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Foreword

This volume contains the papers presented at the 1st workshop on Explorative
Analytics of Information Networks held on Friday, September 11th, 2009 as part
of the workshop program of PKDD ECML 2009 in Bled, Slovenia. The goals of
the workshop are to intensify the exchange of ideas between different research
communities to enable the design of tools for creation, analysis and visualization
of complex information networks. The workshop focuses especially on researchers
that are working on methods for representation of complex knowledge resources,
(dynamic) data analysis methods, semantic networks, and visualization methods
as well as user interface design.

The final program of eleven presentations covers a nice variety of in-depth papers
on different aspects of information network creation, abstraction, and analysis
complemented by two review papers covering the state of the art of information
networks and network abstraction methods. The program shows nicely how this
research area receives increasing attention in the Machine Learning and Data
Mining community.

Magdeburg and Konstanz, August 2009
Andreas Niirnberger, Michael R. Berthold, Tobias Kotter and Kilian Thiel
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Information Networks:
State of the Art

Tobias Kotter and Michael R. Berthold

Nycomed-Chair for Bioinformatics and Information Mining, University of Konstanz,
Fach M712, 78484 Konstanz, Germany
Tobias.Koetter@Quni-Konstanz.de

Abstract. This paper provides an overview of different types of infor-
mation networks and categorizes them by identifying several key prop-
erties of information units and relations. These properties reflect the
expressiveness and thus ability of an information network to model data
of a diverse nature.

Keywords: Information Networks, Data Integration.

1 Introduction

During the past years information networks have gained more and more attention
in various application areas ranging from the formal modeling of conceptual hi-
erarchies to tools for semantic-free data integration. Especially in the biomedical
domain a number of different types of information networks have been proposed
in the last years [1]. This area of research is known for its diverse information
sources that need to be considered, for instance in the drug discovery process [2].
The integrated sources range from experimental data, such as gene expression
results, up to highly curated ontologies, such as the ontology of Medical Subject
Headings.

Information networks are composed of information units representing physi-
cal items, more generally named entities or simply concepts and relations repre-
senting semantic or solely correlational connections between information units.
They are almost always based on a graph structure with vertices and edges,
where vertices represent units of information e.g. genes, proteins or diseases
and the relations between these units of information are usually represented by
edges. In some information networks relations are represented by vertices as well,
and therefore apply a bi-partite graph representation. This type of representa-
tion has the added advantage that relations between more than two information
units can be easily supported. An edge can be directed or undirected depending
on the relationship it represents. Most networks also allow additional attributes
or properties to be attached to vertices and edges, such as a vertex type de-
scribing the nature of the information unit or an edge weight representing the
strength of the relation.



Once the data is represented in such an information network the now well-
defined structure can be used to discover patterns of interest, extract network
summarizations or abstractions and develop tools for the visual exploration of
the underlying relations. A general analysis on the structure of complex networks
stemming from real-world applications has been conducted by Albert et al. [3].
Such real networks often share a number of common properties such as the
small-world property, clustering coefficient or degree distribution. A survey on
link mining has been conducted by Getoor and Diehl [4]. They classified the link
mining task into three categories: object-related tasks, link-related tasks and
graph-related tasks.

Network summarizations representing different levels of detail can be visual-
ized to gain insight into the structure of the integrated data. A review of graph
visualization tools for biological networks can be found in [5]. The paper com-
pares the functionality, limitation and specific strength of these tools.

2 Different Categories of Information Network

In order to differentiate information networks distinctions can be made between
different properties of information units and relations. These properties are, of
course, not exclusive. The properties of an information network define its ex-
pressiveness and thus its ability to model data of a diverse nature e.g. ontologies
or experimental data.

2.1 Properties of Information Units

The basic information unit does not posses any additional semantical informa-
tion. However, they will at least include a label attached to them in order to
identify the object or concept they represent. Additional properties are the fol-
lowing:

Attributed Units of information that can have additional attributes attached
to them. An attribute might be a link to the original data it stems from,
or a translation of the original label. These attributes might be considered
while reasoning or analyzing the network but do not carry general semantic
information, such as the following properties,

Typed Typed information units carry an additional label that is used to distin-
guish between different semantics of information units e.g. gene or protein.
These types can additionally be organized in a hierarchy or ontology.

Hierarchical Hierarchical information units represent a subgraph composed of
any number of information units and relations that can be used to condense
parts of the network or to represent more complex concepts such as cellular
processes.

2.2 Properties of Relations

The basic connection between information units represents a relationship be-
tween the corresponding members. They are not required to carry a label.



Attributed Similar to attributed information units relations that have at-
tributes attached to them also fall into this category. Like attributed infor-
mation units these attributes can be considered during the reasoning process
but do not carry a general semantic information.

Typed Equivalent to typed information units, relations can carry a label iden-
tifying their type. This attribute is used to distinguish between different
semantics of relations such as activates or encodes. These types, as well as
typed information units, can be organized in a hierarchy or ontology.

Weighted The weight of a relation is a special type of label that represents the
strength of a relation e.g. a number reflecting the probability or strength of
a correlation or some other measure of reliability that allows the integration
of facts and pieces of evidence.

Directed Directed relations can be used to explicitly model relationships that
are only valid in one direction, such as parent child dependency in a hierarchy.

Multi relation In general, relations are represented as edges supporting only
two members. topic maps (see Section 3.3) in contrast represent relations as
multi edges supporting any number of members. This allows a more flexible
modeling of relationships with any number of members e.g. co-expressed
genes of an experiment or authors of a paper. Furthermore connections
among relations themselves can be represented. Note that it is complicated
to combine this property with the directed property mentioned above. Addi-
tional information would need to be provided, such as an embedding graph
to identify sources and targets in a relation with more than two members.

3 Prominent Types of Information Networks

3.1 Ontologies

Ontologies are based on typed and directed relations using a controlled vocabu-
lary for information units and relations dedicated to a certain domain. The cre-
ation of the curated vocabulary leads in general to a manual or semi-automatic
creation of an ontology, requiring a comprehensive knowledge of the area to be
described.

Figure 1 depicts a simple ontology where information units are represented
as nodes and relations are represented as labeled arrows.

child_of  child_of

Fig. 1. Example of an ontology



In the area of life science particularly, many ontologies have been developed
to share data from diverse research areas such as chemistry, biology or phar-
macokinetic. One of the probably best known and most integrated ontologies
in the biological field ist the Gene Ontology (GO)[6]. The GO consists of three
main ontologies describing the molecular function, biological process and cellular
component of genes.

An attempt to integrate diverse ontologies has been made by the Open
Biomedical Ontologies (OBO) consortium [7]. They have created a file exchange
format and over 60 ontologies for different domains defining a general vocabulary
that can be used by other systems.

A classification of biomedical ontologies has been accomplished by Boden-
reider [8]. He classified these ontologies into three major categories: knowledge
management; data integration, exchange and semantic interoperability; decision
support and reasoning.

An ontology-based data integration platform is described in [9]. The authors
describe a system that extends the existing text-mining framework ONDEX.
ONDEX uses a core set of ontologies, which are aligned by several automated
methods to integrate biological databases. The existing system is extended to
support not only the alignment and integration of texts but heterogeneous data
sources. The data is represented as a graph with attributed edges.

Tzitzikas et al. [10] describe a system that is based on the hierarchical in-
tegration of ontologies from different data sources. The system uses a mediator
ontology, which bridges the heterogeneity of the different data source ontologies.

3.2 Semantic Networks

Semantic Networks use typed relations to model the semantic of the integrated
information units and their relations. Information units in Semantic Networks
in contrast to ontologies are not represented by a curated vocabulary but rather
described by attaching any number of attributes to them whose semantic is
defined by the type of the relation.

Most of the Semantic Networks rely on Semantic Web [11] technologies such
as the Resource Description Framework (RDF), RDF Vocabulary Description
Language (RDF Schema) and the Web Ontology Language (OWL) defined by
the W3C consortium?!.

RDF is a knowledge representation and storage framework that uses triples.
A triple consists of a subject, predicate and object. The subject and object are
information units that are connected with a directed relation defined by the
predicate.

In figure 2 subjects and objects that are uniquely identifiable are depicted in
ellipses, whereas objects containing values are depicted in boxes. Predicates are
shown as arrows pointing from the object to the subject with the type of the
relation as an annotation.

! http:/ /www.w3.org/2001 /sw/
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Fig. 2. Example of a Semantic Web

RDF Schema defines a core vocabulary that can be used to describe prop-
erties and classes. These properties and classes can be used to describe the
members of a triple. OWL extends RDF Schema by providing a set of additional
standard terms to describe properties and classes in more detail such as rela-
tions between classes. It also defines the behavior of properties e.g. symmetry or
transitivity. OWL as well as RDF Schema extend RDF by providing the means
to model the semantics of the integrated data therefore enabling machines to
make sense of the data. They both are described using the RDF.

Bales and Johnson [12] analyzed large semantic networks created from 1998-
2005 that involve both a graph theoretic perspective and semantic information.
The results indicate that networks derived from natural language share common
topological properties, such as scale-free and small-world characteristics.

An introduction to semantic networks and semantic graph mining is provided
in [13]. In four case studies, they demonstrate the usage of semantic web tech-
nologies to analyze disease-causal genes, GO category cross-talks, drug efficacy
and herb-drug interactions.

Belleau et al.[14] propose the Bio2RDF project to integrate data from differ-
ent biological sources. Bio2RDF is used to integrate data from more than twenty
different public bioinformatic sources by converting them into the RDF format.

