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Abstract
Methods for reconstructing the topology of complexnetworks from time-resolvedobservations of node
dynamics are gaining relevance across scientific disciplines.Of biggest practical interest aremethods that
make noassumptions about theproperties of the dynamics, and can copewith noisy, short and
incomplete trajectories. Ideal reconstruction in such scenario requires an exhaustive approachof
simulating the dynamics for all possible network configurations andmatching the simulated against the
actual trajectories,whichof course is computationally too costly for any realistic application. Relying on
insights fromequation discovery andmachine learning, we here introducedecoupling approximationof
dynamical networks andpropose a new reconstructionmethodbasedon it.Decoupling approximation
consists ofmatching the simulated against the actual trajectories for eachnode individually rather than
for the entire network at once.Despite drastic reduction of the computational cost that this
approximation entails, wefindourmethod’s performance to be very close to that of the idealmethod. In
particular, wenot onlymakeno assumptions about theproperties of the trajectories, but provide strong
evidence that ourmethods’performance is largely independent of thedynamical regime at hand.Of
crucial relevance for practical applications,we alsofindourmethod tobe extremely robust to both
length and resolutionof the trajectories and relatively insensitive tonoise.

1. Introduction

Complex networks are nowadays a standard paradigm for representing complex systems. Powered by insights
fromgraph theory and dynamical systems, this paradigmhas allowed for unprecedented improvement of our
grasp over complex systems in nature, society and technology [1–6]. The functioning of a real complex network
is a joint effect of its topology (structure) and its dynamics (interactions). The former refers to the connection
patterns among its nodes (units) [7, 8] and the latter to theways inwhich these nodes interact among
them [9, 10].

The foremost challenge in this vibrantfield is the inverse problemof reconstructing (or inferring) the
network topology fromobservations of the dynamics of its nodes. Namely, while the dynamical behavior of
some or all network nodes can often bemeasured, structural details ofmany real networks remain elusive. Yet
knowing how the topologies of real networks aremade is crucial for our understanding of their functioning,
especially in cases ofmore intricate structures such as networks of networks [11]. In addition, elucidating
architectural patterns of real network has its practical dimension that includes control of complex networks [12]
and design of networks with prescribed functions [13]. However, the problemof network reconstruction is far
from trivial given the issue of observability of complex systems [14]. Therefore, the development of efficient
methods of network reconstruction is vital, and it amounts to solving the inverse problemof estimating the
presence/absence of links between pairs of nodes based on time-resolvedmeasurements of their dynamics.
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Actually, network reconstruction is becoming afield of its ownwithin network science [15]. It brings
togethermethodological disciplines such as computer science and statistics with domain sciences such as
physics, sociology, biology and neuroscience.Within the context of physics, amyriad ofmethods have been
proposed over the past decade. They are typically anchored in physical insights about network’s collective/
emergent dynamics [16, 17]. This primarily includes synchronization as the best researched paradigmof
collective dynamics [9], in both its theoretical [18, 19] and experimental aspect [20, 21].Methods applicable to
sparse data have been developed [22], as well asmethods thatwork in the presence of noise [23], or out of
equilibrium [24]. Invasivemethods assume that one is able to interfere with the system and extract the
information from transients [25]. Othermethods use compressive sensing [26, 27] or elaborate statistics related
to derivative-variable correlations [28, 29]. Another set ofmethods attempts to grasp the situations relevant for
inferring networks of neurons [30, 31], or even social networks based on infection statistics [32]. On the other
hand, somewhat less effort has been invested in the development ofmethods that can reconstruct the interaction
(coupling) functions and not necessarily the network topology [33].

The problemof reconstructing the network fromdynamical data is not to be confusedwith the problemof
link prediction or network completion [34–36]. The latter refers to assessing the existence of a link by extracting
the patterns of connectivity in the surrounding network. This approach does not involve dynamics on the nodes,
but it is useful in completing the topologies of real networks that are often noisy due to experimental limitations.
In this paper wewill be dealing exclusively with the formermodel, where the entire topology of the studied
network is hidden in a ‘black box’ and is reconstructed based on observations of its node dynamics.

Onadifferent front, in the context of computer science, the discipline ofmachine learning has beenblossoming
over the past decades [37–39]. Central tomachine learning is the development of algorithms that are able to extract
patterns and information froma set of observations anduse them tomake reliablemodels andpredictions5. Along
these lines, physicists haveover the past decade recognized that the remarkable ability ofmachine learning to
classify and characterize complex sets of data can beuseful inphysics aswell. For example, condensedmatter
physics is notoriously facedwith problemswhere the size of the state space grows exponentiallywith thenumber of
particles, which is reminiscent of the ‘curse of dimensionality’, well-known inmachine learning. By knowing how
to treat this curse, algorithms able to identify phases ofmatter and transitions between themwere designed,
including non-trivial stateswithout conventional order parameter [40, 41]. Algorithms able to recognize polymer
structures are nowavailable [42], alongwith algorithms that can identify particles in glassy systems susceptible to
rearrangements [43], or predict thephysical properties of various compounds [44]. Similar approacheswere used
in quantumcomputing [45, 46], tofinddensity functionals [47], and in the context of general inference problems in
physics [48], including complex networks [49] andnonlinear dynamics [50]. It has in fact been claimed that
machine learning ‘may soonbecomeas common inphysics as numerical simulations or calculus’ [51].

Comingback to theproblemofnetwork reconstruction,machine learninghas a long and successful history of
buildingmodels of natural and social phenomena fromthe available data. Inparticular, equationdiscovery is afieldof
machine learningdevoted to studying anddevelopingmethods for automateddiscovery of quantitative laws and
models, expressed in the formof equations, fromknowledge anddata [52]. Through the years, the focus of equation
discovery has shifted fromreconstructingwell-knownquantitative laws fromhistory of science [53] towards
automatedmodeling of dynamic systems [54, 55]. Themethods for equationdiscoverymakeuse of search algorithms
[56], genetic programming [57]or sparse regression techniques [58] to identify the structure andparameters of
differential equations thatmodel the dynamics of the systemunder investigation. In contrast to inferencemethods
developed fromphysical insights,machine learningdoesnot rely on the collective orother empirical properties of the
studieddynamics.Consequently,machine learningmethodsusuallymakenoassumptions about the studied system
andarehence robust also todynamical properties, such as chaotic or periodicmotion.While this oftenmakes them
computationallymoredemanding, itwidens their applicability in real-world scenarios, including treatingdynamical
systemsof physical interest. In particular, equationdiscoverymethodshave been successfully used to construct
reliablemodels of populationdynamics [59], disease spread [60] andgene regulatorynetworks [61].

