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Abstract—The thermal subsystem of the Mars Express (MEX)
orbiter keeps the on-board equipment within its pre-defined
operating temperatures range. To plan and optimize the scientific
operations of MEX, its operators need to estimate in advance,
as accurately as possible, the power consumption of the thermal
subsystem. The residual power can then be allocated for scientific
purposes. We present a machine learning-based pipeline for the
prediction of MEX’s thermal power consumption. We show that
the proposed pipeline is superior in accuracy to the models
currently used by MEX’s operators. We also demonstrate that
machine learning can provide the operators with insight about the
orbiter’s thermal behavior. Better understanding of the thermal
subsystem and improved predictive accuracy of the thermal
power consumption could help operators to improve science
return and to prolong the operating life of MEX.

I. INTRODUCTION

Mars Express (MEX), a spacecraft operated by European

Space Agency (ESA), has been orbiting Mars since the end

of 2003. Its scientific payload consists of seven instruments

that provide global coverage of Mars’ surface, subsurface

and atmosphere [1]. The instruments and on-board equipment

of MEX have to be kept within their operating temperature

ranges, which range from –180◦C for some equipment to room

temperature for others. To maintain operating temperatures,

the orbiter is equipped with an autonomous thermal system

composed of heaters and passive coolers.

MEX is powered by electricity provided either by its solar

arrays or batteries, when the arrays are in shadow. The

thermal system, together with the platform units, consumes a

significant amount of the available power, while the remaining

power is used for science operations.

The thermal power consumption (TPC) changes through

time, depending on various external and internal factors, such

as exposure of the orbiter to Sun or heat generated by the

on-board equipment units. Predicting the power consumption

of the thermal system is a non-trivial but crucial task, which

allows the optimization of science operations of MEX.

To predict the TPC, the MEX’s operators currently use

a manually constructed model based on simplified physical

models, expert knowledge and experience. However, due to

aging of the spacecraft and decaying capacity of its batteries,

power is a precious resource and every little bit saved in the

thermal subsystem can be used for science acquisitions. This

prompts the need for a more accurate predictive model of the

TPC, which would also prolong the operating life of MEX.

Machine learning studies algorithms that can learn from

and make predictions based on the data, and improve with

experience [2]. Such algorithms can capture and describe

patterns in complex data, making them a valuable asset for

studying a variety of domains ranging from life and earth

sciences to social and behavioral sciences. In the context

of MEX’s TPC prediction, given the inherent complexity of

the task and large quantity of the available telemetry data,

models derived with machine learning algorithms can offer

a better solution than the models constructed manually by

human experts.

This motivated ESA to organize its first data mining compe-

tition, the Mars Express Power Challenge1 [3], with the goal

of acquiring more accurate modeling approaches and models

to predict MEX’s TPC.

In this paper, we present the winning solution of the

Mars Express Power Challenge submitted by the team from

the Jožef Stefan Institute. In particular, we developed a

pipeline for predicting the TPC of MEX, which includes data

preprocessing and machine learning. Besides yielding more

accurate predictions than the rest of the competing teams,

the proposed pipeline is substantially more accurate than the

predictive model currently in use at ESA. This suggests that

machine learning algorithms can be used to support operators

to gain more accurate knowledge on the thermal behavior of

their satellite. This approach could also be extended to the

some other subsystems of a spacecraft to further improve the

operation of the orbiter.

The paper is organized as follows. Section II briefly de-

scribes the MEX Power Challenge. Next, Section III presents

the proposed methodology, i.e., the data preprocessing and

machine learning methods. Section IV presents the results

and discusses possible implications for spacecraft operators.

Finally, Section V concludes the paper.

1https://kelvins.esa.int/mars-express-power-challenge [accessed:2017-03]
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II. MARS EXPRESS POWER CHALLENGE

For the purpose of the challenge, ESA provided data con-

sisting of raw telemetry data (context data) and measurements

of the electric current of 33 thermal power lines (observation

data), for the three Martian years of MEX operations. We refer

to these data as the training set. For the fourth Martian year

of the operation, only context data were provided. We refer to

these data as the test set.

As mentioned, the raw data comprise two parts: context

data and observation data. The context data consisted of five

components:

SAA (Solar Aspect Angles) data contain the angles between

the Sun–MEX line and the axes of the MEX’s coordinate

system.

