility distributions multiplied by maximum probability

PCj = pCj (ci|x) × MC = pCj (ci|x) × mmax
i=1

(

pCj (ci|x)
)

for i = 1, . . . , m and j = 1, . . . , N and entropies of probability distributions

EC = −
m

∑

i=1

pC(ci|x) · log2 pC(ci|x).

Therefore the total number of meta-level attributes in our approach is N(2m+1).
The motivation for considering these additional meta-level attributes is as

follows. Already Ting and Witten [11] state that the use of probability distribu-
tions has the advantage of capturing not only the predictions of the base-level
classifiers, but also their certainty. The attributes we have added try to capture
the certainty of the predictions more explicitly (the entropies EC) and combine
them with the predictions themselves (the products PCj of the individual prob-
abilities and the maximal probabilities MC in a predicted distribution). The
attributes MC and EC have been used in the construction of meta decision
trees [12]. It should be noted here that we have performed preliminary exper-
iments using only the attributes PCj and EC (without the original probability
distributions). The results of these experiments showed no significant improve-
ment over using the original probability distributions only. We can therefore
conclude that the synergy of all three sets of attributes is responsible for the
performance improvement achieved by our approach.

3 Experimental Setup

In the experiments, we investigate the performance of stacking with multi-
response linear regression and the extended set of meta-level attributes. and
in particular its relative performance as compared to existing state-of-the-art
stacking methods and SelectBest.

The Weka data mining suite [14] was used for all experiments, within which
all the base-level and meta-level learning algorithms used in the experiments
have been implemented.

3.1 Data Sets

In order to evaluate the performance of the different combining algorithms, we
perform experiments on a collection of twenty data sets from the UCI Reposi-
tory of machine learning databases [2]. These data sets have been widely used in
other comparative studies. The data sets and their properties (number of exam-
ples, classes, (discrete/continuous) attributes, probability of the majority class,
entropy of the class probability distribution) are listed in Table 1.
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Table 1. The data sets used and their properties (number of examples, classes,
(discrete/continuous) attributes, probability of the majority class, entropy of the
class probability distribution)

Data set Exs Cls (D/C) Att Maj Ent

australian 690 2 (8/6) 14 0.56 0.99
balance 625 3 (0/4) 4 0.46 1.32
breast-w 699 2 (9/0) 9 0.66 0.92
bridges-td 102 2 (4/3) 7 0.85 0.61
car 1728 4 (6/0) 6 0.70 1.21

chess 3196 2 (36/0) 36 0.52 0.99
diabetes 768 2 (0/8) 8 0.65 0.93
echo 131 2 (1/5) 6 0.67 0.91
german 1000 2 (13/7) 20 0.70 0.88
glass 214 6 (0/9) 9 0.36 2.18

heart 270 2 (6/7) 13 0.56 0.99
hepatitis 155 2 (13/6) 19 0.79 0.74
hypo 3163 2 (18/7) 25 0.95 0.29
image 2310 7 (0/19) 19 0.14 2.78
ionosphere 351 2 (0/34) 34 0.64 0.94

iris 150 3 (0/4) 4 0.33 1.58
soya 683 19 (35/0) 35 0.13 3.79
vote 435 2 (16/0) 16 0.61 0.96
waveform 5000 3 (0/21) 21 0.34 1.58
wine 178 3 (0/13) 13 0.40 1.56

3.2 Base-Level Algorithms

We use three different learning algorithms at the base level:

– J4.8: a Java re-implementation of the decision tree learning algorithm
C4.5 [9],

– IBk: the k-nearest neighbor algorithm of [1], and
– NB: the naive Bayes algorithm of [7].

All algorithms are used with their default parameter settings, with the exceptions
described below. IBk uses inverse distance weighting and k is selected with cross
validation from the range of 1 to 77. The NB algorithm uses the kernel density
estimator rather than assume normal distributions for numeric attributes. These
settings were chosen in advance and were not tuned to our data sets.

3.3 Meta-level Algorithms

At the meta-level, we evaluate the performance of six different schemes for com-
bining classifiers (listed below).
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Table 2. Error rates (in %) of the learned ensembles of classifiers

Data set Vote Selb Grad Smdt Smlr Smlr-E

australian 13.81 13.78 14.04 13.77 14.16 13.93
balance 8.91 8.51 8.78 8.51 9.47 6.40
breast-w 3.46 2.69 3.69 2.69 2.73 2.58
bridges-td 15.78 15.78 15.10 16.08 14.12 14.80
car 6.49 5.83 6.10 5.02 5.61 4.11

chess 1.46 0.60 1.16 0.60 0.60 0.60
diabetes 24.01 25.09 24.26 24.74 23.78 24.51
echo 29.24 27.63 30.38 27.71 28.63 27.71
german 25.19 25.69 25.41 25.60 24.36 25.53
glass 29.67 32.06 30.75 31.78 30.93 31.64

heart 17.11 16.04 17.70 16.04 15.30 15.93
hepatitis 17.42 15.87 18.39 15.87 15.68 15.87
hypo 1.32 0.72 0.80 0.79 0.72 0.72
image 2.94 2.85 3.32 2.53 2.84 2.80
ionosphere 7.18 8.40 8.06 8.83 7.35 6.87

iris 4.20 4.73 4.40 4.73 4.47 4.87
soya 6.75 7.22 7.38 7.06 7.22 7.35
vote 7.10 3.54 5.22 3.54 3.54 3.59
waveform 15.90 14.42 17.04 14.40 14.33 13.61
wine 1.74 3.26 1.80 3.26 2.87 2.02

Average 11.98 11.74 12.19 11.68 11.44 11.27

– Vote: The simple plurality vote scheme (results of preliminary experiments
showed that this performs better than the probability vote scheme).

