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Glossary

Attribute (also feature or variable) An attribute is an en-
tity that defines a property of an object (or example).
It has a domain defined by its type which denotes the
values that can be taken by an attribute (e. g., nominal
or numeric). For example, apples can have attributes
such as weight (with numeric values) and color (with
nominal values such as red or green).

Example (also instance or case) An example is a single
object from a problem domain of interest. In machine
learning, examples are typically described by a set of
attribute values and are used for learning a descriptive
and/or predictive model.

Model (also classifier) In machine learning, a model is
a computer program that attempts to simulate a partic-
ular system or its part with the aim of gaining insight
into the operation of this system, or to observe its be-
havior. Strictly speaking, a classifier is a type of model
that performs amapping from a set of unlabeled exam-
ples to a set of (discrete) classes. However, in machine
learning the term classifier is often used as a synonym
for model.

Learning (also training) set A learning set is a set of ex-
amples that are used for learning amodel or a classifier.
Examples are typically described in terms of attribute
values and have a corresponding output value or class.

Testing set A testing set is a set of examples that, as op-
posed to examples from the learning set, have not been
used in the process of model learning; they are also
called unseen examples. They are used for evaluating
the learned model.

Ensemble An ensemble in machine learning is a set of
predictive models whose predictions are combined
into a single prediction. The purpose of learning en-
sembles is typically to achieve better predictive perfor-
mance.

Definition of the Subject

Ensemble methods are machine learning methods that
construct a set of predictivemodels and combine their out-
puts into a single prediction. The purpose of combining
several models together is to achieve better predictive per-
formance, and it has been shown in a number of cases that
ensembles can be more accurate than single models.While
some work on ensemble methods has already been done
in the 1970s, it was not until the 1990s, and the introduc-
tion of methods such as bagging and boosting, that ensem-
ble methods started to be more widely used. Today, they
represent a standard machine learning method which has
to be considered whenever good predictive accuracy is de-
manded.

Introduction

Most machine learning techniques deal with the prob-
lem of learning predictive models of data. The data are
usually given as a set of examples where examples repre-
sent objects or measurements. Each example can be de-
scribed in terms of values of several (independent) vari-
ables, which are also referred to as attributes, features, in-
puts or predictors (for example, when talking about cars,
possible attributes include the manufacturer, number of
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seats, horsepower of a car, etc.). Associated with each ex-
ample is a value of a dependent variable, also referred to
as class, output or outcome. The class is some property of
special interest (such as the price of the car). The typical
machine learning task is to learn a model using a learning
data set with the aim of predicting the value of the class
for unseen examples (in our car example this would mean
that we want to predict the price of a specific car based
on its properties). There exist a number of methods, de-
veloped within machine learning and statistics, that solve
this task more or less successfully (cf., [21,31,43]). Some-
times, however, the performance obtained by these meth-
ods (we will call them simple or base methods) is not suf-
ficient.

One of the possibilities to improve predictive perfor-
mance are ensemble methods, which in the literature are
also referred to as multiple classifier systems, committees
of classifiers, classifier fusion, combination or aggregation.
The main idea is that, just as people often consult several
sources when making an important decision, the machine
learning model that takes into account several aspects of
the problem (or several submodels) should be able to make
better predictions. This idea goes in line with the princi-
ple of multiple explanations first proposed by the Greek
philosopher Epicurus (cf., [28]), which says that for an op-
timal solution of a concrete problem we have to take into
consideration all the hypotheses that are consistent with
the input data. Indeed, it has been shown that in a num-
ber of cases ensemble methods offer better predictive per-
formance than single models. The performance improve-
ment comes at a price, though. When we humans want to
make an informed decision we have to make an extra ef-
fort, first to find additional viewpoints on the subject, and
second, to compile all this information into a meaningful
final decision. The same holds true for ensemble methods;
learning the entire set of models and then combining their
predictions is computationally more expensive than learn-
ing just one simple model. Let us present some of the rea-
sons why ensemble methods might still be preferred over
simple methods [33].