YeastHub [15] another RDF-based data integration approach likewise inte-
grates the data from heterogeneous sources into a RDF-based data warehouse.
In addition they propose a standard RDF format for tabular data integration.
The format can be used to convert any data table into a standardized RDF
format.



A loosely coupled integration of semantic networks is proposed by Smith
et al [16] in the form of the LinkHub system. The system consists of smaller
networks that can be connected by sharing a common hub. Thus independently
maintained networks can be connected to the whole system by connecting them
to one of the already integrated sub networks.

Biozon [17] combines the flexible graph structure with an ontology for vertex
and edge types similar to the semantic web approach. This combined approach
allows a more detailed description of a biological entity by either imposing more
constraints on its nature in the hierarchy or on the structure of its relations
to other entities in the graph. All vertices within Biozon are direct analogs to
physical entities and sets of entities. Proteins as an example are identified by
their sequence of amino acids. In contrast to pure semantic networks Biozon
allows any number of attributes to be attached to information units as well as
to relations.

3.3 Topic Maps

Topic maps [18] use typed information units and relations. Furthermore topic
maps support the modeling of multi relations with any number of members. The
semantic of a topic is described by attaching any number of attributes to it.

Figure 3 depicts the three major elements of a topic map: topics (ellipses),
associations (solid lines) and occurrences (boxes). Association and occurrence
types are connected by the dashed lines whereas occurrences are connected by
the dotted line.

12 4

Fig. 3. Example of a topic map

A topic can generally be anything, for example a person, a concept or an idea.
Topics can have zero or more topic types assigned which are, in turn, defined as
topics describing the semantics of the topic such as gene or protein.



Relations between any number of topics are represented by so-called associ-
ations. Associations have a type assigned that describes the association in more
detail. Members of associations play a certain role defined by the association
role. As with topic and occurrence types association types and association roles
are defined as topics themselves. In order to attach attributes to an association
it needs to be converted into a topic by the act of reification.

Information resources that represent a topic or describe it in more detail are
linked to topics by so-called occurrences. Occurrences are not generally stored
in the topic map itself but are referenced using mechanisms supported by the
system e.g. Uniform Resource Identifiers. Occurrences can have any number of
different types, so-called occurrence types, that describe their semantics. These
types are also defined as topics.

Topic maps are self-documenting due to the fact that virtually everything in
topic maps is a topic in the map itself, forming the ontology of the used topics
and relation types.

An example of a topic-map-like data integration approach is PathSys[19].
In PathSys a relation is also represented as a vertex. This approach models
relationships between relations themselves. To distinguish between information
units and relations they introduce vertex types. Besides primary vertices repre-
senting information units and connector vertices representing relationships, they
also introduce graph vertices. By introducing graph vertices, PathSys combines
the multi relation property of topic maps with the hierarchical information unit
property allowing the representation of subgraphs to describe more complex ob-
jects such as protein complexes or cellular processes.

3.4 'Weighted Networks

In most weighted networks the edge weight represents the strength of a relation
such as reliability or probability. Weighted networks often exhibit additional
properties such as types in order to be more expressive by modeling the semantic
of the integrated data sources. They support generally only relationships with
two members represented by the edges of the graph.

Figure 4 depicts a weighted networks modeling the probability of the co-
occurrence of the 3 nodes.

/®\

0.3 0.2

/ \
®=<» —©

Fig. 4. Example of a weighted network



Heuristic weights Heuristic weights are mostly used to model the reliability
or relevance of a given relation. Thus allowing the integration of well-curated
sources such as ontologies and pieces of evidence such as noisy experimental
data in a single network.

In order to integrate data from diverse biological sources for protein function
prediction, Chua et al. [20] propose Integrated Weighted Averaging (IWA). This
combines local prediction methods with a global weighting strategy. Each data
source is transformed into an undirected graph with proteins as vertices and
relationships between proteins as edges. Each source graph has a score reflecting
its reliability. Finally, all source graphs are combined in a single graph using
IWA.

Kiemer et al. [21] use a weighted network to integrate yeast protein informa-
tion from different data sources forming a protein-protein interaction network
called WI-PHI. The network consists of 50000 interactions from all data sources.
The edge weight of the WI-PHI network is computed using the socio-affinity in-
dex [22], quantifying the propensity of proteins to form partnerships, multiplied
by a weight constant per integrated data source defining its accuracy.

In Biomine [23] the edge weight is a combination of three different weights:
reliability, relevance and rarity. Reliability reflects the reliability of the source
the edge stems from. The relevance can be changed by the user to reflect current
interests; rarity is computed using the degree of the incident vertices. Edges
that connect vertices with a low degree have a higher rarity score than edges
that connect vertices with a high degree. Vertices and edges have a type assigned
describing their nature. Each edge has its inverse edge with a natural inverse type
such as “coded by” and “is referred by”. Thus forming a weighted undirected
graph with directed edge types.

Probabilistic weights Probabilistic networks model the probability of the
existence of a relationship. They are mostly used in the biological field to model
interaction networks e.g. gene-gene or protein-protein interaction networks.

Franke et al. [24] use a three-step data integration process using naive Bayesian
networks to fuse the information from the GO with microarray co-expression re-
sults and protein-protein interaction data. The resulting network called Genenet-
work can be used to detect genes that are related to a disease based on genetic
mutation.

In [25] Li et al. use a two-layered approach to integrate gene relations from
heterogeneous data sources. The first layer creates a fully connected Bayesian
network for each integrated source which represents the gene functional relations.
The second layer combines these relations from the different data sources into
one integrated network using a naive Bayesian method.

Jansen et al. [26] likewise propose a combination of naive Bayesian networks
and fully connected Bayesian networks to create a protein-protein interaction
network. They use the fully connected Bayesian networks to integrate experi-
mental interaction data and naive Bayesian networks to incorporate other ge-



nomic features such as the the biological process from the GO. To combine all
results they use a naive Bayesian network as well.

In [27] Troyanskaya et al. introduce MAGIC (Multisource Association of
Genes by Integration of Clusters). For each integrated data source, MAGIC
creates a gene-gene relationship matrix to predict the functional relationship
of two given genes. The matrices are generated from diverse high-throughput
techniques such as gene expression microarrays. These gene-gene relationship
matrices are weighted by the confidence in the integrated source and combined
into a single matrix. This approach allows genes to be members of more than
one group, which subsequently allows fuzzy clustering.

4 Conclusion

In this paper we identified several key properties of information units and rela-
tions used in information networks. We provided an overview of different types
of information networks and categorized them based on the identified proper-
ties. These supported properties reflect the expressiveness and thus ability of an
information network to model data of a diverse nature. We believe that future
networks need to support most of the identified properties to integrate facts and
pieces of evidence from heterogeneous sources in order to support the discovery
of connections between concepts from diverse areas ultimately supporting the
creative thinking.
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Abstract. According to Koestler, the notion of a bisociation denotes
a connection between pieces of information from habitually separated
domains or categories. In this paper, we consider a methodology to find
such bisociations using a network representation of knowledge, which is
called a BisoNet, because it promises to contain bisociations. In a first
step, we consider how to create BisoNets from several textual databases
taken from different domains using simple text-mining techniques. To
achieve this, we introduce a procedure to link nodes of a BisoNet and
to endow such links with weights, which is based on a new measure for
comparing text frequency vectors. In a second step, we try to rediscover
known bisociations, which were originally found by a human domain
expert, namely indirect relations between migraine and magnesium as
they are hidden in medical research articles published before 1987. We
observe that these bisociations are easily rediscovered by simply follow-
ing the strongest links. Future work includes extending our methods to
non-textual data, improving the similarity measure, and applying more
sophisticated graph mining methods.

1 Introduction

The concept of association is at the heart of many of today’s powerful ICT
technologies such as information retrieval and data mining. These technologies
typically employ “association by similarity or co-occurrence” in order to discover
new information that is relevant to the evidence already known to a user.

However, domains that are characterized by the need to develop innovative
solutions require a form of creative information discovery from increasingly com-
plex, heterogeneous and geographically distributed information sources. These
domains, including design and engineering (drugs, materials, processes, devices),
areas involving art (fashion and entertainment), and scientific discovery disci-
plines, require a different ICT paradigm that can help users to uncover, select,
re-shuffle; and combine diverse contents to synthesize new features and prop-
erties leading to creative solutions. People working in these areas employ cre-
ative thinking to connect seemingly unrelated information, for example, by using
metaphors or analogical reasoning. These modes of thinking allow the mixing
of conceptual categories and contexts, which are normally separated. The func-
tional basis for these modes is a mechanism called bisociation (see [1]).



According to Arthur Koestler, who coined this term, bisociation means to
join unrelated, and often even conflicting, information in a new way. It means
being “double minded” or able to think on more than one plane of thought
simultaneously. Similarly, Frank Barron [2] says that the ability to tolerate chaos
or seemingly opposite information is characteristic of creative individuals.

Several famous scientific discoveries are good examples of bisociations, for
instance Isaac Newton’s theory of gravitation and James C. Maxwell’s theory
of electromagnetic waves. Before Newton, a clear distinction was made between
sub-lunar (below the moon) and super-lunar physics (above the moon), since
it was commonly believed that these two spheres where governed by entirely
different sets of physical laws. Newton’s insight that the trajectories of planets
and comets can be interpreted in the same way as the course of a falling body
joined these habitually separated domains. Maxwell, by realizing that light is
an electromagnetic wave, joined the domains of optics and electromagnetism,
which, at his time, were also treated as unrelated areas of physical phenomena.