– Selb: The SelectBest scheme selects the best of the base-level classifiers by
ten-fold cross validation.

– Grad: Grading as introduced by Seewald and Fürnkranz [10] and briefly
described in Section 2.2.

– Smdt: Stacking with meta decision-trees as introduced by Todorovski and
Džeroski [12] and briefly described in Section 2.2.

– Smlr: Stacking with multiple-response regression as used by Ting and Wit-
ten [11] and described in Sections 2.2 and 2.3.

– Smlr-E: Stacking with multiple-response regression and extended set of
meta-level attributes, as proposed by this paper and described in Section 2.3.

3.4 Evaluating and Comparing Algorithms

In all the experiments presented here, classification errors are estimated using
ten-fold stratified cross validation. Cross validation is repeated ten times using
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Table 3. Relative improvement in accuracy (in %) of stacking with multi-
response linear regression (Smlr-E) as compared to other combining algorithms
and its significance (+/– means significantly better/worse, x means insignificant)

Data set Vote Selb Grad Smdt Smlr

australian -0.84 x -1.05 x 0.83 x -1.16 x 1.64 x
balance 28.19 + 24.81 + 27.14 + 24.81 + 32.43 +
breast-w 25.62 + 4.26 + 30.23 + 4.26 + 5.76 +
bridges-td 6.21 x 6.21 x 1.95 x 7.93 x -4.86 x
car 36.63 + 29.46 + 32.54 + 17.99 + 26.70 +

chess 59.10 + 0.00 x 48.66 + 0.00 x 0.00 x
diabetes -2.06 x 2.33 + -1.02 x 0.95 x -3.07 –
echo 5.22 x -0.28 x 8.79 + 0.00 x 3.20 x
german -1.35 x 0.62 x -0.47 x 0.27 x -4.80 –
glass -6.61 – 1.31 x -2.89 x 0.44 x -2.27 x

heart 6.93 + 0.69 x 10.04 + 0.69 x -4.12 x
hepatitis 8.89 x 0.00 x 13.68 + -0.00 x -1.23 x
hypo 45.35 + 0.00 x 9.13 + 8.77 x 0.00 x
image 4.57 x 1.82 x 15.54 + -10.60 – 1.37 x
ionosphere 4.37 x 18.31 + 14.84 + 22.26 + 6.59 +

iris -15.87 – -2.82 x -10.61 x -2.82 x -8.96 x
soya -8.89 – -1.83 x 0.40 x -4.15 x -1.83 x
vote 49.51 + -1.30 x 31.28 + -1.30 x -1.30 x
waveform 14.45 + 5.63 + 20.17 + 5.53 + 5.03 +
wine -16.13 x 37.93 + -12.50 x 37.93 + 29.41 +

Average 15.24 7.11 13.40 6.37 4.76

W/L 8+/3– 7+/0– 12+/0– 6+/1– 6+/2–

different random generator seeds resulting in ten different sets of folds. The same
folds (random generator seeds) are used in all experiments. The classification
error of a classification algorithm C for a given data set as estimated by averaging
over the ten runs of ten-fold cross validation is denoted with error(C).

For pair-wise comparisons of classification algorithms, we calculate the rel-
ative improvement and the paired t-test, as described below. In order to eval-
uate the accuracy improvement achieved in a given domain by using classifier
C1 as compared to using classifier C2, we calculate the relative improvement:
1−error(C1)/error(C2). In Table 3, we compare the performance of Smlr-E to
other approaches: C1 in this table thus refers to ensembles combined with Smlr-
E. The average relative improvement across all domains is calculated using the
geometric mean of error reduction in individual domains:
1−geometric mean(error(C1)/error(C2)). Note that this may be different from
geometric mean(error(C2)/error(C1)) −1.
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Table 4. The relative performance of ensembles with different combining meth-
ods in terms of wins+/loses–. The entry in row X and column Y gives the number
of wins+/loses– of X over Y

Vote Selb Grad Smdt Smlr Smlr-E Total

Vote / 7+/9– 6+/4– 6+/10– 5+/10– 3+/8– 27+/41–
Selb 9+/7– / 10+/3– 0+/2– 2+/4– 0+/7– 21+/23–
Grad 4+/6– 3+/10– / 1+/11– 2+/13– 0+/12– 10+/42–
Smdt 10+/6– 2+/0– 11+/1– / 4+/4– 1+/6– 28+/17–
Smlr 10+/5– 4+/2– 13+/2– 4+/4– / 2+/6– 33+/19–
Smlr-E 8+/3– 7+/0– 12+/0– 6+/1– 6+/2– / 39+/6–

The classification errors of C1 and C2 averaged over the ten runs of ten-fold
cross validation are compared for each data set (error(C1) and error(C2) refer to
these averages). The statistical significance of the difference in performance is
tested using the paired t-test (exactly the same folds are used for C1 and C2)
with significance level of 95%: +/− to the right of a figure in the tables with
results means that the classifier C1 is significantly better/worse than C2.

