
MetaBags: Bagged Meta-Decision
Trees for Regression

Jihed Khiari1 (�), Luis Moreira-Matias1,, Ammar Shaker1

, Bernard Ženko2, and Sašo Džeroski2

1 NEC Laboratories Europe GmbH, (Heidelberg, Germany)
2 Jožef Stefan Institute, (Ljubljana, Slovenia)

jihed.khiari[at]neclab.eu

Abstract. Methods for learning heterogeneous regression ensembles have
not yet been proposed on a large scale. Hitherto, in classical ML literature,
stacking, cascading and voting are mostly restricted to classification
problems. Regression poses distinct learning challenges that may result
in poor performance, even when using well established homogeneous
ensemble schemas such as bagging or boosting. In this paper, we introduce
MetaBags, a novel stacking framework for regression. MetaBags learns a
set of meta-decision trees designed to select one base model (i.e. expert)
for each query, and focuses on inductive bias reduction. Finally, these
predictions are aggregated into a single prediction through a bagging
procedure at meta-level. MetaBags is designed to learn a model with a fair
bias-variance trade-off, and its improvement over base model performance
is correlated with the prediction diversity of different experts on specific
input space subregions. An exhaustive empirical testing of the method
was performed, evaluating both generalization error and scalability of
the approach on open, synthetic and real-world application datasets. The
obtained results show that our method outperforms existing state-of-the-
art approaches.

Keywords: Stacking · Regression · Meta-Learning · Landmarking.

1 Introduction

Ensemble refers to a collection of several models (i.e., experts) that are combined
to address a given task (e.g. obtain a lower generalization error for supervised
learning problems) [24]. Ensemble learning can be divided in three different
stages [24]: (i) base model generation, where z multiple possible hypotheses
f̂i(x), i ∈ {1..z} to model a given phenomenon f(x) = p(y|x) are generated; (ii)
model pruning, where c ≤ z of those are kept and (iii) model integration, where
these hypotheses are combined, i.e. F̂

(
f̂1(x), ..., f̂c(x)

)
. Naturally, the process

may require large computational resources for (i) and/or large and representative
training sets to avoid overfitting, since F̂ is also learned on the training set,
which was already used to train the base models f̂i(x) in (i). Since the pioneering
Netflix competition in 2007 [1] and the introduction of cloud-based solutions for

2 J. Khiari et al.

data storing and/or large-scale computations, ensembles have been increasingly
used in industrial applications. For instance, Kaggle, the popular competition
website, where, during the last five years, 50+% of the winning solutions involved
at least one ensemble of multiple models [21].

Ensemble learning builds on the principles of committees, where there is
typically never a single expert that outperforms all the others on each and every
query. Instead, we may obtain a better overall performance by combining answers
of multiple experts [28]. Despite the importance of the combining function F̂ for
the success of the ensemble, most of the recent research on ensemble learning is
either focused on (i) model generation and/or (ii) pruning [24].

Model integration approaches are grouped in three clusters [30]: (a) voting
(e.g. bagging [4]), (b) cascading [18] and (c) stacking [33]. In voting, the outputs
of the ensemble is a (weighted) average of outputs of the base models. Cascading
iteratively combines the outputs of the base experts by including them, one at a
time, as another feature in the training set. Stacking learns a meta-model that
combines the outputs of all the base models. Voting relies on base models to
have complementary expertise, which is an assumption that is rarely true in
practice (e.g. check Fig. 1-(b,c)). On the other hand, cascading is typically too
time-consuming to be put in practice, since it involves training of several models
in a sequential fashion.

Stacking relies on the power of the meta-learning algorithm to approximate F̂ .
Stacking approaches are of two types: parametric and non-parametric. The first
(and most common [21]) assumes a (typically linear) functional form for F̂ , while
its coefficients are either learned or estimated [7]. The second follows a strict meta-
learning approach [3], where a meta-model for F̂ is learned in a non-parametric
fashion by relating the characteristics of problems (i.e. properties of the training
data) with the performance of the experts. Notable approaches include instance-
based learning [32] and decision trees [30]. However, novel approaches for model
integration in ensemble learning are primarily designed for classification and, if
at all, adapted later on for regression [30,32,24]. While such adaptation may be
trivial in many cases, it is noteworthy that regression poses distinct challenges.

Formally, we formulate a regression problem as the problem of learning a
function

f̂θ : xi → R such that f̂(xi; θ) ' f(xi) = yi,∀xi ∈ X, yi ∈ Y (1)

where f(xi) denotes the true unknown function which is generating the samples’
target variable values, and f̂(xi; θ) = ŷi denotes an approximation dependent
on the feature vector xi and an unknown (hyper)parameter vector θ ∈ Rn. One
of the key differences between regression and classification is that for regression
the range of f is apriori undefined and potentially infinite. This issue raises
practical hazards for applying many of the widely used supervised learning
algorithms, since some of them cannot predict outside of the target range of
their training set values (e.g. Generalized Additive Models (GAM) [20] or CART [6]).
Another major issue in regression problems are outliers. In classification, one
can observe either feature or concept outliers (i.e. outliers in p(x) and p(y|x)),

MetaBags: Bagged Meta-Decision Trees for Regression 3

while in regression one can also observe target outliers (in p(y)). Given that
the true target domain is unknown, these outliers may be very difficult to
handle with common preprocessing techniques (e.g. Tukey’s boxplot or one-class
SVM [9]). Fig. 1 illustrates these issues in practice on a synthetic example with
different regression algorithms. Although the idea of training different experts
in parallel to subsequently combine them seems theoretically attractive, the
abovementioned issues make it difficult in practice, especially for regression. In
this context, stacking is regarded as a complex art of finding the right combination
of data preprocessing, model generation/pruning/integration and post-processing
approaches for a given problem.

