
A comparison of stacking with MDTs to

bagging, boosting, and other stacking methods

Bernard Ženko, Ljupčo Todorovski, and Sašo Džeroski

Department of Intelligent Systems, Jožef Stefan Institute
Jamova 39, Ljubljana, Slovenia

Abstract. In this paper, we present an integration of the algorithm
MLC4.5 for learning meta decision trees (MDTs) into the Weka data
mining suite. MDTs are a method for combining multiple classifiers. In-
stead of giving a prediction, MDT leaves specify which classifier should be
used to obtain a prediction. The algorithm is based on the C4.5 algorithm
for learning ordinary decision trees. An extensive performance evaluation
of stacking with MDTs on twenty-one data sets has been performed. We
combine base-level classifiers generated by three learning algorithms: an
algorithm for learning decision trees, a nearest neighbor algorithm and
a naive Bayes algorithm. We compare MDTs to bagged and boosted de-
cision trees, and to combined classifiers with voting and three different
stacking methods: with ordinary decision trees, with naive Bayes algo-
rithm and with multi-response linear regression as a meta-level classifier.
In terms of performance, stacking with MDTs gives better results than
other methods except when compared to stacking with multi-response
linear regression as a meta-level classifier; the latter is slightly better
than MDTs.

1 Introduction

The task of constructing ensembles of classifiers [3] can be broken down into two
sub-tasks. We first have to generate a diverse set of base-level classifiers. Once
the base-level classifiers have been generated, the issue of how to combine their
predictions arises.

Several approaches to generating base-level classifiers are possible. One ap-
proach is to generate classifiers by applying different learning algorithms (with
heterogeneous model representations) to a single data set (see, e.g., [7]). Another
possibility is to apply a single learning algorithm with different parameters set-
tings to a single data set. Finally, methods like bagging [2] and boosting [4]
generate multiple classifies by applying a single learning algorithm to different
versions of a given data set. Two different methods for manipulating the data set
are used: random sampling with replacement (also called bootstrap sampling)
in bagging and re-weighting of the misclassified training examples in boosting.

Techniques for combining the predictions obtained from the multiple base-
level classifiers can be clustered in three combining frameworks: voting (used in
bagging and boosting), stacked generalization or stacking [14] and cascading [5].

In voting, each base-level classifier gives a vote for its prediction. The prediction
receiving the most votes is the final prediction. In stacking, a learning algorithm
is used to learn how to combine the predictions of the base-level classifiers. The
induced meta-level classifier is then used to obtain the final prediction from
the predictions of the base-level classifiers. Cascading is an iterative process of
combining classifiers: at each iteration, the training data set is extended with
the predictions obtained in the previous iteration.

The work presented here focuses on combining the predictions of base-level
classifiers induced by applying different learning algorithms to a single data set.
It adopts the stacking framework, where we have to learn how to combine the
base-level classifiers. We apply meta decision trees (MDTs) [11] for the task
of combining base-level classifiers. The difference between meta and ordinary
decision trees (ODTs) is that MDT leaves specify which base-level classifier
should be used, instead of predicting the class value directly. The attributes
used by MDTs are derived from the class probability distributions predicted by
the base-level classifiers for a given example.

In this paper, we present an integration of the algorithm for inducing MDTs
[11], in the Weka data mining suite [13]. For this purpose we implemented
MLJ4.8, a modification of J4.8, Weka re-implementation of C4.5 [9] algorithm for
induction of ODTs. MDTs and MLJ4.8 are described in more detail in Section 2.

The performance of MDTs is compared to the performance of other stan-
dard combining methods implemented in Weka. These include majority voting,
boosting and bagging of decision trees and stacking with three different meta-
level learners. The comparison is made on a collection of twenty-one data sets.
Classifiers induced with three base-level learning algorithms, implemented in
Weka, are combined: the J4.8 tree induction algorithm, the k-nearest neighbor
(k-NN) algorithm IBk [1] and the naive Bayes algorithm with kernel density
estimators [6].

Section 3 reports on the experimental methodology and discusses the result
of the comparison. The last section presents conclusions, discusses the related
work on combining classifiers and gives directions for further work.

