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Abstract

We empirically evaluate several state-of-the-
art methods for constructing ensembles of
heterogeneous classifiers with stacking and
show that they perform (at best) compara-
bly to selecting the best classifier from the
ensemble by cross validation. We then pro-
pose a new method for stacking, that uses
multi-response model trees at the meta-level,
and show that it clearly outperforms existing
stacking approaches and selecting the best
classifier by cross validation.

1. Introduction

An ensemble of classifiers is a set of classifiers whose
individual predictions are combined in some way (typ-
ically by voting) to classify new examples. One of the
most active areas of research in supervised learning has
been to study methods for constructing good ensem-
bles of classifiers (Dietterich, 1997). The attraction
that this topic exerts on machine learning researchers
is based on the premise that ensembles are often much
more accurate than the individual classifiers that make
them up.

Most of the research on classifier ensembles is con-
cerned with generating ensembles by using a single
learning algorithm (Dietterich, 2000), such as deci-
sion tree learning or neural network training. Differ-
ent classifiers are generated by manipulating the train-
ing set (as done in boosting or bagging), manipulating
the input features, manipulating the output targets or
injecting randomness in the learning algorithm. The
generated classifiers are then typically combined by
voting or weighted voting.

Another approach is to generate classifiers by apply-
ing different learning algorithms (with heterogeneous
model representations) to a single data set (see, e.g.,
(Merz, 1999)). More complicated methods for combin-
ing classifiers are typically used in this setting. Stack-
ing (Wolpert, 1992) is often used to learn a combin-

ing method in addition to the ensemble of classifiers.
Voting is then used as a baseline method for com-
bining classifiers against which the learned combiners
are compared. Typically, much better performance is
achieved by stacking as compared to voting.

The work presented in this paper is set in the stacking
framework. We argue that selecting the best of the
classifiers in an ensemble generated by applying dif-
ferent learning algorithms should be considered as a
baseline to which the stacking performance should be
compared. Our empirical evaluation of several recent
stacking approaches shows that they perform compa-
rably to the best of the individual classifiers as selected
by cross validation, but not better. We then propose a
new stacking method, based on classification by using
model trees, and show that this method does perform
better than other combining approaches, as well as
better than selecting the best individual classifier.

Section 2 first summarizes the stacking framework,
then surveys some recent results and finally intro-
duces our stacking approach based on classification via
model trees. The setup for the experimental compar-
ison of several stacking methods, voting and selecting
the best classifier is described in Section 3. Section
4 presents and discusses the experimental results and
Section 5 concludes.

2. Stacking with model trees

We first give a brief introduction to the stacking frame-
work, introduced by (Wolpert, 1992). We then sum-
marize the results of several recent studies in stack-
ing (Merz, 1999; Ting & Witten, 1999; Todorovski &
Dzeroski, 2000; Seewald & Fiirnkranz, 2001; Todor-
ovski & Dzeroski, 2002). Motivated by these, we in-
troduce a stacking approach based on classification via
model trees (Frank et al., 1998).

2.1 The stacking framework

Stacking is concerned with combining multiple classi-
fiers generated by using different learning algorithms



Ly,...,Lyx on a single data set S, which consists of
examples s; = (z;,y;), i.e., pairs of feature vectors
(z;) and their classifications (y;). In the first phase, a
set of base-level classifiers Cp, Ca,...Cyn is generated,
where C; = L;(S). In the second phase, a meta-level
classifier is learned that combines the outputs of the
base-level classifiers.

To generate a training set for learning the meta-level
classifier, a leave-one-out or a cross validation proce-
dure is applied. For leave-one-out, we apply each of
the base-level learning algorithms to almost the entire
dataset, leaving one example for testing:
VZ':].,...,nZVk:].,...,NZC]i :Lk(S—Si).

We then use the learned classifiers to generate predic-
tions for s;: §¥ = Cj(z;). The meta-level dataset con-
sists of examples of the form ((§},...,9"),y;), where
the features are the predictions of the base-level classi-
fiers and the class is the correct class of the example at
hand. When performing, say, 10-fold cross validation,
instead of leaving out one example at a time, subsets
of size one-tenth of the original dataset are left out
and the predictions of the learned classifiers obtained
on these.