Inspired by the above observations, we here propose a newmethod of reconstructing dynamical networks
formulated in the physical context, relying on insights from equation discovery. In particular, we apply the state-
of-the-art automatedmodeling framework ProBMoT [62, 63], and tackle the challenge of network
reconstruction by inferring the topology of a dynamical network from trajectories (time series)measured at
individual nodes. Ourmethod is based onwhatwe call decoupling approximation: we seek to reconstruct the
network topology examining the nodes individually.We formulate the problem as it is normally done in physics
and adjust ProBMoT for this task. Aswe show inwhat follows, ourmethod displays good robustness to (white)
noise and excellent performance in cases of time series incompleteness or bad resolution. Ourmethod also

5
‘to learn’ fromdata in the context ofmachine learningmeans to extract various features from the dataset by performing different analyses.

Bymaking a Fourier decomposition of a time signal, physicist ‘learns’ about ratio of various harmonics in the signal. By looking at e.g.
statistics of specificwords in an email, computer scientist can identify it as genuine or spam.
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shows decent robustness to dynamical regimes (information content of the time series) and is able to extract
useful information also from relatively poor dynamics: reconstruction from regular/periodic dynamics is only
slightly less precise than reconstruction fromhighly informative time series.

The rest of this paper is organized as follows. In the next sectionwe explain our reconstructionmethod
employing physics terminology. The sectionResults is devoted to examining the performance of ourmethod
using a toy-model of a dynamical networkwith 20 nodes. In the final sectionwe discuss ourfindings and
scrutinize their limitations, providing guidelines for future research.

2. Reconstructionmethod

Herewe explain in detail our reconstructionmethod. It is developed by extending the scope of ProBMoT
framework for equation discovery [62, 63] and adjusting it for physically formulated problems.We begin by
considering a complex dynamical network consisting ofN nodes. The network is directed (links are not
symmetric), but is not weighted (all links have unit weights). Dynamical state of a node i at time t is described by
the variable ( )x ti , with i=1,K,N. The system’s dynamics (time-evolution) is defined by:

å=
=

˙ ( ) ( )x A f x , 1i
j

N

ji j
1

where thenon-symmetric adjacencymatrixAjiofdimensionsN×N reportswhether thenode j influences the
node i ( =A 1ji ), or not ( =A 0ji ). Function fmodels theway that nodes interact among them (which is of course
relevant only if the correspondingmatrix elementAji is non-zero). Function f is the same for all links. Thus, the
dynamics of thenode i is a cumulative effect of interactions coming from theneighboring nodes. This is a standard
model of complex dynamical networks, capturing theproperties ofmany systems of physical interest.

Wemake the following three assumptions regarding the information that is available about the systemunder
investigation:

• dynamical system (network) evolves according to equation (1),

• mathematical formof interaction (coupling) function f is known,

• a discrete trajectory consisting of L values ¼( ) ( )x t x t, ,i i L1 (time series) is available for each node i.

We thus have at our disposalN time series, each of length L (in a realistic scenario these time series would
come froman empiricalmeasurement). Themeasurements of xi are separated by a uniformobservation interval
δt defining the resolution. For simplicity, we also assume that our network has no self-loops ( =A 0ii for each i),
although this assumption is not crucial. Our goal now is to reconstruct (infer) thematrixAji starting from the
above three assumptions.

We intend todevelop a generalmethod thatmakesno assumptionswhatsoever on theproperties of the dynamics
itself (e.g. periodicity). To that endweproceed as follows. There areN(N−1)possible (directed) links inournetwork
(weassumeno self-loops)between eachpair of nodes i and j. Eachof themcan either exist (link, =A 1ji )ornot exists
(wecall this situationnon-link, =A 0ji ). That is to say, there are -( )2N N 1 possiblenetwork configurations, each
characterizedby adifferent combinationof links andnon-links. Sincewehave time series (trajectories) at ourdisposal,
an immediate naive approachwouldbe to take thefirst time-point ( )x ti 1 for eachnode i as the initial condition and
run thedynamics of equation (1) for eachpossiblenetwork configuration.Then,we couldfind thenetwork
configuration that leads to thebestmatchbetween the simulated time series and theoriginal time series. Thisnetwork
configurationwould thenbeour reconstructednetwork.This is the ideal approach,whichwould guarantee excellent
results.However, such anexhaustive combinatorial searchof -( )( )O 2N N 1 is computationally intractable even for a
networkofmodest sizeN≈10,whichwould forever limit any realistic useof such amethod.Whatweneed instead is
an approach thatwouldbe as close aspossible to the above, butwithmore acceptable computational costs.

To this aimwe use insights from equation discovery.We begin by noting that the dynamics of any node i is
chiefly governed by inputs coming via in-links fromother nodes, i.e. by the dynamics of those nodes j from
which there is a directed link pointing to i. Nodes j for which =A 0ji do not influence the dynamics of i directly,
i.e. in the first approximation6.

6
To solve equation (1) for node i precisely, we should really consider the entire coupled system and not just the nodes influencing node i

directly. Namely, nodes jwith =A 0ji can still influence node i indirectly, via some of the nodes that influence it directly. In otherwords,
while the equation for the derivative of xi only includes the neighbors of i, the equations for the derivatives of the lattermay contain other
nodes.What we heremean by ‘approximation’ is the fact that, when searching for the best in-link configuration for the node i, we run
(simulate) the dynamics for node i by considering only the observed values for its immediate neighbors (with links pointing towards i), and
not their properly simulated values, whichwould require running (simulating) the dynamics of the entire coupled system from equation (1).
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Since -N 1nodes can have links pointing to i, there are -2N 1possible in-link configurations for the node i
(for an ‘in-link configuration’we intend one specific combination of links and non-links pointing to the node i).
With this inmindwe look for the best in-link configuration by running the dynamics of the node i for all in-link
configurations. Note that herewe do not run the dynamics of thewhole system equation (1), but only the
dynamics of the node i. This is computationally very simple, but it has to be done -2N 1 times (for each node i),
which can be costly. For numerical integrationwe useCVODEpackage from the SUNDIALS suite [64], which
relies on amulti-step variable-coefficientmethod and is suitable for a wide class ofODEs. This procedure leaves
uswith -2N 1 simulated time series for the node i, each corresponding to one in-link configuration. By choosing
such sophisticated integrator weminimize the numerical integration errors, which basicallymakes all errors
attributable to the suitability of the individual in-link configurations.We perform the same calculation for all
network nodes in analogous fashion, whichmakes the total computational costs of this procedure -( )O N 2N 1 .
Aswe show inwhat follows, this approach offers a considerable reduction of computational cost while providing
almost excellent reconstruction results. Other algorithmic details of above procedure are in appendix A.

