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Abstract

In this paper we investigate the problem of evaluating ranked lists of biomarkers, which
are typically an output of the analysis of high-throughput data. This can be a list of
probes from microarray experiments, which are ordered by the strength of their correlation
to a disease. Usually, the ordering of the biomarkers in the ranked lists varies a lot if
they are a result of different studies or methods. Our work consists of two parts. First,
we propose a method for evaluating the ”correctness” of the ranked lists. Second, we
conduct a preliminary study of different aggregation approaches of the feature rankings,
like aggregating rankings produced from different ranking algorithms and different datasets.
We perform experiments on multiple public Neuroblastoma microarray studies. Our results
show that there is a generally beneficial effect of aggregating feature rankings as compared
to the ones produced by a single study or single method.
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1. Introduction

In medicine, the progress or presence of some disease is determined by measuring certain
biological parameters. These parameters are commonly called biomarkers and can range
from blood pressure to the expression of a certain gene. Here, we focus on biomarkers
derived from different types of high-throughput data.

We consider the process of biomarker discovery as the process of determining markers
which have the strongest correlation to the presence or status of a certain disease. For
example, given a microarray experiment, the output would be a list of probes ranked ac-
cording to their differential expression. The main challenge in biomarker discovery from
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high dimensional data arises from having a small number of available biological samples, as
well as from the inherent high variability of the data.

In machine learning terminology, biomarker discovery translates into the task of feature
ranking and feature selection. Although these two tasks are related, they produce different
result. On one hand, feature ranking provides an assessment of the ”importance” of individ-
ual features to a target concept. On the other hand, feature selection algorithms evaluate
the ”importance” of a subset of features as a whole. This does not mean that all (or any)
of the features in the subset have high individual importance. In the context of biomarker
discovery, the task of feature selection would be more appropriate for diagnostic markers
while feature ranking would be more useful when searching for individual drug targets.

The estimation of importance in feature selection and feature ranking is different. In
feature selection, the feature subsets are evaluated explicitly via a predictive model (clas-
sifier), built from just those features. As for feature ranking, there is no direct way of
evaluating the ”correctness” of the order of the individual features. Therefore, our work in
this paper focuses on developing an evaluation methodology for feature rankings.

We present our work as follows: First, in Section 2 we define the problem under con-
sideration. We then propose and describe our evaluation methodology in Section 3, where
we also consider different approaches of aggregating feature rankings. In Section 4 we out-
line the experimental evaluation and provide description of the data used. The outcome of
the experiments is presented in Section 5. Finally, we discuss the results and draw some
conclusions in Section 6.

2. Problem description

We formalize the problem setting as follows: given is dataset D, consisting of k instances
(samples) D = {S1, S2, ..., Sk}. Each sample is a vector of n values, Si = (vi1, vi2, ...vin).
Each value of an instance represents a certain property or a so-called feature f of that
instance. Each feature has a specific value for a specific sample, i.e., fj(Si) = vij . Simply
put, each row in a dataset is an instance Si, and each column is the vector of values of a
feature fj .

In this kind of a setting, a feature of particular interest is called a target feature ftarget ,
for example the status of some disease. If we apply on the dataset D a ranking algorithm
R(D, ftarget), it outputs a list of features F = [f1, ..., fn], ordered by decreasing importance
Imp(fj) with respect to ftarget. The function Imp(fj) is different for different ranking
methods.

In this paper we would like to evaluate how correct is the ordering of features in the
ranked list, considering that we never know the ground truth ranking. We will refer to this
problem as a problem of evaluating feature rankings. This kind of an evaluation method-
ology, in terms of biomarker discovery, would help answer the question: Which ranking
method and/or which study, produce the most ”correct” ranked list of genes?
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3. Methodology

In this section we present our proposed methodology for evaluating feature rankings. We
begin by more formally describing our approach and we also briefly discuss the issue of
aggregating feature rankings.