Although the concept of bisociation is frequently discussed in cognitive sci-
ence, psychology and related areas (see, for example, [1-3]), there does not seem
to exist a serious attempt at trying to formalize and computerize this concept.
In terms of ICT implementations, much more widely researched areas include
association rule learning (for instance, [4]), analogical reasoning (for example, [5,
6]), metaphoric reasoning (for example, [7]), and related areas such as case-based
reasoning (for instance, [8]) and hybrid approaches (for example, [9]).

In order to fill this gap in current research efforts, the BISON project! was
created. This project focuses on a knowledge representation approach with the
help of networks of named entities, in which bisociations may be revealed by link
discovery and graph mining methods, but also by computer-aided interactive
navigation. In this paper we report first results obtained in this project.

The rest of this paper is structured as follows: in Section 2 we provide a defini-
tion of the core notion of a bisociation, which guides our considerations. Based on
this definition, we justify why a network representation—a so-called BisoNet—is
a proper basis for computer-aided bisociation discovery. Methods for generating
BisoNets from heterogeneous data sources are discussed in Section 3, including
procedures for selecting the named entities that form its nodes and principles
for linking them based on the information extracted from the data sources. In
particular, we present a new measure for the strength of a link between concepts
that are derived from textual data. Such link weights are important in order to
assess the strength of indirect connections like bisociations.

Afterwards, in Section 4 we report results on a benchmark data set (con-
sisting of titles and abstracts of medical research articles), in which a human
domain expert already discovered hidden bisociations. By showing that with our
system we can create a plausible BisoNet from this data source, in which we
can rediscover these bisociations, we provide evidence that the computer-aided
search for bisociations is a highly promising technology.

Finally, in Section 5 we draw conclusions from our discussion.

! See http://www.bisonet.eu/ for more information on this EU FP7 funded project.
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2 Bisociation and BisoNets

Since the core notion of our efforts is bisociation, we start by trying to provide
a sufficiently clear definition, which can guide us in our attempts to create a
system able to support a user in finding bisociations. A first definition within
the BISON project? characterizes bisociation as follows:

A bisociation is a link L that connects two domains D; and Dy that are
unconnected given a specific context or view V' by which the domains are
defined. The link L is defined by a connection between two concepts c;
and co of the respective domains.

Although the focus on a connection between two habitually (that is, in the con-
text a user is working in) separated domains is understandable, this definition
seems somewhat too narrow. Linking two concepts from the same domain, which
are unconnected within the domain, but become connected by employing indi-
rect relations that pass through another domain, may just as well be seen as
bisociations. The principle should rather be that the connection is not fully con-
tained in one domain (which would merely be an association), but needs access
to a separate domain. Taking this into account, we generalize the definition:

A bisociation is a link L between two concepts c¢; and cp, which are
unconnected given a specific context or view V. The concepts ¢; and ¢
may be unconnected, because they reside in different domains Dy and Do
(which are seen as unrelated in the view V'), or because they reside in
the same domain D1, in which they are unconnected, and their relation
is revealed only through a bridging concept c3 residing in some other
domain Dy (which is not considered in the view V).

In both of these characterizations we define domains formally as sets of concepts.
Note that a bridging concept cs is usually also required if the two concepts ¢y
and ¢y reside in different domains, since direct connections between them, even
if they cross the border between two domains, can be expected to be known and
thus will not be interesting or relevant for a user.

Starting from the above characterization of bisociation, a network represen-
tation, called a BisoNet, of the available knowledge suggests itself: each concept
(or, more generally, any named entity) gives rise to a node. Concepts that are
associated (according to the classical paradigm of similarity or co-occurrence)
are connected by an edge. Bisociations are then indirect connections (technically
paths) between concepts, which cross the border between two domains.

Note that this fits both forms of bisociations outlined above. If the concepts ¢y
and cy reside in different domains, the boundary between these two domains
necessarily has to be crossed. If they reside in the same domain, one first has to
leave this domain and then come back in order to find a bisociation.

% See http://www.inf.uni-konstanz.de/bisonwiki/index.php5, which, however, is

not publicly accessible at this time.
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Fig. 1. lllustration of the structure of the BisoNet generator.

3 BisoNet Generation

A system for generating BisoNets requires three ingredients: (1) A component
to access the original, usually heterogeneous data sources. In order to cope
with different data formats, we suggest, in Section 3.1, a two-layer architec-
ture. (2) A method for choosing the named entities that are to form the nodes
of the BisoNet. Here we rely on standard keyword extraction techniques, as dis-
cussed in Section 3.2. (3) A procedure for linking the nodes of a BisoNet and for
endowing them with weights that indicate the association strength. For this we
suggest, in Section 3.3, a new association measure for keywords.

3.1 Data Access and Pre-Processing

As explained above, a BisoNet is a network that promises to contain bisociations.
In order to generate such networks, we first have to consider two things: we must
be able to read different and heterogeneous data sources, and we have to be able
to merge the information derived from them in one BisoNet. Data sources can be
databases (relational or of any other type), text collections, raw text, or any data
that provide information about a domain. Due to the wide variety of formats
a data source can have, the choice we made here is not to provide an interface
of maximal flexibility that can be made to read any data source type, but to
structure our creation framework into two separate layers.

The first layer directly accesses the data source and therefore has to be newly
developed for or at least adapted to the specific format of the data source. The
second layer is the actual BisoNet generation part. It takes its information from
the first layer, always in the same format, and therefore can generate a BisoNet
from any data source, as far as it is parsed and exported in the form provided
by the first layer (see Figure 1 for a sketch).

The way data should be provided to the second layer is fairly simple, because
in this paper we confine our considerations to textual data. As a consequence,
the second layer creates nodes from data that are passed as records containing
textual fields. These textual fields can contain, for now, either words or authors
names. This procedure and data format is well adapted to textual databases or
text collections, but is meant to evolve in future development in order to be
able to take other types of data sources into account. However, since most of the
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data sources that we have used so far were textual data sources, this protocol
seems simple and efficient. Future extensions could consist in including raw data
fields (for example, to handle images), and will then require an adaptation of
the second layer to be able to create nodes from other objects than textual data.

The second layer builds a BisoNet by extracting keywords using standard
text mining techniques such as stop word removal and stemming (see [10]).
The extracted keywords are weighted by their TFIDF (Text Frequency - Inverse
Document Frequency) value (see [11]), thus allowing us to apply a (user-defined)
threshold in order to filter the most important keywords, as will be detailed
in Section 3.2. Links between nodes are created according to the presence of
co-occurrences of the corresponding keywords in the same documents, and are
weighted using a similarity measure adapted to the specific requirements of our
case, which will be presented in Section 3.3. In the case that author lists are
provided with each text string, extracted keywords are also linked to the related
authors. These links are weighted according to the number of times a keyword
occurs in a given author’s work.

3.2 Creating nodes

In our BisoNets nodes represent concepts. As we only talk about textual databases,
we made the choice to characterize concepts by keywords that are extracted from
the textual records taken from the data sources. In the second layer of our frame-
work, each textual record j is processed with stop word removal algorithm. Then
the text frequency values are computed for each remaining term ¢ as shown in
Equation 1, where n; ; is the number of occurrences of the considered term in
textual record j and ), ny ; is the sum of number of occurrences of all terms
in textual record j.
tf, . = nziﬂ 1
REEDYNOW M

Naturally, this procedure of keyword extraction is limited in its power to capture
the contents of the text fields. The reason is that we are ignoring synonyms
(which should be handled by one node rather than two or more), hyper- and
hyponyms, pronouns (which may refer to a relevant keyword and thus may have
to be counted for the occurrence of this keyword) etc. However, such linguistic
properties are very difficult to take into account and need sophisticated tools
(like thesauri etc.). Since such advanced text mining is not the main goal of
our work (which rather focuses on BisoNet creation), keeping the processing
simple seemed a feasible option. Nevertheless, advanced implementations may
require such advanced processing, because ignoring, for example, synonyms and
pronouns can distorts the statistics underlying, for instance, the term frequency
value: ignoring pronouns that refer to a keyword, or not merging two synonyms
makes the TF lower than it should actually be.

After all records have been processed, the inverse document frequency of each
keyword ¢ is computed according to Equation 2, where |D| is the total number
of records in the database and |{d € D | t; € d}| is the number of records in



which the term t; appears.
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Each node is then weighted with its corresponding average TFIDF value (sum-
ming and normalizing all the TF values for a node and then multiplying by the
IDF value). This TFIDF approach is a very well known approach in text mining
that is easy to implement and makes one able to easily apply a threshold, thus
selecting only the most important nodes (keywords). A node then contains, as
an attribute, a list of all the TF values for each document of the BisoNet in
which its associated keyword appears. This allows us to compute the similarity
measure presented in Section 3.3 in order to create links.

According to the definition of a bisociation presented in Section 2, two con-
cepts have to be linked by other concepts that are not in their proper domain
(so-called bridging concepts). This leads us to introduce the notion of domains,
into which the nodes are grouped, so that we can determine when borders be-
tween domains are crossed. In order to be able to classify nodes according to
their membership in different domains, it is important that they keep, also as an
attribute, the domains the data sources belong to, from which they have been
extracted. Since the same keyword can occur in several data sources, taken from
different domains, one has to be able (for example, for graph mining and link dis-
covery purposes) to know whether a certain keyword has to be considered from
a certain domain’s point of view. The nodes therefore keep this information as
vector of domains their associated keyword belongs to.