2 Meta Decision Trees

In this section, we first introduce meta decision trees (MDTs). We then dis-
cuss the possible sets of meta-level attributes used to induce MDTs. Finally, we
present an algorithm for inducing MDTs, named MLJ4.8.

2.1 What are Meta Decision Trees

The structure of a meta decision tree is identical to the structure of an ordinary
decision tree. A decision (inner) node specifies a test to be carried out on a single
attribute value and each outcome of the test has its own branch leading to the
appropriate subtree. In a leaf node, a MDT predicts which classifier is to be

used for classification of an example, instead of predicting the class value of the
example directly (as an ODT would do).

The difference between ordinary and meta decision trees is illustrated with
the example in Table 1. In the meta-level data set M (Table 1a), the meta-level
attributes C1 and C2 are the class value predictions of two base-level classifiers
C1 and C2 for a given example. The two additional meta-level attributes Conf

1

and Conf
2

measure the confidence of the predictions of C1 and C2 for a given
example.

The meta decision tree induced using the meta-level data set M is given
in Table 1b). The MDT is interpreted as follows: if the confidence Conf

1
of

the base-level classifier C1 is high, then C1 should be used for classifying the
example, otherwise the base-level classifier C2 should be used. The ordinary
decision tree induced using the same meta-level data set M (given in Table 1c)
is much less comprehensible, despite the fact that it reflects the same rule for
choosing among the base-level predictions. Note that both the MDT and the
ODT need the predictions of the base-level classifiers in order to make their own
predictions.

Table 1. The difference between ordinary and meta decision trees.

a) Meta-level data set M

Conf
1

C1 Conf
2

C2 true class

0.875 0 0.625 0 0
0.875 0 0.375 1 0
0.875 1 0.375 0 1
0.875 1 0.625 1 1
0.125 0 0.625 0 0
0.125 0 0.625 1 1
0.125 1 0.625 0 0
0.125 1 0.625 1 1

b) The MDT induced from M (by MLC4.5)

Conf1 <= 0.125: C2

Conf1 > 0.125: C1

c) The ODT induced from M (by C4.5)

C1 = 0:

| Conf1 > 0.125 : 0

| Conf1 <= 0.125 :

| | C2 = 0: 0

| | C2 = 1: 1

C1 = 1:

| Conf1 > 0.125 : 1

| Conf1 <= 0.125 :

| | C2 = 0: 0

| | C2 = 1: 1

Note that in the process of inducing meta decision trees two types of at-
tributes are used. Ordinary attributes are used in the decision (inner) nodes of
the MDT (e.g., attributes Conf

1
and Conf

2
in the example meta-level data set

M). The role of these attributes is identical to the role of attributes used for
inducing ordinary decision trees. Class attributes (e.g., C1 and C2 in M), on
the other hand, are used in the leaf nodes only. Each base-level classifier has its
class attribute: the values of this attribute are the predictions of the base-level
classifier. Thus, the class attribute assigned to the leaf node of the MDT decides
which base-level classifier will be used for prediction. When inducing ODTs for
combining classifiers, the class attributes are used in the same way as ordinary
attributes.

We use properties of the class probability distributions predicted by the base-
level classifiers as ordinary attributes for inducing MDTs. These properties re-
flect the certainty and confidence of the predictions. Details about the set of
meta-level attributes are given in the following subsection.

2.2 Meta-Level Attributes

We calculate the properties of the class probability (CDP) distributions pre-
dicted by the base-level classifiers that reflect the certainty and confidence of
the predictions.

First, maxprob(x, C) is the highest class probability (i.e. the probability of
the predicted class) predicted by the base-level classifier C for example x:

maxprob(x, C) =
k

max
i=1

pC(ci|x).

Next, entropy(x, C) is the entropy of the class probability distribution pre-
dicted by the classifier C for example x:

entropy(x, C) = −

k∑

i=1

pC(ci|x) · log
2
pC(ci|x).

Finally, weight(x, C) is the fraction of the training examples used by the
classifier C to estimate the class distribution for example x. For decision trees,
it is the weight of the examples in the leaf node used to classify the example. For
rules, it is the weight of the examples covered by the rule(s) which was used to
classify the example. This property was not used for the nearest neighbor and
naive Bayes classifiers, as it does not apply to them in a straightforward fashion.