3.1 Error curve

We approach the problem of evaluating feature rankings by following the idea that the
”correctness” of the feature rank is related to predictive accuracy. A good ranking algorithm
would put on top of a list a feature that is most important, and at the bottom a feature that
is least important w.r.t. some target concept. All the other features would be in-between,
ordered by decreasing importance. By following this intuition, we evaluate the ranking by
performing a stepwise feature subset evaluation, with which we generate a so-called error
curve.
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Figure 1: Constructing an error curve

We present the process of generating the error curve on Figure 1. We begin with a
dataset D on which we apply an arbitrary ranking algorithm R. This produces a feature
ranking F = [f1, ..., fn], where f1 denotes the top-ranking feature and fn the bottom-ranked
one. We then proceed by generating n data subsets {Df1..1 , Df1..2 ..., Df1..n} from the original
dataset D. We construct the first data subset Df1..1 with only the top-ranked feature f1.
We then add to this subset the second ranked feature f2, denoted by Df1..2 . This process is
continued iteratively until we add the bottom ranked feature fn to the Df1..n−1 subset, thus
yielding Df1..n . Finally, we build n predictive models from each of the data subsets and
we estimate their error. The points of the error curve are each of the n estimated errors
[E1, ..., En]. This procedure is summarized in Table 1.

3.2 Aggregating feature rankings

We consider aggregating feature rankings an important practical issue when working with
high-dimensional data. Considering the plethora of feature ranking methods and datasets
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Table 1: Constructing an error curve
Input: Data D, Ranking method R
Output: Error curve E
E ⇐ ∅
Df1..0 ⇐ ∅
F ⇐ FeatureRanking(R,D)
for i = 1 to n do
Df1..i

⇐ Df1..i−1
∪ fi

Pi ⇐ BuildPredictiveModel(Df1..i
)

E ⇐ E ∪ EstimateError(Pi)
end for
return E

that are available, it is reasonable to assume that it might be beneficial to join the different
information (rankings) that they provide.

When aggregating feature rankings, there are two issues to consider. The first one is
which base feature rankings to aggregate. There are different ways to generate the base
feature rankings: from the same dataset, but by different ranking method; from different
datasets but the same ranking method or from different subsamples of the same dataset
and the same ranking method. The second issue concerns the type of aggregation function
to use. Many functions are available, and we believe that this is a topic worth exploring by
itself, which is out of the scope of this paper. For our initial experiments we used simple
methods, like taking the mean or median of the ranks.

3.3 Error estimation

An important aspect of the evaluation methodology is how the testing error is estimated.
A commonly used approach to estimate model error is the well known cross-validation
procedure. In a study by Kohavi (1995), it was concluded that in general, the best error
estimate can be obtained from ten fold stratified cross-validation.

Considering that we are working with high-dimensional data and with a small number
of data samples (instances), a ten fold cross-validation is not the best solution. With such
small number of data instances, the best way of obtaining an unbiased error estimate is to
perform a leave-one-out cross validation (LOOCV), where the number of folds equals the
number of instances in the data. But, as noted in Efron and Tibshirani (1997) and Kohavi
(1995), the error estimate obtained by LOOCV has high variance. In order to account for
this the so called ”.632+ Bootstrap” method is proposed in Efron and Tibshirani (1997).
This method has been previously used for estimating the error from microarray experiments,
for example in Ambroise and McLachlan (2002).

In short, the .632+ bootstrap method effectively smooths the variance of the LOOCV
error estimate by using bootstrapping. The exact way that this method works is presented
in Table 2.