This can be interesting, for example, to mine or navigate the BisoNet, keep-
ing in mind that a user may be looking for ideas related to a certain keyword
belonging to a domain A. The results of a search for bisociations might also
belong to domain A, because it is the domain of interest of the user. However,
these results should be reached following paths using keywords from other do-
mains, that is to say bisociations. This procedure provides related keywords of
interest for the user, as they belong to its research domain, but they might be
also original and new connections as they are the result of a bisociation process.

3.3 Linking nodes

As explained in Section 3.2, nodes are associated with a keyword and a set of
documents in which this keyword occurs with a certain term frequency (TF).
Practically, this is represented using a vector of real values containing, for each
document, the term frequency of the node’s keyword. In order to determine
whether a link should be created between two nodes or not, and if there is to be
a link, to assign it a weight, we have to use a similarity measure to compare two
nodes (that is to say: the two vectors of TF values).

One basic metric that directly suggests itself is an adaptation of the Jaccard
index (see [12]), shown in Equation 3, to this case. Then |A N B| represents the
number of elements at the same index that both have a positive value in the two
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vectors and |A U B| the total number of elements in the two vectors.

|AN B|
This index makes one able to compare two nodes according to the number of
similar elements it contains, but does not take into account the importance of
the text frequency values. It can also be interpreted as a probability, namely the
probability that both elements are positive, given that at least one is positive.

In the Jaccard measure, as applied above, we would consider only whether a
vector element is zero or positive and thus neglect the actual value (if it is posi-
tive). However, considering two elements at the same index ¢ in two vectors, one
way of taking their values into account would be to use their absolute difference
(that is, in our case, the absolute difference of the TF values for two terms, but
the same document). With this approach, it is easy to compare two vectors (of
TF values) by simply summing these values and dividing by the total number of
values (or the total number of elements that are positive in at least one vector).

However, this procedure does not properly take into account that both values
have to be strictly positive, because a vanishing TF value means that the two
keywords do not co-occur in the corresponding document. In addition, we have
to keep in mind that having two elements, both of which have a TF value of 0.2,
should be less important than having two elements with a TF value of 0.9. In the
first case, the keywords associated with the two nodes we are comparing appear
only rarely in the document with index ¢. On the other hand, in the latter case
these keywords appear very frequently in this document, which means that they
are strongly linked according to this document.

A possibility of taking the TF values itself (and not only their difference)
into account is to use the product of the two TF values as a coefficient to the
(absolute) difference between the TF values. This takes care of the fact that the
two TF values have to be positive, and that the similarity value should be the
greater, the larger the TF values are (and, of course, the smaller their absolute
difference is). However, in our case, we also want to take into account that it is
better to have two similar TF values of 0.35 (which means that the two keywords
both appear rather infrequently in the document) than to have TF values of 0.3
and 0.7 (which means the first keywords appears quite rarely, while the other
quite frequently).

In order to adapt the product to this consideration, we use the expression
in Equation 4, in which k£ can be adjusted according to the importance one is
willing to give to low TF values.

Ve B (1 — e =B ), 2 P e [0,1) (4)

Still another thing that we have to take into account in our case is that the same
difference between tf;4 and tfiB can have a different impact depending on whether
tf;4 and tff are large or small. To tackle this issue, we combine Equation 4 with
the use of the arctan function, which allows us to end up with a similarity



measure shown in Equation 5. This form has the advantage that it takes into
account that two TF values for the same index have to be positive, that the
similarity should be the greater, the larger the TF values are, and that the same
difference between tf2 and tf2 should have a different impact according to the
values of tf2 and tf5.

. tan(tf') — arctan(tf?
tfeehgeB . (1 - Larctan(tly) —arctan(7)] ) a0 g (s
arctan(1) ’

Links in our BisoNets are weighted using the similarity measure shown in Equa-
tion 5. This approach allows us to use several different kinds of graph mining
algorithms, such as simply thresholding the values to select a subset of the edges,
or more complex ones, like calculating, for example, shortest paths.

4 The Swanson Benchmark

Having shown how BisoNets can be built from textual data sources, we present a
benchmark application in this section. The idea is to provide a proof of principle,
that this approach of creating a BisoNet can help a user to discover bisociations.

Swanson’s approach [13] to literature-based discovery of hidden relations be-
tween concepts A and C' via intermediate B-terms is the following: if there is
no known direct relation A-C', but there are published relations A-B and B-C
one can hypothesize that there is a plausible, novel, yet unpublished indirect
relation A-C'. In this case the B-terms take the role of bridging concepts. In his
paper [13], Swanson investigated plausible connections between migraine (A4) and
magnesium (C'), based on the titles of papers published before 1987. He found
eleven indirect relations (via bridging concepts B) suggesting that magnesium
deficiency may be causing migraine.

We tried our approach on the Swansons data source which consists of 8000
paper titles, taken from the PubMed database, published before 1987 and talking
about either migraine or magnesium, to see if it was possible to find again these
relations between migraine and magnesium. In order to generate a BisoNet,
we implemented a parser for text files containing the data from PubMed able to
export them in the format understandable by the second layer of our framework.
Then, this second layer performed the keywords extraction, using these keywords
as nodes and linking these nodes the way described in Section 3.

For testing purpose, we gave the name “domain A” to the data coming from
the file concerning migraine, and “domain B” to the data coming from the one
concerning magnesium as the purpose here is to discover links crossing domains.
Whereas the data of the benchmark was make selecting papers talking about
magnesium and paper talking about migraine, we could think about another
Swanson-like benchmark selecting papers from the “diseases” domain and others
from the “molecules” domain in order to have a larger investigation field.

Given this BisoNet, using a simple threshold filtering the less important nodes
and links makes us able to discover indirect relations between magnesium and
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Fig. 2. An example of a BisoNet generated from the Swanson benchmark data sources.



migraine, relations that use keywords, belonging to both domains A and B, such
as “deficit”, “headache”, “therapy” or “treatment” to link the two concepts we
are talking about. This can be easily seen just looking at Figure 2.

5 Conclusion and further work

In this article, we provided a definition of the notion of a bisociation, as un-
derstood by Koestler, which is the key notion of the BISON project. Building
on this defintion, we then defined the concept of a BisoNet, which is a network
bringing together data sources from different domains, and therefore may help a
user to discover bisociations. We presented a way we create nodes using simple
text-mining techniques, and a procedure to generate links between nodes, which
is based on comparing text frequency vectors using a new similarity measure we
introduced.

We then perform a benchmark in order to rediscover bisociations between
magnesium and migraine that have been discovered by Swanson using articles
published before 1987. We see that bisociations between these two terms are
easily discovered using the generated BisoNet, thus indicating that BisoNets are
a promising technology for such search.

In summary, we venture to say that this work can be easily applied to any
kind of textual data source in order to mine data looking for bisociations, thanks
to the two layers architecture implementation. In addition, we are working on
generalizing these techniques to non-textual data sources, introducing different
types of attributes for the nodes, and therefore, other types of similarity measures
in order to link the heterogeneous set of nodes. Further work also consists in
performing other benchmarks and applying graph mining algorithms in order to
confirm the quality of the so generated BisoNets.

The work presented here was supported by the European Commission un-
der the 7th Framework Programme FP7-ICT-2007-C FET-Open, contract no.
BISON-211898.
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Abstract. A major challenge for next generation data mining systems is
creative  knowledge discovery from diverse and distributed
data’/knowledge sources. In this task, an important challenge is
information fusion of diverse representations into a unique
data/knowledge format. This paper focuses on the graph representation
of data/knowledge generated from text documents available on the web.
The problem addressed is how to efficiently and effectively create an
information network, named a BisoNet, from large text corpora. Several
options concerning node and arc representation are discussed, and a
case study information network is created from articles concerning
autism, downloaded from the PubMed repository of medical
publications. Open issues and lessons learned concerning representation
choices are discussed

1 Introduction

Information fusion can be defined as the study of efficient methods for automatically
or semi-automatically transforming information from different sources and different
points in time into a representation that provides effective support for human and
automated decision making [Bos07]. Creative knowledge discovery can only be
performed on the basis of a sufficiently large and sufficiently diverse underlying
corpus of information. The larger the corpus, the more likely it is to contain
interesting, still unexplored relationships.

The diversity of data/knowledge sources demands a solution that is able to represent
and process highly heterogeneous information in a uniform way. This means that
unstructured, semi-structured and highly structured content needs to be integrated.
Information fusion approaches are diverse, and domain dependent. For instance,
recent investigations in using information fusion to support scientific decision making
within bioinformatics include [Dur06, Rac05]. [Smi06] exploit the idea of
formulating an ontology-based model of the problem to be solved by the user and
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interpreting it as a constraint satisfaction problem taking into account information
from a dynamic environment.

In this paper, we explore a graph-theoretic approach [Alb02, Bal06] which appears to
provide the best framework to accommodate the two dimensions of information
source complexity — type diversity as well as volume size. Efficient management and
processing of very large graph structures can be realized in suitable distributed
computing environments, such as grids, peer-to-peer networks or service-oriented
architectures on the basis of modern database management systems, such as XML,
object-oriented or graph-oriented database management systems. The still unresolved
challenge of graph-theoretic approaches is the creation, maintenance, and update of
the graph elements in the case of very large and diverse data’knowledge sources.

This paper focuses on the creation of large graph representations of data/knowledge
from text document resources available on the web. The problem addressed is how to
efficiently and effectively create an information network, named a BisoNet, from
large text corpora. A BisoNet representation, as investigated in the BISON! project
and discussed in [Ber08] is a graph representation, consisting of labelled nodes and
edges. The original idea underlying the BISON project was to have a node for every
relevant concept of an application domain, captured by terms denoting these concepts,
that is, by "named entities". For example, if the application domain is drug discovery,
the relevant (named) entities are diseases, genes, proteins, hormones, chemical
compounds etc. The nodes representing these entities are connected if there is
evidence that they are related in some way. Reasons for connecting two
terms/concepts can be linguistic, logical, causal, empirical, a conjecture by a human
expert, a co-occurrence observed in documents dealing with the considered domain.
E.g., an edge between two nodes may refer to a document (for example, a research
paper) that connects the represented entities.