DMOP (Detailed Mission Operations Plans) data contain

the information about the execution of different subsystems’

commands at a specific time.

FTL (Flight dynamics TimeLine events) data contain the

pointing and action commands that impact the position of

MEX, such as pointing the spacecraft towards Earth or Mars.

EVTF (Miscellaneous Events) data contain time intervals

during which MEX was in Mars’s shadow or records of the

time points when the MEX is in apsis of its elliptical orbit.

LTDATA (Long Term Data) contain the Sun–Mars distances

and the solar constant.

The observation data consisted of the 33 electric current

measurements, recorded once or twice per minute. The ob-

servation data was given only for the duration of the three

Martian years of MEX’s operation, whereas the fourth year

was not provided and was used for assessing the quality of

the solutions submitted during the challenge.

All raw data entries are timestamped (expressed in millisec-

onds), indicating when the entry was logged. The time spans

between the two consecutive entries varies from less than a

minute (SAA) to several hours (LTDATA).

The task was to predict the values of the observation data

for the fourth Martian year, using a machine learning model,

learned from the training set. The predictions are to be given

as the hourly average electric current for each of the power

lines. A detailed description of the task and the data can be

found on the challenge website.

The predictions were evaluated against the fourth Martian

year’s actual average electric current using the root mean

square error (RMSE) measure, defined as

RMSE =

√√√√ 1

NM

N∑
i=1

M∑
j=1

(cij − rij)
2
,

where cij is the predicted value for the i-th time interval in

the fourth Martian year of the j-th power line and rij is

the corresponding recorded value; N is the total number of

evaluated measurements (N = 16488) and M is the number

of power lines (M = 33). The goal was to minimize the RMSE

score, i.e., lower RMSE indicates better results.

III. METHODOLOGY

In the typical machine learning setting, the input to a

learning algorithm is given in the form of a table, where each

row of the table is an example and each column is a numerical

(i.e., continuous) or nominal (i.e., discrete) feature describing

the example. In the context of the MEX challenge, an example

corresponds to a time interval, while features are derived from

context and observation data.

We propose a pipeline for the prediction of the TPC of

MEX. It consists of three main steps. First, the raw telemetry

data is processed to construct a dataset as described above.

Second, machine learning methods are applied to this dataset

to learn a predictive model. Third, the model is used to predict

the TPC on the test set. In the reminder of this section, each

step of the proposed pipeline is described.

A. Data preprocessing

The raw data could not be used directly for learning

the model due to two main reasons: (i) incompatible time

resolutions of the different components of raw data, and (ii)

unstructured format of some of the entries, such as text, that

machine learning algorithms do not understand. Therefore, a

suitable preprocessing schema had to be designed. First, we

selected the time resolution of the dataset, and then aggregated

entries from the raw data to this resolution. Second, we

constructed features informative of the TPC from the raw data.

By combining information from different components of the

context data, we aimed to construct more informative features

to achieve better predictive performance.

As mentioned in Sec. II, the values of observation data and

some of the raw context data (e.g., angles in SAA data) were

given in 30 to 60 seconds intervals, while others were given

at coarser resolutions (e.g., solar constant in LTDATA). In the

latter case, the values in the data changed only gradually.

Hence, we assumed that these values can be interpolated

without a considerable loss of predictive performance.

We chose to use a one minute time interval as a resolution

of our dataset. To align the timestamps, we divided the time

span [tFIRST, tLAST] into 1 minute subintervals. Here, tFIRST

and tLAST are the first timestamp in the training part of the

observation data, and the last timestamp in the test part of the

observation data, respectively.

To compute the values of the measurements at the new

timestamps, we used linear interpolation. Due to issues with

spacecraft communication, some values were missing during

some time periods both in the descriptive space (i.e., the

constructed features from the raw data) as well as in the target

space (the heater lines thermal consumption) of the data. In

principle, the machine learning method used in this study can

handle data with missing values. However, longer periods with

contiguous missing values can substantially hurt the accuracy

of the method as well as add an additional computational

overhead. For this reason, we first removed the longer gaps i.e.

the time periods longer than 10 minutes with missing values

in the target space. Next, in the descriptive space, for time
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periods longer than 10 minutes, we interpolated the missing

values, and left them unchanged otherwise.