Next we consider the node i and look for the in-link configurationmost suitable for it. To do sowe need a
measure of discrepancy between an original time series ( )x ti k and a simulated one, whichwe commonly denote
as ˆ ( )x ti k .We use the standard rootmean squared errorDi defined as follows:

åD = D = -
=

( ˆ ) ( ˆ ( ) ( )) ( )x x
L

x t x t,
1

. 2i i i i
k

L

i k i k
1

2

While the in-link configuration corresponding to theminimal value ofDi is the best candidate, we note that in-
link configurationswith slightly larger values ofDi are also of interest. Due to the reality of empirical
measurements, it is conceivable thatmany in-link configurationswill display similarly small values ofDi. This
indicates that our best candidate is to be extracted from several among the best in-link configurations.

We proceed by ranking the in-link configurations for each node i according to their respective values ofDi.
For each node iwe consider the plateau of top-ranked in-link configurations with indistinguishableDi.We take
two consecutive in-link configurations to be indistinguishable if the relative difference of their values ofDi is less
or equal to 10%. The optimal value for this percentage is to be set depending on each particular case (for system
here studied, we found that 10%yields the smallest possible number of ‘equally’ performing configurations
while achieving the highest AUC,which start to deteriorate as percentage is increased). Infigure 1we illustrate
the ranking of in-link configurations and the construction of the plateau. In-link configurations not belonging
to the plateau are not of further interest.

Now, looking at another node j thatmay ormay not have a directed link pointing towards i, we note that
some in-link configurationswithin the plateauwill assume the existence of such a link, and others will not.We
define the propensity (likelihood) of directed link j i as the fraction of in-link configurationswithin the
plateau that do assume its existence. High (low) propensitymeans that verymany (very few) in-link
configurationswithin plateau assume the existence of that link.We arrange the propensity values for all directed
links into the propensitymatrixW, so that the propensity of link j i corresponds to thematrix element Wji.

Once equippedwith the propensitymatrixWji, we define our reconstructed adjacencymatrix Âji as follows.We
define the threshold θ, which has a value between 0 and 1. Then, for a given θ and for all pairs of nodes j and iwe
define:

Figure 1.Example of ranking of in-link configurations for a single node i and definition of the corresponding plateau. Each dot
represents an in-link configuration and displays its value ofDi on y axis. In-link configurations are arranged to form a non-decreasing
sequence ofDi values, which defines the rank of in-link configurations reported on x axis. The in-link configurations form the plateau
and are separated from the remaining in-link configurations by the vertical line.Only the in-link configurations left of the vertical
(dashed) line are considered for calculating the propensitymatrixW. In-link configurations to the right of the vertical line are
discarded. This example of rankingwas derived fromone of the trajectories considered later in the paper (next section).
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The threshold θ indicates howmuch propensity for link j i we require to recognize j i as a link in the
reconstructed adjacencymatrix Âji . Ideally, wewould obtain all propensities equal to 1, whichwould

immediatelymake =Â Wji ji. Realistically,many propensities will vary between 0 and 1, so setting θhigh (low)
means that wewish to recognize only (also) the linkswith strong (weak) propensity.

The threshold θ also offers a robust way to quantify the quality (efficiency) of our reconstruction, i.e. the
agreement betweenmatrices Âji andAji. One can examine how this agreement depends on the choice of θ.
Lower values of θwill allow to correctly detectmany links (true positives), butmay also lead to non-links
incorrectly recognized as links (false positives). In contrast, higher values of θmay hide some of the actual
links (false negatives), but will also correctly excludemany non-links (true negatives). The standardway to
capture this relation is via receiver-operating characteristic curve (ROC curve) [65], in which by varying θ one
plots the true positive rate (TPR) against the false positive rate (FPR). An illustration of a ROC curve is shown
in figure 2.

ROC curve details the trade-off of between TPR and FPR as θ changes. Ideally, we would get all true
positives with no false positives, corresponding to the ROC curve that immediately reaches 1. The worst case
scenario is a completely non-discriminatory ROC curve coincidingwith the diagonal line (TPR=FPR, see
figure 2), where our reconstruction is no better than random guessing. Thatmeans that area under the ROC
curve (AUC) serves as an excellent indicator of the quality (efficiency) of reconstruction. AUC is formally
defined as the integral of the ROC curve for the corresponding range of θ, thus representing the probability
that a randomly chosen actual linkwill be correctly recognized as a link by our reconstructionmethod. Values
of AUC range from 0.5 (worst) to 1 (best), we will rely on them in reporting the performance of our
reconstructionmethod (next section).

To sumup the idea behind ourmethod, we decouple the network dynamics by examining each node
individually, thus reducing the computational cost of ourmethod to the level suitable formoderate size
networks. This of course is only afirst approximation, since complete dynamics of a node ultimately depends
not just on immediate neighbors. However, as wewill show inwhat follows, ourmethod displays excellent
performance, is robust to different dynamical regimes and noise, and shows very slow deteriorationwith
shortening of time series or worsening of time series resolution. Performance is even better when reconstructing
the network from several time series corresponding to different initial conditions rather than just one. Note also
that in this formulation, ourmethod is applicable also to themore general case when the interaction function f
depends on both xj and xi (see rhs of equation (1)).More on the algorithmic aspects of ourmethod can be found
in appendix A.