The error estimation starts as an ordinary leave-one-out cross validation. One instance
is excluded from the original data which gives the training fold and the left-out instance
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Table 2: The .632+ Bootstrap method
Input: Data D, Number of bags b
Output: Testing error Err
folds⇐ NumberOfInstances(D)
CVerr ⇐ ∅
for i = 1 to folds do
Foldtrain ⇐ D − Instancei(D)
Berr,i ⇐ ∅
for j = 1 to b do
Bi,j ⇐ BootstrapResampling(Foldtrain)
Pi,j ⇐ BuildPredictiveModel(Bi,j)
Berr,i ⇐ Berr,i ∪ TestingError(Pi,j , Instancei(D))

end for
CVerr ⇐ CVerr ∪Average(Berr,i)

end for
Err ⇐ Calculate632Error(Average(CVerr))
return Err

is used for testing. We then produce b bootstrap replicates of the training fold by using
re-sampling with replacement. We proceed by building predictive models for each bootstrap
replicate and we estimate their error Berr,i,j on the left-out instance. The errors are then
averaged and we obtain estimated error for just one fold Folderr,i of the cross-validation.
The average error Errcv is calculated as the mean of all of the fold errors. The final ”.632
error” is determined as:

Err632 = (1− w) · Errtrain + w · Errcv (1)

where the weight w is calculated as:

w =
0.632

1− 0.368 · r
, (2)

and r is the relative overfitting rate calculated as:

r =
Errcv − Errtrain

γ − Errtrain
, (3)

and γ is the so-called no-information error rate. In theory, γ is the error rate if the fea-
tures and the target concept of the dataset are independent. If we assume a multi-class
classification problem then it is calculated as:

γ =
c∑

i=1

pi · (1− qi), (4)

where c is the number of classes, while pi and qi are the proportions of the original and
predicted class distribution (correspondingly) of the ith class.

So far, we have presented the .632+ Bootstrap method when it is used for estimating
the error of just a single predictive model. It should be noted that when generating the TE
curve, this method is repeatedly used to estimate the error for each point.
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4. Experimental setup

This section concerns the experimental setup used in order to demonstrate the application
of our evaluation method. We first present the data used for the experiments, and then
we proceed with the description of the experimental design. The main idea behind the
experimental setup is to evaluate and compare the behavior of different ranking algorithms
and different aggregation methods, on single studies and as well across studies. We also
investigate the way the error curve changes when we consider different predictive models
for estimating the error.

4.1 Data description

We performed our experiments on Neuroblastoma studies. Neuroblastoma is the most
common extracranial solid tumor of childhood. We considered the status of relapse/no
relapse of a patient, as a target concept of interest. The derived markers could be useful
for determining the course of treatment of a patient.

We focus on three Affymetrix microarray studies, namely: De Preter et al. (2007) (17
samples), Schramm et al. (2005) (63 samples) and Wang et al. (2006) (99 samples). For
practical purposes when presenting the results we refer to them as the ”D”, ”S” and the
”W” study.

4.2 Experimental design

We can divide our experiments in two parts: individual study evaluation and cross-study
evaluation.

In the individual study setting, we focus on comparing the performance of different
ranking approaches. We considered four different feature ranking methods: a simple method
based on information gain and more complex methods like random forests (Breiman (2001)),
the ReliefF algorithm (Kononenko (1994)) and SVM (Guyon et al. (2002)). All of these
methods, have very different approaches for determining the feature importance and are
therefore interesting to compare.

Random forests use ensemble learning for evaluating the feature importance. After
each random tree is constructed, its performance (misclassification rate) is evaluated on
the original out-of-bag data. Then the values of each feature (one feature at a time) are
randomly permuted at the out-of-bag data. On these modified sets, the misclassification
rate of the original random trees is evaluated. At the end the importance of the feature is
the increase of misclassification rate as compared to the original out-of-bag rate (with all
features intact).

The ReliefF algorithm has a very intuitive way of assessing the feature importance. It’s
main idea is to evaluate features according to how well they distinguish between instances
close to each other. The rationale is that for a given instance I of a class C, good features
should differentiate between instances of different class(es) I−c, but at the same time have
similar values for instances of the same class Ic. The importance of a feature f is then
calculated as a sum of differences for each instance I and each class C as:

Imp(f) =
∑

I

(
∑
I−c

difference(f(I), f(I−c))−
∑
Ic

difference(f(I), f(Ic))) (5)
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Table 3: Cross-study evaluation
S ⇒ D D ⇒ S D ⇒W