In the following subsections, we give descriptions of the

groups of features that we constructed in the preprocessing

step of the pipeline.

1) Energy influx features: There are seven features in this

group: one for the solar panels and one for each of the six

sides of the cuboid of MEX. The features describe the amount

of solar energy that is collected through a given surface in

a given time interval [ti, ti+1). The solar energy collected

by a side of the cuboid directly influences the temperature

of the satellite, thus affecting the power consumption of the

corresponding heaters. The solar energy collected by the solar

panels influences the amount of energy that can be generated

and used.

Sun

z

x

x

np

nx
y

Fig. 1. Illustration of the MEX spacecraft and its coordinate axes x, y and z,
that correspond to front, left and up sides of MEX, respectively. αx denotes
the solar aspect angle of the front side, i.e., the angle between the normal �nx

and the Sun-MEX line. �np denotes the normal of the panels.

The amount of energy collected by a given surface is

proportional to the product of the effective area Aeff of the

surface and the solar constant c. If the area A is given, we

compute Aeff as Aeff = Amax{cosα, 0}, where α is the

angle between the Sun–MEX line and the outer normal �n
to the surface (see Fig. 1). Without any loss of generality,

we assume A = 1 for all surfaces, as the machine learning

method that we use is invariant to monotonic transformations

of features. The values of α for each of the seven surfaces

were computed directly from the SAA data, while c was given

in LTDATA. Additionally, (pen)umbras have a considerable

impact on energy influx, thus we also consider this information

(extracted from EVTF data).

We define the energy influx Ei
S for the surface S at the time

interval [ti, ti+1) as:

Ei
S =

∫ ti+1

ti

Aeff(t)c(t)U(t)dt,

where U is the umbra coefficient, an approximation of the

proportion of Sun visible from the orbiter. U takes the value

U(t) = 0 if the orbiter is in an umbra, U(t) = 0.5 if the

orbiter is in a penumbra, and U(t) = 1 otherwise. Instead of

calculating exact integrals for Ei
S , we approximated the values

using the trapezoid-rule.

2) Historical energy influx features: The thermal state of

the satellite depends not only on the current energy influx,

but also on the energy influx in the past. To capture this, we

constructed historical energy influx features for each of the

seven surfaces. A given historical feature for surface S at time

ti was computed as a sum of energy influx during the given

historical time-frame, i.e.,

Hi
S =

N∑
j=1

E
i−(j−1)
S ,

where N is the length of historical time-span considered. To

account for different impacts of the historical energy influx

we constructed historical features with different time-frames,

namely, 4, 16, 32, 64 and 128 time intervals (minutes). This

yields 35 features, 5 for each surface.

3) DMOP features: The DMOP files contain a log of

commands issued to MEX’s subsystems. The names of com-

mands have been obfuscated, but the available documentation

revealed two variants: (i) events that contain information about

the subsystem and command that has been executed (e.g.,

ASXX383C), and (ii) events that represent flight dynamics

events (e.g., MAPO.000005). The first 4 characters of variant

(i) represent the subsystem, while the rest represent the com-

mand and its parameters. In variant (ii), the first 4 characters

represent the name of the event, followed by an occurrence

number. These events likely have different impacts on the

thermal subsystem of the orbiter.

For subsystems’ command that has been executed, we

assumed that there were some delays before the thermal state

of the orbiter was affected. Therefore, we constructed features

that encode such a delayed effects in terms of ”time since last

activation” of a specific subsystem command from the raw

DMOP data.

TABLE I
ILLUSTRATION OF THE DMOP FEATURES THAT ENCODE THE TIME SINCE

LAST ACTIVATION OF A GIVEN SUBSYSTEM COMMAND.

Raw data DMOP features
t Command t ASXX383C ATTTF030A ASXX303A
1 none 1 0 0 0
2 ASXX383C 2 0 1 1
3 ATTTF030A 3 1 0 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

56 ASXX303A 56 54 53 0

The values of the DMOP features are calculated as follows:

f i
k =

{
0 if k is activated at ti

min(f i−1
k + 1, θ) otherwise

,

where f i
k denotes the value of feature corresponding to event

k at time ti. The threshold θ was introduced under the

assumption that the effect of a given event diminishes with

time, eventually (after θ time intervals) rendering its influence

unimportant. We chose this interval to be 1 day (θ = 1440,

the number of minutes in a day) since last activation. We

assumed that none of the subsystems were active at the first
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time point, i.e., f0
k = 0. Table I illustrates three calculated

DMOP features.