The entropy and the maximum probability of a probability distribution re-
flect the certainty of the classifier in the predicted class value. If the probability
distribution returned is highly spread, the maximum probability will be low
and the entropy will be high, indicating the classifier is not very certain in its
prediction of the class value. On the other hand, if the probability distribution
returned is highly focused, the maximum probability is high and the entropy low,
thus indicating the classifier is certain in the predicted class value. The weight
quantifies how reliable is the predicted class probability distribution. Intuitively,
the weight corresponds to the number of training examples used to estimate the
probability distribution: the higher the weight, the more reliable the estimate.

An example MDT, induced in the image domain, is given in Table 2. The
leaf denoted by an asterisk (*) specifies that the C4.5 classifiers is to be used
to classify an example, if (1) the maximum probability in the class probability
distribution predicted by k-NN is smaller than 0.77; (2) the fraction of the ex-
amples in the leaf of the C4.5 tree used for prediction is bigger than 0.4% of all
the examples in the training set; and (3) the entropy of the class distribution
predicted by C4.5 is less then 0.14. In sum, if the k-NN classifier is not very confi-
dent in its prediction (1) and the C4.5 classifier is very confident in its prediction

Table 2. A meta decision tree induced in the image domain using class distribution
properties as ordinary attributes.

knn maxprob > 0.77147 : KNN

knn maxprob <= 0.77147 :

| c45 weight <= 0.00385 : KNN

| c45 weight > 0.00385 :

| | c45 entropy <= 0.14144 : C4.5 (*)

| | c45 entropy > 0.14144 : LTREE

(3 and 2), the leaf recommends using the C4.5 prediction; this is consistent with
common-sense knowledge in the domain of classifier combination.

Note here another important property of MDTs: they are domain indepen-
dent in the sense that the same language for expressing meta decision trees is
used in all domains once we fix the set of base-level classifiers to be used. This
means that a MDT induced in one domain can be used in any other domain
for combining the same set of base-level classifiers (although it may not perform
very well). In part, this is due to the fact that the set of meta-level attributes
is domain independent. It depends only on the set of base-level classifiers. How-
ever, an ODT built from the same set of meta-level attributes is still domain
dependent for two reasons. First, it uses tests on the class values predicted by
the base-level classifiers (e.g., the tests C1 = 0 / C1 = 1 in the root node of the
ODT from Table 1c). Second, an ODT predicts the class value itself, which is
clearly domain dependent.

In sum, there are three reasons for the domain independence of MDTs: (1)
the set of meta-level attributes; (2) not using class attributes in the decision
(inner) nodes and (3) predicting the base-level classifier to be used instead of
predicting the class value itself.

2.3 MLJ4.8 - a Re-implementation of Meta Decision Trees in Java

In this subsection, we present MLJ4.8, a re-implementation of MLC4.5 [11] al-
gorithm for induction of MDTs in Java. MLJ4.8 is based on J4.8 [13], a re-
implementation of Quinlan’s C4.5 [9] algorithm for inducing ordinary decision
trees. There are several minor implementation differences between J4.8 and C4.5:
in such cases we decided to use C4.5 as a reference, rather than J4.8. MLJ4.8
takes as input a meta-level data set consisted of ordinary and class attributes.
The only differences between MLJ4.8 and J4.8 are:

1. Only ordinary attributes are used in internal nodes;
2. Assignments of the form C = Ci (where Ci is a class attribute) are made by

MLJ4.8 in leaf nodes, as opposed to assignments of the form C = ci (where
ci is a class value);

3. The goodness-of-split for internal nodes is calculated differently (as described
below);

4. MLJ4.8 does not post-prune the induced MDTs.

The rest of the MLJ4.8 algorithm is identical to the original J4.8 algorithm. Be-
low we describe J4.8’s and MLJ4.8’s measures for selecting attributes in internal
nodes.

