
A comparison of stacking with meta decision trees

to other combining methods

Bernard Ženko, Ljupčo Todorovski, and Sašo Džeroski

Department of Intelligent Systems, Jožef Stefan Institute

Jamova 39, Ljubljana, Slovenia

{Bernard.Zenko, Ljupco.Todorovski, Saso.Dzeroski}@ijs.si

Abstract

Meta decision trees (MDTs) are a method for com-
bining multiple classifiers. We present an integration
of the algorithm MLC4.5 for learning MDTs into the
Weka data mining suite. We compare classifier en-
sembles combined with MDTs to bagged and boosted
decision trees, and to classifier ensembles combined
with other methods: voting, grading, multi-scheme
and stacking with multi-response linear regression.

1 Introduction

The task of constructing ensembles of classifiers [2]
can be broken down into two sub-tasks. We first have
to generate a diverse set of base-level classifiers. Once
the base-level classifiers have been generated, the is-
sue of how to combine their predictions arises.

Several approaches to generating base-level classi-
fiers are possible. One approach is to generate classi-
fiers by applying different learning algorithms (with
heterogeneous model representations) to a single data
set (see, e.g., [5]). Another possibility is to apply
a single learning algorithm with different parame-
ters settings to a single data set. Finally, methods
like bagging [1] and boosting [3] generate multiple
classifiers by applying a single learning algorithm to
different versions of a given data set. Two differ-
ent methods for manipulating the data set are used:
random sampling with replacement in bagging and
re-weighting of the misclassified training examples in
boosting.

Techniques for combining the predictions obtained
from the multiple base-level classifiers can be clus-
tered in three combining frameworks: voting (used
in bagging and boosting), stacked generalization or
stacking [11] and cascading [4]. In voting, each base-
level classifier gives a vote for its prediction. The
prediction receiving the most votes is the final pre-
diction. In stacking, a learning algorithm is used to
learn how to combine the predictions of the base-
level classifiers. The induced meta-level classifier is

then used to obtain the final prediction from the pre-
dictions of the base-level classifiers. Cascading is an
iterative process of combining classifiers: at each it-
eration, the training data set is extended with the
predictions obtained in the previous iteration.

The work presented here focuses on combining the
predictions of base-level classifiers induced by apply-
ing different learning algorithms to a single data set.

The rest of the paper is organized as follows.
Meta decision trees are described in the next section.
Section 3 reports on experimental methodology and
briefly describes the meta-level classifiers used in our
experiments. The last section presents the results
and some conclusions.

2 Meta decision trees

Meta decision trees (MDTs) [9] adopt the stacking
framework of combining base-level classifiers. The
difference between meta and ordinary decision trees
(ODTs) is that MDT leaves specify which base-level
classifier should be used, instead of predicting the
class value directly. The attributes used by MDTs
are derived from the class probability distributions
predicted by the base-level classifiers for a given ex-
ample. An example MDT, induced in the image do-
main from the UCI Repository, is given below. The
leaf denoted by an asterisk (*) specifies that the IBk
classifier is to be used to classify an example, if the
entropy of the class probability distribution predicted
by IBk is smaller than or equal to 0.002369.

IBk:Entropy <= 0.002369: IBk (*)

IBk:Entropy > 0.002369

| J48:maxProbability <= 0.909091: IBk

| J48:maxProbability > 0.909091: J48

The original algorithm MLC4.5 [9] for inducing
MDTs was an extension of the C4.5 [6] algorithm
for induction of ODTs. We have integrated the algo-
rithm for inducing MDTs in the Weka data mining
suite [10]. The algorithm MLJ4.8 is a modification of



Table 1: Classification errors (in %) of base-level classifiers (J4.8, IBk, and naive Bayes) and combining schemes
(bagged and boosted decision trees, voting, grading, multi-scheme, stacking with MLR and stacking with MDTs).

