
Experiments with Heterogeneous Meta
Decision Trees

Bernard Ženko Ljupčo Todorovski
Sašo Džeroski

Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Bernard.Zenko, Ljupco.Todorovski, Saso.Dzeroski@ijs.si

Technical Report Jožef Stefan Institute (IJS-DP 8638)

June, 2002

1 Introduction

The task of constructing ensembles of classifiers [5] can be broken down
into two sub-tasks. We first have to generate a diverse set of base-level
classifiers. Once the base-level classifiers have been generated, the issue of
how to combine their predictions arises.

Several approaches to generating base-level classifiers are possible. One
approach is to generate classifiers by applying different learning algorithms
(with heterogeneous model representations) to a single data set (see, e.g.,
[10]). Another possibility is to apply a single learning algorithm with different
parameters settings to a single data set. Finally, methods like bagging [2]
and boosting [6] generate multiple classifies by applying a single learning
algorithm to different versions of a given data set. Two different methods for
manipulating the data set are used: random sampling with replacement (also
called bootstrap sampling) in bagging and re-weighting of the misclassified
training examples in boosting.

Techniques for combining the predictions obtained from the multiple base-
level classifiers can be clustered in three combining frameworks: voting (used
in bagging and boosting), stacked generalization or stacking [19] and cascad-
ing [7]. In voting, each base-level classifier gives a vote for its prediction.

1

The prediction receiving the most votes is the final prediction. In stacking,
a learning algorithm is used to learn how to combine the predictions of the
base-level classifiers. The induced meta-level classifier is then used to obtain
the final prediction from the predictions of the base-level classifiers. Cas-
cading is an iterative process of combining classifiers: at each iteration, the
training data set is extended with the predictions obtained in the previous
iteration.

The work presented here focuses on combining the predictions of base-
level classifiers induced by applying different learning algorithms to a single
data set. It adopts the stacking framework, where we have to learn how to
combine the base-level classifiers. We developed an extension of meta de-
cision trees (MDTs) [16] called heterogeneous MDTs (HMDTs). MDTs use
properties of the base-level predictions (which are class probability distribu-
tions) to decide which of the base level classifier to use for each example;
these properties are independent of the data set. The first modification of
HMDTs when compared to MDTs is that the model is induced on a union
of different data sets instead of just on one. The second modification is that
HMDTs use a set of data set properties in order to take into account where
each example originates from. A model built on examples described with
these two types of attributes is, at least in principle, applicable to arbitrary
data set.

The rest of the report is organized as follows. First we describe meta
decision trees, which form the groundwork of our approach. Heterogeneous
meta decision trees are presented in Section 3. Section 4 presents results of
our experiments, while the last section gives some conclusions.

2 Meta Decision Trees

The structure of a meta decision tree is identical to the structure of an
ordinary decision tree (ODT). A decision (inner) node specifies a test to be
carried out on a single attribute value and each outcome of the test has
its own branch leading to the appropriate subtree. In a leaf node, a MDT
predicts which classifier is to be used for classification of an example, instead
of predicting the class value of the example directly (as an ODT would do).

The difference between ordinary and meta decision trees is illustrated
with the example in Table 1. In the meta-level data set M (Table 1a), the
meta-level attributes C1 and C2 are the class value predictions of two base-
level classifiers C1 and C2 for a given example. The two additional meta-level
attributes Conf 1 and Conf 2 measure the confidence of the predictions of C1

and C2 for a given example.

2

The meta decision tree induced using the meta-level data set M is given
in Table 1b). The MDT is interpreted as follows: if the confidence Conf 1 of
the base-level classifier C1 is high, then C1 should be used for classifying the
example, otherwise the base-level classifier C2 should be used. The ordinary
decision tree induced using the same meta-level data set M (given in Table 1c)
is much less comprehensible, despite the fact that it reflects the same rule
for choosing among the base-level predictions. Note that both the MDT and
the ODT need the predictions of the base-level classifiers in order to make
their own predictions.