Figure 2.Example of a ROC curve. By changing the value of the threshold θwe get different combinations of TPR and FPR values,
which form the by black ROC curve. In essence, wewish the curve to initially grow as steeply as possible, reaching high TPRwhile
keeping FPR low. Shown for comparison in gray is the diagonal line that corresponds to a fully non-discriminatory ROC curve. The
AUC value for the black ROC curve is AUC=0.9,much better than theAUC=0.5 corresponding to the gray diagonal. This ROC
example corresponds to one of the trajectories considered later in the paper (next section).
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3. Results

In this sectionwe test the performance of ourmethod. To that endwe design a toy-model dynamical network,
suitable for testing.We take a directed networkwithN=20 nodes and 76 directed links (no self-loops). The
directed links are placed between 76 pairs of nodes, which are chosen randomly via standard preferential
attachment.We picked a network realizationwith nodes having very diverse in-degrees and out-degrees. Each
node has at least one in-link and one out-link. The network structure is shown infigure 3.For the interaction
function f (see equation (1))we take =f tanh. This corresponds to awell-knownphysicalmodel of collective
network dynamics [28, 66], with very rich dynamics that is needed for testing the performance of ourmethod
against various dynamical behaviors. In particular, depending on the initial conditions, this system can exhibit
diverse dynamical patterns, ranging from richmotionwith high variability to poor dynamics with scarce phase
space coverage.

We run the system equation (1)with =f tanh on networkfigure 3 and store the obtained trajectories. Each
simulation starts from a set of initial conditions, chosen uniformly at random from [−10, 10] for each node. For
each initial condition, the system is numerically integrated from t=0 to t=10.During the run, L=100 values
for each node are stored, equally spacedwith time-resolution δt=0.1. This leads to the time series ( )x ti k (k goes
from1 to L= 100) for each node (i goes from1 toN= 20). That is to say, for each choice of initial conditions we
obtain 20 time series (one for each node) of length 100 time points.

Of course, we cannot test the performance of ourmethod on all possible system trajectories,meaningwe
need tomake a selection of several trajectories and limit our analysis to them. Yet in order to test the impact of
dynamical richness on the quality of reconstruction, we do need trajectories exhibiting diverse dynamical
properties.We naturally expect thatmore complex trajectories that containmore information about the
underlying networkwill lead to better reconstructions. It is often the case that quality of reconstruction strongly
depends on the richness of the dynamics at hand. This, however, limits the applicability of suchmethods in
scenarios of poor dynamics, which cannot be excluded in realistic situations. But as already stated, our goal here
is to design a general reconstructionmethod that would be as robust as possible to the richness of the dynamics
and able to copewith poor dynamics.With this inmind, wemade a selection offive different trajectories
corresponding tofive different initial conditions. These trajectories are selected to reflect as best possible the
diversity of dynamical patterns exhibited by our system in terms of phase space coverage and dynamical
variability. The detailed justification of this selection is given in the appendix B. Inwhat followswe test the
performance of ourmethod against thesefive trajectories, considering also their noisy versions. For easier
orientationwe label them as T1,K T5.

Nowwe start testing the performance of ourmethod by applying it to thefive selected trajectories. For each
trajectorywe obtain a ROC curve shown infigure 4 (top panel). ROC curves are slightly different from each
other since they reflect the varying dynamical nature of thefive trajectories.We compute the integral of each
ROCcurve and obtain the AUCvalues.We show the numerical AUCvalues infigure 4 (bottomplot), which

Figure 3.The directed network used for testing the performance of ourmethod. It containsN=20 nodes and 76 directed links, it is
generated via standard preferential attachment procedure.We picked a random realization that best suits our needs in testing our
reconstructionmethod.
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reflect the quality of reconstruction. ROC curves andAUCvalues indicate very good reconstruction in all cases,
with all AUCvalues aroundAUC=0.9. Given the trajectory length of only L=100 points, this confirms that
ourmethod is able to offer useful reconstruction results, despite the approximation of decoupling the dynamics
of individual nodes. The results also indicate that reconstruction depends very little on the dynamical properties
of each trajectory, since the five values showno clear correlationwith the apparent richness of dynamics visible
infigure B1. This suggests that ourmethod is largely robust to dynamical regimes and time series complexity. It
also suggests that themethod can—at least in principle—extract information also fromdynamically poor
trajectories. In the Subsections that followwe test the robustness of ourmethod’s performance to three
experimentally realistic scenarios with potentially detrimental influences: noise, shortening of time series length
and degradation of time series resolution.

3.1. Performance for noisy trajectories
Noise is ubiquitous in all physical experiments andmeasurements.We thus test ourmethod against the presence
of noise in time series. To that endwe (artificially) introduce uncorrelated noise in ourfive trajectories by adding
to each data point of the original time series a randomvalue that we pick uniformly from h h-[ ], .We introduce
three levels of noise strength, η=0.5, 1.0, 2.0. For each trajectory and each noise strength, wemake 20 random
realizations of noising (see figure B1 in appendix B). Thenwe apply ourmethod to all noisy trajectories and
report the results, averaging the 20AUCvalues obtained for different noise realizations for the same noise
strength. Infigure 5we report the averagedAUC values for our five noisy trajectories. Each plot regards a single
trajectory, with different noise strengths reported on the x axis (including the noise-free case, η=0). For each of
thefive plots (five trajectories) zero-noise level corresponds towhat seen infigure 4. As the noise increases, we
observe a gradual deterioration of the AUCvalues, which is expected for all trajectories. However, for weak
noise, the AUCvalues are still close to theAUC values for noise-free case, and decay considerably only as the
noise grows stronger. Considering that trajectories generally range between−10 and 10, noise level of 2.0 is in
fact fairly strong (see figure B1).We hence conclude that at least for weak noise ourmethod shows very good
performance.We also note that even in the case of strongest noise ourmethod performs better than random
guessing.