We construct such features for each subsystem-command

pair (331 features) and also for each subsystem (34 features).

Additionally, we construct binary indicators (34 features) for

subsystems, where a feature f i
k has value of 1 if the subsystem

was triggered within the time-step ti, and 0 otherwise.

4) FTL features: The FTL data contain time ranges of

pointing events with their starting and an ending time-points,

where simultaneous events are also possible. We created a

feature for each pointing event, where a value of 1 in a specific

time period indicates the specific event is in progress, or 0

otherwise. This approach rendered 20 FTL features.

Namely, for events that are shorter than the time resolution

of our dataset (i.e., 1 minute), we checked the time difference

to the nearest existing time-stamp in our dataset. If the

difference is smaller than 30s, we also insert the value 1 to

the nearest existing time point.

5) The final dataset: The final datasets consists of approx-

imately 2.7 · 106 examples and 464 features: 42 energy influx

and historical energy influx, 402 DMOP and 20 FTL features.

The dataset is available at: http://kt.ijs.si/jurica levatic/MEX/

MEXdata.zip.

B. Machine learning algorithms

To analyze the data and learn a predictive model, we used

predictive clustering trees (PCTs) [4]. PCTs are a type of

regression trees where the definitions of the heuristic and

prototype functions are flexible and can be adapted for a

variety of tasks. Regression trees are tree-like structures that

have internal nodes and leaves. The internal nodes contain

tests on the descriptive variables (i.e., the different features

extracted with preprocessing), while leaves give predictions

for the target variable (i.e., a heater line thermal consumption).

PCTs are built with a greedy recursive top-down induction

algorithm. The learning algorithm starts by selecting a test for

the root node by using a heuristic function (variance reduction)

computed on the training examples. The goal of the heuristic is

to guide the algorithm towards small trees with good predictive

performance. Based on the selected test, the training set is

partitioned into subsets according to the test outcome. This is

recursively repeated to construct the subtrees. The partitioning

process stops when a stopping criterion is satisfied (e.g., the

minimal number of examples per leaf is reached, the heuristic

score no longer changes, etc.).

An ensemble is a set of predictive models (called base

models). The prediction of an ensemble for a new example

is obtained by combining (e.g., averaging) the predictions of

all base models from the ensemble. Here, we consider random

forest of PCTs [5], [6]: an ensemble method that constructs

the base models by making bootstrap samples of the training

set and using each of these replicates to construct a PCT. The

PCTs in this case are randomized in a way that at each tree

node a random feature subset (with a user defined size) is

considered for selecting the best split.

The reasons for using this ensemble method are (i) its state-

of the-art predictive performance, and (ii) ability to calculate

feature importance scores, i.e., ranking of the features w.r.t.

their importance for the target variables. Namely, random

forests can measure how much each feature contributed to

the quality of the predictive model. By exploiting this we

can, for instance, provide the operators of the spacecraft with

valuable new knowledge about the factors influencing the

thermal subsystem and the TPC. For this purpose, we used

the GENIE3 algorithm [7] that calculates the importance of

a feature as a sum of variance reductions over the splits

containing that feature in all trees in the random forest. The

rationale is that if a feature reduces the variance more, then it

is more important.

In our experiments we learned one random forest for

each power line separately. In all cases, we instantiated the

algorithms as follows. First, as a stopping criterion for the

PCTs, we set the minimal number of examples in the leaves

to 500. Next, we construct random forest with 200 PCTs and

the feature subset size in each node was set to 1
4 of the number

of all features. Finally, we use the same settings for obtaining

the feature importance scores.

IV. RESULTS AND DISCUSSION

Table II presents the final scores achieved by the top 5 teams

at the MEX Power Challenge, compared to the performance of

the model currently in use by the operators of MEX. We can

observe that all machine learning solutions achieve much lower

error when compared to ESA’s current model. This suggests

that machine learning approaches could substantially advance

the task of predicting the satellite’s TPC.
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Fig. 2. Comparison of the measured TPC (green line) with the predicted
power consumption with the machine learning model proposed in this study
(blue dashed line) and model currently used by ESA (red dashed line). The
power consumption is presented as a sum of the electric current (in Amperes)
of 33 power lines.