Table 1: The difference between ordinary and meta decision trees.

a) Meta-level data set M

Conf 1 C1 Conf 2 C2 true class

0.875 0 0.625 0 0
0.875 0 0.375 1 0
0.875 1 0.375 0 1
0.875 1 0.625 1 1
0.125 0 0.625 0 0
0.125 0 0.625 1 1
0.125 1 0.625 0 0
0.125 1 0.625 1 1

b) The MDT induced from M (by MLC4.5)

Conf1 <= 0.125: C2
Conf1 > 0.125: C1

c) The ODT induced from M (by C4.5)

C1 = 0:
| Conf1 > 0.125 : 0
| Conf1 <= 0.125 :
| | C2 = 0: 0
| | C2 = 1: 1
C1 = 1:
| Conf1 > 0.125 : 1
| Conf1 <= 0.125 :
| | C2 = 0: 0
| | C2 = 1: 1

Note that in the process of inducing meta decision trees two types of
attributes are used. Ordinary attributes are used in the decision (inner)
nodes of the MDT (e.g., attributes Conf 1 and Conf 2 in the example meta-
level data set M). The role of these attributes is identical to the role of
attributes used for inducing ordinary decision trees. Class attributes (e.g.,
C1 and C2 in M), on the other hand, are used in the leaf nodes only. Each
base-level classifier has its class attribute: the values of this attribute are
the predictions of the base-level classifier. Thus, the class attribute assigned
to the leaf node of the MDT decides which base-level classifier will be used
for prediction. When inducing ODTs for combining classifiers, the class
attributes are used in the same way as ordinary attributes.

We use properties of the class probability distributions predicted by the
base-level classifiers as ordinary attributes for inducing MDTs. These prop-
erties reflect the certainty and confidence of the predictions. Details about

3

the set of meta-level attributes are given in the following subsection.

2.1 Meta-Level Attributes

We calculate the properties of the class probability (CDP) distributions pre-
dicted by the base-level classifiers that reflect the certainty and confidence
of the predictions.

First, maxprob(x, C) is the highest class probability (i.e. the probability
of the predicted class) predicted by the base-level classifier C for example x:

maxprob(x, C) =
k

max
i=1

pC(ci|x).

Second, entropy(x, C) is the entropy of the class probability distribution
predicted by the classifier C for example x:

entropy(x, C) = −
k∑

i=1

pC(ci|x) · log2 pC(ci|x).

The entropy and the maximum probability of a probability distribution
reflect the certainty of the classifier in the predicted class value. If the prob-
ability distribution returned is highly spread, the maximum probability will
be low and the entropy will be high, indicating the classifier is not very cer-
tain in its prediction of the class value. On the other hand, if the probability
distribution returned is highly focused, the maximum probability is high and
the entropy low, thus indicating the classifier is certain in the predicted class
value.

Table 2: A meta decision tree induced in the image domain.

IBk:Entropy <= 0.002369: IBk (*)
IBk:Entropy > 0.002369
| J48:maxProbability <= 0.909091: IBk
| J48:maxProbability > 0.909091: J48

An example MDT, induced in the image domain from the UCI Repository,
is given in Table 2. The leaf denoted by an asterisk (*) specifies that the
IBk classifier is to be used to classify an example, if the entropy of the class
probability distribution predicted by IBk is smaller than or equal to 0.002369.
This is consistent with common-sense knowledge in the domain of classifier
combination.

4

Note here another important property of MDTs : they are domain in-
dependent in the sense that the same language for expressing meta decision
trees is used in all domains once we fix the set of base-level classifiers to be
used. This means that a MDT induced in one domain can be used in any
other domain for combining the same set of base-level classifiers (although
it may not perform very well). In part, this is due to the fact that the
set of meta-level attributes is domain independent. It depends only on the
set of base-level classifiers. In sum, there are three reasons for the domain
independence of MDTs: (1) the set of meta-level attributes; (2) not using
class attributes in the decision (inner) nodes and (3) predicting the base-level
classifier to be used instead of predicting the class value itself.

This domain independence enables induction of MDTs on a union of
different domains—heterogeneous MDTs, which are the main topic of this
paper.