In contrast to stacking, no learning takes place at
the meta-level when combining classifiers by a vot-
ing scheme (such as plurality, probabilistic or weighted
voting). The voting scheme remains the same for all
different training sets and sets of learning algorithms
(or base-level classifiers). The simplest voting scheme
is the plurality vote. According to this voting scheme,
each base-level classifier casts a vote for its prediction.
The example is classified in the class that collects the
most votes.

2.2 Recent advances

The most important issues in stacking are probably the
choice of the features and the algorithm for learning at
the meta-level. Below we review some recent research
on stacking that addresses the above issues.

It is common knowledge that ensembles of diverse
base-level classifiers (with weakly correlated predic-
tions) yield good performance. (Merz, 1999) pro-
poses a stacking method called SCANN that uses cor-
respondence analysis do detect correlations between
the predictions of base-level classifiers. The original
meta-level feature space (the class-value predictions) is
transformed to remove the dependencies, and a near-
est neighbor method is used as the meta-level classifier
on this new feature space.

(Ting & Witten, 1999) use base-level classifiers whose
predictions are probability distributions over the set

of class values, rather than single class values. The
meta-level attributes are thus the probabilities of each
of the class values returned by each of the base-level
classifiers. The authors argue that this allows to use
not only the predictions, but also the confidence of the
base-level classifiers. Multi-response linear regression
(MLR) is recommended for meta-level learning, while
several learning algorithms are shown not to be suit-
able for this task.

(Seewald & Fiirnkranz, 2001) propose a method for
combining classifiers called grading that learns a meta-
level classifier for each base-level classifier. The meta-
level classifier predicts whether the base-level classifier
is to be trusted (i.e., whether its prediction will be
correct). The base-level attributes are used also as
meta-level attributes, while the meta-level class values
are + (correct) and — (incorrect). Only the base-level
classifiers that are predicted to be correct are taken
and their predictions combined by summing up the
probability distributions predicted.

(Todorovski & Dzeroski, 2000) introduce a new meta-
level learning method for combining classifiers with
stacking: meta decision trees (MDTs) have base-level
classifiers in the leaves, instead of class-value pre-
dictions. Properties of the probability distributions
predicted by the base-level classifiers (such as en-
tropy and maximum probability) are used as meta-
level attributes, rather than the distributions them-
selves. These properties reflect the confidence of the
base-level classifiers and give rise to very small MDTs,
which can (at least in principle) be inspected and in-
terpreted.

(Todorovski & Dzeroski, 2002) report that stacking
with MDTs clearly outperforms voting and stacking
with decision trees, as well as boosting and bagging of
decision trees. On the other hand, MDTs perform only
slightly better than SCANN and selecting the best
classifier with cross validation (SelectBest). (Zenko
et al., 2001) report that MDTs perform slightly worse
as compared to stacking with MLR. Overall, SCANN,
MDTs, stacking with MLR and SelectBest seem to
perform at about the same level.

It would seem natural to expect that ensembles of clas-
sifiers induced by stacking would perform better than
the best individual base-level classifier: otherwise the
extra work of learning a meta-level classifier doesn’t
seem justified. The experimental results mentioned
above, however, do not show clear evidence of this.
This has motivated us to investigate the performance
of state-of-the-art stacking methods in comparison to
SelectBest and seek new stacking methods that would
be clearly superior to SelectBest.



2.3 Stacking with multi-response model trees

We assume that each base-level classifier predicts a
probability distribution over the possible class values.
Thus, the prediction of the base-level classifier C' when
applied to example z is a probability distribution:

p<(z) = (p°(ci]z),p” (c2l2), .. p (cml2)) ,
where {c1,ca,...cn} is the set of possible class val-
ues and p“(c;|x) denotes the probability that example
x belongs to class ¢; as estimated (and predicted) by
classifier C. The class c¢; with the highest class proba-
bility p©(c;j|z) is predicted by classifier C'. The meta-
level attributes are thus the probabilities predicted for
each possible class by each of the base-level classifiers,
ie., pYi(ci|z) fori=1,...,mand j =1,...,N.

The experimental evidence mentioned above indicates
that although SCANN, MDTs, stacking with MLR
and SelectBest seem to perform at about the same
level, stacking with MLR has a slight advantage over
the other methods. It would thus seem as a suitable
starting point in the search for better method for meta-
level learning to be used in stacking. Stacking with
MLR uses linear regression to perform classification.
A natural direction to look into is the use of model
trees (which perform piece-wise linear regression) in-
stead of MLR: model trees have namely been shown
to perform better than MLR for classification via re-
gression (Frank et al., 1998).