Open issues in BisoNet creation are how to identify entities and relationships in data,
especially from unstructured data like text documents: i.e., which nodes should be
created from text documents, what edges should be created, what are the attributes
with which they are endowed and how should edge weights be computed. This paper
discusses several possible choices that can be made concerning the entities that
constitute nodes and edges in a graph when the target knowledge representation is a
BisoNet.

Another core question is the granularity chosen for describing the network elements,
as well as the diversity of resources. To illustrate a great variety of text sources we
use two extreme examples. Firstly, there is a concept of a generic document. We
usually do not know much about texts from these sources, sometimes we do not even
know which topics they describe. A general document can also contain a lot of noise.
Examples of general documents are: a random text from the internet, blogs,
newsgroup posts, mobile messages (sms) or mail archives. On the other extreme there
are documents from well defined sources. These documents share a predefined

! Bisociation Networks for Creative Information Discovery: http://www.BisoNet.eu/.



vocabulary, we precisely know the subject they describe, and usually they are
annotated with keywords. Text of this kind is often written by experts in some area
who use a similar language to describe similar concepts. Sometimes we can even get
access to an ontology or a hierarchy of concepts used in the documents. Examples of
these documents are scientific articles from various domains and other documents
from well structured and controlled sources (e.g.: encyclopaedia articles).

In this paper we use the example from the second of the two extremes. As a
representative of a set of scientific documents we used subsets of medical articles
from the PubMed? database, in combination with MeSH?, a controlled vocabulary
hierarchical thesaurus. A case study information network is presented, created from
articles concerning autism, downloaded from the PubMed repository of medical
publications. The open issues concerning representation choices are discussed in
substantial detail.

The paper is structured as follows: The second section provides the problem
description and outlines the structure of the solution proposed in this paper. The next
section sets the standard terminology used in the area of text mining and describes
some basic procedures for preprocessing a collection of documents. Definition and
representation of network entities is presented in the fourth section. The fifth section
explains what types of distance measures can be used with network entities or
documents. The next section suggests some tips and practices to be followed when
deciding which relations are appropriate for the generated BisoNet. Use case about
autism is presented in the seventh section. The last section sketches our plans for
future work in the Bison project. Acknowledgements and references are listed at the
end of this paper.

2 Problem Description: Creation of BisoNets from Text

When creating large bisociation networks (BisoNets) from texts, we have to address
the same two issues as in network creation from any other source: define a method for
identifying entities, and define a method for discovering relations between these
entities. Since text documents can be acquired from very diverse sources we can
apply very diverse techniques to generate BisoNets.

In practice, a workflow for converting a set of documents into a BisoNet is more
complex than just identifying entities and relations. We have to be able to preprocess
text and filter out noise, to generate a large number of in-memory entities and
calculate various distance measures between them effectively. As these tasks are not
just conceptually difficult, but also computationally very intensive, a great care is
needed when designing and implementing algorithms for BisoNet construction.

2 PubMed database: http://www.ncbi.nlm.nih.gov/pubmed.
3 Medical Subject Headings: http://www.ncbi.nlm.nih.gov/sites/entrez?db=mesh.
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The currently proposed “text to BisoNet” system, called Texas (Text Assistant),
consists of the following modules:
e connect to a data source and collect a set of documents,
e  preprocess the documents,
o define network entities (considering background knowledge),
e search / count entities in the text and create the in-memory entity
representation,
o define and calculate various measures of similarities/distances between
entities,
o establish relations between entities using the calculated measures, and
e output the created BisoNet.

A sample workflow, as implemented in the Orange4WS extension [Pod09] of the
Orange data mining toolbox [Dem04], is illustrated in Figure 1 (BOW="bag of
words” representation of documents).

(1)
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max num. of documents
(&)
(5)
rp o
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transpose BOWs create word network  network from string  Net Explorer
Figure 1: A workflow of text mining algorithms and services.

This paper describes the specific issues that arise when dealing with texts and which
can usually not be applied directly to other kinds of databases. The described Texas
implementation is built on top of the LATINO# library of link analysis and text
mining software. This library contains a majority of elementary text mining
procedures, but, as the creation of BisoNet is a very specific task (in the text mining
world), a lot of modules had to be implemented from scratch or at least optimized
considerably.

4 LATINO library: http://sourceforge.net/projects/latino/.



3 Acquiring a Text Corpus and Creating a BisoNet

This section briefly describes the first and the last step in the workflow of BisoNet
creation, i.e., connecting to a data source to collect the documents and the output of
the created BisoNet. Since these two issues are mainly technical - they are neither
difficult nor computationally expensive - we here only list what our implementation
supports and what are the options to be considered.

As there are no standards about the text interchange format in the BISON project and
for the sake of simplicity we currently accept just textual and XML files as an input to
the procedure. In the future, we can simply add also the following alternatives:
e acquiring documents using soap web services (e.g.: PubMed uses soap web
service interface to access their database),
e selecting documents from various SQL bases,
e crawling the internet and gathering documents from web pages. (e.g.:
Wikipedia articles), and
e collecting documents from snippets returned from search engines (e.g.:
Google snippets).

We have provided the output of the created BisoNets in two different formats:
o the Biomine® network file format, used in the Biomine Knowledge discovery
in biological databases project [Sev06],
o the Pajek® network file format, used in the Pajek program for large network
analysis [Bat03],
enabling BisoNet visualization and analysis with Biomine and Pajek, respectively.

In addition to explaining various aspects of preprocessing, this section also briefly
describes basic text mining concepts and terminology, some of which are taken from
[Fel07].

Preprocessing is the most important part of network extraction from text documents.
Its main task is the transformation of unstructured data from text documents into a
predefined well-structured document data representation. As shown below,
preprocessing is inevitability very tightly connected to the extraction of network
entities. In our case, actual network entities are totally defined after preprocessing is
finished. The only thing we can later do is to remove some of the useless entities from
the set.

In general, the task of preprocessing consists of the extraction of documents’ features
from documents. The set of all features from document collection is called a
representational model. Each document can be presented as a subset of features that it
contains. If we write these features of every document in the form of a vector we get
the most standard document representation called feature vectors. Given that one of

5 Biomine project: http://www.cs.helsinki.fi/group/biomine/.
6 Pajek program: http://pajek.imfm.si/doku.php.
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the characteristics of documents’ feature vectors is their sparseness, they are often
referred also as sparse vectors. In short, the goal of preprocessing is to extract a sparse
feature vector for each document from the given document collection.

Commonly used document features are characters, words, terms and concepts [Fel07].
Characters and words carry little semantic information and are therefore not
interesting to consider. On the other hand, terms and concepts carry much more
semantic information. Terms are usually considered as single or multiword phrases
selected from the corpus by means of term-extraction mechanisms (e.g. because of
their high frequency) or are present in an external lexicon of a controlled vocabulary.
Concepts or keywords are features generated for documents employing the
categorization or annotation of documents. Common concepts are derived from
manually annotating a document with some predefined keywords or by inserting a
document into some predefined hierarchy. When we refer to document features, we
mean terms and concepts that we were able to extract from the documents.

Since high-quality features are hard to acquire, all possible methods that could
improve this process should be used at this point. The general approach that usually
helps the most is achieved by incorporating background knowledge about the
documents and their domain. The most elegant technique to incorporate background
knowledge is the use of a controlled vocabulary. Controlled vocabulary is a lexicon of
all relevant terms that exist in a given domain. Here we can see a major difference
when processing general documents as compared to scientific documents. For many
scientific domains there exists not only a controlled vocabulary but also a lot of
documents inside scientific article collections are pre-annotated. In this case we can
quite easily create feature vectors since we have terms as well as concepts already
pre-defined. We just have to find them in the documents. Other interesting approaches
to identifying concepts include methods such as KeyGraph [Ohs98], which extract
keywords/concepts with minimal assumptions or background knowledge, even from
individual documents.

A standard collection of preprocessing techniques [Fel07] is listed below, together
with a set of functionalities implemented in our system contains.

e Tokenization: continuous character stream must be broken up into
meaningful sub-tokens, usually words or terms in case where a controlled
vocabulary is present. Our system uses a standard unicode tokenizer: it partly
follows the Unicode Standard Annex #297 for Unicode Text Segmentation.
The alternative is a more advanced tokenizer which tokenizes strings
according to a predefined controlled vocabulary and discards all the other
words/terms. Such a tokenizer was used in the test scenario of BisoNet
creation from PubMed documents described in Section 8.

e Stopword removal: stopwords are some predefined words from a language
that usually carry no relevant information (e.g.: and, or, a, an, ... in English);
the usual practice is to ignore them when building a feature set. Our
implementation uses a predefined list of stopwords - some common lists that

7 Unicode Standard Annex #29: http://www.unicode.org/reports/tr29/#Word_Boundaries.



are already included in the library are taken from Snowball® - a small string
processing language designed for creating stemming algorithms.

e Stemming or lemmatization: the process that converts each word/token into
the morphologically neutral form. The following alternatives have been
made available: Snowball stemmers, the Porter stemmer [Por80], Lemmagen
lemmatizer [JurQ7].

e Part-of-speech (POS) tagging: the annotation of words with the appropriate
POS tags based on the context in which they appear.

e Syntactical parsing: performs a full syntactical analysis of sentences
according to a certain grammar. Usually shallow (not full) parsing is used
since it can be efficiently applied to large text corpora.

o Entity extraction: methods that indentify which terms should be promoted as
entities and which not. Entity extraction through words grouping into terms
using n-gram extraction mechanisms (an n-gram is a sub-sequence of n items
from a given sequence) has been implemented.