Statistical Reasons

As already mentioned, we learn a model on the learning
data, and the resulting model can have more or less good
predictive performance on these learning data. However,
even if this performance is good, this does not guaran-
tee good performance also on the unseen data. Therefore,
when learning single models, we can easily end up with
a badmodel (although there are evaluation techniques that
minimize this risk). By taking into account several models

and averaging their predictions we can reduce the risk of
selecting a very bad model.

Very Large or Very Small Data Sets

There exist problem domains where the data sets are so
large that it is not feasible to learn a model on the en-
tire data set. An alternative and sometimes more efficient
approach is to partition the data into smaller parts, learn
one model for each part, and combine the outputs of these
models into a single prediction.

On the other hand, there exist also many domains
where the data sets are very small. As a result, the learned
model can be unstable, i. e., it can drastically change if we
add or remove just one or two examples. A possible rem-
edy to this problem is to draw several overlapping subsam-
ples from the original data, learn one model for each sub-
sample, and then combine their outputs.

Complex Problem Domains

Sometimes, the problem domain we are modeling is just
too complex to be learned by a single learning method.
For illustration only, let us assume we are trying to learn
a model to discriminate between examples with class ‘+’
and examples with class ‘�’, and the boundary between
the two is a circle. If we try to solve this problem using
a method that can learn only linear boundaries we will
not be able to find an adequate solution. However, if we
learn a set of models where each model approximates only
a small part of the circular boundary, and then combine
these models in an appropriate way, the problem can be
solved even with a linear method.

Heterogeneous Data Sources

In some cases, we have data sets from different sources
where the same type of objects are described in terms of
different attributes. For example, let us assume we have
a set of treated cancer patients for which we want to pre-
dict whether they will have a relapse or not. For each pa-
tient different tests can be performed, such as gene ex-
pression analyzes, blood tests, CAT scans, etc., and each
of these tests results in a data set with different attributes.
It is very difficult to learn a single model with all these at-
tributes. However, we can train a separate model for each
test and then combine them. In this way, we can also em-
phasize the importance of a given test, if we know, for ex-
ample, that it is more reliable than the others.

In the remainder of the article we first describe the pro-
cess of learning ensembles and then give an overview of
some of the commonly used methods. We conclude with
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a discussion on potential impacts of ensemble methods on
the development of other science areas.

Learning Ensembles

Ensembles of models are sets of (simple) models whose
outputs are combined, for instance with majority voting,
into a single output or prediction. The problem of learn-
ing ensembles attracts a lot of attention in the machine
learning community [10], since it is often the case that pre-
dictive accuracy of ensembles is better than that of their
constituent (base) models. This has also been confirmed
by several empirical studies [2,11,15] for both classifica-
tion (predicting a nominal variable) and regression (pre-
dicting a numeric variable) problems. In addition, sev-
eral theoretical explanations have been proposed to justify
the effectiveness of some commonly used ensemble meth-
ods [1,27,38].

The learning of ensembles consists of two steps. In the
first step we have to learn the basemodels thatmake up the
ensemble. In the second step we have to figure out how to
combine these models (or their predictions) into a single
coherent model (or prediction). We will now look more
closely into these two steps.

Generating Base Models

When learning base models it makes sense to learn mod-
els that are diverse. Combining identical or very similar
models clearly does not improve the predictive accuracy
of base models. Moreover, it only increases the computa-
tional cost of the final model. By diverse models we mean
models that make errors on different learning examples,
so that when we combine their predictions in some smart
way, the resulting prediction will be more accurate. Based
on this intuition, many diversity measures have been de-
veloped with the purpose of evaluating and guiding the
construction of ensembles. However, despite considerable
research in this area, it is still not clear whether any of these
measures can be used as a practical tool for constructing
better ensembles [30]. Instead, several more or less ad hoc
approaches are used for generating diverse models. We
can group these approaches roughly into two groups. In
the first case, the diversity of models is achieved by mod-
ifying the learning data, while in the second case, diverse
models are learned by changing the learning algorithm.