MLR is an adaptation of linear regression. For a clas-
sification problem with m class values {ci,ca,...cm},
m regression problems are formulated: for problem j,
a linear equation LR; is constructed to predict a bi-
nary variable which has value one if the class value is
c; and zero otherwise. Given a new example z to clas-
sify, LR;(x) is calculated for all j, and the class k is
predicted with maximum LRy (x).

In our approach, we use model tree induction in-
stead of linear regression and keep everything else the
same. Instead of m linear equations LR;, we induce
m model trees MT;. M5 (Wang & Witten, 1997), a
re-implementation of M5 (Quinlan, 1992) included in
the data mining suite Weka (Witten & Frank, 1999),
is used to induce the trees. Given a new example z to
classify, MT;(z) is calculated for all j, and the class k
is predicted with maximum MTy(z). We call our ap-
proach stacking with multi-response model trees, anal-
ogously to stacking with MLR.

3. Experimental Setup

In the experiments, we investigate the following issues:

Table 1. The data sets used and their properties.

DATA SET Exs CLs (D/C)Arr MAs ENT
AUSTRALIAN 690 2 (8/6) 14 0.56 0.99
BALANCE 625 3 (0/4) 4 0.46 1.32
BREAST-W 699 2 (9/0) 9 0.66 0.92
BRIDGES-TD 102 2 (4/3) 7 0.85 0.61
CAR 1728 4 (6/0) 6 070 1.21
CHESS 3196 2 (36/0) 36 0.52 0.99
DIABETES 768 2 (0/8) 8 0.65 0.93
ECHO 131 2 (1/5) 6 0.67 0.91
GERMAN 1000 2 (13/7) 20 0.70 0.88
GLASS 214 6 (0/9) 9 0.36 2.18
HEART 270 2 (6/7) 13 0.56 0.99
HEPATITIS 155 2 (13/6) 19 0.79 0.74
HYPO 3163 2 (18/7) 25 0.95 0.29
IMAGE 2310 7 (0/19) 19 0.14 2.78
IONOSPHERE 351 2 (0/34) 34 0.64 0.94
IRIS 150 3 (0/4) 4 0.33 1.58
SOYA 683 19 (35/0) 35 0.13 3.79
TIC-TAC-TOE 958 2 (9/0) 9 0.65 0.93
VOTE 435 2 (16/0) 16 0.61 0.96
WAVEFORM 5000 3 (0/21) 21 0.34 1.58
WINE 178 3 (0/13) 13 0.40 1.56

e The (relative) performance of existing state-of-
the-art stacking methods, especially in compar-
ison to SelectBest.

e The performance of stacking with multi-response
model trees relative to the above methods.

e The influence of the number of base-level classi-
fiers on the (relative) performance of the above
methods.

We look into the last topic because the recent studies
mentioned above use different numbers of base-level
classifiers, ranging from three to eight.

The Weka data mining suite (Witten & Frank, 1999)
was used for all experiments, within which all the base-
level and meta-level learning algorithms used in the
experiments have been implemented.

3.1 Datasets

In order to evaluate the performance of the differ-
ent combining algorithms, we perform experiments on
a collection of twenty-one data sets from the UCT
Repository of machine learning databases (Blake &
Merz, 1998). These data sets have been widely used
in other comparative studies. The data sets and
their properties (number of examples, classes, (dis-
crete/continuous) attributes, probability of the major-
ity class, entropy of the class probability distribution)
are listed in Table 1.



3.2 Base-Level Algorithms

We performed two batches of experiments: one with
three and one with seven base-level learners. The set
of three contains the following algorithms:

e J4.8: a Java re-implementation of the decision tree
learning algorithm C4.5 (Quinlan, 1993),

e IBk: the k-nearest neighbor algorithm of (Aha et al.,
1991), and

e NB: the naive Bayes algorithm of (John & Langley,
1995).

The second set of algorithms contains, in addition to
the above three, also the following four algorithms:

e K*: an instance-based algorithm which uses an en-
tropic distance measure (John & Leonard, 1995),

e KDE: a simple kernel density estimation algorithm,

e DT: the decision table majority algorithm of (Ko-
havi, 1995),

e MLR: the multi-response linear regression algo-
rithm, as used by (Ting & Witten, 1999) and de-
scribed in Section 2.3.