3.2. Performance for varying trajectory length
Real experimentalmeasurements are difficult and often expensive, which is why real data often consists of only a
few data points (measurements).With this inmind, we next examine howdoes ourmethod respond to reducing
the length of time series (i.e. truncating time series). To test this, wefirst go back to the original noise-free
trajectories with 100 data points. Now, instead of considering the entire trajectory, we consider only a certain
number of points starting from ( )x ti 1 and discard the rest.We hence cut time points from the end, step by step, 5
points in each truncation step. To each truncated time series we apply ourmethod and obtain the respective
AUCvalue.We report these AUCvalues infigure 6 (top panel), where each trajectory corresponds to one plot in
which on the x axis we show the number of removed points (non truncated trajectories correspond to length

Figure 4.Top panel: ROC curves for thefive selected trajectories T1,K T5 obtained using ourmethod described in the previous section
(seefigure 2). Bottompanel: AUCvalues obtained by integrating thesefive ROC curves. Top and bottomplots are aligned for clarity.
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reduction 0).Wefind no dramatic worsening of reconstruction quality for any of the dynamical regimes. T1 and
T4 show almost no overall worsening at all, while the other trajectories display onlyminimumworsening. This
indicates that ourmethod is extremely robust to time series length and able to extract useful information from
very short time series. To bemore precise: ourmethod yields useful reconstruction even by utilizing only 5 data
points (AUC roughly equal 0.8), which corresponds to the last AUC values in all plots. Since those 5 time points
are separated by the original time resolution of δt=0.1, thismeans ourmethod yields useful reconstruction
even frompoor phase space coverage.

Next we look at the noisy trajectories and examine the same sequence of truncations for all three levels of
noise strength discussed earlier. The results are shown in three other panels infigure 6, where each panel
corresponds to one noise strength and each column to one trajectory. Unlike in the noise-free case, we here do
observe gradual worsening of themethod’s performance due to truncation. As expected, worsening is faster
when the noise is stronger. In the case of weakest noise, AUCvalues persist for considerable reduction of time
series length. For stronger noise, AUCvalues deterioratemore rapidly.We note that for weak noise ourmethod
in general still yields reconstructions better than randomguessing fromonly 5 time points.

3.3. Performance for varying trajectory resolution
Some experimentalmeasurements can be onlymadewith a limited time-resolution, which in practicemeans
thatwe do not always have control over howmany data points per unit timewe obtain. This however can be
critical, since the dynamical scale of the process under study can become shorter than themeasurement
resolution, obscuring the true nature of dynamics. To test the robustness of ourmethod to time series
resolution, we next repeat the testing process above, but this time by gradually reducing the time series
resolution. That is to say, we sample each trajectory with a given frequency and consider only the sampled time
points, discarding the rest. Again, wefirst start with noise-free trajectories and examine (inverse) sampling
frequencies ranging from1 (we consider all L= 100 points) to 20 (we consider every 20th point,meaning only
5 points altogether, separated by δt=2.0). For each sampling frequencywe apply ourmethod and obtain the
respective AUC value. Infigure 7 (top panel)we report these results for each trajectory, with inverse sampling
frequency reported on x (full trajectory corresponds to 1). Remarkably, there is basically noworsening at all for
any of the trajectories. AUCvalues for all sampling frequencies stay very close to the values for sampling
frequency 1. This indicates that ourmethod is very robust to the resolution of input data and able to extract
useful information from time series with very bad resolution. Again, we underline that ourmethodworks from
5 time points practically with the same reconstruction quality as from100 time points.While phase space
coverage is good in this case, the resolution is not, hindering the estimation of derivatives needed for numerical
integration.We hence attribute this robustness to both general reconstruction idea and the choice of numerical
integrator. Of course, another pertinent issue is the relationship between the sampling frequency and the
characteristic time scale of the dynamics. In fact, we expect that the rate of worsening of AUC valueswith the
formerwill in general be related to the latter, whichmerits further investigation.

Next we carry out the same analysis but for noisy trajectories, again considering all three levels of noise
strength, as done above in thefigure 6. The results are shown in three other panels infigure 7, where again each
panel corresponds to one noise strength and each column to one trajectory. Contrary to the case of time series
truncation, herewe see far less worsening due to noise. In fact, for weak noise, the values of AUC exhibit no
visible deteriorationwith sampling frequency and stay very close to the noise-free case with the sampling rate 1.
Even for strong noise the AUC values do notworsenmuchmore than theywould do otherwise, i.e. deterioration
due to noise hasmuchmore influence than due to sampling. This appears to depend very little on the considered

Figure 5.AUC values for reconstruction fromnoisy trajectories. Each plot corresponds to one trajectory as indicated in the title. In
each plot, noise strength η is reported on x axis (including the noise-free case η=0), while AUCvalues are shown on y axis. Errorbars
correspond to standard deviations calculated over 20 random realizations of noising.
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trajectory, although some trajectories showmore AUCvaluefluctuations for different noise realization than
others. And again, for weak noise ourmethod in general still yields reconstructions better than randomguessing
for all trajectories evenwhen using only 5 time points (every 20th point).

3.4. Performance formultiple trajectories
So far, we examined the performance of ourmethodwhen using only one trajectory at a time, i.e. reconstructing
the network from a single dynamical regime. Yet in practice (although rarely), we can be ‘lucky’ and have access
tomultiple trajectories produced by the same system.One such scenario is whenwe can interfere with the
system and reset its dynamics [25]. Ourmethod can be easily adjusted for reconstruction frommultiple
trajectories. Of course, we here expectmuch better performance, since not only we havemore data to
reconstruct from, butwe also have dynamicallymore diverse data with better phase space coverage. To test our
method in this scenario, we use it with 2, 3, 4 and all 5 trajectories. For cases of 2, 3 and 4we consider all possible
combinations of the trajectories. Results are reported infigure 8(A), where on the x axis we plot the number of
trajectories used for reconstruction and on the y axis the average AUCvalues obtained. As expected,
performance clearly improves when usingmore trajectories, reaching AUC=1when 3 ormore trajectories are
used.While this was not as surprising, we now re-do this analysis but using shortened (truncated) and sampled
trajectories. In particular, we use themaximal truncation (only 5 points taken from the beginning of the time
series) andminimum sampling rate (sample only every 20th point). The results are shown infigures 8(B) and (C)
respectively. The performance again improves drastically andwith 5 trajectories reaches 1 (truncated) or a value
very close to 1 (sampled). The sampling case in fact shows nomajor difference in performance as compared to

Figure 6.AUC values for reconstruction from trajectories of variable length (truncated trajectories)with andwithout noise. Each
column refers to one trajectory as indicated by the label at the top. Each row (panel) refers to one noise strength, η=0 (noise-free),
η=0.5, η=1.0 and η=2.0, respectively (as indicated on the right). Truncation (reduction of time series length) is reported on x
axis, with 0 corresponding to full (non-truncated) trajectory. AUC values are reported on y axis. Errorbars correspond to standard
deviations calculated over 20 random realizations of noising.
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the case of full trajectories. Finally, we examine the case of full trajectory length and resolution, butwith
strongest noise of η=2.0. Results are shown infigure 8(D). Again, consideringmultiple trajectories clearly
improves the performance. Note in fact that when all 5 trajectories are considered, theAUCpractically reaches 1
also in this case.We conclude that usingmultiple trajectories clearly improves ourmethod’s performance,
irrespective of which trajectories are used and irrespective of truncating, sampling or noising the trajectories.