2.2 MLJ4.8 - a Re-implementation of Meta Decision
Trees in Java

In this subsection, we present MLJ4.8, a re-implementation of MLC4.5 [16]
algorithm for induction of MDTs in Java. MLJ4.8 is based on J4.8 [18],
a re-implementation of Quinlan’s C4.5 [13] algorithm for inducing ordinary
decision trees. There are several minor implementation differences between
J4.8 and C4.5: in such cases we decided to use C4.5 as a reference, rather
than J4.8. MLJ4.8 takes as input a meta-level data set consisted of the
ordinary and class attributes. The only differences between MLJ4.8 and J4.8
are:

1. Only ordinary attributes are used in internal nodes;

2. Assignments of the form C = Ci (where Ci is a class attribute) are
made by MLJ4.8 in leaf nodes, as opposed to assignments of the form
C = ci (where ci is a class value);

3. The goodness-of-split for internal nodes is calculated differently (as
described below);

4. MLJ4.8 does not post-prune the induced MDTs.

The rest of the MLJ4.8 algorithm is identical to the original J4.8 algorithm.
Below we describe J4.8’s and MLJ4.8’s measures for selecting attributes in
internal nodes.

J4.8 is a greedy divide and conquer algorithm for building classification
trees. At each step, the best split according to the gain (or gain ratio)

5

criterion is chosen from the set of all possible splits for all attributes. The
gain criterion is based on the entropy of the class probability distribution of
the examples in the current subset S of training examples:

info(S) = −
k∑

i=1

p(ci, S) · log2 p(ci, S)

where p(ci, S) denotes the relative frequency of examples in S that belong to
class ci. The gain criterion selects the split that maximizes the decrement of
the info measure.

In MLJ4.8, we are interested in the accuracies of each of the base-level
classifiers C from set C on the examples in data set S, i.e., the proportion of
examples in S that have a class equal to the class attribute C. The measure,
used in MLJ4.8, is defined as:

infoML(S) = 1 − max
C∈C

accuracy(C, S),

where accuracy(C, S) denotes the relative frequency of examples in S that
are correctly classified by the base-level classifier C. The vector of accuracies
does not have probability distribution properties (its elements do not sum to
1), so the entropy can not be calculated. This is the reason for replacing the
entropy based measure with an accuracy based one.

3 Heterogeneous Meta Decision Trees

Heterogeneous Meta Decision Trees (HMDTs) bring together two aspects of
meta-level learning. The first aspect is choosing the most suitable machine
learning algorithm(s) for a given data set [1]. The second one is combining the
predictions obtained from multiple models induced using different machine
learning algorithms [5]. HMDTs are (as allready mentioned) MDTs induced
from more than one base-level data set in order to combine classifiers (the
second aspect of meta-learning) by selecting the appropriate classifier for each
individual example from different data sets. Inducing MDTs on more than
one data set is possible because the same set of meta-level attributes (maxi-
mal class probability (MaxProbability) and entropy of the class probability
distribution (Entropy) described in Section 2.1), summarizing the properties
of class probability distributions predicted by the base-level classifiers, are
used for different data sets. However, if we induce HMDTs using the same
set of meta-level attributes as for MDTs, the selection of the appropriate
classifier for an example would be literally independent of the data set where
the example originates from.

6

In order to take the data set where an example originates from into ac-
count (the first aspect of meta-learning), HMDTs use additional meta-level
attributes that summarize data set properties. Five such properties are used
in our experiments:

• number of classes (NumClasses),

• number of examples (NumExamples),

• number of discrete (NumNominalAtts) and

• continuous (NumNumericAtts) attributes, and

• number of all attributes (NumAtts).

The set of meta-level attributes used in HMDTs is therefore the union of the
meta-level attributes connected to each aspect of meta-level learning.

Table 3: A heterogeneous meta decision tree induced from twenty-one data
sets using the extended set of meta-level attributes.

