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Abstract A constant and controlled level of emission of carbon and other gases
into the atmosphere is a pre-condition for preventing global warming and an essential
issue for a sustainable world. Fires in the natural environment are phenomena that
extensively increase the level of greenhouse emissions and disturb the normal func-
tioning of natural ecosystems. Therefore, estimating the risk of fire outbreaks and fire
prevention are the first steps in reducing the damage caused by fire. In this study, we
build predictive models to estimate the risk of fire outbreaks in Slovenia, using data
from a GIS, Remote Sensing imagery and the weather prediction model ALADIN.
The study is carried out on three datasets, from three regions: one for the Kras region,
one for the coastal region and one for continental Slovenia. On these datasets, we apply
both classical statistical approaches and state-of-the-art data mining algorithms, such
as ensembles of decision trees, in order to obtain predictive models of fire outbreaks.
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This paper has its origins in a project report (Kobler et al. 2006) and a short conference paper (Stojanova
et al. 2006) that introduced the problem of forest fire prediction in Slovenia, using GIS, RS and
meteorological data. However, this paper significantly extends and upgrades the work presented there.
In particular: We consider a wider set of data mining techniques, from single classifiers to ensembles;
We present a comparison of the predictive performance in terms of several frequently used evaluation
measures for classification; We present an example of the results obtained from the modeling task in the
form of decision rules, explain and interpret their meaning; We generate geographical maps and compare
them with other fire prediction models (e.g., FWI fire risk danger maps) provided by other services.
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In addition, we explore the influence of fire fuel information on the performance of
the models, measured in terms of accuracy, Kappa statistic, precision and recall. Best
results in terms of predictive accuracy are obtained by ensembles of decision trees.

Keywords Fire outbreaks · Fire prediction · Greenhouse emission ·
Remote sensing · Classification · Rules · Trees · Ensembles

1 Introduction

1.1 Fires: threat, damage and consequences

Fires present a global threat to the natural environment. They violate the functions of
natural ecosystems and can cause a serious damage to the natural environment and
human assets. Even though fires can also have a beneficial ecological function, e.g.,
start the rejuvenation of a forest, in most cases they cause significant material dam-
age, both from an economic and an ecological point of view. The damage is especially
reflected in ecosystem services, landscape structure and global infrastructure, as well
as in species composition, biodiversity of ecosystems and human life. Fires increase
the emissions of particles and gases into the atmosphere (especially carbon dioxide).
They also alter the water infiltration rates in the soil, making burnt areas more prone
to erosion, soil loss and landslides. The extent of damage caused by these natural phe-
nomena can rise to critical levels, especially when combined with droughts, changes
in landuse, wind and topographical factors.

Furthermore, extreme and frequent fires degrade habitat quality and destroy eco-
systems, including forests, which need time to develop. The forests themselves are a
very important segment of the natural environment. They serve as a natural carbon
sink by accumulating and storing carbon dioxide, at the same time releasing oxy-
gen and helping in the reduction of greenhouse gas emissions into the atmosphere.
Sustainable management practices keep forests growing at a higher rate over a poten-
tially longer period of time, thus providing net sequestration benefits in addition to
those of unmanaged forests (Ruddell et al. 2007).

Each year, millions of hectares of forest are destroyed all around the world because
of forest fires. During the fires of 2007, an overall 575,531 ha of forest were destroyed
in various European nations. From 1980 to 2006, a total of about 1.33 million ha of
forest land has been ruined by the fires (European Commission 2008). The fires of
2007 were dramatic both in terms of the size of the affected territory and the number
of human deaths caused. The total greenhouse gas emissions resulting from fires in
the period from 1994 to 2007 were estimated to 12.5 million tons of carbon dioxide
(CO2).

The deforestation caused by fires further contributes to the increase of CO2 emis-
sions into the atmosphere. The emissions of particles and gases into the atmosphere
can rise to critical levels when combined with extreme weather conditions, especially
high temperatures and long drought periods enclosed by storms and winds. With a
2◦C increase in average temperature, there is a 30% increased risk of significant
deforestation in the northern forests of Eurasia, eastern China, Canada, and the trop-
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ical rainforests of central America and the Amazon. This risk would rise to 60% and
affect wider areas if temperatures rise by 3◦C (Connor 2006).

In short, fires increase the emissions of particles and gases into the atmosphere,
especially CO2, which is believed to be one of the inducers of global warming. They
reduce the services and benefits we obtain from natural ecosystems, violate the envi-
ronmental equilibrium and cause significant material damage. The consequences of
fires, combined with the effects of global warming and other hazards, are threatening
and can lead to pest outbreaks, changed land usage, as well as new fire outbreaks.

1.2 Fires in Slovenia

Fires are also a threat to the natural environment in Slovenia. Given that a large percent
of the country is covered by forests (about 60%), the risk of forest fires is a serious
issue. The risk of fires is strongly related to the weather conditions, especially the
occurrence of extreme events (e.g., drought). The number of fires in Slovenia between
1994 and 2008 varied as shown in Fig. 1.

The differences in climatic conditions between regions in Slovenia are very large,
which implies different fire risks between regions. In our study, we consider three
different regions: continental Slovenia, coastal Slovenia and the Karst (Kras) region.
Figure 2 presents a map of Slovenia where these regions are shown. Due to the climate
differences among the three regions, we will investigate them separately.

The fire threat is not severe in the central part of Slovenia. However, the entire
coastal region is threatened due to the sub-Mediterranean climate with high tem-
peratures, long drought periods and powerful winds (Slovenia Forest Service 2005).
The drought risk for the Slovenian coast is increasing, primarily due to climate change,
and will be amplified by increased water shortage. Fire danger, length of fire season,
fire frequency and severity are very likely to increase here and may lead to increased
dominance of shrubs over trees.

Fig. 1 The number of fires in Slovenia in the period between 1994 and 2008
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Fig. 2 A map of Slovenia where the study regions are shown. The coastal area is given in light green (gray)
color whereas the rest of Slovenia is light yellow (light gray). The Kras region that is a subset of the coastal
region is presented in dark green (black) color

The highest number of fires is recorded in the Kras (Karst) region in the coastal
area. Due to the hot and dry sub-Mediterranean climate, brownfield sites, as well as
the vegetation adjusted to this type of climate, it has the highest fire risk for the natural
environment in Slovenia. More than half of the forests in the Kras region are rated
with the highest level of fire risk and at least 50 fires with a total area of over 600 ha
occur on average each year (Kobler 2001). The fire threat is further increased by the
transport corridors that lead through this area, in particular railways.

1.3 Modeling for reducing fire damage

The measures taken to reduce the damage caused by fire can be roughly divided into
fire prevention and fire fighting measures. Measures from the first group aim to pre-
vent fires from occurring in the first place, while measures from the second group
aim to reduce the damage of fire spread. Modeling plays an important role for both:
Models of fire risk are used in fire prevention, while models for detecting fires as well
as models of fire spread and burn severity are used in fire fighting.

The modeling tasks related to fire prevention and fighting, as well as existing
approaches to addressing these tasks, are discussed in detail in Sect. 2. Here we briefly
touch upon modeling for fire prevention. In particular, we discuss the modeling of fire
risk and the probability of fire outbreaks as its special case, as this is the topic we
address in our application.

Models of fire risk (such as those predicting fire outbreaks) relate the fire threat
(e.g., probability of outbreak) and the influence factors, such as availability of fuel
and weather conditions. Because the influence factors are more or less geographically
determined, such models are usually developed within Geographical Information
Systems (GIS). The models can be built manually, by using domain knowledge, or in
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an automated fashion with machine learning (ML), by using historical data on fires
(fire outbreaks) and influence factors.