4.Discussion

Wedesigned and presented a newmethod of reconstructing (inferring) the topology of directed dynamical
networks from time-resolved observations of their dynamics, assuming the knowledge of the dynamicalmodel
and themathematical formof the interaction function.Ourmethod is based onwhatwe call decoupling
approximation for dynamical complex networks: we look for the best in-link configuration individually for each
node by fitting the time series obtained by simulating each in-link configuration to the actual time series. This
approach ismuchmore efficient that the idealmethodwith exhaustive search, where one looks at all link
configurations for the entire network.Our approximation reduces the computational cost from -( )( )O 2N N 1 for
the idealmethod down to -( )O N 2N 1 . Aswe have shown in detail, despite this trade-off ourmethod displays
excellent performance: it is extremely robust to the length and resolution of time series, it shows basically no
dependence on the dynamical regime of the trajectories at hand (can extract information from relatively poor
dynamics). Ourmethod is also fairly robust to noise, evenwhen on top of the noise we deal with short time series

Figure 7.AUC values for reconstruction fromuniformly sampled trajectories with andwithout noise. Each column refers to one
trajectory as indicated by the label on the top. Each row (panel) refers to one noise strength, η=0 (noise-free), η=0.5, η=1.0 and
η=2.0, respectively (as indicated on the right). Inverse sampling frequency is reported on x axis (1meanswe consider all L = 100
points, 20meanswe consider every 20th point). AUC values are reported on y axis. Errorbars correspond to standard deviations
calculated over 20 random realizations of noising.
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or time series with bad/low resolution. Therefore, the overall performance of ourmethod is very close to the
performance of the ideal (exhaustive)method, butwith computational cost reduced by a factor of ( )O N2N .
We have also tested ourmethod against dynamical networks of varying size and structure, revealing that
method’s performance does not depend critically on these parameters (except in terms of computational cost).
In the reminder of the paper we discuss ourfindings, with particular emphasis on the current limitations of our
method and prospects for its realistic employment.

We begin by discussing the range of validity of the decoupling approximation for dynamical networks.
Actually, it is easy to see that ourmethod cannot be immediately applied to non-directed networks, inwhich
existence of link j i implies the existence of the symmetric link i j . Assume that the statistics of in-link
configurations for the node i assign a high propensity for the link j i, but vice versa, the statistics for the node
j assigns a low propensity for the link i j . Ourmethod, in its present form, does not include away to reconcile
these contradictory propensities, calling for a new intermediate algorithmic step able to reconcile them.On the
other hand, we expect this approximation to bemore valid in cases of directed networks inwhich shortest paths
from a node to itself are longer, since that gets us further away from the non-directed case. In fact, any non-
directed network can be seen as the limit case of a directed network, inwhich all links go bothways for all node
pairs, whichmakes each node exactly two steps away from itself (assuming no self-loops). However, the
successful employment of decoupling approximation for the purposes network reconstruction reported in this
paper,make it a promising approach to study of the collective dynamics in complex systems. Also, given the
ubiquity of directed networks in nature and society, this approach is likely to gain attention. Nevertheless, we
recognize that amore complete investigation of the range of utility of decoupling approximation—especially in
relation to real complex systems—remains a pressing research challenge.

Next we scrutinize our hypotheses, namely the knowledge of the dynamicalmodel and of the interaction
function. Indeed, in real complex systems neither is in general known, although in rare specific cases one or the
other can be inferredwith certain precision. Reconstructionmethods that relax these hypotheses are a topic of
intense ongoing research.However, we note that ourmethod is able to reconstruct bothnetwork topology and
network dynamics. This is in contrast to a large volume of literature related tomethods that extract only the
topology and disregard the dynamics. Yet in order to approach the reconstruction of network dynamics, one has

Figure 8.Reconstruction frommultiple trajectories. (A) Full length and full frequency. (B)Minimum length (5 points). (C)Minimum
sampling (every 20th point), all without noise. (D) Full length and full frequency,maximumnoise level η=0.2. In each plot, the
number of trajectories is shown on x, while the AUCvalues are shown on y. Errorbars correspond to standard deviations calculated
over different combinations of trajectories.
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to establish at least some general hypotheses, such as the formof the dynamicalmodel. In fact, our approach can
be easilymodified to performnetwork reconstruction under any dynamicalmodel by suitably changing the
equation (1). The ProBMoT framework that ourmethod relies on allows forflexible specification of both
dynamicalmodel and interaction function f, but they both have to be known at least to some degree. Also, note
that ourmethod is immediately suitable also for scenarios where fdepends on the link, but again, all fs have to be
known. This in principle extends its applicability tomultiplex networks. This is also related to the problemof
time series used for reconstruction. Longer time series will offer a better phase space coverage, while shorter time
seriesmay offer a better time resolution. The former yieldsmore dynamical diversity and the lattermore
accurate derivative estimates. Of course, in any realistic scenario, experimental limitations arewhat ‘decides’
what quality of data we have toworkwith. In otherwords, a good reconstructionmethod should be robust to
both, but that can be so onlywhen at least some reasonable hypotheses about general properties of the dynamical
system are established.