4 Network Entities

The design choice of our approach is that the entities of the BisoNets will be directly
the features of documents, i.e., the terms and concepts, described in the previous
section. The following steps are independent of how terms and concepts have actually
been identified.

After entities definition one also has to provide some representation of entities in a
way which enables efficient calculation of distance measures between them. In the
same way as documents are represented as sparse vectors of features (entities), also
entities can be represented as sparse vectors of documents. This is illustrated in
Example 1: if entity ent; is present in documents doc;, doc; and doc, then its feature
vector would consist of all these documents (with appropriate weights). By analogy to
the original vector space - feature space, the newly created vector space is called the
document space. While documents “live” in the feature (entity) space, the entities
“live” in the document space.

Note that if we write document vectors in the form of a matrix, than the conversion
between the feature space and the document space is performed by just transposing
the matrix (see Example 1). The only question that remains open for now is what to
do with the weights? Is weight w'y., identical to weight w,..? This depends on various
aspects, but mostly on how we define weights of the entities (features) in the first
place (when defining document vectors.)

There are four most common weighting models for assigning weights to features:
e Binary: feature weight is either one, if the corresponding feature is present in
the document, or zero otherwise.

8 Snowball: http://snowhball.tartarus.org.
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e Term occurrence: feature weight is equal to the number of occurrences of
this feature.

e Term frequency: weight is derived from the term occurrence by dividing the
vector by the sum of all the weights (number of all the features) — it can be
also viewed as term occurrence normalized by the Manhattan length of the

vector.
e TF-IDF: Term Frequency-Inverse Document Frequency is the most common
scheme for weighting features. It is defined as:

wlFIPE = TermFreq(entx,docy)log( , Where TermFreq(ent,, doc, )

N
is the frequency of feature ent, inside document doc,, N is the number of all
documents and DocFreq(ent,) is the number of documents that contain ent,.
The idea behind TF-IDF measure is to lower the weight of features that
appear in many documents.

Documents | Extracted entities

doc, enty, ent,, ent;

doc, ents, ent,, ent,

docs enty, ent,, ent,, ents

doc, enty, enty, enty, ents, enty, ent,

Original documents and extracted entities

Feature space | ent; | ent, | ent; | ent, | ents
doc, Wfl:l Wt1:2 WT1:3
doc, sz:s Wt2:4
doc, WT3:1 Wt3:2 Wt3:5
doc, Wiy W | Wiy

Sparse matrix of documents: fo;y denotes the weight (in the
feature space) of entity y in the feature vector of document x

Document space | doc; | doc, | docs | doc,

d d 3
ent; Wiy Wi | Wiy
ent, Wy W

d 3 3
ents Wiy | Wanp W 3.4
enty Wy Wy
ents w5

Sparse matrix of entities: de:y denotes the weight (in the
document space) of document y in the document vector of entity x

Example 1: Conversion between the feature and the document space.

These four methods can be further modified with vector normalization (dividing each
vector so that length - usually the Euclidian or Manhattan length - of the vector is 1).
If and when this should be done depends on several reasons: one of them is also the
decision which distance measure one will use in the next step — the relation
identification step. If cosine similarity is used, it actually does not matter if the
vectors are pre-normalized, as this is also done during distance calculation. Example 2



shows the four measures in practice — documents are taken from Example 1. Weights
are calculated for the feature space and are not normalized.

For testing purposes we have implemented all four weighting models so one can
experiment which is the most suitable to some domain. It is also up to workflow
designer to decide whether vectors should be normalized or not. Currently we are still
researching what to do with weights when we are transforming back and forth
between feature space and document space. At this point we leave this decision also
to a workflow designer and support three most sensible approaches:

e Leave weights unchanged.

e Leave weights unchanged but normalize the entities vectors after

transformation.
o Recalculate all weights according to the new space.

ent, | ent, | ent3 | enty | ents
doc;| 1 |1 |1

doc, 111
docg| 1 | 1 1
docs| 1 111

ent, | ent, | ent3 | enty | ents
doc;| 1 |1 |1

doc, 112
docg| 1 | 2 1
doc,| 3 112

Term occurrence

ent, | ent, | ent3 | enty | ents
dOCl 1/3 1/3 1/3

dOCz 1/3 2/3

dOCg 1/4 2/4 1/4

dOC4 3/6 1/5 2/6

Term frequency
ent; ent, ent; ent, ents

doc, (1/3)-log(4/3) (1/3) -log(4/2) (1/3) -log(4/3)
doc, (1/3) -log(4/3) (2/3) -log(4/2)
doc, (1/4) -log(4/3) (2/4) -log(4/2) (1/4) -log(4/1)
doc, (3/6) -log(4/3) (1/6) -log(4/3) (2/6) -log(4/2)

TF-IDF: term frequency — inversed document frequency

Example 2: Weighting models of features in document vectors (from Example 1).

It is worthwhile to notice again the analogy between the feature space and the
document space. Although we have developed the methodology for entities network
extraction, the developed approach can be used also for document network extraction.
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Moreover, both approaches can be used to extract the same network where documents
and entities are connected using some special relations.

5 Distance Measures between Vectors

This section describes some distance measures between vectors in either the feature
space or the document space. The choice of a preferable distance measure should be
tightly connected to the choice of the weighting model. Some of the combinations are
very suitable for each other and may even have some understandable interpretation or
experimentally evaluated important value, while others may be less appropriate
combination pairs. Therefore we also list commonly used pairs of weighting model
and distance measure and describe them.

Our implementation is optimized to the calculation of lengths of sparse vectors: |vec,|
and dot products between those vectors: DotProd(vec,, vec,). For that reason, we
state also how different distance measures are expressed using these two calculations
(if applicable for the described measure).

The most common measures in vector spaces, which are also implemented in our
system, are the following:
e Dot products: DotProd(vecx, vecy).

e  Cosine similarity: which is actually dot product normalized by the length of

. DotProd (vec,,
both vectors CosSim(vec,, vec,) = 254 e ¥¢) 10 the cases where

|Vecx||vecy|
vectors are already normalized, cosine similarity is identical to the dot
product.
e Jaccard index: this similarity coefficient measures the similarity between
sample sets. It is defined as the size of the intersection divided by the size of
the union of the sample sets:

]aCC[HX(Uer, 17€Cy) _ |vecx Uvecy| - |vecx nvecy| _ DotProd (Vecx, Vecy)

|vecx Uvecy| - Ivecxl+|vecy|—D0tPr0d (vecx, vecy)'
where lengths |vec, | and |vecy| are manhattan lengths of these vectors.

e Bisociation index: is the similarity measure defined for the needs of the
BISON project. It is explained in more detail in [Bor09]. This measure
cannot be expressed by dot product, therefore, the following definition uses
the notation derived from Example 1:

. oM [tan ~1(w,;) — tan "1 (w.)]
BisInx(vec,, vec,) = i, ("/wx;iwy:l— (1 — ) = ) ,

where M is the number of all entities.

Pairs of weighting models for features/entities and distance measures that are usually
used together in vector spaces are the following:



e TF-IDF weighting, cosine similarity — this is probably the most commonly
used combination for computing similarity in the feature space.

e Binary weighting, dot product — if used in the document space the result is
the co-occurrence measure which counts the number of documents where
two entities appear together. This is probably the most widely used measure
in the document space.

e Term occurrence weighting, dot products — this is another measure of
concurrence of entities in same documents. Compared to the previous
measure, this one considers also multiple co-occurrence of two entities inside
a document and gives them a greater weight in comparison with the case
were each appears only once inside the same document.

e Binary weighting, Jaccard index — Jaccard index is defined on the domain of
sets, therefore the only reasonable weighting model to use with it is the
binary weighting model (since every vector then represents a set of features).

e Term frequency, “Bisociation index” — since Bisociation index was designed
with the term frequency weighting in mind, it seems reasonable, to firstly try
this combination when determining the weighting model for the Bisociation
index.

6 Relations between Entities

At this point a workflow designer has all the required ingredients to create a BisoNet:
definition of the entities and the means to calculate distances/similarities between
them. This section describes some design techniques to be considered when deciding
which of the many possible relations should be included in the network.

Ideas for some of the described approaches were drawn from [Swa06] and its
descendant [Pet09]. The main idea of these two articles is to exploit weak relations
between entities. This is an innovative and promising attempt to finding interesting —
hidden — relations between entities. Hence, we try to simulate this procedure and
recreate interesting discoveries made with those algorithms. Consequently, we were
encouraged to include also information of weak links into our BisoNet creation
procedure.

A common and generally good practice to be followed when creating relations is to
annotate them with different types if they are derived using different approaches. In
the case one follows this idea, the algorithms of the next step (searching through
BisoNets) will have much easier tasks to solve. In such a way one also does not need
to worry so much if some relations are unnecessarily defined twice (if the same
information comes up using two different techniques), since relations are not merged
together but are distinguished by the following algorithms.