An example of a manually developed model is the Fire Weather Index (FWI) (Turner
and Lawson 1978), which was originally developed in Canada. FWI is now in exten-
sive use in the European Union through the European Forest Fires Information Service
(EFFIS), where it has been modified to better suit the large differences in day length in
the EU, when going from the Mediterranean to the Boreal countries. FWI is composed
of six sub-indices, calculated from the weather parameters of temperature, relative
humidity, wind speed, and rainfall. EFFIS calculates the FWI daily for all EU coun-
tries. The calculations are based on weather forecast data received daily from French
and German meteorological services. The FWI is calculated at a spatial resolution of
36–45 km.

Increasingly more often, models for predicting fire occurrence or outbreaks are
built by using historical data on fires and influence factors, to which statistical and
machine learning approaches are applied. A variety of machine learning approaches
have been applied in this context, typically one per study, with neural networks being
the most commonly applied (and nearest neighbor, logistic regression, and decision
trees being applied occasionally). The spatial resolution also varies across the studies,
but is typically coarse (going up to 0.25◦).

1.4 State of the art in Slovenia

As an EU country, Slovenia is covered by EFFIS (mentioned above) through daily
calculation of the Fire Weather Index (FWI): However, the spatial resolution of this
coverage is very coarse (36–45 km). EFFIS also contains historical fire data for 20
countries, but not for Slovenia. Two operational systems (manually developed expert
models) are used locally in Slovenia to assess the potential fire hazard in the natural
environment: The first is a regional model and has been developed by the Environment
Agency of Slovenia (EARS), while the second only concerns forest fires and has been
developed by the Slovenian Forest Service (SFS). The EARS model has very low
spatial resolution and fine-grained temporal resolution, while the SFS model has more
fine-grained spatial, but coarse temporal resolution.

The Slovenian Forestry Institute (Kobler 2001) developed a regional model of fire
risk, combining the fine-grained temporal resolution of the EARS model with the fine-
grained spatial resolution of the SFS model. The validity of this model was limited to
forests. The model was developed by using statistical approaches on a small quantity
of data on previous forest fires: Hence, the achieved accuracy of the model was not
adequate for operational use.

Following the above, we have derived two empirical GIS models of fire danger
in the natural environment in Slovenia (Kobler et al. 2006). The models have fine-
grained spatial and temporal resolution and are based on a much larger dataset of
fires in the natural environment. The data, described in detail later in this paper, were
used as input for the statistical approach of logistic regression. The resulting model
predicts the likelihood of fire outbreaks in the natural environment. This model has
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been deployed within a GIS on natural disasters, which is in daily use at the Adminis-
tration for Civil Protection and Disaster Relief of the Ministry of Defence of Slovenia.

The model for predicting the likelihood of fire outbreaks does not give any further
information about the fate of the fire, if the fire in fact occurs. Therefore, it does not
anticipate the speed and manner of the fire development, nor does it predict burn sever-
ity. We have thus produced a second model that reflects to some extent the danger of
fire spreading, in case it actually does break out. In the second model, the output of
the first model is weighted by the wind speed (where the weights are based on expert
experience): Given the same probability of a fire outbreak for two locations, greater
weight will be given to the location where, according to meteorological forecasts,
strong winds are expected. This second model has also been deployed as described
above.

1.5 The objective of this study

The aim of this study is to build improved models that predict the risk of fire out-
breaks in Slovenia by using state-of-the-art data mining techniques, as assessed by
predictive accuracy and other relevant performance measures (such as precision and
recall). Much like the recent related work (Kobler et al. 2006), we will use data from
GIS, Remote sensing (RS) imagery, and weather predictions by the model ALADIN
(Aire Limitée Adaptation Dynamique Développement International) (Fischer et al.
2006). Similarly, we will carry out the study on three datasets, from three regions: one
for the Kras region, one for the coastal region and one for continental Slovenia. On
these datasets, we will apply both classical statistical approaches and state-of-the-art
data mining algorithms, such as ensembles of decision trees, showing that the latter
perform better.

The remainder of the paper is organized as follows. The next section presents related
work along several lines of fire damage prevention research. In Sect. 3, we describe
the data, in Sect. 4 the methodology used in this study, and in Sect. 5 the experimental
setup of the predictive modeling process. Next, in Sect. 6 we present the obtained
models, explain and interpret their meaning, present the fire outbreak risk maps that
we generated with our models, and discuss the problem of predicting fire outbreaks
in the natural environment. Finally, in Sect. 7 we outline our conclusions and discuss
possible directions for further work.

2 Related work

Many measures can be taken in order to reduce the damaging effects of fires. We
can roughly divide them into fire prevention and fire fighting measures. The first are
supposed to prevent the occurrence of fires in the first place, while the second reduce
the damage of fires that have occurred. Fire prevention measures include modeling
the risk of fire outbreaks or predicting the probability of fire outbreaks, while fire
fighting measures include early (automatic) fire detection and modeling of fire spread
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and burn severity.1 These measures are often supported by computer simulations of
weather conditions, models of the fire risk and spread and possible fire damage scenar-
ios. They are very important for successful fire prevention, organization of prevention
measures and optimal allocation of fire-fighting resources. In the next paragraphs, we
give an overview of existing studies related to these measures.

2.1 Fire outbreak prediction

Fire outbreak prediction can be viewed as the first step in reducing the damage caused
by fires. An important tool for the prediction of fire risk is modeling of the relations
between the fire threat and the influence factors (e.g., weather conditions, climate data,
direction and speed of the wind, etc.). Because these factors are more or less geograph-
ically determined, such models are usually developed within a GIS. The models can
be constructed manually or built with machine learning or statistical techniques.

Vega-Garcia et al. (1996) applied Neural Networks (NN) to predict human-caused
wildfire occurrence in Canada. Within a GIS, they analyzed the historical occurrence
of fire data, the Fire Weather Index for a given day, the geographical area of the fire
occurrence and the forest districts with high human use. These data were also ana-
lyzed with logistic regression models, which served as a “domain expert” to identify
the important input variables. The resultant model had four input nodes and two output
nodes and correctly predicted 76% of the fire and non-fire observations on the test data.

Alonzo-Betanzos et al. (2003) also used neural networks to predict fire risks clas-
sified into four symbolic categories, and obtained an accuracy of 78.9%. Based on
daily meteorological data, they built an intelligent rule-based system for forest fire
risk prediction and fire fighting management. The application area was the Galicia
region in Spain, one of the regions of Europe most affected by fires.

Cheng and Wang (2008) presented an integrated spatio-temporal forecasting frame-
work that uses dynamic recurrent neural networks for forecasting the annual average
area of forest fire, based on historical observations. Comparative analysis of this frame-
work with other methods shows its high accuracy in short-term prediction. Its use was
illustrated by a case study of forest fire area prediction in Canada.

Felber and Bartelt (2003) used the k-Nearest Neighbors algorithm to compare past
fire occurrences to current forecast conditions in order to predict forest fire danger in
the Swiss Southern Alps. The Nearest Neighbors models are attractive since they are
intuitive in their operation and their data requirements are relatively modest. The data
used were fuel, weather and forest fire data over a period of several years.

Preisler et al. (2008) developed a statistical method based on logistic regression
technique for estimation of the monthly probabilities of large fires on a 1-degree grid
cell over the western US. The model used 25 years of historical fire occurrence data,
monthly average temperature and monthly mean fire danger indices (FWI, Drought
Index, Ignition and Energy Release Component). The statistical models were partic-
ularly amenable to model evaluation and production of probability-based fire-danger
maps with pre-specified precision. During the 25 years of the study, for the month

1 Here we discuss in more detail the measures that are related to our study.
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of July, fires occurred at 3% of locations where the model forecast was low; 11% of
locations where the forecast was moderate; and 76% of locations where the forecast
was extreme.

Locatelli et al. (2008) used climatic monthly data for the 1998–2007 period with
a 0.25 degree spatial resolution and built decision trees to model the occurrence
of forest fires in Central America. The decision trees resulted in 75% accuracy on
the 1998–2007 period. Using climate change and socio-economic scenarios, as well
as fuzzy indicators of fire risk, they also applied the decision trees to future condi-
tions to create maps of future fire risks, which showed that in some areas fire risk is
changing.