At this place we have to say that we are fully aware of the weakness of our
significance testing method described above. Namely, when we repeat ten-fold
cross validation ten times we do not get ten independent accuracy assessments
as required by the paired t-test. As a result we have a high risk of committing
a type I error (incorrectly rejecting the null hypothesis). This means that it
is likely that a smaller number of differences between classifiers are statistically
significant than reported by our testing method. Due to this problem we have also
tried using two significance testing methods proposed by Dietterich [4]: the ten-
fold cross validated paired t-test and the 5x2cv paired t-test. The problem with
these two tests is that while they have smaller probability of type I error they
are much less sensitive. According to these two tests, the differences between
the simplest approach (Vote scheme) and a current state-of-the-art approach
(stacking with MLR) are hardly significant. Therefore we have decided to use
the above described significance testing.

4 Experimental Results

The error rates of the ensembles induced on the twenty data sets and combined
with the different combining methods are given in Table 2. However, for the
purpose of comparing the performance of different combining methods, Table 4
is of much more interest: it gives the number of significant wins/loses of X over Y
for each pair of combining methods X and Y . Table 3 presents a more detailed
comparison (per data set) of Smlr-E to the other combining methods. Below
we highlight some of our findings.



502 Bernard Ženko and Sašo Džeroski

Inspecting Table 4, to examine the relative performance of Smlr-E to the
other combining methods, we find that Smlr-E is in a league of its own. It clearly
outperforms all the other combining methods, with a wins – loss difference of
at least 4 and a relative improvement of at least 5% (see Table 3). As expected,
the difference is smallest when compared to Smlr.

Returning to Table 4, we find that we can partition the five existing com-
bining algorithms into three groups. Vote and Grad are at the lower end of
the performance scale, Selb and Smdt are in the middle, while Smlr performs
best. While Smlr clearly outperforms Vote and Grad in one to one compari-
son, there is no difference when compared to Smdt (equal number of wins and
losses).

None of the existing stacking methods perform clearly better than Selb.
Smlr and Smdt have a slight advantage (two more wins than losses), while
Vote and Grad perform worse. Smlr-E, on the other hand, clearly outperforms
Selb with seven wins, no losses, and an average relative improvement of 7%.

5 Conclusions and Further Work

We have proposed a new set of meta-level features to be used for combining
heterogeneous classifiers with stacking. These include the probability distribu-
tions predicted by the base-level classifiers, their certainty (entropy), and a com-
bination of both (the products of the individual probabilities and the maximal
probabilities in a predicted distribution). In conjunction with the multi-response
linear regression (MLR) algorithm at the meta-level, this approach outperforms
existing stacking approaches. While the existing approaches perform (at best)
comparably to selecting the best classifier from the ensemble by cross validation,
the proposed approach clearly performs better.

The use of the certainty features in addition to the probability distributions
is obviously the key to the improved performance. A more detailed analysis of
which of the new attributes are used and their relative importance is an immedi-
ate topic for further work. The same goes for the experimental evaluation of the
proposed approach in a setting with seven base-level classifiers (as in [6]. Finally,
combining the approach proposed here with that of Džeroski and Ženko [6] (i.e.,
using both a new set of meta-level features and a new meta-level learning algo-
rithm) should also be investigated. Some more general topics for further work
are discussed below: these have been also discussed by Džeroski and Ženko [6].

While conducting this study, the study of Džeroski and Ženko [6], and a few
other recent studies [16, 13], we have encountered quite a few contradictions
between claims in the recent literature on stacking and our experimental results.
For example, Merz [8] claims that SCANN is clearly better than the oracle select-
ing the best classifier (which should perform even better than SelectBest). Ting
and Witten [11] claim that stacking with MLR clearly outperforms SelectBest.
Finally, Seewald and Fürnkranz [10] claim that both grading and stacking with
MLR perform better than SelectBest. A comparative study including the data
sets in the recent literature and a few other stacking methods (such as SCANN)
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should resolve these contradictions and provide a clearer picture of the relative
performance of different stacking approaches. We believe this is a worthwhile
topic to pursue in near-term future work.

We also believe that further research on stacking in the context of base-level
classifiers created by different learning algorithms is in order, despite the current
focus of the machine learning community on creating ensembles with a single
learning algorithm with injected randomness or its application to manipulated
training sets, input features and output targets. This should include the pursuit
for better sets of meta-level features and better meta-level learning algorithms.
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