We have implemented the following relations/links identifying techniques:
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e Strongest links extraction: go through all combinations of pairs of nodes and
find the strongest links (usually this means to find relations between most
similar entities.) We see at least three options how to accomplish this:

0 The first option is to extract the n strongest links in the whole
network.

0 The second option is to extract the m strongest links for every node
in the network.

0 The third option is the combination of the first and the second.
Retrieve the n strongest links in general and append the m strongest
links for each node (if they do not already exist). In this way, the
network is connected — every node has minimally m connections,
but “stronger” nodes get the opportunity to get better connected
than the others.

o  Weakest links extraction: find links that have weight more than zero (they
exist) but are the weakest among all the links.

0 The three options described in the strongest links extraction can be
also applied here.

e Adding links from background knowledge. In the case where we have some
background knowledge that already contains links between entities (e.g.:
MeSH thesaurus in the case of PubMed articles) we should consider adding
them also to the output network.

e Adding inverse vectors. If we are building a network of entities there is also
the possibility of adding documents as nodes in the network. Links between
entities can be added using numerous described ways, while the relation
between entities and documents could be of type “document contains entity”.
The same conclusion is valid if we are creating a document network — we
can add entities. One concern here can be the great number of links added
with this approach; however, some filtering techniques may be applied.

Which of these techniques are appropriate and which are not can only be evaluated
using advanced BisoNet search/crawler/exploration algorithms and tools. Given that
there are many possible combinations of relations to include in the network, also
promising subsets should be identified. So far we did not research this issue, as it is
conceptually a separate process — compared to generating BisoNets from text
documents. In view of the fact that only results from these algorithms will be able to
evaluate the entire process of network creation, this is one of the most important items
on our future work agenda.

7 The Autism Case Study

The goal of this use case was to construct a BisoNet from PubMed articles on autism.
Autistic disorder (also called autism; more recently described as "mindblindedness™)
is a neurological and developmental disorder that usually appears during the first
three years of life. A child with autism appears to live in his/her own world, showing
little interest in others, and a lack of social awareness. Autistic children often have
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problems in communication, avoid eye contact, and show limited attachment to
others. However, many persons with autism excel consistently on certain mental tasks
(i.e., counting, measuring, art, music, memory).

We applied the above described Texas process to obtain a BisoNet for autism. We
retrieved articles about autism from the PubMed database, identified entities in them
using the MeSH vocabulary, and derived co-occurrence relations between entities. A
part of the resulting BisoNet, as visualized by the Biomine visualization engine
[Sev06], is shown in Figure 2.

coocuras_strong GENETICS coocures_strong
0.0402 e 0.08409
CHILD
node coocures_strong
p 041012 coocures_TONE ALCINEURIN
coveures_strong 0.12758 node
0.74255
\\\
coocures_strong .
0.13381 coocures_strong
AUTISTIC_DISORDER J coocures_strong 0.19545
node 0.02191
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013092 011074
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Figure 2: Part of BisoNet, created from PubMed articles on autism.

The cause of autism is not known. Research suggests that autism is a genetic
condition, as evidenced by a link between autism and genetics in the BisoNet of
Figure 2. It is believed that several genes are involved in the development of autism.
Research studies in autism have found a variety of abnormalities in the brain structure
and chemicals in the brain; however, there have been no consistent findings. The
BisoNet of Figure 2 suggests possible relationships to calcineurin and
fluorescensisohticyanate. Ideally, through BisoNet exploration, we hope to discover
some still unknown links in this domain.

A part of the BisoNet, created from the PubMed articles on autism, as visualized by
the Biomine visualization engine [Sev06], is shown in Figure 2.
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8 Future Work

The methodology for creating BisoNets from text, presented in this paper, will be
used as a foundation for our forthcoming research on case studies investigated in the
BISON project, which include the use of texts in BisoNets. These case studies
(benchmarks) will help us not only to validate this methodology, but also to get the
overall view of the progress we are doing on bisociation discovery (the core of the
BISON project).

The case studies we plan to address using the developed methodology are:

e Migraine treatment and unknown facts detection from the selection of
documents out of the PubMed database. The goal of this benchmark is to
recreate the Swanson's approach [Swa06] to literature-based discovery of
hidden relations between concepts A and C via intermediate B-terms. If there
is no known direct relation A-C, but there are published relations A-B and B-
C one can hypothesize that there is a plausible, novel, yet unpublished
indirect relation A-C. The result of [Swa06] that we want to rediscover is a
bisociative link between migraine and magnesium, which was previously
unknown.

o Discovery of interesting (previously unstudied) specifics in the domain of
autism from the selection of documents out of the PubMed database. This
benchmark is about reconstructing the RaJoLink approach [Pet09] to
literature-based open discovery process. The Swanson's approach
implements closed discovery, the A-B-C process, where A and C are given
and one searches for intermediate B concepts. In open discovery, in contrast,
only A is given. The RaJoLink idea is to find C via B terms which are rare
(and therefore potentially interesting) in conjunction with A.

e Cross contexts (domain) bisociation link discovery in the 20 newsgroups
data set®. In this setting we want initially to find some mappings between the
entities from one domain and equivalent entities from another domain. After
identification of such connections, we will try to find bisociations between
whole concepts among domains. These bisociations can indicate how to
apply solutions of problems from one domain to the open problems of
another domain.

We expect that the most time-consuming task during the creation of BisoNets for the
above presented case studies will be the definition of the numerous setting at each
step of the network creation workflow. Although this paper leaves many such topics
unanswered, decisions will have to be made and supported by reasonable arguments.

We will also investigate alternative methods for identifying concepts and discovering
relationships between them. In particular, we would like to be able to identify rare but
important relationships and separate them from common relationships, even when
they are strong. This would give further support to discovery of novel and non-trivial
links.

9 The 20 newsgroups data set: http://people.csail.mit.edu/jrennie/20Newsgroups/.
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Abstract. The paper present a preliminary study of creative knowledge
discovery through bisociative data analysis. Bisociative reasoning is at
the heart of creative, accidental discovery (serendipity), and is focused on
finding unexpected links by crossing different contexts. Contextualization
and linking between highly diverse and distributed data and knowledge
sources is therefore crucial for implementation of bisociative reasoning.
In the paper we explore these ideas on the problem of analysis of microar-
ray data. We show how enriched gene sets are found by using ontology
information as background knowledge in semantic subgroup discovery.
These genes are then contextualized by the computation of probabilistic
links to diverse bioinformatics resources. Results of two case studies are
used to illustrate the approach.

1 Introduction

Biologists collect large quantities of data from wet lab experiments and high-
throughput platforms. Public biological databases, like Gene Ontology, Kyoto
Encyclopedia of Genes and Genomes and ENTREZ, are sources of biological
knowledge. Since the growing amounts of available knowledge and data exceed
human analytical capabilities, technologies that help analyzing and extracting
useful information from such large amounts of data need to be developed and
used.

The concept of association is at the heart of many of today’s ICT technolo-
gies such as information retrieval and data mining. However, scientific discovery
requires creative thinking to connect seemingly unrelated information, for exam-
ple, by using metaphors or analogical reasoning. These modes of thinking allow
the mixing of conceptual categories and contexts, which are normally separated.
The functional basis for these modes is a mechanism called bisociation [8):

“The pattern underlying ... is the perceiving of a situation or idea, L,
in two self-consistent but habitually incompatible frames of reference,
My and M>. The event L, in which the two intersect, is made to vibrate
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simultaneously on two different wavelengths, as it were. While this un-
usual situation lasts, L is not merely linked to one associative context
but bisociated with two.”

From the computational point of view, we say that two concepts are bisoci-
ated [14] if:

— there is no direct, obvious evidence linking them,
— one has to cross contexts to find the link, and
— this new link provides some novel insight into the problem domain.

We have to emphasize that context crossing is subjective, since the user has to
move from his ‘normal’ context (frame of reference) to an habitually incompati-
ble context to find the bisociative link [2]. Thus, contextualization is one of the
fundamental mechanisms in bisociative reasoning. In this paper we present an
approach to discovery and contextualization of genes which should help in anal-
ysis of microarray data. The approach is based on information fusion, semantic
subgroup discovery (by using ontologies as background knowledge in microar-
ray data analysis), and the linking of various publicly available bioinformatics
databases. We first explain the basic notions: information fusion, subgroup dis-
covery and semantic subgroup discovery.

1.1 Information fusion

Information fusion can be defined as the study of efficient methods for auto-
matically or semi-automatically transforming information from different sources
and different points in time into a representation that provides effective support
for human and automated decision making [1]. Recent investigations in using
information fusion to support scientific decision making within bioinformatics
include [3,9]. Smirnov et al. [12] exploit the idea of formulating an ontology-
based model of the problem to be solved by the user and interpreting it as a
constraint satisfaction problem taking into account information from a dynamic
environment.

An approach to the integration of biological databases GO, KEGG and EN-
TREZ is implemented in the SEGS information fusion engine (Searching for
Enriched Gene Sets, [16]). Another, much larger, integrated annotated bioinfor-
matics information source is Biomine [11].