In this paper, we introduce MetaBags, a novel stacking framework for re-
gression. MetaBags is a powerful meta-learning algorithm that learns a set of
meta-decision trees designed to select one expert for each query thus reducing
inductive bias. These trees are learned using different types of meta-features
specially created for this purpose on data bootstrap samples, whereas the final
meta-model output is the average of the outputs of the experts selected by each
meta-decision tree for a given query. Our contributions are threefold:

1. A novel meta-learning algorithm to perform non-parametric stacking for
regression problems with minimum user expertise requirements.

2. An approach for turning the traditional overfitting tendency of stacking into
an advantage through the usage of bagging at the meta-level.

3. A novel set of local landmarking meta-features that characterize the
learning process in feature subspaces and enable model integration for regres-
sion problems.

In the remainder of this paper, we describe the proposed approach, after discussing
related work. We then present an exhaustive experimental evaluation of its
efficiency and scalability in practice. This evaluation employs 17 regression
datasets (including one real-world application) and compares our approach to
existing ones.

2 Related Work

Since its first appearance, meta-learning has been defined in multiple ways that
focus on different aspects such as collected experience, domain of application,
interaction between learners and the knowledge about the learners [23]. Brazdil
et al. [3] define meta-learning as the learning that deals with both types of bias,
declarative and procedural. The declarative bias is imposed by the hypothesis
space form which a base learner chooses a model, whereas the procedural bias
defines how different hypotheses should be preferred. In a recent survey, Lemke
et al. [23] characterize meta-learning as the learning that constitutes three
essential aspects: (i) the adaptation with experience, (ii) the consideration of
meta-knowledge of the data set (to be learned from) and (iii) the integration
of meta-knowledge from various domains. Under this definition, both ensemble
methods bagging [4] and boosting [14] do not qualify as meta-learners, since the

4 J. Khiari et al.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

X1

X
2

GAM SVR
MSE_difference

(a) GAM vs. SVR. (b) GB w. Target outlier. (c) RF w. Target outlier.

(d) LS w. Target outlier. (e) DS w. Target outlier. (f) Original surface.

Fig. 1: Illustration of distinctive issues in regression problems on a syntethic
example. In all experiments, we generate 1k training examples for the function
y = (x4

1 + x4
2) 1

2 . In (a), x1, x2 training values are sampled from a uniform
distribution constrained to ∈ [0, 0.8], while the testing ones are ∈ [0, 1]. Panel (a)
depicts the difference between RMSE between the two tested methods, GAM and
SVR, where the hyperparameters were tuned using random search (60 points) and
a 3-fold-CV procedure was used for error estimation. SVR’s MSE is significantly
larger than GAM’s one, and still, there are several regions of the input space where
GAM is outperformed (in light pink colors). Panels (b,c) depict the regression
surface of two models learned using tree-based Gradient Boosting machines (GB)
and Random Forests (RF), respectively, with 100 trees and default hyperparameter
settings. To show their sensitivity to target outliers, we artificially imputed one
extremely high value (in black) in the target of one single example (where the
value is already expected to be maximum). In Panels (d,e), we analyze the same
effects with two stacking approaches using the models fitted in (a,b,c) as base
learners: Linear Stacking (LS) in (d) and Dynamic Selection (DS) with kNN in
(e). Please note how deformed the regression surfaces (in gray) are in all settings
(b-d). Panel (f) depicts the original surface. Best viewed in color.

MetaBags: Bagged Meta-Decision Trees for Regression 5

base learners in bagging are trained independently of each other, and in boosting,
no meta-knowledge from different domains is used when combining decisions
from the base learners. Using the same argument, stacking [33] and cascading
[18] cannot be definitely considered as meta-learners [23].

Algorithm recommendation, in the context of meta-learning, aims to propose
the type of learner that best fits a specific problem. This recommendation can be
performed after considering both the learner’s performance and the characteristics
of the problem [23]. Both aforementioned aspects qualify as meta-features that
assist in deciding which learner could perform best on a specific problem. We
note three classes of meta-features [3]: (i) meta-features of the dataset describing
its statistical properties such as the number of classes and attributes, the ratio
of target classes, the correlation between the attributes themselves, and between
the attributes and the target concept, (ii) model-based meta-features that can
be extracted from models learned on the target dataset, such as the number
of support vectors when applying SVM, or the number of rules when learning
a system of rules, and (iii) landmarkers, which constitute the generalization
performance of diverse set of learners on the target dataset in order to gain
insights into which type of learners fits best to which regions/subspaces of the
studied problem. Traditionally, landmarkers have been mostly proposed in a
classification context [27,3]. A notorious exception is proposed by Feurer et al.
[12]. The authors use meta-learning to generate prior knowledge to feed a bayesian
optimization procedure in order to find the best sequence of algorithms to address
predefined tasks in either classification and regression pipelines. However, the
original paper [13] focuses mainly on classification.

The dynamic approach of ensemble integration [24] postpones the integration
step till prediction time so that the models used for prediction are chosen
dynamically, depending on the query to be classified. Merz [25] applies dynamic
selection (DS) locally by selecting models that have good performance in the
neighborhood of the observed query. This can be seen as an integration approach
that considers type-(iii) landmarkers. Tsymbal et al. [32] show how DS for random
forests decreases the bias while keeping the variance unchanged.