J4.8 is a greedy divide and conquer algorithm for building classification trees.
At each step, the best split according to the gain (or gain ratio) criterion is chosen
from the set of all possible splits for all attributes. The gain criterion is based on
the entropy of the class probability distribution of the examples in the current
subset S of training examples:

info(S) = −

k∑

i=1

p(ci, S) · log
2
p(ci, S)

where p(ci, S) denotes the relative frequency of examples in S that belong to
class ci. The gain criterion selects the split that maximizes the decrement of the
info measure.

In MLJ4.8, we are interested in the accuracies of each of the base-level classi-
fiers C from set C on the examples in data set S, i.e., the proportion of examples
in S that have a class equal to the class attribute C. The measure, used in
MLJ4.8, is defined as:

infoML(S) = 1 − max
C∈C

accuracy(C, S),

where accuracy(C, S) denotes the relative frequency of examples in S that are
correctly classified by the base-level classifier C. The vector of accuracies does
not have probability distribution properties (its elements do not sum to 1), so
the entropy can not be calculated. This is the reason for replacing the entropy
based measure with an accuracy based one.

3 Experimental comparison

In order to compare the performance of meta decision trees with other combining
schemes, we performed experiments on a collection of twenty-one data sets from
the UCI Repository of Machine Learning Databases and Domain Theories [8].
These data sets have been widely used in other comparative studies.

Three learning algorithms were used in the base-level experiments: tree learn-
ing algorithm J4.8, which is a re-implementation of C4.5, k-nearest neighbor
(k-NN or IBk) algorithm and naive Bayes (NB) algorithm. We used implemen-
tations in the Java programming language incorporated in the Weka data mining
suite [13]. J4.8 was used with the default settings. For the IBk algorithm, k was
selected with cross validation in the range from 1 to 77 and inverse distance
weighting was used. Naive Bayes algorithm used kernel density estimation. The
output of each base-level classifier for each example consists of predicted class
and class probability distribution. The classification errors of the base-level clas-
sifiers are presented in Table 3.

In all experiments presented here, classification errors are estimated using
10-fold stratified cross validation. Cross validation is repeated ten times using

Table 3. Classification errors (in %) of base-level classifiers J4.8, IBk and naive Bayes
and of bagging and boosting. Bagging and boosting used J4.8 as base learning algo-
rithm.

Data set J4.8 IBk Naive Bayes Bagging J48 Boosting J48

australian 14.54±0.55 13.45±0.29 18.65±0.12 13.67±0.40 15.58±0.32
balance 22.43±0.35 9.90±0.20 8.48±0.14 17.31±0.31 21.49±0.39
breast-w 5.39±0.20 4.28±0.13 2.69±0.05 4.98±0.24 3.71±0.37
bridges-td 14.71±0 16.57±1.11 14.02±0.45 14.90±0.39 19.41±1.43
car 7.44±0.25 5.83±0.15 14.40±0.15 6.78±0.26 4.16±0.16

chess 0.60±0.05 2.87±0.11 12.16±0.06 0.61±0.04 0.38±0.05
diabetes 26.26±0.50 25.55±0.30 24.70±0.12 24.62±0.55 28.53±0.58
echo 34.58±2.39 34.73±1.55 27.33±0.44 31.68±1.35 33.89±2.01
german 28.82±0.88 26.01±0.51 25.43±0.19 26.37±0.37 29.23±0.50
glass 32.24±0.91 29.67±0.86 49.86±0.60 26.03±1.60 23.18±1.40

heart 22.19±1.24 18.52±0.48 15.67±0.34 19.78±0.89 21.78±1.32
hepatitis 20.90±0.97 17.29±0.63 15.35±0.29 17.68±1.22 18.26±0.88
hypo 0.72±0.02 2.79±0.09 1.81±0.02 0.78±0.04 1.05±0.05
image 3.18±0.16 2.84±0.07 14.29±0.06 2.55±0.17 1.84±0.12
ionosphere 10.26±0.47 13.28±0.33 8.15±0.21 7.83±0.44 6.41±0.37

iris 5.33±0.44 4.67±0.40 4.07±0.16 5.73±0.29 5.80±0.60
soya 7.54±0.35 8.96±0.26 7.12±0.10 7.23±0.41 7.07±0.35
tic-tac-toe 15.11±0.45 0.96±0.06 30.22±0.12 6.80±0.63 3.43±0.53
vote 3.54±0.17 6.97±0.22 9.82±0.07 3.93±0.26 4.48±0.43
waveform 23.62±0.25 14.42±0.10 19.24±0.05 18.00±0.13 18.58±0.13
wine 6.57±1.05 3.26±0.47 2.64±0.17 5.11±0.70 4.04±0.64

Average 14.57±0.55 12.52±0.40 15.53±0.19 12.49±0.51 12.97±0.60

different random generator seeds resulting in ten different sets of folds. The same
folds (random generator seeds) were used in all experiments.