The majority of ensemble research has focused on
methods from the first group, i. e., methods that use dif-
ferent learning data sets. Such data sets can be obtained by
resampling techniques such as bootstrapping [14], where
learning sets are drawn randomly with replacement from
the initial learning data set; this is the approach used in

bagging [3] and random forests [5]. An alternative ap-
proach is used in boosting [37]. Here we start with a model
that is learned on the initial data set. We identify learning
examples for which this model performs well. Now we de-
crease the weights of these examples, since we wish for the
next members of the ensemble to focus on examples mis-
classified by the first model. We iteratively repeat this pro-
cedure until enough base models are learned. Yet another
approach to learn diverse base models is taken by the ran-
dom subspaces method [22] where, instead of manipulat-
ing examples in the learning set, we each time randomly
select a subset of attributes used for describing the learn-
ing set examples. Thesemethods are typically coupled with
unstable learning algorithms such as decision trees [6] or
neural networks [36], for which even a small change in the
learning set can produce a significantly different model.

Ensemble methods from the second group, which use
different learning algorithms, use two major approaches
for achieving diversity. First, if we use a base learning al-
gorithm that depends on some parameters, diverse models
can be learned by changing the values of these parame-
ters. Again, because of their instability, decision trees and
neural networks are most often employed here. A special
case are randomized learning algorithms, where the out-
come of learning depends on a seed used for the random-
ization. The second possibility is to learn each base model
with a completely different learning algorithm altogether;
for example, we could combine decision trees, neural net-
works, support vector machines and naive Bayes mod-
els into a single ensemble; this approach is used in stack-
ing [44].

Combining Base Models

Once we have generated a sufficiently diverse set of base
models, we have to combine them so that a single predic-
tion can be obtained from the ensemble. In general, we
have two options, model selection or model fusion (please
note that in the literature a somewhat different definition
of these two terms is sometimes used, e. g., [29]). In model
selection, we evaluate the performance of all base models,
and simply use predictions of the best one as predictions of
the ensemble. This approach cannot be strictly regarded as
an ensemblemethod since in the end we are using only one
base model for prediction. On one hand, this can be seen
as an advantage from the viewpoint that the final model
is simpler, more understandable and can be executed fast.
On the other hand, it is obvious that the performance of
such an ensemble cannot be better than the performance
of the best base model. While this seems like a serious
drawback it turns out that constructing ensembles that are
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more accurate than a selected best basemodel can be a very
hard task [13].

In model fusion, we really combine the predictions of
all base models into a prediction of the ensemble. By far
the most common method for combining predictions is
voting; it is used in bagging [3], boosting [37], random
forests [5] andmany variations of thesemethods. Voting is
a relatively simple combining scheme and can be applied
to predictions with nominal or numeric values, or prob-
ability distributions over these. A different approach is
adopted in stacking [44]. As opposed to voting, where the
combining scheme is known in advance and is fixed, stack-
ing tries to learn a so called meta model in order to com-
bine base predictions as efficiently as possible. The meta
model is learned on data where examples are described in
terms of the predictions of the base models and the de-
pendent variable is the final prediction of the ensemble.
There are, of course, many other possibilities for combin-
ing models, including custom combining schemes specifi-
cally tailored for a given problem domain. In the next sec-
tion we describe some of the most frequently used ensem-
ble methods in more detail.

Frequently Used EnsembleMethods

The use of different schemes for base models generation
and their combination, as briefly mentioned in the previ-
ous section, gives rise to a large number of possible ensem-
ble methods. We describe here a few of them that are most
common, with the exception of the best base model selec-
tion approach, which is very straightforward and does not
need an additional description.

Voting

Strictly speaking, voting is not an ensemble method, but
a method for combining base models, i. e., it is not con-
cerned with the generation of the base models. Still, we
include it in this selection of ensemble methods because
it can be used for combining models regardless of how
thesemodels have been constructed. As mentioned before,
voting combines the predictions of base models according
to a static voting scheme, which does not depend on the
learning data or on the base models. It corresponds to tak-
ing a linear combination of the models. The simplest type
of voting is the plurality vote (also called majority vote),
where each base model casts a vote for its prediction. The
prediction that collects most votes is the final prediction of
the ensemble. If we are predicting a numeric value, the en-
semble prediction is the average of the predictions of the
base models.