NaiveBayes:MaxProbability <= 0.936946
| NumNominalAtts <= 14
| | NumAtts <= 5: NaiveBayes:Class
| | NumAtts > 5
| | | NumInstances <= 768
| | | | NumInstances <= 690: J48:Class
| | | | NumInstances > 690: NaiveBayes:Class
| | | NumInstances > 768
| | | | IBk:Entropy <= 1.231285
| | | | | NumNominalAtts <= 10: IBk:Class
| | | | | NumNominalAtts > 10: NaiveBayes:Class
| | | | IBk:Entropy > 1.231285: J48:Class
| NumNominalAtts > 14: J48:Class
NaiveBayes:MaxProbability > 0.936946
| NumClasses <= 3
| | NumNominalAtts <= 14: NaiveBayes:Class (*)
| | NumNominalAtts > 14: J48:Class
| NumClasses > 3
| | NumNumericAtts <= 4: NaiveBayes:Class
| | NumNumericAtts > 4: IBk:Class

7

An example heterogeneous MDT induced from twenty data sets using the
extended set of meta-level attributes is given in Figure 3. The leaf denoted
by (*) specifies that the Naive Bayes model should be used to classify an
example if (1) the maximum probability in the class probability distribution
predicted by Naive Bayes is larger than 0.936946; (2) the number of classes
of the data set is less than or equal to 3; (3) the number of nominal attributes
in the data set is less than or equal to 14.

4 Experiments

4.1 Data Sets and Base-Level Experiments

In order to evaluate the performance of meta decision trees, we performed
experiments on a collection of twenty-one heterogeneous data sets from the
UCI Repository of Machine Learning Databases [11]. These data sets have
been widely used in other comparative studies. The data set properties (used
also as meta-level attributes, see Section 3) are given in Table 4.

Three learning algorithms were used in the base-level experiments: the
tree learning algorithm J4.8, which is a re-implementation of C4.5, the k-
nearest neighbor (k-NN or IBk) algorithm and the naive Bayes (NB) algo-
rithm. We used their implementations in the Java programming language
incorporated in the Weka data mining suite [18]. J4.8 was used with the
default settings. For the IBk algorithm, k was set to 1 and inverse distance
weighting was used. The naive Bayes algorithm used kernel density estima-
tion. The output of each base-level classifier for each example consists of
the predicted class and the class probability distribution. The classification
errors of the base-level classifiers were estimated using 10-fold stratified cross
validation. Cross validation is repeated 10 times using a different random
seed to get different reordering of the examples in the data set. The same
seeds were used for all experiments. The average and standard deviation
(over the ten cross validations) of the classification error on unseen examples
are presented in Table 5.

4.2 Meta-Level Experiments

In the meta-level experiments, we compared the performances of four differ-
ent HMDT approaches to the simple plurality vote algorithm:

HMDT. Heterogeneous meta decision trees were induced on the union of all
twenty-one data sets. Classification errors were measured using 10-fold
stratified cross validation. Each data set was first partitioned into ten

8

Table 4: Data sets used for evaluation.

Data set No.
of

ex
am

pl
es

No.
of

cla
ss
es

No.
of

at
tr
ib
ut

es

(d
isc

/c
on

t)
al
l

M
ax

. p
ro
ba

bi
lit
y

Cla
ss

en
tr
op

y

australian 690 2 (8/6) 14 0.56 0.99
balance 625 3 (0/4) 4 0.46 1.32
breast-w 699 2 (9/0) 9 0.66 0.92
bridges-td 102 2 (4/3) 7 0.85 0.61
car 1728 4 (6/0) 6 0.70 1.21

chess 3196 2 (36/0) 36 0.52 0.99
diabetes 768 2 (0/8) 8 0.65 0.93
echo 131 2 (1/5) 6 0.67 0.91
german 1000 2 (13/7) 20 0.70 0.88
glass 214 6 (0/9) 9 0.36 2.18

heart 270 2 (6/7) 13 0.56 0.99
hepatitis 155 2 (13/6) 19 0.79 0.74
hypo 3163 2 (18/7) 25 0.95 0.29
image 2310 7 (0/19) 19 0.14 2.78
ionosphere 351 2 (0/34) 34 0.64 0.94

iris 150 3 (0/4) 4 0.33 1.58
soya 683 19 (35/0) 35 0.13 3.79
tic-tac-toe 958 2 (9/0) 9 0.65 0.93
vote 435 2 (16/0) 16 0.61 0.96
waveform 5000 3 (0/21) 21 0.34 1.58
wine 178 3 (0/13) 13 0.40 1.56

folds with equal sizes and similar class distributions. The nine folds
of all data sets were used for inducing the model, which is then tested
on the remaining fold of each data set. Cross validation is repeated 10
times using a different random seed to get different reordering of the
examples in the data set. The same seeds were used for all experiments.
The average and standard deviation (over the ten cross validations) of
the classification error on unseen examples are reported.