2.2 Fire detection

The goal of fire detection is to automatically detect fires that are already active. A large
body of research on fire detection exists, where RS of fires is performed using a variety
of space-borne systems and sensors. The most widely used sensors for long-term and
large-scale fire monitoring are the Advanced Very High Resolution Radiometer (AV-
HRR), Defense Meteorological Satellite Program (DMSP), Along Track Scanning
Radiometer (ATSR), Landsat (Mack 1991) and the Moderate Resolution Imaging
Spectroradiometer (MODIS).2

Li et al. (2001) present a review of AVHRR-based Active Fire Detection
Algorithms in three general categories: single channel threshold algorithms, multi-
channel threshold algorithms, and spatial contextual algorithms. Five fire detection
algorithms (IGBP, MODIS, ESA, CCRS, and an approach by Giglio et al. (1999))
were compared by applying them across the Canadian boreal forest for a 6-month
period and comparing cumulative fire pixels with a ground-truth data set. The perfor-
mance of the algorithms under evaluation differed drastically, which implied that the
hot spot detection algorithms are not robust enough for global operational use and no
single-sensor algorithm is optimal for global fire detection.

The Enhanced Contextual Fire Detection Algorithm for MODIS by Giglio et al.
(2003) runs as a part of the MODIS Rapid Response System, providing information
about actively burning fires, including their location and timing, instantaneous radia-
tive power and smoldering ratio, presented at a selection of spatial and temporal scales.
Services such as the FIRMS Web Fire Mapper3 use MODIS data as a data source to
map the fire locations and burn areas around the world.

Other detection techniques based on image processing can be used for detec-
tion of forest fire spots in satellite images, as well. For example, spatial clustering
(FASTCiD) was adopted by Hsu et al. (2002) to detect forest fire spots in satellite
images. The clustering problem was presented in terms of image mining as an inter-
disciplinary endeavor that draws upon expertise in computer vision, image processing,

2 MODIS Rapid Response System: http://rapidfire.sci.gsfc.nasa.gov/.
3 FIRMS Web Fire Mapper: http://firefly.geog.umd.edu/firemap/.
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image retrieval, data mining, machine learning, databases, and artificial intelligence.
Advances in image acquisition and storage technology like object recognition, image
retrieval, image indexing, image classification and clustering, association rule mining
and neural networks can reveal useful information to the human users and have led to
tremendous growth in very large and detailed image databases.

Mazzoni et al. (2005) obtained 75% accuracy at finding smoke at the 1.1- km pixel
level by using satellite images from North America forest fires fed into a Support
Vector Machine (SVM) pixel classifier. They used spectral, angular and textural fea-
tures from the NASA’s Multi-angle Imaging SpectroRadiometer (MISR) and matched
areas containing smoke with fire locations identified by MODIS. For candidate scenes
that appear to contain both smoke and fire, they applied machine vision techniques
to look for evidence of plume-like shapes. When potential plumes were found, they
automatically estimated source location, orientation, and injection height, using his-
tograms of MISR stereo data for the latter. At the end, a human expert examined the
results and discarded any false retrievals.

2.3 Modeling fire spread and burn severity

Modeling fire spread and burn severity is very important for preparing fire-fighting
strategies in order to minimize the damage caused by fires and to use the
limited resources as efficiently as possible. Markuzon and Kolitz (2009) used Random
Forests, Bayesian networks and the k-Nearest Neighbor method for estimating fire
danger, i.e., modeling the probabilistic risk of a currently burning fire becoming
large and dangerous. They used data from MODIS images and weather informa-
tion. None of the classifiers showed significantly superior performance over the oth-
ers. However, the study demonstrated a significant predictive power of fire models
that are based on remote sensing observations. The combination of data sources
with different modalities increased the predictive power of the models to useful
levels.

Cortez and Morais (2007) predicted the burned area of forest fires using SVMs
and Random Forests. Four distinct feature selection setups (using spatial, tem-
poral, FWI components and weather attributes) were tested on recent real-world
data collected from the northeast region of Portugal. The best configuration uses a
SVM and four meteorological inputs (i.e., temperature, relative humidity, rain and
wind) and is capable of predicting the burned area of small fires, which are more
frequent.

Holden et al. (2009) predict the burn severity for the Gila National Forest from
historical (over a 20-year period) burn severity data, topographic and biophysical vari-
ables. They used the random forest algorithm and a stratified random sample to build
an empirical model predicting the probability of occurrence for severe burns across
the entire study area. The model classified severity with a classification accuracy of
79.5%. Severe fires occurred more frequently at higher elevations and on north-facing,
steep slopes and at locally wet, cool sites, which suggests that moisture limitations on
productivity in the southwestern US interact with topography to influence vegetation
density and fuel production that in turn influence burn severity.
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3 Materials and methods

3.1 The study area

In this study, we investigate three datasets that contain data from different parts of
Slovenia: the Kras region, which represents a sub-region of the coastal region of
Slovenia (70 km2, Kras dataset), the coastal region (132 km2, Coastal dataset), and
the continental part of Slovenia (20141 km2, Slovenia dataset). The area of the Kras
dataset is included in the Coastal dataset. Figure 2 presents a map of Slovenia where
these regions are shown.

3.2 Data description

The data used for this study comprises fire outbreaks in the natural environment within
Slovenia. Each location of a fire outbreak is described with a series of environmental
attributes. These can be grouped into geographical, remote sensing and meteorological
attributes.

3.2.1 The outbreaks

Each fire outbreak is a positive example for our data mining task. The data on fire
occurrences were provided by the Administration for Civil Protection and Disaster
Relief of Slovenia and the Slovenian Forestry Institute. They cover a 5 year period
(2000–2004). Each fire outbreak is specified by the approximate location and time
(date and hour) of the outbreak.

For building predictive models of outbreaks, we also need negative examples (of
fire non-occurrence), which are generated from the positive examples by using the
following procedure:

1. For each fire outbreak (positive example) repeat steps 2–4;
2. Find all fire outbreaks within the period of ±3 days from the selected fire outbreak;
3. For all fire outbreaks found in step 2, make a 15 km (11 km for Kras dataset)

surrounding region;
4. Outside the areas defined in step 3 randomly select one location in a forested

region.

The locations of positive and negative examples of fire occurrence were next spatially
and temporally linked to the descriptive environmental data.

3.2.2 Environmental data

The data describing the environment of the outbreaks includes geographical (GIS),
remote sensing (RS) and meteorological data. The spatial unit of the analysis was a
1 km × 1 km quadrant and all the attributes were aggregated to this resolution.

Geographical (GIS) data. The geographical attributes are time independent and
describe the following properties for each of the 1 km × 1 km quadrant: median
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Fig. 3 The state landuse map, provided by the Ministry of Slovenia for Agriculture, Forestry and Food

altitude above sea level, slope and aspect of the relief, mode of exposition of the relief,
distance to roads, highways, railways and settlements, and the distribution of land
usage. The latter is represented as the percentage of land use of different types (e.g.,
fields, gardens, forests, buildings and others) and originates from the state landuse
map presented in Fig. 3.

Remote Sensing (RS) data. Remote Sensing (RS) involves gathering of spatially orga-
nized data and information about an area of interest by detecting and measuring signals
composed of radiation, particles and fields emanating from objects located beyond the
immediate neighborhood of the sensor devices, offering a potential for more efficient
resource assessment (Sabins 1978). RS can collect data on inaccessible and danger-
ous areas, and replaces expensive and time-consuming data gathering on the ground,
ensuring in the process that areas or objects are not disturbed. RS observations can
be used to distinguish among forest cover types on the basis of forest structure and
species composition, to detect and quantify landscape pattern and structure, to give
precise estimates of variables such as leaf area index and biomass for use in ecosystem
process models.