A more general voting scheme is weighted voting,
where different base models can have different influence
on the final prediction. Assuming we have some informa-
tion on the quality of the base models’ predictions (pro-
vided by the models themselves or through some back-
ground knowledge), we can put more weight on the pre-
dictions coming frommore trustworthymodels.Weighted
voting predicting nominal values simply means that vote
of each basemodel is multiplied by its weight and the value
with the most weighted votes becomes the final predic-
tion of the ensemble. For predicting numeric values we use
a weighted average. If di andwi are the prediction of the ith
model and its weight, the final prediction is calculated as
Y DPb

iD1 widi . Usually we demand that the weights are
nonnegative and normalized: wi � 0 ; 8i ;

Pb
iD1 wi D1.

Another interesting aspect of voting is that, because
of its simplicity, it allows for some theoretical analyzes of
its efficiency. For example, when modeling a binary prob-
lem (a problem with two possible values, e. g., positive and
negative) it has been shown that, if we have an ensemble
with independent base models each with success proba-
bility (accuracy) greater than 1/2, i. e., better than random
guessing, the accuracy of the ensemble increases as the
number of base models increases (cf., [20,37,41]).

Bagging

Bagging (short for bootstrap aggregation) [3] is a voting
method where base models are learned on different vari-
ants of the learning data set which are generated with
bootstrapping (bootstrap sampling) [14]. Bootstrapping
is a technique for sampling with replacement; from the
initial learning data set we randomly select examples for
a new learning (sub)set, where each example can be se-
lected more than once. If we generate a set with the same
number of examples as the original learning set, the new
one will on average contain only 63.2% different examples
from the original set, while the remaining 36.8% will be
multiple copies. This technique is often used for estimat-
ing properties of a variable, such as its variance, by mea-
suring those properties on the samples obtained in this
manner.

Using these sampled sets, a collection of basemodels is
learned and their predictions are combined by simple ma-
jority voting. Such an ensemble often gives better results
than its individual base models because it combines the
advantages of individual models. Bagging has to be used
together with an unstable learning algorithm (e. g., deci-
sion trees or neural networks), where small changes in the
learning set result in largely different classifiers. Another
benefit of the sampling technique is that it is less likely
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Input: Learning set S, Ensemble size B
Output: Ensemble E

E D ;
for i D 1 to B do

Si D BootstrapSample(S)
Ci D ConstructBaseModel(Si )
E D E [ ˚

Ci�

end for
return E

Machine Learning, Ensemble Methods in, Algorithm 1

Learning ensembles with bagging

that (many) outliers in the learning set show up also in the
bootstrap sample. As a result, base models and the ensem-
ble as a whole should be less sensitive to data outliers. The
bagging algorithm is presented in Algorithm 1. Bagging
can be used both for classification and regression prob-
lems. In the case of regression the individual predictions
are combined by averaging.

Boosting

Boosting [15] comprises a whole family of similar meth-
ods that, just as bagging, use voting to combine the pre-
dictions of base models learned by a single learning algo-
rithm. The difference between the two approaches is that
in bagging the complementarity of the constructed base
models is left to chance, while in boosting we try to gen-
erate complementary base models by learning subsequent
models, taking into account the mistakes of previous mod-
els. The procedure starts by learning the first base model
on the entire learning set with equally weighted examples.
For the next base models, we want them to correctly pre-
dict the examples that have not been correctly predicted by
previous base models. Therefore, we increase the weights
of these examples (or decrease the weights of the correctly
predicted examples) and learn a new base model. We stop
learning new base models when some stopping criterion is
satisfied (like when the accuracy of the new base model is
less then or equal to 0.5). The prediction of the ensemble is
obtained by weighted voting, where more weight is given
to more accurate base models; the weights of all classifiers
that vote for a specific class are summed and the class with
the highest total vote is predicted.