On the meta-level, the performances of seven algorithms for combining classi-
fiers are compared. Two of them, bagging and boosting, apply the same learning
algorithm to different versions of a given data set in order to obtain a set of
diverse base-level classifiers. The third combining algorithm is majority voting.
The other four combining algorithms are different versions of stacking. A short
description of each of them follows.

Bagging uses random sampling with replacement in order to obtain different
versions of a given data set. The size of each sampled data set equals the size of
the original data set. On each of these versions of the data set the same learning
algorithm, J4.8 in our case, is applied. Classifiers obtained in this manner are
then combined with majority voting. For more information see [2].

Boosting first builds a classifier with some learning algorithm (again J4.8 in our
case) from the original data set. The weights of the misclassified examples are
then increased and another classifier is built using the same learning algorithm.
The procedure is repeated several times. Classifiers derived in this manner are

Table 4. Classification errors (in %) of voting, stacking with J4.8, with naive Bayes,
with MLR and with meta decision trees. Base learning algorithms for all were J4.8,
IBk and naive Bayes.

Data set Voting Stacking j48 Stacking NB Stacking MLR Stacking MDT

australian 13.81±0.34 14.61±0.51 14.35±0.36 14.16±0.42 13.77±0.38
balance 8.91±0.36 6.02±0.52 9.17±0.42 9.47±0.18 8.51±0.19
breast-w 3.46±0.13 2.78±0.13 2.89±0.09 2.73±0.07 2.69±0.07
bridges-td 15.78±0.80 16.76±1.32 17.35±1.31 14.12±0.67 16.08±0.84
car 6.49±0.16 1.63±0.21 2.65±0.14 5.61±0.23 5.02±0.27

chess 1.46±0.08 0.75±0.09 0.75±0.08 0.60±0.05 0.60±0.05
diabetes 24.01±0.33 25.73±0.68 25.25±0.42 23.78±0.56 24.74±0.54
echo 29.24±1.46 26.56±1.16 28.02±1.44 28.63±0.61 27.71±0.76
german 25.19±0.53 25.47±0.72 27.09±0.24 24.36±0.20 25.60±0.30
glass 29.67±0.80 38.60±2.16 50.61±1.51 30.93±1.28 31.78±1.19

heart 17.11±0.76 17.59±0.80 16.93±0.48 15.30±0.64 16.04±0.46
hepatitis 17.42±0.88 18.90±0.94 17.35±0.78 15.68±0.69 15.87±0.84
hypo 1.32±0.02 0.83±0.07 1.17±0.04 0.72±0.02 0.79±0.07
image 2.94±0.14 3.29±0.23 6.52±0.43 2.84±0.14 2.53±0.09
ionosphere 7.18±0.39 6.10±0.65 7.12±0.44 7.35±0.42 8.83±0.62

iris 4.20±0.28 6.13±0.97 5.00±0.41 4.47±0.35 4.73±0.42
soya 6.75±0.18 8.02±0.29 6.56±0.21 7.22±0.30 7.06±0.14
tic-tac-toe 9.24±0.33 0.42±0.10 1.21±0.11 0.58±0.09 0.96±0.06
vote 7.10±0.19 4.07±0.34 5.06±0.10 3.54±0.17 3.54±0.17
waveform 15.90±0.15 14.38±0.13 15.03±0.11 14.33±0.12 14.40±0.11
wine 1.74±0.11 3.82±0.76 3.48±0.44 2.87±0.35 3.26±0.60

Average 11.85±0.40 11.55±0.61 12.55±0.46 10.92±0.36 11.17±0.39

then combined using weighted voting. The AdaBoost.M1 variant of boosting was
used in our experiments. For more information see [4].