Observations acquired at multiple scales and resolutions can be used to continu-
ously estimate forest conditions from plots to stands to ecosystems. Multi-temporal
RS observations are essential for various change detection applications. Our RS data
includes multi-temporal MODIS and LiDAR data.

Multi-temporal MODIS data. MODIS (Moderate-resolution Imaging Spectrora-
diometer) (Chu et al. 2002) is an instrument launched into Earth orbit by NASA in
1999 on board the Terra and the Aqua satellites. The instruments capture data in
36 spectral bands ranging in wavelength from 0.4 µm to 14.4 µm and at varying
spatial resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km).
The data is stored in text (ASCII) files, which cover 7×7 km of the field site.
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Each row in the file contains data from one 8-day, 16-day, or annual period
(depending on the temporal frequency of the data product represented). From
the NASA archives of MODIS satellite images, we collected data on land temper-
ature and net primary production of plants for the period of 5 years (2000–2004)
with a spatial resolution of 1 km and time resolution of 8 days. The multi-tem-
poral MODIS satellite data implicitly give information about the response of the
vegetation in periods of drought and the types of fire fuels (King et al. 2003).
The MODIS attributes describe the following properties: average temperature in
Kelvin for a specific quadrant for a day x of the year, where x takes the values of
1, 9, 17, 25, . . . , 361 and average net primary production for a specific quadrant
for day x of the year. For days other then 1, 9, 17, 25, . . . , 361, the closest available
day is taken.
LiDAR data. In recent years, LiDAR (Light Detection And Ranging) has become
one of the most promising RS techniques for detailed measurement of forest param-
eters. LiDAR is an optical RS technology that measures properties of scattered light
to find range or other information of a distant target (Fujii and Fukuahi 2005). Like
most of the passive or active systems, LiDAR can be used for mapping. The main
characteristics of LiDAR are the high spatial resolution and 3D detailed measure-
ments, which provide a more detailed picture of the complex forest structure than
other passive optical sensors.
For the Kras region, we introduce additional fire fuel information derived from
LiDAR data (Stojanova et al. 2010). These data contain attributes that describe
the height structure of vegetation (Džeroski et al. 2006), (Kobler et al. 2006). The
values of the attributes were derived by applying machine learning models to
Landsat (Mack 1991) images of the study area. The models were learned by using
both Landsat images and LiDAR data for a small subset of the study area (2 km ×
20 km) and then applied to the entire Kras area. All the data have a resolution of
25 m ×25 m and are further aggregated to 1 km quadrants.
The LiDAR attributes describe the following forest properties: forest canopy cover,
average vegetation height, maximum vegetation height and the vertical vegeta-
tion profiles (a histogram of shares of vegetation reaching the different heights).
For illustration, the maps of vegetation height and canopy cover generated from
LiDAR are presented in Fig. 4. For each of the attributes, we obtain 4 statis-
tic measures: minimum, maximum, average and standard deviation on a 1 km
quadrant.

Meteorological data. These data consists of weather forecasts made by the ALA-
DIN/SI model, which is a version of the ALADIN (Fischer et al. 2006) meteorological
model for Slovenia. The ALADIN Numerical Weather Prediction Project is a collabo-
ration between the European Centre for Medium-Range Weather Forecasts (ECMWF)
and Météo-France in the field of Numerical Weather Prediction (NWP), which pro-
vides the basis for the forecasting tools of modern meteorology. The model can run on
computing systems with different power, from personal computers to supercomputers.
The ALADIN model can simulate the atmosphere on any selected area on Earth using
the initial state of the atmosphere in the region and the projected value at the edges of
the area.
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Fig. 4 Maps of (a) vegetation height and (b) canopy cover for the Kras region. The legend shows the
vegetation height in meters/canopy cover in percentages

The ALADIN data used in this study contains meteorological weather predic-
tions made by the ALADIN/SI model. These are issued daily by the Environment
Agency of the Republic of Slovenia. The data include weather predictions for every 3 h
(00.00–21.00 UTC) for 10 weather attributes: atmospheric precipitation, solar radia-
tion energy, velocity, direction and speed of the wind, evapotranspiration, transpiration,
evaporation, relative humidity and temperature. Average values of the meteorological
parameters for 1, 2, 4 and 14 days are added in order to help in noise removal. The spa-
tial resolution of the data is 11 km. The relief is taken into account implicitly, because
the model for weather predictions is adapted for Slovenia.

3.3 Datasets

Given the purpose of this study, i.e., to predict fire outbreaks in the natural environ-
ment, the target attribute is nominal and is related to the fire occurrence (‘yes’ or
‘no’). The list of the attributes with brief descriptions is presented in Appendix A.
The different regions of Slovenia discussed above give rise to three classification
datasets: continental Slovenia (Slovenia dataset), coastal Slovenia (Coastal dataset)
and Kras region (Kras dataset).

The Slovenia dataset has 127 attributes and 8476 (4264 positive and 4212 nega-
tive) examples. The Coastal dataset has 106 attributes and 2442 (1229 positive and
1213 negative) examples. The Coastal and Slovenia dataset do not include additional
LiDAR fire fuel attributes. The Kras dataset contains all the attributes discussed above
and additionally the LiDAR fire fuel attributes derived by using predictive models
generated by machine learning. The total number of attributes for the Kras dataset is
159. It has 1439 (959 negative and 480 positive) examples. In addition, we consider
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the Kras dataset without the LiDAR fire fuel data (KrasWithoutLidar dataset), which
has 126 attributes and 1439 (959 negative and 480 positive) examples.

4 Classification algorithms

The task we address is to estimate the risk of fires in the natural environment.
The corresponding data mining task is to learn a model (or a set of models) for
predicting fire occurrence in Slovenia. The target attribute is the occurrence of a fire
and the descriptive attributes are extracted from GIS, the ALADIN weather prediction
model and RS imagery as described above.

To learn a predictive model, we use several different classification algorithms that
are implemented in the WEKA (Witten and Frank 2005) data mining suite. Each of
the models gives as a prediction a probability estimate of fire occurrence (rather than
just a binary answer of whether a fire will occur or not). We take these probabilities
to be an estimate of the risk of a fire outbreak at a specific location at a specific time.

We decided to use a diverse set of classifiers in order to assess their suitability
for our task. We included algorithms that induce interpretable models (e.g., decision
trees and rules) as well as algorithms that tend to learn more accurate, but less inter-
pretable models (such as ensemble methods). The single classifier methods include
k-Nearest Neighbors, Naive Bayes, J48 decision trees, jRIP classification rules,
Logistic regression, Support Vector Machines (SVM), Bayesian Networks, while the
ensemble methods include Boosting, Bagging and Random Forests of decision trees.

4.1 Algorithms for learning single classifiers

k-Nearest Neighbors classifier. The k-Nearest Neighbors algorithm (KNN) (Aha et al.
1991) is an instance-based learning method, classifying examples based on the closest
training examples in the feature space. An example is classified by a majority vote
of its neighbors, with the example being assigned to the class most common among
its k nearest neighbors (k is a positive integer, typically small). The neighbors are
taken from a set of examples for which the correct classification is known. This can
be thought of as the training set for the algorithm, even though no explicit training set
takes palce.

Naive Bayes. A naive Bayes classifier (NB) (John and Langley 1995) is a simple prob-
abilistic classifier based on applying Bayes´ theorem (from Bayesian statistics) with
strong (naive) independence assumptions. It assumes that the presence (or absence)
of a particular feature of a class is unrelated to the presence (or absence) of any other
feature. An advantage of the naive Bayes classifier is that it requires a small amount
of training data to estimate the parameters (means and variances of the variables)
necessary for classification. Because independence of the variables is assumed, only
the variances of the variables for each class need to be determined and not the entire
covariance matrix. Depending on the precise nature of the probability model, naive
Bayes classifiers can be trained very efficiently in a supervised learning setting. It can
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often work much better than one might expect in many complex real-world situations,
even when the independence assumption does not hold.