An interesting property of some boosting methods
is that they provide a theoretical guarantee of the accu-
racy [15,26]. We can show that the predictive error of the
ensemble on the learning data quickly decreases as we in-

Input: Learning set S, Ensemble size B
Output: Ensemble E

E D ;
W D AssignEqualWeights(S)
for i D 1 to B do

Ci D ConstructModel(S;W)
Err D ApplyModel(Ci ; S)
if (Err D 0) _ (Err � 0:5) then

TerminateModelGeneration
return E

end if
for j D 1 to NumberOfExamples(S) do

if CorrectlyClassified(S j;Ci ) then
Wj D Wj

Err
1�Err

end if
end for
W D NormalizeWeights(W)
E D E [ ˚

Ci�

end for
return E

Machine Learning, Ensemble Methods in, Algorithm 2

The AdaBoost.M1 algorithm for learning ensembles with boost-

ing

crease the number of base models within the ensemble.
The only precondition for error decrease is that the er-
ror of the individual members of the ensemble is less than
0.5. For binary classification problems this condition is
usually easy to fulfill. While the guarantee of a small er-
ror on the learning set is not a guarantee of a small er-
ror on unseen examples, boosting methods are known to
frequently improve the predictive performance of the base
algorithms [39]. Just as bagging, boosting should also be
used together with unstable learning methods such as de-
cision trees or neural networks. The most widely used
boosting method is AdaBoost.M1 [15] presented in Al-
gorithm 2 (together with the exact example reweighting
scheme used in this algorithm), which was designed for
learning with binary classification problems. Nevertheless,
there exist also modifications of the original method that
work on classification problems with more than two pos-
sible values (multiclass) [40] and even on regression prob-
lems [34,35]. An alternative name often used for boosting
methods is arcing (adaptively resample and combine) [4],
although strictly speaking, boosting methods are a subset
of arcing methods, i. e., boosting methods are the ones for
which it can be shown that they can achieve an arbitrarily
small error on the learning data set.
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Input: Learning set S, Ensemble size B,
Proportion of attributes considered f

Output: Ensemble E

E D ;
for i D 1 to B do

Si D BootstrapSample(S)
Ci D BuildRandomTreeModel(Si ; f )
E D E [ ˚

Ci�

end for
return E

Machine Learning, Ensemble Methods in, Algorithm 3

Learning random forests

Random Forests

Random forests [5] is a method for combining models
learned with a randomized version of a decision tree algo-
rithm. Random forests can be seen as an implementation
of bagging in which each model is learned with a modified
version of the CART decision tree algorithm [6]; namely,
when searching for an optimal attribute split in a tree,
rather than considering all possible splits, only a small sub-
set of randomly selected splits is tested (i. e., a random
subset of attributes), and the best one is chosen from this
subset. There are two sources of diversity when learning
the trees, and both are random: the selection of a boot-
strap sample for learning each tree, and the selection of
attributes to on which to split at every node of the tree.
Random forests are a robust and typically very accurate
ensemble method applicable to classification and regres-
sion problems. The algorithm for learning random forests
is presented in Algorithm 3.

Stacking

Stacking or stacked generalization [44] is a method
for combining heterogeneous base models, i. e., models
learned with different learning algorithms such as the
nearest neighbor method, decision trees, naive Bayes, etc.
Base models are not combined with a fixed scheme such as
voting, but rather an additional model calledmeta (or level
1) model is learned and used for combining base (or level
0) models. The procedure has two steps. First, we generate
the meta learning data set using the predictions of the base
models. Second, using the meta learning set we learn the
meta model which can combine predictions of base mod-
els into a final prediction.

Let L1; : : : ; LN be the base learning algorithms, and
S be the learning data set, which consists of examples

si D (xi ; yi ), i. e., pairs of attribute vectors xi and their
classifications yi. Generation of the meta learning data
set is done using a leave-one-out, or in general, a K-fold
cross-validation procedure. The initial learning set S with
n examples is split into K proper subsets Sk of roughly
equal size and class value distribution. For each of the
subsets a group of base models Ck