All algorithms are used with their default parameter
settings, with the exceptions described below. IBk in
the set of three learners used inverse distance weighting
and k was selected with cross validation from the range
of 1 to 77. (IBk in the set of seven learners uses the
default parameter values, i.e., no weighting and k = 1.)
The NB algorithm in both sets uses the kernel density
estimator rather than assume normal distributions for
numeric attributes.

3.3 Meta-Level Algorithms

At the meta-level, we evaluate the performance of six
different schemes for combining classifiers (listed be-
low), each applied with the two different sets of base-
level algorithms described above.

e VOTE: The simple plurality vote scheme (see Sec-
tion 2.1),

e SELB: The SelectBest scheme selects the best of the
base-level classifiers by cross validation.

e GRAD: Grading as introduced by (Seewald &
Filirnkranz, 2001) and briefly described in Sec-
tion 2.2.

e SMDT: Stacking with meta decision-trees as intro-
duced by (Todorovski & Dzeroski, 2000) and briefly
described in Section 2.2.

e SMLR: Stacking with multiple-response regression
as used by (Ting & Witten, 1999) and described in
Sections 2.2 and 2.3.

e SMM5: Stacking with multiple-response model trees,
as proposed by this paper and described in Sec-
tion 2.3.

3.4 Evaluating and Comparing Algorithms

In all the experiments presented here, classification er-
rors are estimated using ten-fold stratified cross vali-
dation. Cross validation is repeated ten times using
different random generator seeds resulting in ten dif-
ferent sets of folds. The same folds (random generator
seeds) are used in all experiments. The classification
error of a classification algorithm C' for a given data set
as estimated by averaging over the ten runs of ten-fold
cross validation is denoted error(C).

For pair-wise comparisons of classification algorithms,
we calculate the relative improvement and the paired
t-test, as described below. In order to evaluate the
accuracy improvement achieved in a given domain
by using classifier C; as compared to using clas-
sifier C3, we calculate the relative improvement:
1 — error(Cy)/error(C2). In Table 4, we compare
the performance of SMM5 to other approaches: C
in this table thus refers to ensembles combined
with SMMm5.  The average relative improvement
across all domains is calculated using the geo-
metric mean of error reduction in individual do-
mains: 1 — geometric_mean(error(Cy)/error(C2)).
Note that this may be different from
geometric_mean(error(C>) /error(C1)) —1.

The classification errors of C; and Cs averaged over
the ten runs of 10-fold cross validation are compared
for each data set (error(C1) and error(C>) refer to these
averages). The statistical significance of the difference
in performance is tested using the paired #-test (ex-
actly the same folds are used for C; and C3) with
significance level of 95%: +/— to the right of a figure
in the tables with results means that the classifier C
is significantly better/worse than Cs.

We also study how the improvement of performance
of SMM5 over SMLR and SELB is related to the diver-
sity of the base-level classifiers. We use the measure
of error correlation (higher diversity means lower error
correlation) proposed by (Gama, 1999). For two clas-
sifiers C; and C;, this measure ¢(C;, C;) is defined as
the conditional probability that both classifiers make
the same error, given that one of them makes an error:
p(Ci(w) = C5(@)|Ci() # elw) V C;(x) # e(a)),

where C;j(z) and Cj(z) are the predictions of classifiers
C; and Cj for a given example = and c(z) is the true
class of . The error correlation for a set of multiple
classifiers C is defined as the average of the pairwise
error correlations:



Table 2. The relative performance of 3-classifier ensembles with different combining methods. The entry in row X and
column Y gives the relative improvement of X over Y in % and the number of wins/loses.

VOTE SELB GRAD SMDT SMLR SMMb5 TOTAL
VOTE -21.563 74/10—- -4.12 6+/5— -22.45 6+/11— -27.43 5+ /11— -47.06 2+ /10— | 26+ /47—
SELB 17.72 104 /7- 14.33 114/3- -0.76 04+/2—  -4.85 24/5— -21.00 14+/9- 24+ /26—
GRAD 3.96 5+4/6—- -16.72 3+/11- -17.60 14 /12— -22.39 2+ /14— -41.24 1+/13— | 124 /56—
Suptr | 18.34 11+/6— 0.75 24+/0— 14.97 124/1- -4.07 4+ /5— -20.10 24 /8- 31+ /20—
SMLR | 21.53 114+/5— 4.63 5+/2— 18.29 144 /2— 3.91 5+/4— -15.40 14 /7- 36+ /20—
SmMb | 32.00 10+/2— 17.36 9+/1- 29.20 13+/1- 16.73 8+/2— 13.35 7+/1- 47+ )7-

Table 3. The relative performance of 7-classifier ensembles with different combining methods. The entry in row X and
column Y gives the relative improvement of X over Y in % and the number of wins/loses.