J48. The J48 algorithm is an implementation of the C4.5 decision tree learner
(Quinlan 1993). It uses the top down induction of decision trees approach, a greedy
search technique. A decision tree (Quinlan 1986) is a hierarchical structure, where the
internal nodes contain tests on the descriptive attributes. Each branch of an internal
test corresponds to an outcome of the test and the prediction for the value of the target
attribute is stored in a leaf. To obtain a prediction for a new example, the example is
sorted down the tree, starting from the root (the top-most node of the tree). For each
internal node encountered on the path, the test stored in the node is applied. Depend-
ing on the outcome, the path continues along the corresponding branch. The resulting
prediction of the tree is taken from the leaf at the end of the path.

jRIP. The jRIP algorithm implements the Repeated Incremental Pruning to Produce
Error Reduction (RIPPER) propositional rule learner (Cohen 1995). JRip is a bottom
up method that learns rules, which in the end cover all the examples. For each class
from the less prevalent one to the more frequent one, it grows a rule, by greedily adding
antecedents (or conditions) to the rule until the rule is perfect (i.e., 100% accurate).
The procedure tries every possible value of each attribute and selects the condition with
highest information gain. It balances overfitting with generalization and can efficiently
handle large noisy datasets.

Logistic Regression. Logistic Regression (LogR) falls within the category of statisti-
cal models called generalized linear models (Agresti 1996). Logistic regression allows
prediction of a discrete outcome, such as group membership, from a set of attributes
that may be continuous, discrete, dichotomous, or a mix of any of these. Generally, the
dependent or response attribute is dichotomous, such as ‘yes’ or ‘no’. Since logistic
regression calculates the probability of success over the probability of failure, the
results of the analysis are in the form of an odds ratio. Logistic regression also pro-
vides knowledge of the relationships among the variables and their strengths (Hosmer
and Stanley 1989).

Support Vector Machines. Support Vector Machines (SVM) belong to the class of
supervised learning algorithms in which the learning machine is given a set of attri-
butes (or inputs) with the associated labels (or output values) (Saravanan et al. 2008).
Each of these attributes can be looked upon as a dimension of a hyper-plane that sepa-
rates the data into two classes (this can be extended to multi-class problems). The key
features of SVMs are the use of kernels, the absence of local minima, the sparseness
of the solution and the capacity control obtained by optimizing the margin (Kandola
et al. 2003). The most serious problem with SVMs, from a practical point of view, is
the high algorithmic complexity, choice of the kernel and the high memory and time
requirements.

Bayesian Networks. A Bayesian Network is a combination of a directed acyclic
graph of nodes and links and a set of conditional probability tables. Nodes can
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represent features or classes, while links between nodes represent the relationship
between them. Conditional probability tables determine the strength of the links. There
is one probability table for each node (feature) that defines the probability distribution
for the node given its parent nodes. If a node has no parents the probability distribution
is unconditional. If a node has one or more parents the probability distribution is a
conditional distribution, where the probability of each feature value depends on the
values of the parents.

Learning of a Bayesian network is a two-stage process. First the network structure
is formed (structure learning) and then probability tables are estimated (probability
distribution estimation). There are numerous combinations of structure learning and
search techniques that can be used to create Bayesian Networks.

We use a Bayesian score metric to form the structure, while node quality is deter-
mined by using the Tree Augmented Naive Bayes (BNet) local search algorithm, where
the tree is formed by calculating the maximum weight spanning tree and the Bayesian
Metric (Bouckaert 2005). An estimation algorithm is used to create the conditional
probability tables for the Bayesian Network. We use the Simple Estimator, which
estimates probabilities directly from the dataset. The simple estimator calculates class
membership probabilities for each instance, as well as the conditional probability of
each node given its parent node in the Bayes network structure.

4.2 Algorithms for learning ensemble classifiers

An ensemble method constructs a set (called ensemble) of predictive models (called
base models). The ensemble makes a prediction for a new example by combining the
predictions of the individual models for that example. Ensembles perform better than
individual classifiers, if the classifiers in the ensemble are accurate and diverse. The
diversity in an ensemble can be introduced in different ways: by manipulating the
training set (e.g., bootstrap sampling, change of weights of the data instances) or by
manipulating the learning algorithm used to obtain the base models (e.g., introducing
random elements in the algorithm). While ensemble methods can have much better
performance than individual classifiers, the ensembles learned are large and difficult
to interpret.

Boosting. Adaptive Boosting (AdaBoost) (Freund and Schapire 1996) is an algorithm
for constructing classifiers by using a set of many weak or base classifiers in order
to improve the overall performance. AdaBoost calls a given weak base learning algo-
rithm repeatedly in a series of rounds. The algorithm maintains a distribution or a set
of weights over the training set. Initially, all weights are set equally, but in each round,
the weights of incorrectly classified examples are increased so that the base learner is
forced to focus on the hard examples in the training set. At the end, the predictions
of all weak classifiers are combined into a single prediction with weighted voting.
AdaBoost is adaptive in the sense that subsequent classifiers built are tweaked in favor
of those instances misclassified by previous classifiers. It is capable of reducing both
bias and variance of the basic classifiers and has good generalization properties. The
algorithm is sensitive to noisy data and outliers. However, it is less susceptible to the
overfitting problem than most other learning algorithms.
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Bagging. Bagging (Bag) (Breiman 1996) is an ensemble method that constructs dif-
ferent base models by making bootstrap replicates of the training set and using them to
build the individual models. Each bootstrap sample is obtained by randomly sampling
training instances, with replacement, from the original training set. The bootstrap sam-
ple and the training set have an equal number of instances. Bagging can give substantial
gains in predictive performance, when applied to an unstable learner (i.e., a learner
for which small changes in the training set result in large changes in the predictions),
such as classification and regression tree learners.

Random Forests. A random forest (RF) (Breiman 2001) is an ensemble of trees, where
the diversity among the individual trees is obtained from two sources: (1) by using
bootstrap sampling and (2) randomization of the attribute selection step of the tree
generation algorithm. At each node in the decision tree, a random subset of the input
attributes is taken and the best split is selected from this subset. The size of the random
subset is a function of the number of descriptive attributes. Prediction is made by aggre-
gation (majority vote for classification or averaging for regression) of the predictions
of the individual models in the ensemble.

Random Forests produce highly accurate classifiers for many learning problems.
The results are competitive with boosting and bagging. They are fast to build and work
very efficiently for large datasets.

5 Experimental setup

5.1 Parameter settings for the classification algorithms

As described in Sect. 4, we use the following algorithms: k-Nearest Neighbors classifier
(KNN), Naive Bayes (NB), J48 decision trees (J48), jRIP classification rules (jRIP),
Logistic regression (LogR), Support Vector Machines (SVM), Bayesian Networks
(BNet), as well as AdaBoost (AdaBoost), Bagging (BagJ48) and Random Forests
(RF). We use these algorithms as implemented in the WEKA (Witten and Frank 2005)
data mining suite.

The algorithm parameters in our experiments are set to the default values except:
5 nearest neighbors for the KNN classifier and 4 examples as the minimal number of
examples that form a leaf for the trees and rules. For the ensemble methods, we use
J48 as a base classifier and set the minimal number of examples that form a leaf to
4 examples, the number of iterations to 10 and the size of each bag to 100% of the
training set size. The above mentioned settings were selected in a set of preliminary
experiments, which investigated the influence of the different parameter settings on
the accuracy of the results.

5.2 Performance measures

For a classification problem with two possible classes, most measures of performance
are based on the four values of the contingency table, obtained by applying the classi-
fier to the test set. These are the true positives TP, false positives FP, true negatives TN,
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and false negatives FN. Using these values we define the following standard evaluation
measures:

Accuracy: the proportion of correct predictions (both true positives and true nega-
tives) in the population: A = (TP+TN)/(TP+TN+FP+FN);

Precision: the proportion of the true positives against all the positive predictions
(both true positives and false positives): P = TP/(TP+FP);

Recall: the proportion of the true positives against all positives (the true positives
and false negatives): R = TP/(TP+FN).