TABLE II
COMPARISON OF THE FINAL SCORES OF THE TOP 5 TEAMS IN THE MEX
COMPETITION (OUR APPROACH IS MARKED IN BOLD) TO THE SCORE OF

THE ESA’S MODEL.

Team MMMe8 redrock fornax Alex luis ESA
RMSE 0.0792 0.0803 0.0819 0.0838 0.0884 0.4903
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Fig. 3. Graph of feature influences. Each circle represents one of the power lines, while its color shows the proportion of the top 10 most important features
(for that power line) that belongs to each of the groups of features, i.e., energy influx (cyan), DMOP (red), and FTL (purple).

a) DMOP group b) Energy influx group

Fig. 4. a) The proportions of the features from the DMOP group (see Fig. 3)
related to different subsystems of MEX. b) The proportions of the features
from the Energy influx group (see Fig. 3) related to panels or sides of MEX.

We next highlight the difference between the measured and

the predicted TPC of our machine learning model and ESA’s

model on Fig. 2. Notably, the predictions of our model closely

follow the dynamics of the measured electric current, while

ESA’s model only predicts a general trend (i.e., it estimates

average daily TPC). The model presented in this study makes

an order of magnitude smaller error than the ESA’s model, i.e.,

0.0792 vs. 0.4903. The lower accuracy of the currently used

MEX TPC model means also lower available power for science

observations, because safety margin must be higher. A ma-

chine learning prediction model, with greater accuracy, would

therefore increase the available power for science observations.

This is the topic of an on-going study at ESA, assessing the

performance of machine learning prediction models.

The feature importance analysis (Fig. 3) reveals that there

are two groups of 10 power lines each, which are influenced

either by DMOP features either by energy influx features (top

and bottom row in Fig. 3, respectively). Recall that DMOP

features represent activities of various subsystems of the

spacecraft, and can thus be considered as ”internal” influences

on the TPC. On the other hand, energy influx features can

be considered as ”external” influences on the TPC, since

they represent the amount of solar energy reaching the sides

of the spacecraft. In other words, our analysis suggests that

some power lines are predominantly influenced by the internal

influences, some predominantly by the external influences,

while the remaining power lines are influenced by both.

This analysis also suggests that the FTL features have low

utility in predicting the TPC of MEX. These features capture

the flight dynamics of MEX, e.g., pointing the spacecraft

towards Earth. While such events may impact the thermal

behaviour, their effect is also likely reflected in the solar

aspect angles (i.e., energy influx features) and in the subsystem

commands (i.e., DMOP features).

Furthermore, we analyzed the individual features that appear

in the DMOP and the energy influx groups in Fig. 3. The

analysis of the DMOP group (Fig. 4a) suggests that the influ-

ence of the MEX’s subsystems to the TPC is heterogeneous.

Namely, 5 out of the 34 MEX’s subsystems are responsible for

most of the influence, while the other subsystems only have a

minor influence. Specifically, the radio transmission subsystem

(i.e., ATTT) has the biggest impact on the TPC, followed

by the APSF, AHHH, AOOO and AAAA subsystems. This

finding was also confirmed by the MEX operators.

The analysis of the energy influx group (Fig. 4a), revealed

that the most important external factors are the features related

to (solar array) panels of the spacecraft, followed by the down
and front sides of the spacecraft, while features related to

up, left, back and right sides have low or even negligible

importance. These findings are supported by the following

reasoning: the features related to solar array panels indicate

if the arrays are illuminated or not. This, in turn, reveals if

MEX is receiving solar energy or is in eclipse during which

temperatures drops dramatically. The fuel lines are located at

the bottom (down) side of the spacecraft. These need to be

constantly heated to prevent the fuel from freezing. When this

side of the spacecraft is illuminated and receiving solar energy,

indirectly the fuel lines are heated. They reach temperatures in

ranges where the spacecraft electrical heaters do not activate,

hence greatly decreasing the TPC.