Voting is a simple majority voting algorithm.

Stacking J4.8 uses J4.8 as a meta-level learning algorithm. Meta-level data
consists of class probability distribution for each base-level classifier along with
the actual class. For more information see [14] and [10]. Note here that in the
previous study of MDTs [11] a different set of meta-level attributes for stacking
with ODTs was used. Instead of using class probability distributions directly,
only their aggregations (maximal probability and entropy) were used. Thus, the
results presented here are not directly comparable to the ones presented in [11].

Stacking NB uses naive Bayes as a meta-level learning algorithm. The struc-
ture of meta-level data is the same as the one for Stacking J4.8.

Stacking MLR uses a multi-response linear regression algorithm (MLR) as
a meta-level learning algorithm. MLR transforms a classification problem into
a set of regression problems; one problem for each class value. Then, linear
regression is used to predict the probability of the selected class value. If there
are discrete attributes in the data set, they are transformed to binary ones. For
more information see [10].

Table 5. Relative improvement in accuracy (in %) of stacking with meta decision trees
when compared to bagging, boosting, voting, stacking with J4.8, with naive Bayes
and with MLR and its significance (+/– means significantly better/worse, x means
insignificant).

Bag. J48 Boo. J48 Voting Sta. J48 Sta. NB Sta. MLR
Data set rel. im. sig. rel. im. sig. rel. im. sig. rel. im. sig. rel. im. sig. rel. im. sig.

australian -0.74 x 11.63 x 0.31 x 5.75 x 4.04 x 2.76 x
balance 50.83 + 60.39 + 4.49 + -41.49 – 7.16 + 10.14 +
breast-w 45.98 + 27.41 + 22.31 + 3.09 + 6.93 + 1.57 +
bridges-td -7.89 – 17.17 + -1.86 – 4.09 + 7.34 + -13.89 –
car 25.96 + -20.75 – 22.73 + -208.54 – -89.30 – 10.62 +

chess 1.55 x -56.55 x 59.10 x 20.42 x 20.42 x 0.00 x
diabetes -0.48 x 13.28 x -3.04 x 3.85 x 2.01 x -4.05 x
echo 12.53 + 18.24 + 5.22 + -4.31 – 1.09 + 3.20 +
german 2.92 + 12.42 + -1.63 – -0.51 – 5.50 + -5.09 –
glass -22.08 – -37.10 – -7.09 – 17.68 + 37.21 + -2.72 –

heart 18.91 + 26.36 + 6.28 + 8.84 + 5.25 + -4.84 –
hepatitis 10.22 x 13.07 x 8.89 x 16.04 x 8.55 x -1.23 x
hypo -1.62 x 24.62 x 40.09 x 4.56 x 32.34 x -9.61 x
image 0.68 x -37.65 x 13.72 x 22.92 x 61.16 x 10.82 x
ionosphere -12.73 – -37.78 – -23.02 – -44.86 – -24.00 – -20.16 –

iris 17.44 + 18.39 + -12.70 – 22.83 + 5.33 + -5.97 –
soya 2.43 x 0.21 x -4.55 x 12.04 x -7.59 x 2.23 x
tic-tac-toe 85.87 + 72.04 + 89.60 + -130.00 – 20.69 + -64.29 –
vote 9.94 + 21.03 + 50.16 + 12.99 + 30.00 + 0.00 x
waveform 20.00 + 22.50 + 9.44 + -0.15 – 4.20 + -0.53 –
wine 36.26 + 19.44 + -87.10 – 14.71 + 6.45 + -13.73 –

Average 19.89 14.78 18.34 -4.24 10.59 -4.07
W/L 11+/3– 11+/3– 8+/6– 7+/7– 12+/2– 4+/9–

Stacking MDT uses meta decision trees described in Section 2 and [11] as
a meta-level learning algorithm. Meta-level data consists of the maximal class
probability and entropy of the class probability distribution for each base-level
classifier (as ordinary attributes) and classes predicted by base-level classifiers
(as class attributes) along with the actual class.