HMDT-R. Same as HMDT except that here HMDTs were induced on a
meta-data set consisting of 200 examples from each data set only. These

9

Table 5: Classification errors (in %) of base-level classifiers J4.8, IBk and
naive Bayes.

Data set J4.8 IBk Naive Bayes

australian 14.54±0.55 13.45±0.29 18.65±0.12
balance 22.43±0.35 9.90±0.20 8.48±0.14
breast-w 5.39±0.20 4.28±0.13 2.69±0.05
bridges-td 14.71±0 16.57±1.11 14.02±0.45
car 7.44±0.25 5.83±0.15 14.40±0.15

chess 0.60±0.05 2.87±0.11 12.16±0.06
diabetes 26.26±0.50 25.55±0.30 24.70±0.12
echo 34.58±2.39 34.73±1.55 27.33±0.44
german 28.82±0.88 26.01±0.51 25.43±0.19
glass 32.24±0.91 29.67±0.86 49.86±0.60

heart 22.19±1.24 18.52±0.48 15.67±0.34
hepatitis 20.90±0.97 17.29±0.63 15.35±0.29
hypo 0.72±0.02 2.79±0.09 1.81±0.02
image 3.18±0.16 2.84±0.07 14.29±0.06
ionosphere 10.26±0.47 13.28±0.33 8.15±0.21

iris 5.33±0.44 4.67±0.40 4.07±0.16
soya 7.54±0.35 8.96±0.26 7.12±0.10
tic-tac-toe 15.11±0.45 0.96±0.06 30.22±0.12
vote 3.54±0.17 6.97±0.22 9.82±0.07
waveform 23.62±0.25 14.42±0.10 19.24±0.05
wine 6.57±1.05 3.26±0.47 2.64±0.17

Average 14.57±0.55 12.52±0.40 15.53±0.19

200 examples were chosen with random sampling from the nine folds
mentioned above. In total, the meta-data set consisted of 4200 exam-
ples.

HMDT-R-L1O. HMDTs are evaluated using the leave one data set out
scheme. The meta-data set consists of 200 examples (selected with
random sampling) from each data set except one (4000 examples in
total). The model built on this meta-data set is then evaluated on the
data set excluded from meta-data set. The procedure is repeated ten
times with different reorderings of examples.

HMDT-R-L1O-P. Same as HMDT-R-L1O except that when building HMDT
prepruning was used; the minimal number of examples in a leaf was set
to 400.

10

Table 6: Classification errors (in %) of different meta-level experiments.

Data set HMDT HMDT-R HMDT-R-L1O HMDT-R-L1O-P Voting

australian 13.62±0.26 16.32±0.64 17.07±0.48 17.14±0.46 13.81±0.34
balance 8.48±0.20 8.56±0.26 15.60±0.96 15.78±0.91 8.91±0.36
breast-w 2.88±0.07 3.13±0.21 4.13±0.44 4.25±0.52 3.46±0.13
bridges-td 15.10±1.18 15.98±1.06 14.90±1.09 14.90±0.70 15.78±0.80
car 5.17±0.21 5.95±0.21 10.89±1.01 11.01±1.40 6.49±0.16

chess 0.61±0.04 0.73±0.14 3.15±1.06 4.75±0.88 1.46±0.08
diabetes 25.39±0.41 25.39±0.64 27.54±0.85 27.72±0.97 24.01±0.33
echo 27.71±0.79 28.17±0.77 29.31±1.02 28.85±1.32 29.24±1.46
german 26.51±0.81 26.50±0.80 27.08±0.57 27.41±0.56 25.19±0.53
glass 32.06±1.27 31.36±0.57 45.70±2.50 48.64±1.23 29.67±0.80