W ⇒ D W ⇒ S S ⇒W

agg {S,W} ⇒ D agg {D,W} ⇒ S agg {D,S} ⇒ W

The SVM-RFE algorithm couples recursive feature elimination (RFE) with SVMs. It
uses the SVMs weight magnitude as a feature importance criterion. Initially it builds a
SVM on all the features and finds the feature with the smallest weight. This feature is
given the lowest rank and is eliminated from the feature set. Using the new feature set, a
SVM is again trained and the procedure of elimination is repeated. This iterative procedure
is continued until there are no more features in the feature set, i.e., each feature has an
assigned rank (importance).

Furthermore, we also investigated if it is beneficial to aggregate the feature rankings
produced by different methods on the same study, intuitively similar to Saeys et al. (2008)
and Jong et al. (2004). We considered simple aggregation methods as the Mean rank,
Median rank, as well as Min and Max rank.

When investigating the cross-study setting, we considered only one ranking method,
namely ReliefF. The idea initially is to compare how feature rankings learned on one study
behave if they are tested on another study. Then we examine how that compares to aggre-
gating feature rankings from two different studies and testing on the third.

We summarize the cross-study setting in Table 3. We use ”D”,”S” and ”W” to denote
different studies and ”A ⇒ B” to signify that we build the feature ranking on study ”A”
and evaluate it on study ”B”. When aggregating the feature rankings from the different
studies (agg {...}), we used the previously mentioned aggregation methods.

In both experimental settings, for estimating the error we used the .632+ Bootstrap
method, as explained in Section 3.3. In our experiments, we use 20 bags (bootstrap re-
sampling), which was previously empirically estimated.

We have used different predictive models when constructing the error curve, namely:
Näıve Bayes, random forests, decision trees and SVMs. We present the comparison of the
error curves (for the Wang dataset) in Section 5.3 followed by a short discussion. For the
single and cross-study setting we present only the Näıve Bayes error curves.

5. Results

In this section we present the results from the previously described experimental evalu-
ation. We first consider the results from the comparison of different ranking algorithms
and different aggregation methods on single datasets. We then presents the effects of com-
bining feature rankings from different studies from the cross-study setting. The results of
comparing different predictive models is given as the last subsection of the results.

5.1 Individual studies

We present the testing error curves from the single study experiments on Figure 2. On
the left-hand side, we show the comparison between the different ranking algorithms, while
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on the right-hand side the error curves of different aggregation methods are shown. The
figures are ordered in such a way that the results for the smallest dataset (De Preter) are
the first figures in a column, while for the largest one (Wang) the results are the last ones
in a column.

If we first consider the comparison of different ranking algorithms, it is not immediately
obvious which one performs the best. However, it seems that SVM-RFE and ReliefF seem
to produce the best ranking, according to the error curves. Also, there is a noticeable effect
of the dataset size, where the biggest difference in the curves is for the smallest (De Preter)
dataset. Furthermore, if we take a look at the comparisons between the different ranking
aggregation methods, the median method has an overall ”better” error curve. The median
error curve is comparable to the individual ranking algorithms, but it is noticeably less
variable.

5.2 Cross studies

In a similar fashion, we present the results from the cross-studies experiments on Figure 3.
The results from the different aggregation methods that are used for combining the feature
rankings from the different studies are on the right-hand side figures ((b), (d) and (f)).
The comparison between the single study feature ranking and the best aggregated feature
ranking, tested on a separate study, are presented on the left-hand side ((a), (c) and (e)).
The ordering according to dataset size, also applies here.

The comparison between the different aggregation methods, does not reveal a noticeable
difference, although when testing on smaller studies there is great variability of the error
curves as compared to testing on bigger studies.

If we take a look at Figure 3(a), it compares between three different feature rankings
tested on the De Preter dataset. The feature ranking from the biggest dataset (Wang) is
better, but it is worse than the feature ranking produced by aggregating the two different
rankings from the Schramm and Wang datasets.