The core question in thefield of network reconstruction is the applicability of variousmethods to large real
networks.We primarily envisage the application of ourmethod in cases of networks where the details of
interaction are knownor can be reasonably well estimated. For instance, gene expression levels can nowadays be
reliablymeasured for several genes simultaneously, although there are several hypotheses that one canmake
about the interaction functions. An additional limitation comes from the computational cost of -( )O N 2N 1 ,
which still renders the application to large real networks computationally intractable.We note that this cost
comes chiefly from looking at all in-link configurations for a node, since their number, -2N 1, grows
exponentially with network size. This calls for employment of adequate heuristics, whichwill reduce this cost via
trade-off with reconstruction quality. For example, a version of simulated annealing could be used: one starts
with any in-link configuration and computes theDi associatedwith it. Then, a randommutation of in-link
configuration is considered (e.g. changing one link for non-link or vice versa), and accepted (rejected) if it leads
to better (worse) value ofDi. Successively applying this procedure leads to (at least local)minimumofDi, but
with far lessmutation steps than -2N 1.While the computational cost is at present themain factor limiting the
applicability of ourmethod, we emphasize that this is a preliminary step towards a new class of reconstruction
methods to be developed in future work along above described lines. Very important but seldom considered in
the literature is the case of not having access to all network nodes (no total observability). This scenario is very
realistic since a part of the networkmay not be accessible to empiricalmeasurements. Here we have to rely on
trajectories from some (but not all)nodes, and seek nevertheless to reconstruct the entire network (or asmuch of
it as possible). There is a huge lack of suitablemethods in this context and their development should be the
subject of futurework. Also in this context often comes the question ofmethods that instead of reconstructing
the network topology, reconstruct the networkmodel towhich the reconstructed network belongs (e.g. scale-
free or small-world). In other words, rather than reconstructing the network, onewant to classify it in one of the
classes defined by the shared topological characteristics. This remains an important open problem, deserving
furtherwork.

We close the paper with discussion of how current network reconstruction approaches compare to one
another. In fact, comparing reconstructionmethods is not simple, sincemany of them start from different
hypotheses and knowledge about the system, whichmakes their realmerit harder to compare. Themain
distinction is betweenwhat different approaches are trying to reconstruct.While some approaches focus only
on the network structure [34–36], others (such as the one presented here) seek to reconstruct both structure
and dynamics. Looking only at the network structure will in general give better results, but will also entirely
neglect the dynamics. Certainmethods give excellent results, but only when applied to cases of dynamics with
specific properties, such as periodicity or synchronization [20, 21]. Another distinction runs along the ability
to interfere with the system.While invasivemethods give better results [25], interfering with the system is not
always possible in practice. Almost all reconstructionmethods rely on having some access to the observables
in the system, yet somemethods aremore and some less robust to the quality of such dynamical data (e.g. time
series) [15]. And finally, variousmethodsmake stronger or weaker assumptions onwhat is known about the
dynamical network under study (e.g. interaction functions) [29]. More assumptions in general lead to better
performance, but information onwhether themethod’s assumptions are satisfied is seldom available in real
real systems.We hence conclude that the reconstruction concept presented in this paper is a promising new
avenue in the field of network reconstruction, primarily due to its robustness to data quality. Still, the critical
downside of ourmethod is its computational cost, which scales as -( )O N 2N 1 . Before its practical
implementation becomes possible, future workwill chiefly revolve around selecting the adequate heuristics to
reduce this computational cost and re-examining the necessity of the hypotheses about knowledge of
interaction functions.

12

New J. Phys. 20 (2018) 113003 N Simidjievski et al



Acknowledgments

This researchwas supported by the Slovenian Research Agency (projectsN2-0056, L2-7509, andV5-1657 and
programs P1-0383, P2-0103 and P5-0093), by the SlovenianMinistry of Education, Science and Sport and the
EU (grant C3330-17-529021), and by the EU (MSC-ITN-EJD grant COSMOS 642563, FP7-ICT-FET project
MAESTRA612944,H2020-FET-Flagship grantHBP SGA2 720270, andH2020-SC1-RIA project SAAM
769661).

Author contributions

BŽ, ZL and LT envisaged the network reconstruction concept here presented and formulated the problem,NS
and JT designed and carried out the empirical evaluation, NS and JT organized the results and prepared the
figures, ZL, LT,NS and JTwrote themanuscript, all authors reviewed themanuscript.We consider the
contributions of thefirst two authors, NS and JT, as equal. Similarly, we consider the contributions of the last
three authors, ZL, LT and SD, as equal.

AppendixA.More on algorithmic aspects of our reconstructionmethod

As stated in themain text, our reconstructionmethod is based onProBMoT, which is a computational
framework for equation discovery that allows to infer laws governing certain dataset, whether the laws are
physical or otherwise. In this appendixwe further describe ProBMoT and its general functioning, which serves
to better understand the full extent of our reconstructionmethod and its background.

ProBMoT implements the process-based approach to automatedmodeling of dynamical systems.
Process-basedmodeling is a recent development within the long tradition of work in equation discovery: it
combines domain-specificmodeling knowledge with actual time-series data. It simultaneously addresses the
tasks of identifying themathematical form of the equations and their parameters estimation,making
exhaustive use of the numerical simulations. In particular, ProBMoT employs constrained enumeration to
explore the search space of all possiblemodel equations, which is implicitly defined bymodeling knowledge
provided at input. In addition, ProBMoTuses time-series data, also provided at input, to estimate the values
of the parameters for each potential model equation. Next, ProBMoTmeasures the fit between themodels and
the data as the discrepancy between the simulation of themodel and the input data. As a result, ProBMoT
outputs a list of possiblemodel equations, ranked according to the fit of themodel to the input data in
descending order (best fit first). From this ranking, one can establish a plateau of bestmodels and extract the
single best solution.

What we have discussed in the Reconstructionmethod section, is nothing but a specific case of the above
described general procedure. For the particular task of reconstructing an in-link configuration for a single
network node i, we encode two components of domain-specificmodeling knowledge. Thefirst, depicted in table
A1, encodes general knowledge for establishing a process-basedmodel of dynamics of an arbitrary network.

Here, network nodes are represented asmodel entities (template entityNode), while the edges are
represented as processes of interactions between pairs of network nodes (template processEdge). The template
process representing the edges has twomodeling alternatives: onemodels absence of edge between the particular
pair of nodes s and d, i.e. =A 0sd , while the othermodels its presence, i.e. =A 1sd . Note that the latter
alternative encodes themathematical formof the function f thatmodels theway the nodes interact among them
( =f tanh). Other functional forms can be considered by adding additionalmodeling alternatives to the Edge
template process.