Data set J4
.8

IB
k

N
ai
ve

B
ay

es

B
ag

gi
ng

J4
.8

B
oo

st
in
g
J4

.8

Vo
tin

g

G
ra
di
ng

M
ul
ti-

sc
he

m
e

St
ac
ki
ng

M
LR

St
ac
ki
ng

M
D
T

australian 14.54 13.45 18.65 13.67 15.58 13.81 14.04 13.78 14.16 13.77
balance 22.43 9.90 8.48 17.31 21.49 8.91 8.78 8.51 9.47 8.51
breast-w 5.39 4.28 2.69 4.98 3.71 3.46 3.69 2.69 2.73 2.69
bridges-td 14.71 16.57 14.02 14.90 19.41 15.78 15.10 15.78 14.12 16.08
car 7.44 5.83 14.40 6.78 4.16 6.49 6.10 5.83 5.61 5.02

chess 0.60 2.87 12.16 0.61 0.38 1.46 1.16 0.60 0.60 0.60
diabetes 26.26 25.55 24.70 24.62 28.53 24.01 24.26 25.09 23.78 24.74
echo 34.58 34.73 27.33 31.68 33.89 29.24 30.38 27.63 28.63 27.71
german 28.82 26.01 25.43 26.37 29.23 25.19 25.41 25.69 24.36 25.60
glass 32.24 29.67 49.86 26.03 23.18 29.67 30.75 32.06 30.93 31.78

heart 22.19 18.52 15.67 19.78 21.78 17.11 17.70 16.04 15.30 16.04
hepatitis 20.90 17.29 15.35 17.68 18.26 17.42 18.39 15.87 15.68 15.87
hypo 0.72 2.79 1.81 0.78 1.05 1.32 0.80 0.72 0.72 0.79
image 3.18 2.84 14.29 2.55 1.84 2.94 3.32 2.85 2.84 2.53
ionosphere 10.26 13.28 8.15 7.83 6.41 7.18 8.06 8.40 7.35 8.83

iris 5.33 4.67 4.07 5.73 5.80 4.20 4.40 4.73 4.47 4.73
soya 7.54 8.96 7.12 7.23 7.07 6.75 7.38 7.22 7.22 7.06
tic-tac-toe 15.11 0.96 30.22 6.80 3.43 9.24 6.08 0.96 0.58 0.96
vote 3.54 6.97 9.82 3.93 4.48 7.10 5.22 3.54 3.54 3.54
waveform 23.62 14.42 19.24 18.00 18.58 15.90 17.04 14.42 14.33 14.40
wine 6.57 3.26 2.64 5.11 4.04 1.74 1.80 3.26 2.87 3.26

Average 14.57 12.52 15.53 12.49 12.97 11.85 11.90 11.22 10.92 11.17

J4.8 (the Weka re-implementation of C4.5): the dif-
ferences between MLJ4.8 and J4.8 closely mirror the
ones between MLC4.5 and C4.5. Integrating MDTs
into Weka lets us perform a variety of experiments
in combining different sets of base-level classifiers, as
well as comparisons to other methods for combining
classifiers.

3 Experimental setup

In order to compare the performance of MDTs
with that of other combining schemes, we perform ex-
periments on a collection of twenty-one data sets from
the UCI Repository of Machine Learning Databases
and Domain Theories. Three learning algorithms are
used in the base-level experiments: the tree learn-
ing algorithm J4.8, which is a re-implementation of
C4.5 [6], the k-nearest neighbor (k-NN or IBk) algo-
rithm and the naive Bayes (NB) algorithm. In all
experiments, classification errors are estimated using
10-fold stratified cross validation. Cross validation is
repeated ten times using different random generator
seeds resulting in ten different sets of folds.

At the meta-level, the performances of seven algo-
rithms for combining classifiers are compared. These

are bagging and boosting of decision trees, vot-
ing, grading, multi-scheme, stacking with MLR, and
stacking with MDTs. A short description of each of
them follows.

Bagging uses random sampling with replacement in
order to obtain different versions of a given data set.
The size of each sampled data set equals the size of
the original data set. On each of these versions of
the data set the same learning algorithm, J4.8 in our
case, is applied. Classifiers obtained in this manner
are then combined with majority voting. For more
information see [1].

Boosting first builds a classifier with some learning
algorithm (again J4.8 in our case) from the original
data set. The weights of the misclassified examples
are then increased and another classifier is built using
the same learning algorithm. The procedure is re-
peated several times. Classifiers derived in this man-
ner are then combined using weighted voting. The
AdaBoost.M1 variant of boosting was used in our ex-
periments. For more information see [3].

Voting is the simple majority vote algorithm.

Grading is an algorithm that tries to identify and



Table 2: Relative improvement in accuracy (in %) achieved by stacking with MDTs as compared to bagging,
boosting, voting, grading, multi-scheme and stacking with MLR; and its significance (+/– : significantly bet-
ter/worse, x : insignificant).