In a classification setting, Todorovski and Džeroski [30] combine a set of base
classifiers by using meta-decision trees which in a leaf node give a recommendation
of a specific classifier to be used for instances reaching that leaf node. Meta-
decision trees (MDT) are learned by stacking and use the confidence of the base
classifiers as meta-features. These can be viewed as landmarks that characterizes
the learner, the data used for learning and the example that needs to be classified.
Most of the suggested meta-features MDT are applicable to classification problems
only.

MetaBags can be seen as a generalization of DS [25,32] that uses meta-features
instead. Moreover, we considerably reduce DS runtime complexity (generically,
O(N) in test time, even with state-of-the-art search heuristics [2]), as well as the
user-expertise requirements to develop a proper metric for each problem. Finally,
the novel type of local landmarking meta-features characterize the local learning
process - aiming to avoid overfitting.

6 J. Khiari et al.

3 Methodology

This Section introduces MetaBags and its three basic components: (1) First, we
describe a novel algorithm to learn a decision tree that picks one expert among
all available ones to address a particular query in a supervised learning context;
(2) then, we depict the integration of base models at the meta-level with bagging
to form the final predictor F̂ ; (3) Finally, the meta-features used by MetaBags
are detailed. An overview of the method is presented in Fig. 2.

3.1 Meta-Decision Tree for Regression

Problem Setting. In traditional stacking, F̂ just depends on the base models
f̂i. In practice, as stronger models may outperform weaker ones (c.f. Fig. 1-(a)),
they get assigned very high coefficients (assuming we combine base models with
a linear meta-model). In turn, weaker models may obtain near-zero coefficients.
This can easily lead to over-fitting if a careful model generation does not take
place beforehand (c.f. Fig. 1-(d,e)). However, even a model that is weak in the
whole input space may be strong in some subregion. In our approach we rely
on classic tree-based isothetic boundaries to identify contexts (e.g. subregions of
the input space) where some models may outperform others, and by using only
strong experts within each context, we improve the final model.

Let the dataset D be defined as (xi, yi) ∈ D ⊂ Rn × R : i = {1, . . . , N} and
generated by an unknown function f(x) = y, where n is the number of features of
an instance x, and y denotes a numerical response. Let f̂j(x) : j = {1, ..,M} be a
set of M base models (experts) learned using one or more base learning methods
over D. Let L denote a loss function of interest decomposable in independent
bias/variance components (e.g. L2-loss). For each instance xi, let {zi,1, . . . , zi,Q}
be the set of meta-features generated for that instance.

Starting from the definition of a decision tree for supervised learning intro-
duced in CART [6], we aim to build a classification tree that, for a given instance
x and its supporting meta-features {z1, . . . , zQ}, dynamically selects the expert
that should be chosen for prediction, i.e., F̂ (x, z1, . . . , zQ; f̂1, . . . , ˆfM) = f̂j(x).
As for the tree induction procedure, we aim, at each node, at finding the feature
zj and the splitting point ztj that leads to the maximum reduction of impu-
rity. For the internal node p with the set of examples Dp ∈ D that reaches p,
the splitting point ztj splits the node p into the leaves pl and pr with the sets
Dpl = {xi ∈ Dp|zij ≤ ztj} and Dpr = {xi ∈ Dp|zij > ztj}, respectively. This can
be formulated by the following optimization problem at each node:

arg max
zt
j

ω(ztj) (2)

s.t. ω(ztj) = [I(p)− PlI(pl)− PrI(pr)] (3)

where Pl, Pr denote the probability of each branch to be selected, while I denotes
the so-called impurity function. In traditional classification problems, the functions
applied here aim to minimize the entropy of the target variable. Hereby, we propose

MetaBags: Bagged Meta-Decision Trees for Regression 7

�

�1

�2

�d

,… ,f ̂
1 f ̂

M

(, ,… ,)F̂
1 �1 f ̂

1 f ̂
M

(, ,… ,)F̂
2 �2 f ̂

1 f ̂
M

(, ,… ,)F̂
d �d f ̂

1 f ̂
M

bootstrappinglearning base models
learning landmarkers learning meta-decision trees

ex
pe

rt
 s

el
ec

tio
n

sa
m

pl
in

g
w

ith
 re

pl
ac

em
en

t

new instance x

(x)f1
^

(x)f2
^

(x)fd
^

dynamic aggregation

y ̂

learning phase prediction phase

,… ,f ̂
1 f ̂

M

{ | ∈ }zu,v xu �1

,… ,f ̂
1 f ̂

M

{ | ∈ }zu,v xu �2

,… ,f ̂
1 f ̂

M

{ | ∈ }zu,v xu �d

Fig. 2: MetaBags: The learning phase consists of (i) the learning of base models
and the landmarkers, (ii) bootstrapping and finally (iii) the learning of the
meta decision trees from each bootstrap. The prediction for an unseen example
is achieved by consulting each meta decision tree and then aggregating their
predictions.

a new impurity function for this purpose denoted as Inductive Bias Reduction.
It goes as follows:

I(p) = IBR(p) = min
j∈{1...M}

E
[
B
(
L(p, f̂j)

)2
]

(4)

where B(L) denotes the inductive bias component of the loss L.