VoOTE SELB GRAD SMDT SMLR SMmb TorAL

VOTE -19.21 54 /12— -6.73 24/7- -18.04 44/9- -24.40 24 /10— -42.04 04 /10— | 13+ /48~
SELB | 16.10 12+/5— 10.46 11+/4— 0.97 3+/3— -4.37 54/7— -19.17 2+/7— | 33+4/26—
GRAD 6.30 7+4+/2—- -11.68 44+/11— -10.60 5+/7— -16.56 2+/12— -33.09 0+/12— | 18+ /44—
SMDT | 15.29 9+4/4— -0.97 3+/3—  9.59 T+ /5 -5.39 5+/6- -20.33 0+/11— | 24+ /29—
SMLR | 19.62 10+/2— 4.19 7+/5- 14.21 124/2— 5.11 6+4/5- -14.18 14 /5- 36+/19—
SMM5 | 29.60 104+/0— 16.08 74+/2— 24.86 124+/0- 16.89 11+/0~ 12.42 5+4/1- 454 /3~
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Figure 1. The relation between error correlation and relative improvement of SMM5 over SMLR and SELB.
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4. Experimental Results

The error rates of the 3-classifier and 7-classifier en-
sembles induced as described above on the twenty-one
dataset and combined with the different combining
methods are given in Table 5. However, for the pur-
pose of comparing the performance of different com-
bining methods, Tables 2 and 3 are of much more inter-
est: they give the average relative improvement of X
over Y for each pair of combining methods X and Y,
as well as the number of significant wins/losses. Table
4 presents a more detailed comparison (per dataset)
of SMM5 to the other combining methods. Below we
highlight some of our more interesting findings.

4.1 State-of-the-art stacking methods

Inspecting Tables 2 and 3, we find that we can parti-
tion the five combining algorithms (we do not consider
SMM5 at this stage of the analysis) into three groups.
VOTE and GRAD are at the lower end of the perfor-
mance scale, SELB and SMDT are in the middle, while
SMLR performs best. While SMLR clearly outperforms
VOTE and GRAD, the advantage over SELB is slim (3
and 2 more wins than losses, about 4% relative im-
provement) and the advantage over SMDT even slim-
mer (1 more win than loss in both cases, 4 and 5% of
relative improvement).

4.2 Stacking with multi-response model trees

Returning to Tables 2 and 3, this time paying atten-
tion to the relative performance of SMM5 to the other
combining methods, we find that SMM5 is in a league
of its own. It clearly outperforms all the other combin-
ing methods, with a wins — loss difference of at least
4 and a relative improvement of at least 10%. The
difference is smallest when compared to SMLR.

We next look into the influence of the diversity of the
base-level classifiers on the performance improvement
of SMM5 over the other combining methods. Figure
1 depicts the relative improvements as a function of
the degree of error correlation for SMM5 vs. SELB and
SMLR (for 3 and 7 base-level classifiers). The lines
are fitted by linear regression to the bulleted points
that represent domains where the differences between
SMmm5 and the other combiners are significant. It is
clear that relative improvement increases as error cor-
relation decreases (the lower the error correlation, the
higher the diversity): this indicates that SMM5 uses

the diversity of the base-level classifiers better than
the competing combining methods.

4.3 The influence of the number of base-level
classifiers

Studying the differences between Tables 2 and 3, we
can note that the relative performance of the different
combining methods is not affected too much by the
change of the number of base-level classifiers. GRAD
and SMDT seem to be affected most. The relative
performance of GRAD improves, while that of SMDT
worsens, when we go from 3 to 7 base-level classifiers:
GRAD becomes better than VOTE, while SMDT be-
comes ever-so-slightly worse than SELB. SMM5 and
SMLR are clearly the best in both cases.