heart 17.19±0.67 17.41±0.65 20.33±1.27 20.37±1.29 17.11±0.76
hepatitis 16.97±0.88 16.77±0.82 17.61±0.94 17.29±0.94 17.42±0.88
hypo 0.75±0.03 1.00±0.17 1.20±0.18 1.74±0.72 1.32±0.02
image 2.82±0.20 3.08±0.17 4.53±0.81 5.36±0.92 2.94±0.14
ionosphere 7.66±0.13 8.15±0.30 8.55±0.35 8.50±1.47 7.18±0.39

iris 4.13±0.27 4.33±0.36 4.27±0.36 4.93±0.87 4.20±0.28
soya 7.23±0.23 7.73±0.40 7.79±0.31 9.46±3.10 6.75±0.18
tic-tac-toe 1.19±0.25 1.53±0.37 23.54±1.49 23.25±3.98 9.24±0.33
vote 3.77±0.32 4.21±0.55 8.32±0.33 9.77±2.65 7.10±0.19
waveform 18.07±0.25 19.06±0.29 22.28±0.49 20.82±3.66 15.90±0.15
wine 3.12±0.46 3.37±0.42 3.56±0.53 3.65±0.82 1.74±0.11

Average 11.45±0.43 11.84±0.47 15.11±0.81 15.50±1.40 11.85±0.40

The voting algorithm was evaluated using 10-fold cross validation re-
peated ten times.

5 Experimental Results

The classification errors of different meta-level approaches are presented in
Table 6. The figures in Table 7 represent the relative error reduction achieved
by using the Voting algorithm as compared to each of the other algorithms,
calculated as

1 − voting error

other method error
.

Positive/negative figures denote better/worse performance of Voting. The
statistical significance of the differences is tested using paired t-tests with

11

Table 7: Relative improvement in accuracy (in %) of different HMDT ap-
proches when compared to voting and its significance (+/– means signifi-
cantly better/worse, x means insignificant).

HMDT HMDT-R HMDT-R-L1O HMDT-R-L1O-P
Data set rel. im. sig. rel. im. sig. rel. im. sig. rel. im. sig.

australian -1,38 x 15,36 + 19,10 + 19,44 +
balance -5,09 x -4,11 x 42,87 + 43,51 +
breast-w -20,40 – -10,50 – 16,26 + 18,52 +
bridges-td -4,55 x 1,23 x -5,92 x -5,92 –
car -25,50 – -9,04 – 40,35 + 41,04 +

chess -138,26 – -101,29 – 53,67 + 69,24 +
diabetes 5,44 + 5,44 + 12,81 + 13,39 +
echo -5,51 x -3,79 x 0,26 x -1,32 x
german 4,98 x 4,94 + 6,98 + 8,10 +
glass 7,43 + 5,37 + 35,07 + 39,00 +

heart 0,43 x 1,70 x 15,85 + 16,00 +
hepatitis -2,66 x -3,85 x 1,10 x -0,75 x
hypo -77,54 – -33,02 – -9,97 x 23,69 x
image -3,99 x 4,78 x 35,18 + 45,25 +
ionosphere 6,32 x 11,89 + 16,00 + 15,54 x

iris -1,61 x 3,08 x 1,56 x 14,82 x
soya 6,68 + 12,69 + 13,35 + 28,64 x
tic-tac-toe -676,31 – -502,04 – 60,75 + 60,27 +
vote -88,41 – -68,85 – 14,64 + 27,31 x
waveform 12,00 + 16,57 + 28,62 + 23,61 +
wine 44,20 + 48,33 + 51,05 + 52,31 +

Average -19.53 -10.33 24.21 29.39
W/L 5+/6– 8+/6– 16+/0– 13+/1–

significance level of 95%: +/− to the right of a figure in the table means
that Voting is significantly better/worse. The average here is calculated as

1 − GeometricMean(
voting error

other method error
).

6 Discussion and Conclusions

In general, HMDTs do not perform very well. They perform clearly worse
than MDTs [15, 16]. But note that they are more generally applicable (across

12

different datasets) and may not need to be retrained for each new dataset. A
HMDT that performs well would mean a new combining scheme, similar to
voting, that does not need to be retrained on new datasets and takes dataset
properties into account.