Optimization. To solve the problem of Eq. (2), we address three issues: (i)
splitting criterion/meta-feature, (ii) splitting point and (iii) stopping criterion. To
select the splitting criterion, we start by constructing two auxiliary equally-sized
matrices a ∈ RQ×φ and b : zimin ≤ bi,j ≤ zimax ,∀i, j, where φ ∈ N, Q denote a
user-defined hyperparameter and the number of meta-features used, respectively.
Then, the matrices are populated with candidate values by elaborating over the
Equations (2,3,4) as

ai,j = ω(bi,j), bi,j ∼ U(zimin , zimax), (5)

where bi,j is the jth splitting criterion for the ith meta feature.
First, we find the splitting criteria τ such that

τ = arg max
i ∈ {1..Q}

ai,j , ∀j ∈ {1..φ}. (6)

Secondly, we need to find the optimal splitting point according to the zτ criteria.
We can either take the splitting point already used to find τ or, alternatively,
fine-tune the procedure by exploring further the domain of zτ . For the latter

8 J. Khiari et al.

problem, any scalable search heuristic can be applied (e.g.: Golden-section search
algorithm [22]).

Thirdly, (iii) the stopping criteria to constraint Eq. (2). Here, like CART, we
propose to create fully grown trees. Therefore, it goes as follows:

ω
(
ztτ
)
< ε ∨ |Dp| < υ : ε ∈ R+, υ ∈ N (7)

where ε, υ are user-defined hyperparameters. Intuitively, this procedure consists
in randomly finding φ possible partitioning points on each meta-feature in a
parallelizable fashion in order to select one splitting criterion.

The pseudocode of this algorithm is presented in Algorithm 1.

3.2 Bagging at Meta-Level: Why and How?

Bagging [4] is a popular ensemble learning technique. It consists of forming
multiple d replicate datasets D(B) ⊂ D by drawing s << N examples from
D at random, but with replacement, forming bootstrap samples. Next, d base
models ϕ(xi,D(B)) are learned with a selected method on each D(B), and the
final prediction ϕA(xi) is obtained by averaging the predictions of all d base
models. As Breiman demonstrates in Section 4 of [4], the amount of expected
improvement of the aggregated prediction ϕA(xi) depends on the gap between
the terms of the following inequality:

E
[
L
(
ϕ(xi,D(B))

)]2 ≤ E[L(ϕ(xi,D(B))
)2]

. (8)

In our case, ϕ(xi,D(B)) is given by the f̂j(xi) selected by each meta-decision tree
induced in each D(B). By design, the procedure to learn this specific meta-decision
tree is likely to overfit its training set, since all the decisions envisage reduction
of inductive bias alone. However, when used in a bagging context, this turns to
be an advantage because it causes instability of ϕ - as each tree may be selecting
different predictors to each instance xi.

3.3 Meta-Features

MetaBags is fed with three types of meta-features: (a) base, (b) performance-
related and (c) local landmarking. These types are briefly explained below, as
well as their connection with the state of the art.

(a) Base features Following [30], we propose to include all base features also
as meta-features. This aims to stimulate a higher inequality in Eq. (8) due to
the increase of inductive variance of each meta-predictor.

(b) Performance-related features. This type of meta-features describes the
performance of specific learning algorithms in particular learning contexts on
the same dataset. Besides the base learning algorithms, we also propose the

MetaBags: Bagged Meta-Decision Trees for Regression 9

usage of landmarkers. Landmarkers are ML algorithms that are computationally
relatively cheap to run either in a train or test setting [27]. The resulting models
aim to characterize the learning task (e.g. is the regression curve linear?). To the
authors’ best knowledge, so far, all proposed landmarkers and consequent meta-
features have been primarily designed for classical meta-learning applications to
classification problems [27,3], whereas we focus on model integration for regression.
We use the following learning algorithms as landmarkers: LASSO [29], 1NN [10],
MARS [15] and CART [6].

To generate the meta-features, we start by creating one landmarking model
per method over the entire training set. Then, we design a small artificial
neighborhood of size ψ of each training example xi as X ′i = {x′i,1, x′i,2..x′i,ψ}
by perturbing xi with gaussian noise as follows:

x′i,j = xi,j + ξ : ξ ∼ Nn(0, 1),∀j ∈ {1, .., ψ} (9)

where ψ, is a user-defined hyperparameter. Then, we obtain outputs of each
expert as well as of each landmarker given X ′i. The used meta-features are
then descriptive statistics of the models’ outputs: mean, stdev., 1st/3rd quantile.
This procedure is applicable both to training and test examples, whereas the
landmarkers are naturally obtained from the training set.

(c) Local landmarking features. In the original landmarking paper, Pfahringer
et al. [27] highlight the importance on ensuring that our pool of landmarkers is
diverse enough in terms of the different types of inductive bias that they employ,
and the consequent relationship that this may have with the base learners perfor-
mance. However, when observing performance on a neighborhood-level rather
than on the task/dataset level, the low performance and/or high inductive bias
may have different causes (e.g., inadequate data preprocessing techniques, low
support/coverage of a particular subregion of the input space, etc.). These causes,
may originate in different types of deficiencies of the model (e.g. low support
of leaf nodes or high variance of the examples used to make the predictions in
decision trees).

Hereby, we introduce a novel type of landmarking meta-features denoted local
landmarking. Local landmarking meta-features are designed to characterize the
landmarkers/models within the particular input subregion. More than finding a
correspondence between the performance of landmarkers and base models, we aim
to extract the knowledge that the landmarkers have learned about a particular
input neighborhood. In addition to the prediction of each landmarker for a given
test example, we compute the following characteristics:

– CART: depth of the leaf which makes the prediction; number of examples in
that leaf and variance of these examples;

– MARS: width and mass of the interval in which a test example falls, as well as
its distance to the nearest edge;

– 1NN: absolute distance to the nearest neighbor.