Bagging J48 Boosting J48 Voting Grading Multi Scheme Stacking MLR
Data set rel. im. sig. rel. im. sig. rel. im. sig. rel. im. sig. rel. im. sig. rel. im. sig.

australian -0.74 x 11.63 + 0.31 x 1.96 x 0.11 x 2.76 x
balance 50.83 + 60.39 + 4.49 + 3.10 + 0.00 x 10.14 +
breast-w 45.98 + 27.41 + 22.31 + 27.13 + 0.00 x 1.57 x
bridges-td -7.89 – 17.17 + -1.86 x -6.49 x -1.86 x -13.89 –
car 25.96 + -20.75 – 22.73 + 17.74 + 13.99 + 10.62 +

chess 1.55 x -56.55 – 59.10 + 48.66 + 0.00 x 0.00 x
diabetes -0.48 x 13.28 + -3.04 – -1.99 x 1.40 x -4.05 –
echo 12.53 + 18.24 + 5.22 + 8.79 + -0.28 x 3.20 +
german 2.92 + 12.42 + -1.63 x -0.75 x 0.35 x -5.09 –
glass -22.08 – -37.10 – -7.09 – -3.34 x 0.87 x -2.72 x

heart 18.91 + 26.36 + 6.28 x 9.41 + 0.00 x -4.84 x
hepatitis 10.22 x 13.07 + 8.89 + 13.68 + 0.00 x -1.23 x
hypo -1.62 x 24.62 + 40.09 + 0.40 x -9.61 x -9.61 x
image 0.68 x -37.65 – 13.72 + 23.63 + 11.23 + 10.82 +
ionosphere -12.73 – -37.78 – -23.02 – -9.54 x -5.08 x -20.16 –

iris 17.44 + 18.39 + -12.70 – -7.58 x 0.00 x -5.97 x
soya 2.43 x 0.21 x -4.55 – 4.37 + 2.23 x 2.23 x
tic-tac-toe 85.87 + 72.04 + 89.60 + 84.19 + 0.00 x -64.29 –
vote 9.94 + 21.03 + 50.16 + 32.16 + 0.00 x 0.00 x
waveform 20.00 + 22.50 + 9.44 + 15.50 + 0.11 x -0.53 x
wine 36.26 + 19.44 x -87.10 – -81.25 - 0.00 x -13.73 x

Average 19.89 14.78 18.34 14.97 0.75 -4.07
W/L 11+/3– 14+/5– 11+/6– 12+/1– 2+/0– 4+/5–

correct the incorrect predictions of the base-level clas-
sifiers. For each base-level classifier, one meta-level
classifier is learnt, whose task is to predict when the
base-level classifier will make an error. The train-
ing set for each of these meta-level classifiers is con-
structed using the graded (marked correct or incor-
rect) predictions of the corresponding base-level clas-
sifier as new class labels for the original attributes.
The final prediction is derived by voting from the
predictions of those base-level classifiers that are pre-
dicted to be correct by the corresponding meta-level
classifier. For more information see [7].

Multi-scheme is an algorithm for selection by cross
validation. New examples are classified by the base-
level algorithm which has the least cross validation
error on training data.

Stacking MLR uses a multi-response linear regres-
sion algorithm (MLR) as a meta-level learning algo-
rithm. The meta-level data consist of the class prob-
ability distribution for each base-level classifier along
with the actual class. For more information see [11]
and [8]. MLR transforms a classification problem into
a set of regression problems; one problem for each
class value. Linear regression is then used to predict
the probability of the selected class value. If there

are discrete attributes in the data set, they are trans-
formed to binary ones. For more information see [8].

Stacking MDT uses meta decision trees, described
in Section 2 and [9], as a meta-level learning algo-
rithm. The meta-level data consist of the maximal
class probability and the entropy of the class proba-
bility distribution for each base-level classifier (as or-
dinary attributes) and the classes predicted by base-
level classifiers (as class attributes) along with the
actual class.

The performance of each of these algorithms is as-
sessed in terms of its error rate. The performance of
MDTs is compared to that of the other combining
approaches. The relative accuracy improvement of
classifier C1 as compared to classifier C2 is

1 − error(C1)/error(C2)

(in our case C1 = MDTs). The average relative im-
provement is calculated using geometric mean:

1 − geometric mean(error(C1)/error(C2)).