To evaluate our models we use accuracy, precision and recall. We also use the
Kappa statistic and the Area Under the ROC Curve (AUC). The Kappa statistic is a
measure of the degree of agreement between the predicted and observed classification
of a dataset, which takes into account the agreement that occurs by chance.

It has been suggested that the Area Under an ROC Curve (AUC) can be used as
a measure of performance in many applications (Swets 1988). A ROC graph (curve)
is a plot with the false positive rate on the x axis and the true positive rate on the y
axis. The AUC corresponds to the area under this curve. In classification, the AUC
is interpreted as the probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one.

5.3 Statistical comparison

We estimate the above mentioned performance measures for our models on unseen
examples by using 10 fold cross-validation. All the algorithms were evaluated on the
same folds in order to allow statistical significance testing and comparison. To assess
whether the differences in performance between the different algorithms are statis-
tically significant, we use the corrected Friedman test (Friedman 1940) and the post
hoc Nemenyi test (Nemenyi 1963) as recommended by (Demšar 2006).

The Friedman test is a non-parametric test for multiple hypotheses testing. It ranks
the algorithms according to their performance for each dataset separately, thus the
best performing algorithm gets the rank of 1, the second best the rank of 2 and so on.
In the case of ties, it assigns average ranks. If the Friedman test shows statistically
significant difference in performance, we can proceed with a post hoc test.

The Nemenyi test is used to compare all the classifiers to each other. In this proce-
dure, the performance of two classifiers is significantly different if their average ranks
differ by more than some critical distance. The critical distance depends on the number
of algorithms, the number of datasets and the critical value (for a given significance
level) that is based on the Studentized range statistic and can be found in statistical
textbooks.

6 Results and discussion

As described in the previous section, we learned predictive models on four data-
sets (Slovenia—S, Coastal—C, Kras—K and Kras without Lidar—L) with a series
of different learning methods. We now present these models and their predictive
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performance. We give some interpretation for the human readable ones as they pro-
vided us with insight into the factors that influence fire outbreaks. At the end, we
present the fire outbreak risk maps that we generated with our models.

6.1 Predictive models

We present the predictive performance of the obtained models in terms of their accu-
racy, Kappa statistic, precision, recall, and AUC. The results are presented in Table 1,
grouped in panels a) to e), by performance measures. Each column contains the results
of one algorithm. Each performance figure in each panel is the average of the 10 folds
with the standard deviations.

The results of the significance tests are presented in the form of average rank dia-
grams in Fig. 5, for each evaluation measure separately. The ranks are depicted on the
x axis, in such a manner that the best ranking algorithms are at the right-most side of
the diagram. The critical difference (CD) interval, for the significance level of 0.05, is
computed by the Nemenyi test and is plotted in the upper left corner; algorithms whose
average rank difference is larger than this critical difference can be considered signif-
icantly different with 95% probability. The algorithms that do not differ significantly
are connected with a horizontal line.

Overall, the best results in terms of predictive accuracy are obtained with bagging
of decision trees. The Nemenyi test shows (Fig. 5a) that these results are statistically
significantly better than Naive Bayes and kNN. If we take a look at the ensemble meth-
ods (Boosting, Bagging and Random Forests), we can see they are better than any of
the single classifier methods, but the differences between them are not statistically sig-
nificant. In general, most of the differences between the models are not significant due
to the small number of datasets and the relatively high number of learning methods.
Still, we believe the average ranks diagrams can be used to show the general trends in
performance.

The accuracy as a measure of model quality is mostly used when the focus is on pre-
dicting the target attribute. In our case, the task is somewhat different, i.e., to estimate
the risk of fire outbreaks or to estimate the conditional probability of the occurrence of
a fire given the values of the other attributes. Therefore, some other quality measures
might be more suitable for our task and this is the reason we decided to investigate
several of them (besides accuracy, also precision, recall, Kappa, and AUC). However,
the conclusions drawn using these measures are quite similar (see Fig. 5b–d).

Two measures that are especially important in fire outbreak prediction are precision
and recall. High precision means that there are a small number of false positives (FP);
in our case this means that we have a small number of false alarms, i.e., predicted fire
outbreaks that do not actually happen. Recall (or sensitivity for binary classification),
on the other hand, can be seen as a probability that a positive example (fire outbreak)
is indeed predicted as positive, and is especially important in fire prediction since
non-predicted outbreaks can be very costly. Therefore, if we are interested in a small
number of false alarms, Bagging is again the most appropriate method. However, if
we are more interested in the sensitivity of our predictions, Random Forests seem to
be better (Table 1; Fig. 5).
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(a) Accuracy (b) Kappa statistics
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(e) AUC

Fig. 5 Average ranks diagrams: (a) Accuracy, (b) Kappa Statistic, (c) Precision, (d) Recall and (e) AUC.
Algorithms whose average rank difference is larger than the critical difference can be considered signifi-
cantly different with 95% probability. The algorithms that do not differ significantly are connected with a
line. Algorithm labels are as follows: kNN k-Nearest Neighbors classifier, NB Naive Bayes classifier, J48
J48 decision trees, JRip jRIP classification rules, LogR Logistic regression, SVM SVM classifier, AdaBoost
Boosting, BagJ48 Bagging, RF Random Forests; BNet Bayesian Network classifier
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The predictions given by the learned models are the probabilities of fire outbreaks:
In this context, it is interesting to consider how well the different learning meth-
ods model the conditional probabilities, i.e., their calibration. An empirical study
comparing predictions by different learning methods and true posterior probabili-
ties (Niculescu-Mizil and Caruana 2005) suggests that while some methods (e.g.,
Boosting and Naive Bayes) produce quite distorted probability predictions, other meth-
ods (e.g., Bagging and Neural networks) predict well calibrated probabilities. If we
combine these findings with our results (showing that the performance of Bagging
was very good according to all investigated quality measures, except recall), we can
conclude that this method is most suitable for predicting the risk of fire outbreaks. In
case we want to reduce the number of non-predicted fire outbreaks, Random Forests
might be preferable over Bagging. The only drawback of Bagging as well as Random
Forests is the fact that the ensemble models are large and very hard to interpret.

Comparing the results for different datasets (Slovenia—S, Coastal—C, Kras—K
and Kras without Lidar—L) we can see that the best performing models are learned
for the Costal dataset, followed by Slovenia and Kras datasets. Considering the Kras
dataset, we can see that some single classifier methods (kNN, Naive Bayes, SVM,
Logistic Regression, Baysian Networks) perform better when the LiDAR fire fuel
information is not included in the learning data. The introduction of the additional
attributes does not affect the decision trees, rules and the ensemble methods.

For the Kras dataset, the choice of the data mining algorithm has a much higher
influence on the performance as compared to the use or non-use of the LiDAR attri-
butes. This questions the value of the LiDAR data. Because the LiDAR data used in
this study was obtained by using a model learned from training data from only a small
area, adding LiDAR data for the entire Kras region or introducing vegetation indices
from RS imagery would probably improve the models.

Finally, we compare the results of Bagging, as the best performing method, to
those of logistic regression. The later are used in the model currently deployed at the
Administration for Civil Protection and Disaster Relief of the, Ministry of Defence of
Slovenia. According to the Wilcoxon test, Bagging performs better on all performance
metrics and all datasets at the 99% (p < 0.01) significance level.

6.2 An example: the Kras model

As already mentioned, the models learned with Bagging of decision trees are, although
the most accurate, very hard to interpret. In order to get further insight into the problem
domain, we investigate the decision rules learned with JRip, as these are very con-
cise. As an example of what kind of knowledge can be extracted from decision rules,
we present the models for the Kras dataset without the LiDAR fire fuel attributes.
The rules are presented in Table 2.