10 J. Khiari et al.

4 Experiments and Results

Empirical evaluation aims to answer the following four research questions:

(Q1) Does MetaBags systematically outperform its base models in practice?
(Q2) Does MetaBags outperform other model integration procedures?
(Q3) Do the local landmarking meta-features improve MetaBags performance?
(Q4) Does MetaBags scale on large-scale and/or high-dimensional data?

4.1 Regression Tasks

We used a total of 17 benchmarking datasets to evaluate MetaBags. They are
summarized in Table 1. We include 4 proprietary datasets addressing a particular
real-world application: public transportation. One of its most common research
problems is travel time prediction (TTP). The work in [19] uses features such
as scheduled departure time, vehicle type and/ or driver’s meta-data. This type
of data is known to be particularly noisy due to failures in the data collection,
which in turn often lead to issues such as missing data, as well as several types
of outliers [26].

Here, we evaluate MetaBags in a similar setting of [19], i.e. by using their four
datasets and the original preprocessing. This case study is an undisclosed large
urban bus operator in Sweden (BOS). We collected data on four high-frequency
routes/datasets R11/R12/R21/R22. These datasets cover a time period of six
months.

4.2 Evaluation Methodology

Hereby, we describe the empirical methodology designed to answer (Q1-Q4),
including the hyperparameter settings of MetaBags and the algorithms selected
for comparing the different experiments.

Hyperparameter settings. Like other decision tree-based algorithms, MetaBags
is expected to be robust to its hyperparameter settings. Table 2 presents the
hyperparameters settings used in the empirical evaluation (a sensible default). If
any, s and d can be regarded as more sensitive parameters. Their value ranges
are recommended to be 0% < s << 100% and 100 ≤ d << 2000. Please note
that these experiments did not included any hyperparameter sensitivity study
neither a tuning procedure for MetaBags.

Testing scenarios and comparison algorithms. We put in place two testing
scenarios: A and B. In scenario A, we evaluate the generalization error of MetaBags
with 5-fold cross validation (CV) with 3 repetitions. As base learners, we use four
popular regression algorithms: Support Vector Regression (SVR)[11], Projection
Pursuit Regression (PPR)[17], Random Forest RF [5] and Gradient Boosting GB
[16]. The first two are popular methods in the chosen application domain [19],

MetaBags: Bagged Meta-Decision Trees for Regression 11

while the latter are popular voting-based ensemble methods for regression [21].
The base models had their hyperparameter values tuned with random search/3-
fold CV (and 60 evaluation points). We used the implementations in the R
package caret for both the landmarkers and the base learners. We compare our
method to the following ensemble approaches: Linear Stacking LS [7], Dynamic
Selection DS with kNN [32,25], and the best individual model. All methods used
l2-loss as L.

In scenario B, we extend the artificial dataset used in Fig. 1 to assess the com-
putational runtime scalability of the decision tree induction process of MetaReg
(using a CART-based implementation) in terms of number of examples and
attributes. In this context, we compare our method’s training stage to Linear
Regression (used for LS) and kNN in terms of time to build k-d tree (DS). Addi-
tionally, we also benchmarked C4.5 (which was used in MDT [30]). For the latter,
we discretized the target variable using the four quantiles.

4.3 Results

Table 3 presents the performance results of MetaBags against comparison algo-
rithms: the base learners; SoA in model integration such as stacking with a linear
model LS and kNN, i.e. DS, as well as the best base model selected using 3-CV i.e.
Best; finally, we also included two variants of MetaBags: MetaReg – a singular
decision tree, MBwLM – MetaBags without the novel landmarking features. Results
are reported in terms of RMSE, as well as of statistical significance (using the
using the two-sample t-test with the significance level α = 0.05, with the null
hypothesis that a given learner M wins against MetaBags after observing the
results of all repetitions). Finally, Fig. 3 summarizes those results in terms of
percentual improvements, while Fig. 4 depicts our empirical scalability study.

5 Discussion

The results, presented in Table 3, show that MetaBags outperforms existing SoA
stacking methods. MetaBags is never statistically significantly worse than any of
the other methods, which illustrates its generalization power.

Fig. 3 summarizes well the contribution of introducing bagging at the meta-
level as well as the novel local landmarking meta-features, with average relative
percentages of improvement in performance across all datasets of 12.73% and
2.67%, respectively. The closest base method is GB, with an average percentage of
improvement of 5.44%. However, if we weight this average by using the percentage
of extreme target outliers of each dataset, the expected improvement goes up to
14.65% - illustrating well the issues of GB depicted earlier in Fig. 1-(b).

Fig. 4 also depicts how competitive MetaBags can be in terms of scalability.
Although neither outperforming DS nor LS, we want to highlight that lazy
learners have their cost in test time - while this study only covered the training
stage. Moreover, many of its stages (learning of base learners, performance-based
meta-features, local landmarking) as well as subroutines of the MetaBags are

12 J. Khiari et al.

Table 1: Datasets summary. Fields denote number of #ATTributes and
#INStances, the Range of the Target variable, the number of #Target
Outliers using Tukey’s boxplot(ranges=1.5,3), their ORIgin, as well as its TYPe
(Proprietary/Open) and Collection Process (Real/Artificial).