The second component of the knowledge for process basedmodeling, depicted in table A2, specifies the
particular task ofmodeling the in-link configuration of a given network node i. The latter is encoded as an
endogenous (internal) entity, the dynamics of which is beingmodeled (a system composed of endogenous

TableA1.ProBMoT specification of template entities and processes for process-basedmodeling of network dynamics. See text for details.

templateentity Node {
vars: value {aggregation:sum;} }
template process EDGE (s:Node, d:Node) {}
template process THEDGE:EDGE {
equations: =( ) ( )td d.value tanh s.value ; }
template processNOEDGE:EDGE {
equations: =( )td d.value 0; }

13

New J. Phys. 20 (2018) 113003 N Simidjievski et al



entities only is an autonomous system). All the other nodes ¹j i are declared as exogenous (external) entities.
Their dynamics is not beingmodeled and they can only appear as input on the right-hand side of the equation
modeling the dynamics of i. This sophisticated organization into templates and entities serves to facilitate the
employment of ProBMoT in diverse scenarios, above described being one of them.

Given this specification and themathematical forms encoded in the library of templates and entities from
table A1, ProBMoT first enumerates the -2N 1 candidate in-link configurations. It then simulates each and ranks
themwith respect to increasing errorDi, defined in equation (2). For illustration, an example ProBMoTmodel
representing the correct in-link configuration of node 4 in the network infigure 3 is given in table A3: the two
links fromnodes 6 and 7 to node 4 correspond to the two thEdge processes, while the absence of links from all
other nodes to node 4 is represented by the 17 noEdge processes.

While in this paper we use exhaustive search of the space of candidate in-link configurations, in future work
we intend to use incomplete, heuristic search strategies to look for the optimal in-link configurations. The
clarification in this appendix also serves to understand that switching from exhaustive search to heuristic search
can be done relatively simplywithin ProBMoT framework. The next question here revolves around selection of
the best heuristic search strategy that leads to the best trade-off between reconstruction quality and
computational cost.Wewill investigate this important question in futurework, as it is vital for application of our
method to large real networks.

Appendix B. Choice of trajectories

Weuse this appendix to further substantiate our choice offive trajectories used for testing the performance of
our reconstructionmethod. As stated in themain text, wewant to cover asmuch dynamical diversity as possible
in order to test ourmethod against different dynamical regimes, i.e. varying richness of dynamics.However, our
interest is also to test themethod against noisy time series of variable length and resolution, since real scenarios
almost never involve noiseless time-resolved data of arbitrary length and resolution. This unfortunately hinders
the precise quantification of the dynamical diversity via standard nonlinear dynamics tools, since they require
longer time series offixed resolution to yield interpretablemeasures. Even if wewere to use for example Fuzzy of
Shannon entropy to quantify the information content of trajectories, another problem arises due to each time
series (each node) having its own value of entropy. Simply averaging these values for all nodes loses some of the

TableA2.ProBMoT specification of the task ofmodeling the in-link configuration of a network node i. See text for details.

entity nodei:Node {vars:value{role:endogenous;} }
j=1..N, j¹i:

entity nodej:Node {vars:value{role:exogenous;} }

process EDGE ji (node nodej i, ):EDGE{};

TableA3.An example ProBMoTmodel of the in-link configuration of network node 4 infigure 3. See text for details.

entity node4:Node {vars:value{role:endogenous;initial:–6.25} }
entity node1:Node {vars:value{role:exogenous;} }
entity node2:Node {vars:value{role:exogenous;} }
entity node3:Node {vars:value{role:exogenous;} }
entity node5:Node {vars:value{role:exogenous;} }
entity node6:Node {vars:value{role:exogenous;} }
entity node7:Node {vars:value{role:exogenous;} }
M
entity node20:Node {vars:value{role:exogenous;} }

process EDGE 14 (node n1 4, ode ):NOEDGE{};
M
process EDGE 54 (node node5 4, ):NOEDGE{};
process EDGE 64 (node node6 4, ):THEDGE{};
process EDGE 74 (node node7 4, ):THEDGE{};
process EDGE 84 (node node8 4, ):NOEDGE{};
M
process EDGE 204 (node n2 4, ode0 ):NOEDGE{};
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information andmakes it harder to tell rich dynamics frompoor.We thus give a qualitative argument to support
our choice offive trajectories. To this endwemake the following two observations.

First, we visually illustrate the diversity of the dynamics by plotting the time series for node 7 (x7(t)) for allfive
trajectories infigure B1 (top panel).We pick node 7 since itmost illustratively resembles the dynamics of other
nodes for that trajectory. Clearly, the variability of time series differs from trajectory to trajectory.We also note
that in fact, none of the time series is extremely rich in its dynamical behavior. Next, for better orientation in the
main text, we also show the time series for the same node, but for all three considered noise strengths: η=0.5
(second panel), η=1.0 (third panel), η=2.0 (bottompanel). In particular, we emphasize that third noise level
is in fact very strongwith respect to the range of time series variability.

Second, we compute the standard Pearson correlation between pairs of different trajectories. To that endwe
concatenate all time series for each trajectory and compute the Pearson correlation coefficient for each pair.
Results are reported infigure B2. Indeed, none of the pairs is strongly correlated. This indicates that the
considered trajectories are fairly independent (at least) pair-wise and display different uncorrelated dynamical
behaviors. This supports our argument that this choice of trajectories represents, at least to some degree, the
dynamical patterns exhibited by the considered dynamical network. Also, it suggests thatmethod’s performance
fromone of the trajectories cannot be immediately related to performance fromother trajectories. In other
words, by testing ourmethod on these five trajectories we indeedmakefive independent tests.We argue that
above two observations provide enough evidence to demonstrate, at least in principle, that our five trajectories
indeed reflect qualitatively different dynamical regimes.

Figure B1.Time series for the node 7 ( ( )x t7 ) for allfive selected trajectories T1,K T5. Each column corresponds to one trajectory, as
indicated in the title. Top panel: noise-free case η=0. Second, third and bottompanel, noise strength η=0.5, η=1.0 and η=2.0,
respectively. Note that for clarity the range in y axis is adjusted to the range of values of ( )x t7 for each case separately. Node 7 is selected
since it is fairly representative of all other nodes for each specific trajectory. In fact, node 7 is very central in the examined network (see
figure 3).
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