When testing on the Schramm dataset (Figure 3(c)), the feature ranking from the small-
est dataset (De Preter), performs obviously much worse than the one derived from the
biggest dataset (Wang). However, aggregating the feature rankings also does not produce
a better ranking. We believe that this is due to the fact that when combining the feature
rankings from the two studies, the De Preter derived one is of much worse quality and
therefore it has a detrimental effect on the overall aggregated rank.

Finally, we show the error curves, when testing on the Wang dataset (Figure 3(e)). On
first look, the error curve of the feature ranking derived from the aggregation, seems to be
somewhat better than the others. Although a little after the beginning of the curves the
error seems to be the same, the curve from the aggregated feature rankings is much less
variable than the others. Also it seems that at a very later stage it improves, which we
think is due to aggregating an unreliable feature ranking derived from a particularly small
dataset.
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Figure 2: Single study comparisons
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5.3 Comparing different predictive models

Here we present the error curves with the error values estimated by using different predictive
models (Figure 4). The four different graphs are for four different ranking methods. Each
graph contains error curves for the previously mentioned predictive models (decision trees,
Näıve Bayes, random forests and SVMs).
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Figure 4: Comparison of different predictive models
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Concerning the underlying classifiers we can notice the unusual error curve with values
estimated by using decision trees. The error seems to be always higher, as compared to the
error estimated by other predictive models and it is increasing rather then decreasing when
using ReliefF and SVMs as underlying ranking methods (Figure 4. (c) and (d)). The error
curve estimates from the other predictive models seem to be behaving similarly and their
error size is comparable.

The four ranking methods can be clearly divided into two groups. Information gain and
random forests rankings produce error curves which never go below 25%, while ReliefF and
SVMs produce rankings which go down below this value. Note that the ReliefF ranking
algorithm is much faster than SVM-RFE and the lowest error is produced as a combination
of all the different ranking methods with the Näıve Bayes classifier.

6. Conclusions and further work

In this paper we presented a methodology for evaluating feature rankings. The method
relates the ”correctness” of the feature ranking to the notion of error of predictive models.
We use the so-called error curve, constructed as described in Section 3.1, as an indicator
for the quality of the produced feature rankings.

Furthermore, the developed method is used for comparing different ranking approaches
and different aggregation approaches for combining feature rankings. From the results
presented in Section 5 we can discern two interesting points.The first is related to the size
of the error of the curves and the second is related to the variability of the error curves.

Concerning the error size, it is difficult to say with certainty which one is the best feature
ranking method or aggregation approach. However, for the ranking methods, it seems that
ReliefF and SVMs have the lowest errors. When aggregating feature rankings from different
methods, the median aggregation function seems to have the lowest error. The differences
in error are very much related to the study size, where bigger differences between ranking
algorithms appear for smaller dataset sizes.

The aggregation function used when aggregating feature rankings from different studies
seems not to have a particular effect on the testing error. However, when comparing the
error curves of feature rankings produced by a single study and the aggregated ones, there is
an obvious decrease in the error size. This is especially visible when combining bigger with
smaller datasets, although sometimes a too small dataset might have detrimental effect on
the aggregated ranking. This is very intuitive, and as a part of our further work we plan to
take this into account when performing the aggregation by putting different weights of the
base feature rankings related to dataset size and ranking quality.

Another important aspect of the error curve is its variability. One general pattern which
can be noticed is that when aggregation of the feature rankings is performed (multiple
ranking algorithms or multiple studies), the curve is much less variable than the curves
of the base feature rankings. Although the variability does not directly represent feature
ranking stability as described in Jurman et al. (2008) and Kalousis et al. (2007), we believe
that it is indicative of it.

In our further work we plan to go beyond the visual inspection of the error curves. The
first step would be to use the ”area under the error curve” as a numerical way of assessing
the quality of the curves. Also, we plan to include a correlation based indicator of stability
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of the feature rankings, which combined with the area under the curve would provide an
insight into the overall quality of the feature ranking.
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