The classification errors of the combining algorithms averaged over ten runs
of ten-fold cross validation are presented in tables 3 and 4. Assessment of perfor-
mance is based on the calculation of relative improvement and the paired t-test,
as described below. In order to evaluate the accuracy improvement achieved
using classifier C1 as compared to using classifier C2 we calculate the relative
improvement: 1−error(C1)/error(C2). In the analysis presented here, we com-
pare the performance of meta decision trees to other approaches: C1 will thus
refer to combiners with meta decision trees. The average relative improvement is
calculated using geometric mean: 1 − geometric mean(error(C1)/error(C2)).

The statistical significance of the difference in classification errors is tested using
the paired t-test (exactly the same folds are used for C1 and C2) with signifi-
cance level of 95%. +/− in table 5 means that the classifier C1 (MDT in our
case) is significantly better/worse than C2 and x means that the difference is
insignificant.

3.1 Stacking with MDTs vs. bagging and boosting

Tables 4 and 5 compare the performance of bagging and boosting of decision trees
to the performance of stacking with MDTs. The latter performs significantly
better than bagging on eleven and significantly worse on three out of 21 data
sets. The overall relative improvement of accuracy is 20%. Stacking with MDTs
performs significantly better than boosting on eleven and significantly worse
on three data sets. The overall relative improvement of accuracy is 15%. It
is therefore evident that stacking with MDTs outperforms both bagging and
boosting of decision trees.

3.2 Stacking with MDTs vs. voting

The results of the performance comparison between voting and stacking with
MDTs can be found in Table 4. Both methods use the same base-level classifiers.
Stacking with MDTs performs significantly better on eight and significantly
worse on six data sets, but four out of six relative decreases in accuracy are
less than 5%. The overall relative improvement of accuracy is therefore still
high, 18%. These findings are consistent with the previous study of MDTs [11].

3.3 Stacking with MDTs vs. stacking with J4.8, naive Bayes and

MLR

The results of the performance comparison between three versions of stacking
with J4.8, naive Bayes and MLR on one side and stacking with MDTs on the
other, can be found in tables 4 and 5.

Stacking with MDTs performs significantly better than stacking with J4.8
on seven and significantly worse on seven out of 21 data sets. There is a 4%
overall relative decrease in accuracy (calculated as a geometric mean), but this is
mostly due to data sets car and tic-tac-toe, where all combining methods perform
very well. If we exclude these two data sets a 7% overall relative improvement
is obtained. In another three data sets the relative decreases in accuracy are
below 5%. Besides, MDTs are much smaller than ODTs induced with J4.8, and
can therefore be interpreted by humans. These results are consistent with the
previous study of MDTs [11].

Note here that the improvement of performance is a bit smaller than the
one reported in [11]. This can be due to the fact that different set of meta-level
attributes was used by J4.8 as compared to the one used by C4.5 in [11]. In this
study meta-level data consisted of class probability distribution for each base-
level classifier along with the actual class, while in [11] meta-level data consisted

of maximal class probability and entropy of the class probability distribution for
each base-level classifier and classes predicted by base-level classifiers along with
the actual class.

Stacking with MDTs performs significantly better than stacking with naive
Bayes on twelve and significantly worse on only two data sets. There is an 11%
overall relative improvement in accuracy. It is therefore evident that stacking
with MDTs outperforms stacking with naive Bayes.

Stacking with MDTs performs significantly better than stacking with MLR
on four and significantly worse on nine domains. There is a 4% overall relative
decrease in accuracy which can not be pinpointed to a few domains only. We can
say that stacking with MLR performs better than stacking with MDTs, though
the difference in performance is small. The good performance of stacking with
MLR is no surprise, since MLR is recommended by [10] as the best meta-level
classifier.

4 Conclusions and further work

We have presented the integration of the algorithm for building meta decision
trees (MDTs) [11] into Weka data mining suite [13]. This enables experiments
with MDTs using different sets of base-level classifiers and their straightforward
comparison with stacking methods that use different meta-level classifiers.