From the presented rules, we can conclude that in the Kras region the forest fires
mostly occur at the edge of settlements or small villages located at elevations higher
than 378 m that are close to railways (relative distance less than 3 km). Often the rail-
way lines do not follow security regulations for railway tidiness, therefore sparks from
the railway lines can cause fires in the forests next to them.
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Table 2 JRip rules learned from the Kras dataset without LiDAR attributes

if ((distRailways ≤ 2970) and (elevation ≥ 378) and (percBuiltUp ≥ 0.875)) then
fireOutbreak = YES

else if ((percBuiltUp ≥ 0.875) and (distRailways ≤ 1487) and (percOver ≤ 2.875) and
(percRiparian ≥ 0.625)) then

fireOutbreak = YES
else if ((percSwMead ≥ 26) and (percArable ≥ 0.1875) and

(evapoTranspiration_48 ≥ -0.9)) then
fireOutbreak = YES

else if ((distRailways ≤ 2970) and (elevation ≥ 350) and (percRiparian ≥ 0.125) and
(distRailways ≥ 1897)) then

fireOutbreak = YES
else

fireOutbreak = NO
end if

Moreover, forest fires are likely to occur at riparian overgrowth areas and forest
hedges of the numerous small villages in the Kras region located nearby railways
(relative distance less than 1.5 km). Human activities in the numerous small villages
in the Kras region are a known issue and a problem to be solved. The farmers are
usually not aware of the potential threat of forest fires that can be easily caused by
the intensive agricultural use that involves burning of agricultural residuals on ripar-
ian overgrowth areas and forest hedges. The agricultural residuals are represented by
large amounts of dry meadow biomass that is easily inflammable. The inflamed large
meadow biomass can often cause uncontrollable fires that expand and spread into the
nearby forests.

Over the past 30 years, the settlements in the Kras region spread too much into the
forest (at a distance of 30–100 m from the forest) increasing the potential threat of for-
est fires. Some of the settlements in the Kras region, for example Sežana, are already
fully surrounded by fire-endangered forests and their further enlargement could take
place only in the direction of the forest. The awareness of the potential fire hazard,
caused by the more recent increase in the population density near the forest, and the
possible consequences from it is still at a very low level. On the other hand, the forests
are increasingly used for recreational purposes and high human activity is noted in
this region.

Given the expectations that the problem of fire risk in the coming decades will be
strengthened, due to climate change, there is a need to consider the potential threat of
forest fires in the land use planning and ensure a safe distance from residential areas,
which would prevent the spread of forest fires to objects and vice versa. Otherwise, the
number of conflict areas between forest and settlements will continue to grow because
the future expansion opportunities of the settlements will adjust to the growing demand
for residential areas. Replacing the belt of conifers (mostly pine) near the railway lines
with deciduous trees could be considered as an alternative that can reduce or temper
the fire risk and the potential for large fires, in this part of the Kras region.

Additionally, fires are likely to occur in gardens, fields and swampy meadows when
the evapotranspiration in the last 48 h is very high. The fields and gardens located in the
western part of the Kras region, which is closer to the sea, have high evapotranspiration
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rate, especially in the summer, due to the hot and dry sub-Mediterranean climate,
brownfield sites, as well as the vegetation adjusted to this type of climate.

Forest fires in the Kras region are also likely to occur on riparian overgrowth areas
and forest hedges at altitudes of 350 m and higher that are very close to railways
(relative distance between 1.5 and 3 km). As some of the agricultural areas tradition-
ally used for grazing, mowing, small businesses and farms where abandoned at some
small villages, they have become overgrowth and can be also seen as a potential threat.

The rapidly overgrowing of Kras woods started in the middle of the last century,
due to the abandonment of grazing and logging in this region. As a result, a mosaic
interlace of meadows, pastures and forest slopes was formed under the influence of
grazing on an extremely modest layer of soil among bare rocks. This typical Kras
ecosystem is distinguished by the dry extensive meadows which represent a precious
habitat for exceptionally rich flora and specific fauna. Many of the plant species that
compose this flora are typical karst species and some of them are endemic.

The knowledge that can be extracted from the predictive models can be used for
better understanding of the causes of forest fires. It can be also used to improve short
and long term forecast models specific for Slovenia and especially for the Kras region,
which is the region with the highest level of fire risk in Slovenia. Finally, it can be
used for identifying the landuse types that are most endangered by forest fires, which
can lead to improvement in the (planning of) future landuse.

6.3 Maps of the probability of fire outbreaks and fire danger in Slovenia

An important contribution of our work is the generation of maps of the probability of
fire outbreaks and the fire danger in Slovenia using the predictive models obtained in
our study. In order to generate geographical maps, we used the models derived from
J48 decision trees and fed it with environmental data (static GIS data and dynamic RS
and meteorological data for a particular date and time).

We obtained different models for each of the investigated datasets. Then we com-
bined the predictions of the models built using data from the Coastal and Slovenia
dataset. These datasets contain the same attributes, but due to the climate differences
between these regions we investigated them separately in this study (the regions are
presented in Fig. 2). The predictions of the model built using data from the Kras dataset
are used separately, since they contain a different set of attributes. Next, we translated
the predictive model into Python4 functions that were later used in the GIS system to
visualize the predictions in the form of a map.

For the mapping task, we consider the probabilities of fire occurrence, rather than
just a binary answer of whether a fire will occur or not. We consider these probabilities
to be an estimate of the risk of a fire outbreak at a specific location at a specific time.
In addition, we also estimate the fire danger by using an empirical model (Kobler et
al. 2006) obtained by weighting the probability of fire outbreaks with the wind speed.

Finally, for demonstration purposes, we present two maps: a map of the probability
of fire outbreaks (Fig. 6) and a map of the fire danger (Fig. 7) for 14 June 2006 at

4 http://www.python.org/.
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Fig. 6 A map of the probability of fire outbreaks in Slovenia generated by using decision trees, for 14 June
2006 at 12.30 UTC

Fig. 7 The fire danger in Slovenia obtained by weighting of the probability of fire outbreaks with the wind
speed, for 14 June 2006 at 12.30 UTC

12.30 UTC in Slovenia. The maps were generated by extrapolating the predictions of
the model built on the representative sample of fire data and using a set of available
environmental data for the whole country.

The maps illustrate the difference in the fire threat in the different regions in
Slovenia, stressing the high threat for the Slovenian coast and especially the Kras
region. The time interval was selected because of the highest danger of fire in these
hours: the sun is highest at noon, and therefore most powerful; the daily maximum
temperatures are most often recorded early in the afternoon at the stable weather
conditions, and local winds are strongest during this time; therefore, the drying of
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Fig. 8 The model of FWI fire risk danger classes in Slovenia, for 14 June 2006

combustible material is the most intense at that time. In general, the predictions can
be made for any desired date and time.

In order to compare the generated maps with maps provided by other services, we
present the map of the FWI fire risk danger for the same day (Fig. 8) generated by
interpolation of the calculated FWI index using meteorological data from the measur-
ing stations in Slovenia. We generated the FWI map by ourselves instead of using the
FWI maps created by the EFFIS system (see Sect. 1.3), because of the coarse spa-
tial resolution and the use of meteorological forecast data from French and German
meteorological services in the latter.

Although these maps have different scale from the ones that we generate in this
study, we can immediately see the difference in the quality of the maps. The presented
FWI map (Fig. 8), besides being of a much coarser resolution, also completely fails
to recognize the coastal area as an area with a high fire danger.

The fire danger map built using our models (Fig. 7) predicts moderate to high fire
danger in the Coastal part of Slovenia, high fire danger in the Kras region (a subre-
gion of the Coastal region) and low to moderate fire danger in the rest of Slovenia.
Since the resolution of the map comes from the resolution of the input data, it is
much better compared to the resolution of the map presented in Fig. 8, as well as the
prediction maps for Slovenia provided by the EFFIS services. In addition, this kind
of maps can be generated for a particular date and time, which makes them suitable
for fire outbreak forecasting and prediction of the fire risk. Moreover, the presented
methodology can be used within a fire protection system as well as for informing and
planing purposes.