1 ;Ck
2 ; : : : ;Ck

N is learned
(Ck

j D Lj(S � Sk); 8 j D 1; : : : ; N; 8k D 1; : : : ;K).
These models are now used for predicting examples that
were not included in their learning set: ŷ ji D Ck

j (xi ),
xi 2 Sk . These predictions are collected into a meta learn-
ing set Sm. Each example from the original learning
set S has a corresponding example in Sm of the form
smi D (ŷi ; yi ) D ((ŷ1i ; : : : ; ŷNi ); yi ). The attributes of the
meta learning set are therefore the predictions of the base
models (ŷ ji ), while the class value is the true class value
from the original data set (yi). In the second step, a meta
learning algorithm Lm is applied to this meta learning
set. When predicting a value of an unseen example, we
first collect the predictions of the base models which are
then given to the meta model that combines them into
a final prediction. The stacking algorithm is presented
in Algorithm 4. The performance of stacking highly de-
pends on the attributes used in the meta learning set (we
have only described the simplest option above) and the
meta learning algorithm used for learning the meta model
(cf. [13,42]).

Random Subspace Method

The random subspace method (RSM) [22] is an en-
semble method somewhat similar to bagging. However,
while in bagging the diversity of base models is achieved
by sampling examples from the initial learning data
set, in RSM the diversity is achieved by sampling at-
tributes from the learning set. Let each learning exam-
ple Xi in the learning set S be a p-dimensional vec-
tor xi D (xi1; xi2; : : : ; xi p). RSM randomly selects p� at-
tributes from S, where p� < p. By this, we obtain the
p� dimensional random subspace of the original p-dimen-
sional attribute space. Therefore, the modified training set
S̃ D (x̃1; x̃2; : : : ; x̃n) consists of p�-dimensional learning
examples x̃i D (x j1; xi2; : : : ; xi p�) (i D 1; 2; : : : ; n). Af-
terwards, base models are learned from the random sub-
spaces S̃ j (of the same size), j D 1; 2; : : : ; B, and they are
combined by voting to obtain a final prediction. Typically,
p� is equal for all base models. The RSM algorithm is pre-
sented in Algorithm 5.

The RSM benefits from using random subspaces for
learning base models and from their aggregation. When
the number of learning examples is relatively small as com-
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Input: Learning set S, Number of folds for meta data generation K,
Base and meta learning algorithms fL1; L2; ::: ; LN g; Lm

Output: Ensemble E

E D ;
fS1; S2; ::: ; SK g D SplitData(S;K)
Sm D ;
for k D 1 to K do

for j D 1 to N do
Ck
j D Lj(S � Sk)

end for
Smk D S

xi2Sk f(Ck
1 (xi );C

k
2 (xi); ::: ;Ck

N (xi ); yi )g
end for
Sm D SK

kD1 S
m
k

Cm D Lm(Sm )
fC1;C2; ::: ;CN g D fL1(S); L2(S); ::: ; LN (S)g
E D (fC1;C2; ::: ;CN g;Cm)
return E

Machine Learning, Ensemble Methods in, Algorithm 4

Learning ensembles with stacking

Input: Training examples S, Number of subspaces B,
Dimension of subspaces p�

Output: Ensemble E

E D ;
for j D 1 to B do

S̃ j D SelectRandomSubspace(S; p�)
Cj D ConstructModel(S̃ j)
E D E [ ˚

Cj
�

end for
return E

Machine Learning, Ensemble Methods in, Algorithm 5

Learning ensembles with the random subspacemethod

pared to the dimensionality of the data, learning models in
random subspaces alone may solve the small sample prob-
lem. In this case the subspace dimensionality is smaller
than in the original attribute space, while the number of
learning objects remains the same. When the data set has
many redundant attributes, one may obtain better models
in random subspaces than in the original attribute space.
The combined decision of such models may be superior to
a single model constructed on the original learning set in
the complete attribute space.

The RSM was originally developed to be used with de-
cision trees, but the methodology can also be used to im-
prove the performance of other unstable learning methods

(e. g., rule sets, neural networks, etc.). The RSM is expected
to perform well when there is a certain redundancy in the
data attribute space [22]. It has been noticed that the per-
formance of the RSM is affected by the problem complex-
ity (attribute efficiency, length of class boundary, etc.) [23].
When applied to decision trees, the RSM is superior to
a single decision tree and may outperform both bagging
and boosting [22].