The statistical significance of the difference in classifi-
cation errors is tested using the paired t-test (exactly
the same folds are used for C1 and C2) with signifi-
cance level of 95%.



4 Results

The classification errors of all base-level and com-
bining algorithms averaged over ten runs of ten-fold
cross validation are presented in Table 1, while the
relative improvement in accuracy and its significance
are presented in Table 2.

Stacking with MDTs performs better than bagging
and boosting of decision trees, which are the state of
the art methods for learning ensembles of classifiers:
MDTs are significantly better than bagging in 11 and
worse in 3 domains with a 20% relative accuracy im-
provement; when compared to boosting MDTs are
significantly better in 14 and worse in 5 domains with
a 15% relative accuracy improvement.

A previous study of MDTs [9] shows that MDTs
perform better than voting. Our study confirms
these findings and proves that they are indepen-
dent of a specific implementation (we used their re-
implementation in Java programming language) and
the set of base-level classifiers (we used a different
and smaller set).

Grading performs better than bagging and boost-
ing, but is generally not comparable to multi-scheme,
stacking with MLR or stacking with MDTs. This
is somewhat inconsistent with findings in [7], where
the authors report that grading outperforms multi-
scheme. However, they performed experiments on
different data sets and they used a larger set of base-
level classifiers.

The performance of multi-scheme is very similar
to the performance of MDTs. The latter are signif-
icantly better on two data sets, while all the other
differences are insignificant.

Stacking with MLR slightly outperforms stacking
with MDTs (significantly better in 5 domains and
worse in 4 domains, with a 4% relative improvement
in accuracy). Note that stacking with MDTs per-
forms comparably while using less information (only
aggregate data on the class probability distribution is
used by MDTs, while the complete class probability
distribution is used by stacking with MLR). Further-
more, the set of attributes used in MDTs is domain
independent once we fix the set of base-level classi-
fiers and the language of MDTs is the same for all
domains. Another advantage of the MDTs is their
understandability: they provide information about
the relative areas of expertise of the base-level classi-
fiers.

Finally, from our experiments we can conclude,
that the overall performance of three combining algo-
rithms (multi-scheme, stacking with MLR, and stack-
ing with MDTs) is significantly better than the over-
all performance of the other tested combining algo-
rithms. The differences in accuracy between the best
three algorithms are very small and can hardly be
used to choose among them.

Acknowledgements

Many thanks to Alexander Seewald for providing
his implementation of grading in Weka.

References

[1] Breiman, L. (1996) Bagging predictors. Machine
Learning, 24(2): 123–140.

[2] Dietterich, T. G. (1997) Machine-Learning Re-
search: Four Current Directions. AI Magazine
18(4): 97–136.

[3] Freund, Y. and Schapire, R. E. (1996) Experi-
ments with a new boosting algorithm. In Pro-
ceedings of the Thirteenth International Confer-
ence on Machine Learning, pages 148-156. Mor-
gan Kaufmann, San Francisco.

[4] Gama, J. (1998) Combining Classifiers by Con-
structive Induction. In Proceedings of the Ninth
European Conference on Machine Learning.

[5] Merz, C. J. (1999) Using Correspondence Anal-
ysis to Combine Classifiers. Machine Learning
36(1/2): 33–58. Kluwer Academic Publishers.

[6] Quinlan, J. R. (1993) C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann, San Fran-
cisco.

[7] Seewald, A. K. and Fürnkranz, J. (2001) An
Evaluation of Grading Classifiers. In Advances
in Intelligent Data Analysis: Proceedings of
the Fourth International Symposium (IDA-01).
Springer, Berlin.

[8] Ting, K. M. and Witten, I. H. (1999) Issues
in stacked generalization. Journal of Artificial
Intelligence Research, 10: 271–289.

[9] Todorovski, L. and Džeroski, S. (2000) Com-
bining multiple models with meta decision trees.
In Proceedings of the Fourth European Confer-
ence on Principles of Data Mining and Knowl-
edge Discovery, pages 54–64. Springer, Berlin.

[10] Witten, I. H. and Frank, E. (1999) Data
Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan
Kaufmann, San Francisco.

[11] Wolpert, D. (1992) Stacked generalization. Neu-
ral Networks 5(2): 241–260.