Note that, some aspects of the proposed methodology are

based on assumptions without expert knowledge in spacecraft

construction and operation. The umbra coefficient of energy

influx features, time-spans of historical energy influx features

and the θ threshold of DMOP features could likely still be

optimized.

Next, we discuss the computational complexity of the

methodology for TPC presented in this paper. Two key factors
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influence the computational efficiency of the proposed ma-

chine learning pipeline: the size of the training dataset and the

underlying learning method. We generated a training dataset

with a time resolution of 1 minute, which results in nearly

3 millions examples, each described with 464 features. This

yields a massive amount of data, which may be challenging

to handle on a standard desktop computer. On average, it took

about 15 hours per power line to learn a random forest model

and calculate predictions for one Martian year. However, the

models for different power lines can be built in parallel, since

they are independent from each other. We used a computer

cluster, and were able to obtain the complete solution in about

15 hours total. Notably, the models, once built, can be used

to quickly predict the TPC beyond the time periods included

in the MEX Power Challenge (given that the context data is

available), without re-learning them.

The presented pipeline for prediction of the TPC was de-

veloped specifically for the purpose of the MEX Power Chal-

lenge and it was not optimized for computational efficiency,

but for maximal predictive accuracy of the models. There are,

however, several ways for reducing the computational demand

of the proposed pipeline, without a considerable impact on its

predictive power.

One step towards reducing the computational demand is

to exclude the features with negligible importance from the

dataset. This will reduce learning time and memory consump-

tion of training the models, presumably without a noticeable

impact on the predictive performance. Moreover, the size of

the dataset can be reduced by using a time resolution coarser

than 1 minute. However, the impact of this approach on

the predictive performance remains to be investigated. The

underlying learning method can also be refined to yield a

more time efficient solution. Recall that, the we used random

forests of PCTs, which generalize ordinary classification and

regression trees towards predicting structured outputs, such as

multi-target prediction. Multi-target models predict multiple

numerical values simultaneously. Such models can predict the

TPC of all 33 power line with one model, while the single-

target approach we used in this study learns a separate model

for each power line. Due to this, the multi-target approach

is approximately 33 times faster, while achieving compara-

ble predictive performance: Our proof-of-principle experiment

shows that a random forest of multi-target PCTs [5] (with

the same parameters as reported in Section III-B) achieves a

RMSE of 0.083.

V. CONCLUSION

In order to optimize future scientific operations of the

Mars Express orbiter, it is essential to estimate in advance

the amount of power consumed by its thermal subsystem.

However, this is a challenging task because of the sheer

amount of telemetry data gathered from the orbiter and the

complex relationship between the TPC and various external

and internal factors. This challenge led to the organization

of ESA’s first data mining competition. This paper presents

a machine learning-based pipeline for TPC prediction that

won the challenge. The proposed methodology transforms raw

telemetry data into features usable by machine learning meth-

ods, learns predictive models, and predicts future TPC with

high accuracy. The two main contributions of the proposed

methodology are as follows.

First, the results presented in this study show that machine

learning models achieve predictive performance superior to

the performance of the model that is currently used by the

operators of MEX. Machine learning models could thus assist

the operators to estimate the TPC of MEX more accurately and

in turn allocate more electricity for the scientific operations.

Consequently, this could prolong the operating life of MEX.

Second, we demonstrate that machine learning can also be

used to provide the operators with insight about the thermal

behaviour of MEX. Our analysis suggests that some of the

MEX’s thermal power lines are predominantly affected by

external factors (i.e., solar radiation), while some are pre-

dominantly affected by the internal factors (i.e., activities of

MEX’s subsystems). Finally, the analysis also suggests that

the majority of the influence to the thermal subsystem can be

contributed to the solar radiation hitting specific parts of MEX

(i.e., its solar panels and its bottom and front sides), and the

activities of 5 out of 34 of the satellite’s subsystems.

There are several direction to continue the work presented

in this paper. First, the predictive performance of the proposed

solution can be improved by further optimizing the constructed

features, also by constructing new (informative) features from

context data that was not given during the competition (e.g.,

space weather data). Next, we plan to optimize the compu-

tational complexity of the proposed pipeline, for instance by

reducing the feature set to include only the highly important

features. Finally, the proposed methodology focuses on the

thermal subsystem of the MEX orbiter, however, it could also

be extended to other subsystems of the spacecraft.
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