Other Methods

Mixture of ExpertsModels The combination of the base
learners can be governed by a supervisor learner, that se-
lects the most appropriate element of the ensemble on
the basis of the available input data. This idea led to the
mixture of experts methods [24], where a gating network
performs the division of the input space and small neu-
ral networks perform the effective calculation at each as-
signed region separately. An extension of this approach is
the hierarchical mixture of experts method, where the out-
puts of the different experts are non-linearly combined by
different supervisor gating networks hierarchically orga-
nized [25]. Cohen and Intrator extended the idea of con-
structing local simple base learners for different regions
of the input space, searching for appropriate architectures
that should be locally used and for a criterion to select
a proper unit for each region of input space [8,9].

Error Correcting Output Codes Error-correcting out-
put codes (ECOC) [12] is an ensemble method for im-
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proving the performance of classification algorithms in
multiclass learning problems. Let us note that some ma-
chine learning algorithms (e. g., standard support vector
machines) work only with two class problems. In order to
apply such algorithms to a multiclass problem it has to be
decomposed into several independent two-class problems;
the algorithm is run on each of them and the outputs of the
resulting binary models are combined. The error-correct-
ing output codes method enables us to efficiently combine
the outputs of such models.

As already mentioned, we have binary base models
with possible outputs (� 1 or +1), and there exists a code
matrixW of size K�B whose K rows are the binary codes
of classes in terms of B base models Cj. This code ma-
trix allows us to define a multiclass classification problem
in terms of two-class classification problems. The prob-
lem here is that if there is an error with one of the base
models, there will be a misclassification because the class
code words are so similar. The ECOC approach sets the
B beforehand and then tries to find such a code matrix
W that the distances between rows, and at the same time
the distances between the columns, are as large as possi-
ble in terms of the Hamming distance [19]. The ECOC
can be written as a voting scheme where the entries of W,
wij are considered as vote weights yi D PB

jD wi jd j . As
a final prediction the class with the highest yi is chosen.

Future Directions

Recent and future research directions in ensemble meth-
ods that are likely to have high impact on data mining
and other areas of science focus along the following top-
ics: Combinations of different sources of diversity; Under-
standing and interpretation of ensembles; Understanding
and explaining in more basic terms why ensembles per-
form better that individual models.

Random forests [5], one of the most successful ensem-
ble approaches, combine two sources of diversity of the
base models: Variations in the learning data set (achieved
through different bootstrap samples, as in bagging) and
a randomized base-level learning algorithm. Another re-
cent approach [32] combines the bagging way of sampling
with the random subspaces way of randomly selecting sub-
sets of the original set of attributes. This approach has the
advantage of being applicable in conjunction with a vari-
ety of base-level learning algorithms that do not need to be
randomized.

We have provided some intuition of why ensembles
work better than individual models in terms of the diver-
sity of the base models. More fundamental explanations
are produced in the bias-variance analysis framework:

Roughly speaking, the error of a learning algorithm can
be divided into a part due to the functional form used by
the algorithm (bias) and a part that is due to the instability
of the algorithms (variance). Bagging and random forests
reduce the variance part. Boosting reduces mainly the bias
part, but also the variance part. Finally, boosting can also
be viewed as an incremental forward stagewise regression
procedure with regularization (Lasso penalty), whichmax-
imizes the margin between the two classes, much like the
approach of support vector machines [18].

While ensembles typically perform better than a sin-
gle model, they do have an important disadvantage: They
are more complex and difficult (if not impossible) to in-
terpret. Recent research has addressed this issue in several
ways. Some approaches produce an estimate of the relative
importance of the attributes as an explanation, for exam-
ple partial dependency plots [16] and the attribute ranking
approach based on bagging and random forests. The ap-
proach of Caruana [7] is to construct a single model that
approximates the behavior of the ensemble: This is done
by generating examples, classifying them with the ensem-
ble, and learning a single model from the resulting learn-
ing set. Finally, a recent approach [17] builds rule ensem-
bles, where small (and understandable) sets of rules are
preferred through regularization.
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