HMDT and HMDT-R perform better than voting. In terms of significant
wins/losses the difference is slight. The difference in performance (advan-
tage) is clearer in terms of average relative improvement (20% and 10%,
respectively).

HMDT-L1O and HMDT-L1O-P perform much worse than voting. They
are clearly worse on both the significant wins/losses ratio and the average rel-
ative improvement metrics. Pre-pruning (in HMDT-L1O-P) improves mat-
ters, but not much. Clearly, the examples from the domain at hand are of
crucial importance for training a good HMDT.

This experimental evaluation was relatively limited. We only took into
account the five simplest dataset properties. Further studies should take
into account other features for describing datasets considered in the METAL
project.

References

[1] Brazdil, P. B. and Henery, R. J. (1994) Analysis of Results. In Michie,
D., Spiegelhalter, D. J., and Taylor, C. C., editors: Machine learning,
neural and statistical classification. Ellis Horwood.

[2] Breiman, L. (1996) Bagging predictors. Machine Learning, 24(2): 123–
140.

[3] Chan, P. K. and Stolfo, S. J. (1997) On the Accuracy of Meta-learning for
Scalable Data Mining. Journal of Intelligent Information Systems 8(1):
5–28.

[4] Clark, P. and Boswell, R. (1991) Rule induction with CN2: Some recent
improvements. In Proceedings of the Fifth European Working Session on
Learning: 151–163. Springer-Werlag.

[5] Dietterich, T. G. (1997) Machine-Learning Research: Four Current Di-
rections. AI Magazine 18(4): 97–136.

[6] Freund, Y. and Schapire, R. E. (1996) Experiments with a new boosting
algorithm. In Proceedings of the Thirteenth International Conference on
Machine Learning, pages 148-156. Morgan Kaufmann, San Francisco.

13

[7] Gama, J. (1998) Combining Classifiers by Constructive Induction. In
Proceedings of the Ninth European Conference on Machine Learning.
Springer-Werlag.

[8] Gama, J. (1999) Discriminant trees. In Proceedings of the Sixteenth Inter-
national Conference on Machine Learning: 134-142. Morgan Kaufmann.

[9] Gama, J. (2000) A Linear-Bayes Classifier. Technical Report. Artificial
Intelligence and Computer Science Laboratory, University of Porto.

[10] Merz, C. J. (1999) Using Correspondence Analysis to Combine Classi-
fiers. Machine Learning 36(1/2): 33–58. Kluwer Academic Publishers.

[11] C. L. Blake and C. J. Merz. UCI repository of machine learning
databases, 1998. [http://www.ics.uci.edu/˜mlearn/MLRepository.html].
Irvine, CA: University of California, Department of Information and
Computer Science.

[12] Pfahringer, B., Bensusan, H. and Giraud-Carrier, C. (2000) Meta-
Learning by Landmarking Various Learning Algorithms. To appear
in Proceedings of the Seventeenth International Conference on Machine
Learning.

[13] Quinlan, J. R. (1993) C4.5: Programs for Machine Learning. Morgan
Kaufmann.

[14] Todorovski, L. and Džeroski, S. (1999) Experiments in Meta-Level
Learning with ILP. In Proceedings of the Third European Conference on
Principles of Data Mining and Knowledge Discovery: 98–106. Springer-
Werlag.

[15] Todorovski, L. and Džeroski, S. (2000) Meta Decision Trees. Submitted
to ECML2000 Workshop on Meta-learning: Building Automatic Advice
Strategies for Model Selection.

[16] Todorovski, L. and Džeroski, S. (2000) Combining multiple models with
meta decision trees. In Proceedings of the Fourth European Conference
on Principles of Data Mining and Knowledge Discovery, pages 54–64.
Springer, Berlin.

[17] Wettschereck, D. (1994) A study of distance-based machine learning
algorithms. PhD Thesis, Department of Computer Science, Oregon State
University, Corvallis, OR.

14

[18] Witten, I. H. and Frank, E. (1999) Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations. Morgan Kauf-
mann, San Francisco.

[19] Wolpert, D. (1992) Stacked Generalization. Neural Networks 5(2): 241–
260.

15