5. Conclusions and further work

We have empirically evaluated several state-of-the-
art methods for constructing ensembles of heteroge-
neous classifiers with stacking and shown that they
perform (at best) comparably to selecting the best
classifier from the ensemble by cross validation. We
have propose a new method for stacking, that uses
multi-response model trees at the meta-level. We have
shown that it clearly outperforms existing stacking ap-
proaches and selecting the best classifier from the en-
semble by cross validation.

While conducting this study and a few other recent
studies (Zenko et al., 2001; Todorovski & Dzeroski,
2002), we have encountered quite a few contradictions
between claims in the recent literature on stacking and
our experimental results. For example, (Merz, 1999)
claims that SCANN is clearly better than the ora-
cle selecting the best classifier (which should perform
even better than SelectBest). (Ting & Witten, 1999)
claim that stacking with MLR clearly outperforms Se-
lectBest. Finally, (Seewald & Fiirnkranz, 2001) claim
that both grading and stacking with MLR perform
better than SelectBest. A comparative study includ-
ing the datasets in the recent literature and a few
other stacking methods (such as SCANN) should re-
solve these contradictions and provide a clearer pic-
ture of the relative performance of different stacking
approaches. We believe this is a worthwhile topic to
pursue in near-term future work.

We also believe that further research on stacking in
the context of base-level classifiers created by differ-
ent learning algorithms is in order, despite the current
focus of the machine learning community on creating
ensembles with a single learning algorithm with in-
jected randomness or its application to manipulated



training sets, input features and output targets. This
should include the pursuit for better sets of meta-level
features and better meta-level learning algorithms.
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Table 4. Relative improvement in accuracy (in %) of stacking with multi-response model trees (SMM5) as compared to
other combining algorithms and its significance (4/— means significantly better/worse, x means insignificant).

3 BASE LEVEL CLASSIFIERS 7 BASE LEVEL CLASSIFIERS

DATA SET VOTE SELB GRAD SMDT SMLR VOTE SELB GRAD SMDT SMLR
AUSTRALIAN -3.46 x -3.68 - -1.75x -3.79 — -0.92 x -1.97x 3.91 + 1.40 x 5.29 + -2.07 X
BALANCE 50.99 + 48.68 + 50.27 + 48.68 + 53.89 + 50.79+ 41.13 + 50.16 + 40.91 + 52.51 +
BREAST-W 18.60 + -4.79 x 23.64 + -4.79 x -3.14 X 25.88+ -0.53 x 25.88 + -0.53 X 0.53 X
BRIDGES-TD 7.45 X 7.45 4+ 3.25 X 9.15 + -3.47 X -1.91x 4.76 x -1.91 x 10.11 + -0.63 X
CAR 76.56 + 73.91 + 75.05 + 69.67 + 72.89 + 79.454+ 75.69 + 74.02 + 62.83 + 67.35 +
CHESS 58.89 + -0.52 x 48.39 + -0.52 x -0.52 X 61.104 -3.66 x 48.57 + -3.66 X -3.66 X
DIABETES -0.38 x 3.94 + 0.64 x 2568 X -1.37 X 0.22x -4.06 — 1.34 X 0.91 x -1.48 x
ECHO 548 x 0.00 x 9.056+ 0.28 x 3.47 + 2.22x -5.60 — 2.22 X 1.25 x -2.33 x
GERMAN 0.87 x 280+ 1.73Xx 2.46 + -2.50 — 3.45X 5.76 + 4.67 + 4.28 4+ -0.22 X
GLASS -5.35 — 248 x -1.67 X 1.62 x -1.06 x 2.90x 0.56 x 5.63 X 2.0l x -1.71x
HEART 8.44 + 2.31 x 11.51 4+ 231 x -2.42X 8.15+ 183 x 932+ 468+ 1.15X
HEPATITIS 14.07 + 5.69 x 18.60 + 5.69 X 4.53 X 1.57x -0.40 x 6.37 + 3.47 X 4.21 X
HYPO 42.72 + -4.80 x 4.76 x 4.38 x -4.80 x 50.10+ -2.93 x 26.13 + 42.39 + -1.23 x
IMAGE 3.39 x 0.61 x 14.49 + -11.97 — 0.15 X -6.76x 32.19 + -3.72 x 16.99 + -1.50 x
IONOSPHERE 8.73 x 22.03 + 18.73 4+ 25.81 + 10.85 + 7.364+ 6.42 X 8.28 + 10.36 + -10.80 —
IRIS -6.35 X 5.63 x -1.51 X 5.63 X 0.00 x -4.00x -18.18 x -6.85 x -18.18 x -5.41 X
SOYA 1.52x 791+ 992+ 581+ 7.91 + 5.02x -2.35x -0.69 x -0.46 x 13.52 +
TIC-TAC-TOE 97.18 + 72.83 + 95.70 + 72.83 + 55.35 + 92.42+ 71.74 + 88.98 + T71.74 + 57.37 +
VOTE 52.75 + 5.20 x 35.68 + 5.20 x 5.20 X 39.344 351 x 2699+ 351 x -1.23Xx
WAVEFORM 13.92 + 5.056 + 19.68 + 4.94 + 4.44 + 18.994+ 4.00 + 19.66 + 2.64 + 13.83 +
WINE -74.19 - 6.90 X -68.75 — 6.90 x -5.88 x | -38.46x 12.20 x -38.46 X 7.69 X 2.70 X
AVERAGE 32.00 17.36 29.20 16.73 13.35 29.60 16.08 24.86 16.89 12.42
W/L 10+/2- 9+/1- 13+/1- 8+/2—- 74/1- 104+/0—- 7+/2— 12+4/0- 114/0- 5+4/1-