Furthermore, we performed an extensive experimental comparison of stacking
with MDTs to other ensemble methods: to bagging and boosting of decision trees,
to voting and to three versions of stacking: with ordinary decision trees (J4.8),
with naive Bayes (NB) and with multi-response linear regression (MLR).

Stacking with MDTs performs better than bagging an boosting of decision
trees which are the state of the art methods for learning ensembles of classifiers.
The previous study of MDTs [11] showed that meta decision trees preform better
than voting and stacking with ordinary decision trees. Our study confirms this
findings and proves that MDTs are independent of a specific implementation (we
used their re-implementation in Java programming language) and independent of
the set of base-level classifiers (we used a different number of different classifiers).
Performance comparison between stacking with MDTs and stacking with naive
Bayes shows that naive Bayes algorithm can not be successfully used as meta-
level classifier for stacking.

Finally, we compared performance of stacking with MDTs and stacking with
multi-response linear regression (MLR). The latter slightly outperforms MDTs
(a 4% relative improvement in accuracy). Stacking with MDTs performs compa-
rably while using less information (only aggregate data on the class probability
distribution and not the actual class probability distribution). These attributes
are domain independent once we fix the set of base-level classifiers and therefore
induced MDTs are also domain independent. Another strong side of MDTs is
their understandability as they provide information about areas of expertise for
each base-level classifier. This information too is domain independent and can,
in principle, be transferred to other domains.

There are several possible directions for further work. Since MDTs are, in
principle, transferable across different data sets, we can induce them using ex-
amples originating from several different data sets. Preliminary investigations of
this approach has been already presented in [12]. However, extensive experimen-
tal evaluation of this approach is yet to be done. Another possibility is building
MDTs with bagged and boosted ordinary decision trees as base-level classifiers.
Since the performance of bagged and boosted ordinary decision trees is better
than plain ordinary decision trees, better overall performance of MDTs can be
expected. Performance of MDTs with other sets of base-level classifiers should
be also explored. This was one of the main reasons for the integration of MDTs
in the Weka data mining suite, as it provides a large set of various classifiers
that can be used for this purpose.

References

1. Aha, D. and D. Kibler (1991) Instance-based learning algorithms. In Machine

Learning, 6: 37–66.
2. Breiman, L. (1996) Bagging Predictors. Machine Learning 24(2): 123–140.
3. Dietterich, T. G. (1997) Machine-Learning Research: Four Current Directions. AI

Magazine 18(4): 97–136.
4. Freund, Y. and Schapire, R. E. (1996) Experiments with a New Boosting Al-

gorithm. In Proceedings of the Thirteenth International Conference on Machine

Learning, pages 148-156. Morgan Kaufmann.
5. Gama, J. (1998) Combining Classifiers by Constructive Induction. In Proceedings

of the Ninth European Conference on Machine Learning.
6. John, G. H. and Langley, P. (1995) Estimating Continuous Distributions in

Bayesian Classifiers. In Proceedings of the Eleventh Conference on Uncertainty

in Artificial Intelligence, pages 338-345. Morgan Kaufmann.
7. Merz, C. J. (1999) Using Correspondence Analysis to Combine Classifiers. Machine

Learning 36(1/2): 33–58. Kluwer Academic Publishers.
8. Murphy, P. M. and Aha, D. W. (1994) UCI repository of machine learning

databases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA:
University of California, Department of Information and Computer Science.

9. Quinlan, J. R. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann.
10. Ting, K. M. and Witten, I. H. (1999) Issues in Stacked Generalization. In Journal

of Artificial Intelligence Research, 10: 271–289.
11. Todorovski, L. and Džeroski, S. (2000) Combining multiple models with meta

decision trees. In Proceedings of the Fourth European Conference on Principles of

Data Mining and Knowledge Discovery: 54–64.
12. Todorovski, L. and Džeroski, S. (2000) Combining two aspects of meta-learning

with heterogeneous meta decision trees. In Proceedings of the Fifth International

Workshop on Multistrategy Learning: 221–232.
13. Witten, I. H. and Frank, E. (1999) Data Mining: Practical Machine Learning Tools

and Techniques with Java Implementations. Morgan Kaufmann.
14. Wolpert, D. (1992) Stacked Generalization. Neural Networks 5(2): 241–260.