Properties Source and Type
#ATT #INS RT #TO(1.5) #TO(3.0) ORI TYP CP

R11 12 17953 [1306,10520] 66 9 BOS P R
R12 12 16353 [1507,9338] 154 6 BOS P R
R21 12 16280 [1434,6764] 341 27 BOS P R
R22 12 16353 [884,6917] 146 10 BOS P R
Cal. housing 8 20460 [14999,500001] 1071 0 StatLib O R
Concrete 8 1030 [2332,82599] 4 0 UCI O R
2Dplanes 10 40768 [-999.709,999.961] 4 0 dcc.fc.up.pt[31] O A
Delta Ailerons 6 7129 [-0.0021,0,0022] 107 12 dcc.fc.up.pt[31] O R
Elevators 18 16559 [0.012,0,078] 842 344 dcc.fc.up.pt[31] O R
Parkinsons Tele. 26 5875 [0.022,0732] 206 17 UCI O R
Physicochemical 9 45730 [15.228,55.3009] 0 0 UCI O R
Pole 48 15000 [0,100] 0 0 dcc.fc.up.pt[31] O R
Puma32H 32 8192 [-0.085173,0.088266] 56 0 DELVE O R
Red wine quality 12 1599 [3,8] 28 0 UCI O R
White wine quality 12 4898 [3,9] 200 0 UCI O R
Computer Activity

CPU-small 12 8192 [0,99] 430 294 DELVE O R
CPU-activity 21 8192 [0,99] 430 294 DELVE O R

Table 2: Hyperparameter settings used in MetaBags.
Value Description

φ 10 number of random partitions performed on each meta-feature;
ε |I(tp) · 10−2| min. abs. bias reduction to perform split;
υ N · 10−2 min. examples in node to perform split;
ψ 100 size of the artificial neighborhood generated to compute meta-features;
s 10% percentage of examples usage to generate the bootstraps;
d 300 number of generated meta-decision trees;

●●●

●

●

●

●

●

●

●

●

●

−10

−5

0

5

10

15

20

25

30

MBwLM GB DS Best LS MetaReg RF SVR PPR
reorder(methods, improvement)

%
 o

f I
m

pr
ov

em
en

t (
R

M
S

E
)

Fig. 3: Summary results of MetaBags using the percentage of improvement over
its competitors. Note the consistently positive mean over all methods.

MetaBags: Bagged Meta-Decision Trees for Regression 13

Algorithm 1: InduceMetaDecisionTreeRegression
Input: p: root (or current internal node) of the meta decision tree.
Dp ⊂ Di: the subset of examples that reach the root (or internal node) p, Di is a bootstrap
sampled with replacement from D.
{f̂j |j ∈ {1..M}}: the set of base models.
{zu,v|xu ∈ Dp ∧ v ∈ {1, . . . , Q}}: the set of meta features for each instance in Dp.
/* check that the current node has the minimum number of supporting instances */

1 if |Dp| ≤ υ then
2 return

/* create the matrices A and B */
3 B = [bi,j] ∈ RQ×φ s.t. bi,j ∼ U(zimin , zimax)
4 A = [ai,j] ∈ RQ×φ s.t. ai,j = ω(bi,j) = [I(p)− PlI(pl)− PrI(pl)]

/* find the splitting criteria τ */
5 τ = arg min

i ∈ {1..Q}
ai,j , for all j ∈ {1, . . . , φ}

6 if ω
(
ztτ

)
≥ ε then

/* create the right and left leaf nodes, pl and pr */
7 Dpl = {xi ∈ Dp|ziτ ≤ ztτ}
8 Dpr = {xi ∈ Dp|ziτ > ztτ}
9 InduceMetaDecisionTree(pl,Dpl , {f̂j}, {zu,v})

10 InduceMetaDecisionTree(pr,Dpr , {f̂j}, {zu,v})
11 return

Number of samples for synthetic datasets

Ru
nt

im
e

in
se

co
nd

s

10^1 10^2 10^3 10^4 10^5

0
4

8

● ● ● ●
●

●

MetaReg
MDT
DS
LS

Number of features for synthetic datasets

Ru
nt

im
e

in
se

co
nd

s

2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10

0
6

12
18

24

● ● ● ● ● ● ● ● ●

●

●

MetaReg
MDT
DS
LS

Fig. 4: Empirical runtime scalability analysis resorting to samples (left panel)
and features (right panel) size. Times in seconds.

independent and thus, trivially parallelizable. Based in the above discussion,
(Q1-Q4) can be answered affirmatively.

One possible drawback of MetaBags may be its space complexity - since it
requires to train/maintain multiple decision trees and models in memory. Another
possible issue when dealing with low latency data mining applications is that
the computation of some of the meta-features is not trivial, which may slightly
increase its runtimes in test stage. Both issues were out of the scope of the
proposed empirical evaluation and represent open research questions.

Like any other stacking approach, MetaBags requires training of the base
models apriori. This pool of models need to have some diversity on their responses.
Hereby, we explore the different characteristics of different learning algorithms to

14 J. Khiari et al.

Table 3: Detailed predictive performance results, comparing base learners vs.
MetaBags (top) and SoA methods in model integration vs. MetaBags - including
variations (bottom). The results reported on the average and (std. error) of
RMSE. The last rows depict the wins and losses based on the two-sample t-test
with the significance level α = 0.05 and the null hypothesis that a given learner
M wins against MetaBags (computed after observing the results of all repetitions
in a pair-wise manner).