7 Conclusions

In this work, we have applied data mining to the task of estimating the risk of fire
outbreaks in the natural environment in the country of Slovenia, situated in Central
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Europe at the confluence of the Alps and the Mediterranean. Data mining methods
were applied to historical data on fires, as well as data on land use from geographical
information systems (GIS), remote sensing data and weather forecast data. Predictive
models were built that perform well along a number of metrics important for the task
at hand: The best models perform significantly better than those built by statistical
methods that are currently used in a deployed GIS for supporting activities in response
to natural disasters.

As compared to other studies applying statistical and data mining methods to sim-
ilar problems, our study is unique in several aspects. We use a variety of data at a
very fine-grained spatial and temporal resolution, while most studies consider a lim-
ited range of data, typically at a much coarser spatio-temporal resolution. We apply a
large set of data mining techniques, ranging from techniques that produce simple and
understandable models to methods that produce very accurate models that are difficult
to interpret: Most studies only consider one or a few learning techniques. Finally, we
compare the performance of the data mining methods on a number of related datasets
along several relevant performance metrics: Most related studies only consider one
dataset and one performance metric, typically accuracy.

While we use a variety of data at a very fine-grained spatial and temporal resolution,
this kind of data is readily available for many areas of the world. Data on land use
from geographical information systems (GIS) is becoming increasingly available and
can also be derived from RS data, the MODIS remote sensing data is also publicly
available, and the weather forecast model ALADIN is in widespread use across the
world. This means that our methodology is applicable to other areas of the world to
produce models suitable for daily predictions and monitoring purposes across large
scale areas.

The large set of data mining techniques applied in our study includes a number
of data mining techniques that produce a single model and several of these produce
understandable models. As an example, we examined in detail a set of classifica-
tion rules learned from data about the Karst region, the most fire-endangered part of
Slovenia. The rules give us insight into the major causes of fires in the natural environ-
ment in this region, but also how the severity of the different threats may evolve with
climate change. The best predictive performance is achieved by ensemble models,
such as Bagging and Random Forests of decision trees.

The performance of the models learned by different data mining methods were eval-
uated on several metrics. Besides accuracy, these included precision (directly related
to the rate of false alarms in predicting fire outbreaks) and recall (directly related to
the rate of failed-to-predict fires). The ensemble methods perform best on all met-
rics, Bagging having better precision and Random Forests having better recall. Both
of these approaches are known to produce well-calibrated probability estimates, an
important aspect of our task of predicting fire outbreaks.

Several directions for further work remain. We would like to extend our work to
include more detailed data on the road network: Besides major roads as considered
now, we need to take into account smaller public and forest roads, especially in the
areas with high and very high fire risk. We would also like to add further data, such
as more precise weather forecasts and day of the week (workday, weekend, etc.), the
latter being related to human activity. We would also like to include more historical
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data on fire outbreaks over a longer period of time: This could also be achieved by
improving the collection of data on fire outbreaks by automated detection of fires from
remote sensing data.
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Appendix A

Table A Description of the attributes and their sources

Attribute Description Data Source

f ireOutbreak Yes/No ACPDR, SFI

t0–t9 Temperature at i*8 days ago, where i=0–9 MODIS

npp0–npp9 Net Primary Production (NPP) at i*8 days ago, where
i=0–9

MODIS

nppT 0–nppT 9 NPP today /ti , where ti in t0–t9 MODIS

nppSumT 0–nppSumT 9 NPP from 1.1. until today ti , where i in 0–9 MODIS

nppSum Sum of NPP from 1.1. until today MODIS

nppT avg0–nppT avg9 NPP today /ti , where i in 0–9 and Tavgi is the average
temperature over the last i*8 days

MODIS

nppSumT av0–nppSumT av9 Sum NPP from 1.1. until today / Tavgi , where i in 0–9 MODIS

elevation Median altitude above sea level SFI

relie f Aspect Median aspect of relief from Digital Relief
Model (DMR)

SFI

relie f Slope Mode of slope of relief from DMR: 0 = flat,
1 = N, 2 = NE,. . ., 8 = SW

SFI

dist Roads Average distance to roads (m) SFI

dist Settlements Average distance to settlements (m) SFI

dist Railways Average distance to railways (m) SFI

percArable Percentage of arable land in a quadrant MAFF

percT empMead Percentage of temporary meadows in a quadrant MAFF

percOthCrop Percentage of other permanent crops on arable
land in a quadrant

MAFF

percV ine Percentage of vineyards in a quadrant MAFF

percI nt Orch Percentage of intensive orchards in a quadrant MAFF

percExt Orch Percentage of extensive orchards in a quadrant MAFF

percOliveGroves Percentage of olive groves in a quadrant MAFF

percOth PermCrop Percentage of other permanent crops in a quadrant MAFF

percMead Past Percentage of meadows and pastures in a quadrant MAFF

percSwMead Percentage of swampy meadow in a quadrant MAFF
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Table A Continued

Attribute Description Data Source

percAlpMead Percentage of alpine meadows in a quadrant MAFF

percOvergrowth Percentage of overgrowth areas in a quadrant MAFF

percForest Plant Percentage of forest plantations in a quadrant MAFF

percRiparian Percentage of riparian overgrowth and forest
hedges in a quadrant

MAFF

percUncult Agr Percentage of uncultivated agriculture land in a quadrant MAFF

percForest Agr Percentage of forest trees on agricultural land in
a quadrant

MAFF

percForest Percentage of forest in a quadrant MAFF

percBuiltU p Percentage of built-up areas and related surfaces
in a quadrant

MAFF

percSwamp Percentage of swamps in a quadrant MAFF

percReed Percentage of reeds in a quadrant MAFF

percOther Marsh Percentage of other marshy areas in a quadrant MAFF

percDry Percentage of dried open areas with special
vegetation in a quadrant

MAFF

percNoV eg Percentage of open areas with little or no
vegetation in a quadrant

MAFF

percWater Percentage of water in a quadrant MAFF

t2m Temperature at 2 m ALADIN

rh2m Relative humidity at 2 m ALADIN

wind Direction Wind direction ALADIN

wind Speed Wind speed ALADIN

WindGusts Wind gusts ALADIN

precipi tationX Sum of precipitation in the last X hours, where X
in {0, 24, 48, 96, 336}

ALADIN

aseX Sum of accumulated solar energy in the last X
hours, where X in {0, 24, 48, 96, 336}

ALADIN

evapoT ranspirationX Sum of evapotranspiration in the last X hours,
where X in {0, 24, 48, 96, 336}

ALADIN

transpirationX Sum of transpiration in the last X hours, where X
in {0, 24, 48, 96, 336}

ALADIN

evaporationX Sum of evaporation in the last X hours, where X
in {0, 24, 48, 96, 336}

ALADIN

vegHeight X∗ Vegetation height, where X in {minimum,
maximum, average, standard deviation}

LiDAR

percV egX∗ Surface percentage of vegetation, where X in
{minimum, maximum, average, standard
deviation}

LiDAR

canopyCover X∗ Canopy Cover - minimum, where X in
{minimum, maximum, average, standard
deviation}

LiDAR

vegHeight B X∗ Vegetation height until B (50, 75, 95, 99)%
biomass, where X in {minimum, maximum,
average, standard deviation}

LiDAR

vegHeight X∗ Maximum vegetation height, where X in
{minimum, maximum, average, standard
deviation}

LiDAR

MAFF Ministry of Slovenia for Agriculture, Forestry and Food, ACPDR Administration for Civil Protection
and Disater Relief, SFI Slovenian Forestry Institute; * These attributes only appear in the Kras dataset
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