Table 5. Error rates (in %) of the learned ensembles of classifiers.

3 BASE LEVEL CLASSIFIERS 7 BASE LEVEL CLASSIFIERS
DATA SET VoTE SELB GRAD SMDT SMLR SMM5 | VOTE SELB GRAD SMDT SMLR SMM5
AUSTRALIAN 13.81 13.78 14.04 13.77 14.16 14.29 13.99 14.84 14.46 15.06 13.97 14.26
BALANCE 8.91 8.61 8.78 851 947 4.37 10.14 8.48 10.02 845 10.51 4.99
BREAST-W 3.46 2.69 3.69 269 273 2.82 3.65 2.69 3.65 269 272 270
BRIDGES-TD 15.78 15.78 15.10 16.08 14.12 14.61 15.39 16.47 15.39 17.45 15.59 15.69
CAR 6.49 5.83 6.10 5.02 5.61 1.52 6.73 5.69 532 3.72 424 1.38
CHESS 146 0.60 1.16 0.60 0.60 0.60 1.59 0.60 1.20 0.60 0.60 0.62
DIABETES 24.01 25.09 24.26 24.74 23.78 24.10 24.10 23.11 24.38 24.27 23.70 24.05
ECHO 29.24 27.63 30.38 27.71 28.63 27.63 | 30.92 28.63 30.92 30.61 29.54 30.23
GERMAN 25.19 25.69 25.41 25.60 24.36 24.97 24.08 24.67 24.39 24.29 23.20 23.25
GLASS 29.67 32.06 30.75 31.78 30.93 31.26 | 25.79 25.19 26.54 25.56 24.63 25.05
HEART 17.11 16.04 17.70 16.04 15.30 15.67 17.26 16.15 17.48 16.63 16.04 15.85
HEPATITIS 17.42 15.87 18.39 15.87 15.68 14.97 16.39 16.06 17.23 16.71 16.84 16.13
HYPO 1.32 0.72 080 0.79 0.72 0.76 1.56 0.76 1.05 1.35 0.77 0.78
IMAGE 294 2.85 3.32 253 284 284 1.92 3.03 1.98 247 202 2.05
IONOSPHERE 7.18 840 8.06 883 7.35 6.55 8.52 843 8.60 880 7.12 7.89
IRIS 420 4.73 440 4.73 4.47 4.47 5.00 4.40 4.87 440 493 5.20
SOYA 6.75 7.22 738 T7.06 7.22 6.65 6.71 6.22 6.33 6.34 7.36 6.37
TIC-TAC-TOE 9.24 096 6.08 096 058 0.26 3.58 096 246 096 0.64 0.27
VOTE 7.10 3.54 522 3.54 3.54 3.36 6.25 3.93 520 393 3.75 3.79
WAVEFORM 15.90 14.42 17.04 14.40 14.33 13.69 16.64 14.04 16.78 13.85 15.65 13.48
WINE 1.74 3.26 1.80 3.26 2.87 3.03 1.46 2.30 1.46 2.19 2.08 2.02
AVERAGE 11.85 11.22 11.90 11.17 10.92 10.40 11.51 10.79 11.41 10.97 10.76 10.29