Dataset SVR PPR RF GB MetaBags
R11 232.23(5.2) 242.12(8.1) 229.18(9.8) 225.45(6.5) 220.37(4.6)
R12 210.66(3.9) 217.34(5.4) 205.77(2.5) 200.49(6.7) 194.36(4.2)
R21 225.81(6.8) 240.12(5.3) 235.55(4.0) 210.45(7.7) 218.87(4.9)
R22 260.77(5.9) 269.19(6.5) 255.91(5.3) 248.11(5.2) 253.74(2.9)
C. Housing 9.6e4(3.1e3) 10.0e4(5.5e3) 9.9e4(5.0e3) 8.9e4(3.9e3) 9.2e4(3.8e3)
Concrete 12.19(2.6) 15.81(2.4) 17.14(2.32) 14.54(1.7) 11.73(0.3)
Delta A. 3.2e−4(1.2e−4) 3.6e−4(2.4e−4) 4.2e−4(2.3e−4) 2.5e−4(1.8e−4) 2.2e−4(9.9e−5)
2Dplanes 2.12(0.1) 2.57(0.2) 2.36(0.1) 2.01(0.2) 2.02(0.1)
Elevators 6.2e−3(3.8e−4) 6.3e−3(5.8e−4) 6.4e−3(5.4e−4) 6.7e−3(4.5e−4) 5.6e−3(5.8e−4)
Parkinsons 5.5e−2(7.0e−3) 8.1e−2(7.0e−3) 7.5e−2(6.0e−3) 6.4e−2(6.0e−3) 4.9e−2(5.0e−3)
Physic. 3.78(0.1) 3.90(0.2) 4.99(0.2) 3.70(0.2) 3.64(0.2)
Pole 24.11(7.2) 30.24(9.9) 28.90(5.9) 18.54(9.3) 20.12(3.1)
Puma32H 3.0e−2(3.0e−3) 2.9e−2(3.0e−3) 2.8e−2(3.0e−3) 2.5e−2(6.0e−3) 2.7e−2(4.0e−3)
R. Wine 0.69(0.0) 0.91(0.0) 0.88(0.0) 0.79(0.0) 0.70(0.0)
W. Wine 0.70(0.0) 0.86(0.0) 0.76(0.0) 0.62(0.0) 0.62(0.0)
CPU a. 5.18(0.4) 5.89(0.3) 6.87(0.2) 5.99(0.3) 5.45(0.2)
CPU s. 6.07(0.1) 6.37(0.3) 8.71(0.4) 6.31(0.5) 5.12(0.1)
∅ Rank 2.82 4.47 4.12 2.12 1.41

Loss/Win 10/0 11/0 4/0 1/0 N/A
Dataset LS DS Best MetaReg MBwLM MetaBags
R11 230.25(9.2) 222.37(5.4) 223.20(8.9) 240.67(15.7) 228.32(7.0) 220.37(4.6)
R12 215.32(5.9) 190.80(3.5) 201.46(4.3) 219.76(19.2) 211.63(7.9) 194.37(4.2)
R21 234.37(7.1) 221.98(5.8) 226.27(4.2) 249.31(6.1) 220.01(7.5) 218.87(4.9)
R22 260.71(4.5) 250.37(5.5) 254.69(5.2) 273.12(5.4) 261.41(4.3) 253.744(2.9)
C. Housing 9.8e4(4.3e3) 9.3e4(3.2e3) 9.5e4(4.6e3) 9.8e4(4.1e3) 9.5e4(3.7e3) 9.2e4(3.7e3)
Concrete 12.14(0.3) 11.70(0.3) 12.00(0.3) 12.57(0.3) 11.91(0.3) 11.73(0.3)
Delta A. 2.8e−4(2.3e−4) 2.6e−4(1.8e−4) 3.0e−4(1.8e−4) 3.5e−4(1.7e−4) 2.3e−4(1.8e−4) 2.2e−4(9.9e−5)
2Dplanes 2.35(0.2) 2.26(0.1) 2.34(0.1) 2.39(0.1) 2.15(0.1) 2.02(0.1)
Elevators 6.2e−3(5.5e−4) 5.5e−3(7.0e−4) 7.4e−3(6.1e−4) 6.5e−3(4.6e−4) 5.5e−3(6.8e−4) 5.7e−3(5.8e−4)
Parkinsons 5.9e−2(6.0e−3) 6.5e−2(0.0e−3) 6.2e−2(5.0e−3) 5.4e−2(5.0e−3) 5.1e−2(5.0e−3) 4.9e−2(5.0e−3)
Physic. 3.46(0.2) 3.74(0.2) 3.79(0.2) 3.80(0.2) 3.71(0.2) 3.64(0.2)
Pole 26.22(3.3) 22.15(3.6) 21.61(3.3) 25.96(4.3) 20.91(3.6) 20.12(3.1)
Puma32H 4.0e−2(5.0e−3) 3.2e−2(6.0e−3) 3.4e−2(4.0e−3) 3.3e−2(6.0e−3) 2.9e−2(4.0e−3) 2.7e−2(4.0e−3)
R. Wine 0.87(0.0) 0.75(0.0) 0.67(0.0) 0.76(0.0) 0.70(0.0) 0.70(0.0)
W. Wine 0.82(0.0) 0.63(0.0) 0.67(0.0) 0.76(0.0) 0.61(0.0) 0.62(0.0)
CPU a. 5.92(0.2) 5.93(5.5) 5.58(0.3) 5.54(0.3) 5.57(0.2) 5.45(0.2)
CPU s. 5.92(0.2) 6.08(0.3) 5.90(0.2) 6.12(0.3) 5.30(0.2) 5.12(0.2)
∅ Rank 4.76 3.06 3.88 5.12 2.65 1.47

Loss/Win 4/0 2/0 4/0 6/0 0/0 N/A

MetaBags: Bagged Meta-Decision Trees for Regression 15

stimulate that diversity. However, this may not be sufficient. Formal approaches to
strictly ensure diversity on model generation for ensemble learning in regression
are scarce [8,24]. The best way to ensure such diversity within an advanced
stacking framework like MetaBags is also an open research question.

6 Final Remarks

This paper introduces MetaBags: a novel, practically useful stacking framework for
regression. MetaBags uses meta-decision trees that perform on-demand selection
of base learners at test time based on a series of innovative meta-features.
These meta-decision trees are learned over data bootstrap samples, whereas the
outputs of the selected models are combined by average. An exhaustive empirical
evaluation, including 17 datasets and multiple comparison algorithms illustrates
the ability of MetaBags to address model integration problems in regression. As
future work, we aim to study which factors affect the performance of MetaBags,
namely, at model generation level, as well as its time and spatial complexity in
test time.

Acknowledgments

S.D. and B.Ž. are supported by The Slovenian Research Agency (grant P2-
0103). B.Ž. is additionally supported by the European Commission (grant 769661
SAAM). S.D. further acknowledges support by the Slovenian Research Agency (via
grants J4-7362, L2-7509, and N2-0056), the European Commission (projects HBP
SGA2 and LANDMARK), ARVALIS (project BIODIV) and the INTERREG
(ERDF) Italy-Slovenia project TRAIN.

References

1. Bell, R., Koren, Y.: Lessons from the netflix prize challenge. Acm Sigkdd Explo-
rations Newsletter 9(2), 75–79 (2007)

2. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
Proceedings of the 23rd ICML. pp. 97–104. ACM (2006)

3. Brazdil, P., Carrier, C. Soares, C., Vilalta, R.: Metalearning: Applications to data
mining. Springer (2008)

4. Breiman, L.: Bagging predictors. Machine learning 24(2), 123–140 (1996)
5. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
6. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees

(cart) wadsworth international group. Belmont, CA, USA (1984)
7. Breiman, L.: Stacked regressions. Machine learning 24(1), 49–64 (1996)
8. Brown, G., Wyatt, J.L., Tiňo, P.: Managing diversity in regression ensembles.

Journal of machine learning research 6(Sep), 1621–1650 (2005)
9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM

computing surveys (CSUR) 41(3), 15 (2009)
10. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE transactions on

information theory 13(1), 21–27 (1967)

16 J. Khiari et al.

11. Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V.: Support vector
regression machines. NIPS pp. 155–161 (1997)

12. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: NIPS. pp. 2962–2970 (2015)

13. Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparameter
optimization via meta-learning. In: AAAI. pp. 1128–1135 (2015)

14. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

15. Friedman, J.: Multivariate adaptive regression splines. The annals of statistics pp.
1–67 (1991)

16. Friedman, J.: Greedy function approximation: a gradient boosting machine. Annals
of statistics pp. 1189–1232 (2001)

17. Friedman, J., Stuetzle, W.: Projection pursuit regression. Journal of the American
statistical Association 76(376), 817–823 (1981)

18. Gama, J., Brazdil, P.: Cascade generalization. Machine Learning 41(3), 315–343
(2000)

19. Hassan, S., Moreira-Matias, L., Khiari, J., Cats, O.: Feature Selection Issues in
Long-Term Travel Time Prediction, pp. 98–109. Springer (2016)

20. Hastie, T., Tibshirani, R.: Generalized additive models: some applications. Journal
of the American Statistical Association 82(398), 371–386 (1987)

21. Kaggle Inc.: https://www.kaggle.com/bigfatdata/what-algorithms-are-most-
successful-on-kaggle. Tech. rep. (Eletronic, Accessed in March 2018)

22. Kiefer, J.: Sequential minimax search for a maximum. Proceedings of the American
mathematical society 4(3), 502–506 (1953)

23. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technologies.
Artificial intelligence review 44(1), 117–130 (2015)

24. Mendes-Moreira, J., Soares, C., Jorge, A., Sousa, J.: Ensemble approaches for
regression: A survey. ACM Computing Surveys (CSUR) 45(1), 10 (2012)

25. Merz, C.: Dynamical Selection of Learning Algorithms, pp. 281–290 (1996)
26. Moreira-Matias, L., Mendes-Moreira, J., Freire de Sousa, J., Gama, J.: On improving

mass transit operations by using avl-based systems: A survey. IEEE Transactions
on Intelligent Transportation Systems 16(4), 1636–1653 (2015)

27. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking
various learning algorithms. In: ICML. pp. 743–750 (2000)

28. Schaffer, C.: A conservation law for generalization performance. In: Machine Learn-
ing Proceedings 1994, pp. 259–265. Elsevier (1994)

29. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological) pp. 267–288 (1996)

30. Todorovski, L., Dzeroski, S.: Combining classifiers with meta decision trees. Machine
learning 50(3), 223–249 (2003)

31. Torgo, L.: Regression data sets. Eletronic (last access at 02/2018) (February 2018),
http://www.dcc.fc.up.pt/˜ltorgo/Regression/DataSets.html

32. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Dynamic integration with random
forests. In: European conference on machine learning. pp. 801–808. Springer (2006)

33. Wolpert, D.: Stacked generalization. Neural networks 5(2), 241–259 (1992)

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

	MetaBags: Bagged Meta-Decision Trees for Regression