1.2 Subgroup discovery

Subgroup discovery techniques are used to generate explicit knowledge in the
form of rules that allow the user to recognize important relationships in a set
of class labeled training instances, describing the target property of interest.
Consider two applications. In the first one, the induced subgroup describing
rules suggest the general practitioner how to select individuals for population
screening, concerning high risk for coronary heart disease (CHD) [4]. The rule
below describes a group of overweight female patients older than 63 years:



High_ CHD_Risk « sex = female & age > 63 years &
body_mass_index > 25 kgm ™2

In the second application [5], subgroup describing rules suggest genes that are
characteristic for a given cancer type (i.e., leukemia cancer) in an application
of distinguishing among 14 different cancer types: leukemia, CNS, lung cancer,
etc.:

Leukemia «— KIAAO0128 is diff_expressed &
prostaglandin_d2_synthase is not diff_expressed

1.3 Semantic subgroup discovery

Semantic subgroup discovery refers to subgroup discovery, where semantically
annotated knowledge sources (ontologies) are used as background knowledge in
the data mining process. Using the technology of relational subgroup discovery
[17], we have developed an approach to information fusion and semantic data
mining, enabling background knowledge in the form of ontologies to be used in
relational machine learning. The relational subgroup discovery approach, which
was successfully adapted and applied to mining of bioinformatics data [15], and
further refined in the SEGS algorithm (Searching for Enriched Gene Sets, [16]),
is used in the information fusion and semantic subgroup discovery technology de-
scribed in this paper. Example rules below are induced by a semantic knowledge
discovery engine for two cancer types (ALL and AML) and ranked according to
the enrichment score. The rules are a conjunction of ontology terms from the
GO, KEGG and ENTREZ ontologies:

ALL « Func(’zinc ion binding’ & Comp(’chromosomal part’)
AML « Func(’metal ion binding’) & Comp(’cell surface’) &
Proc(’response to pest,pathogen,parasite’)

1.4 Overview of the paper

This paper describes first steps in creative data and knowledge exploration
through semantic subgroup discovery and contextualization through link dis-
covery between diverse bioinformatics databases. The described approach to se-
mantic subgroup discovery employs semantically annotated knowledge sources
as background knowledge for subgroup discovery. In this paper we investigate a
special subgroup discovery task: the gene set enrichment analysis task. A gene
set is enriched if the genes that are members of the set are statistically signifi-
cantly differentially expressed compared to the rest of the genes.

The SEGS method [16] uses as background knowledge data from three pub-
licly available, semantically annotated biological data repositories GO, KEGG
and ENTREZ. Based on the background knowledge, it automatically formu-
lates biological hypotheses: rules which define groups of differentially expressed
genes. Finally, it estimates the relevance (or significance) of the automatically
formulated hypotheses on experimental microarray data. The Biomine service
[11] provides links to a large number of biomedical resources, complementing
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our semantic subgroup discovery technology, due to the explanatory potential of
additional link discovery and Biomine graph visualization.

The paper is structured as follows. Section 2 gives an overview of five steps
in exploratory analysis of gene expression data. Section 3 describes an approach
to the analysis of microarray data, using semantic subgroup discovery in the
context of gene set enrichment. A novel methodology, a first attempt at bisocia-
tive discovery through contextualization, composed of using SEGS and Biomine
(SEGS+Biomine, for short) is in Section 4. Two preliminary case studies are
presented in Section 5.

2 Exploratory gene analytics

This section describes the methodological ingredients of the semantic subgroup
discovery technology, targeted at the analysis of differentially expressed gene sets:
gene ranking, the SEGS method for enriched gene set construction, linking of

the discovered gene set to related biomedical databases, and finally visualization
in Biomine. The shematic overview is in Figure 1.

Microarray data Enriched gene sets Contextualized

genel:+ + =
gpERe2t =4 o
gene3:+ SEGS Biomine

> >

geneN:— —

Fig. 1. Microarray gene analytics proceeds by first finding candidate enriched gene
sets, expressed as intersections of GO, KEGG and gene-gene interaction sets. Selected
enriched genes are then put in context of different bioinformatic resources, as computed
by Biomine link discovery engine.

The proposed method consists of the following five steps:

1. Ranking of genes. In the first step, class-labeled microarray data is pro-
cessed and analysed, resulting in a list of genes, ranked according to differ-
ential expression.

2. Ontology information fusion. A unified database, consisting of GO (pro-
cesses, functions and components), KEGG (biological pathways) and EN-
TREZ (gene-gene interactions) terms and relationships is constructed. To
this end, a set of scripts was written, enabling easy updating of the inte-
grated database.



3. Discovering groups of differentially expressed genes. The ranked list
of genes is used as input to the SEGS algorithm [16], an upgrade of the
RSD relational subgroup discovery algorithm [15], specially adapted to mi-
croarray data analysis. The result is a list of most relevant gene groups that
semantically explain differential gene expression in terms of gene functions,
components and processes as annotated in biological ontologies.

4. Finding links between gene group elements. The elements of the dis-
covered gene groups (GO and KEGG terms or individual genes) are entered
as queries to the Biomine crawler. Biomine computes most probable links
between these elements and a number of public biological databases. These
links help the experts to uncover unexpected relations and biological mech-
anisms potentially characteristic for the underlying biological processes.

5. Gene group visualization. Finally, in order to help in explaining the dis-
covered ontological relationships, the discovered gene relations are visualized
using Biomine visualization toolbox.

3 SEGS: Search for Enriched Gene Sets

The goal of gene set enrichment analysis is to find groups of genes—the so-called
gene sets—that are enriched. A gene set is enriched if the genes that are members
of that gene set are statistically significantly differentially expressed compared to
the rest of the genes. Two methods for testing the enrichment of gene sets were
developed: Gene Set Enrichment Analysis (GSEA) [13] and Parametric Analy-
sis of Gene Set Enrichment (PAGE) [7]. Originally, these methods take terms
(gene sets) from the Gene Ontology (GO), the Kyoto Encyclopedia of Genes
and Genomes (KEGG) and ENTREZ interactions, and test whether the genes
that are annotated by a specific term are statistically significantly differentially
expressed in the given dataset.

ENTREZ Fishe

GO }\~ Generatiorn Enricheg
GSE

<EGC of gene set gene sel
PAG

Microarray .| Ranking
data of genes

Ji

>

Fig. 2. Schematic representation of the SEGS method.

The novelty of our SEGS method, developed by Trajkovski et al. [16] and
used in this study, is that the method does not only test existing gene sets
for differential expression but it also generates new gene sets that represent
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novel biological hypotheses. In short, in addition to testing the enrichment of
individual GO and KEGG terms, this method tests the enrichment of newly
defined gene sets constructed by the intersection of GO terms, KEGG terms
and gene sets defined by taking into account also the gene-gene interaction data
from ENTREZ.

The SEGS method has four main components: the background knowledge,
the hypothesis language, the hypothesis generation procedure and the hypothesis
evaluation procedure. The schematic workflow of the SEGS method is shown in
Figure 2.

4 SEGS+Biomine: Contextualization of genes

We made an attempt at exploiting bisociative discoveries within the biomedical
domain by explicit contextualization of enriched gene sets. We applied two meth-
ods that use publicly available background knowledge for supporting the work
of biologists: the SEGS method for searching for enriched gene sets [16] and the
Biomine method for contextualization by finding links between genes and other
biomedical databases [11]. We combined the two methods in a novel way: we used
SEGS for hypothesis generation and evaluation from microarray experimental
data, and then input the SEGS results into Biomine for inter-context link dis-
covery and visualization (see Figure 3). We believe that by forming hypotheses
with SEGS, constructed as conjunctions of terms from different ontologies (dif-
ferent contexts), discovering links between them by Biomine, and visualizing the
SEGS hypotheses and the discovered links by the Biomine graph visualization
engine, the interpretation of the biological mechanisms underlying differential
gene expression is easier.

Biomine
databases
SEGS
rules | —_[Biomine Graph

Enriched/ graph crawler visualizer
gene sets

Fig. 3. SEGS+Biomine workflow.

In the Biomine project [11], data from several publicly available databases
were merged into a large graph and a method for link discovery between entities
in queries was developed. In the Biomine framework vertices correspond to enti-
ties and concepts, and edges represent known, annotated relationships between



vertices. A link (a relation between two entities) is manifested as a path or a
subgraph connecting the corresponding vertices.

Vertex Type Source Database  Vertices Degree
Article PubMed 330,970  6.92
Biological process GO 10,744  6.76
Cellular component GO 1,807 16.21
Molecular function GO 7,922 7.28

Conserved domain ENTREZ Domains 15,727 99.82
Structural property ENTREZ Structure 26,425  3.33

Gene Entrez Gene 395,611  6.09
Gene cluster UniGene 362,155  2.36
Homology group  HomoloGene 35,478 14.68
OMIM entry OMIM 15,253 34.35
Protein Entrez Protein 741,856  5.36

Table 1. Databases included in Biomine.

The Biomine graph data model consists of various biological entities and
annotated relations between them. Large, annotated biological data sets can
be readily acquired from several public databases and imported into the graph
model in a straightforward manner. Some of the databases used in Biomine
are summarized in Table 1. Currently, Biomine consists of a total of 1,968,951
vertices and 7,008,607 edges. This particular collection of data sets is not meant
to be complete, but it certainly is sufficiently large and versatile for real link
discovery.

5 Two case studies

In the first case study, SEGS was applied to find enriched gene sets for distin-
gushing between two cancer types. In the second case, SEGS and Biomine were
combined in order to find an underlying mechanism which might explain why
some specific cells are growing faster then the others, in terms of genetic markers.

5.1 Functional genomics

In functional genomics, gene expression monitoring by DNA microarrays (gene
chips) provides an important source of information that can help in understand-
ing many biological processes. The database we analyzed consists of a set of
gene expression measurements (examples), each corresponding to a large num-
ber of measured expression values of a predefined family of genes (attributes).
Each measurement in the database was extracted from a tissue of a patient with
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a specific disease; this disease is the class for the given example. The domain,
described in [5,10] and used in our experiments, is a typical scientific discovery
domain characterised by a large number of attributes compared to the number
of available examples. As such, this domain is especially prone to overfitting,
as it has two different cancer classes and a few training examples, where the
examples are described by thousands of attributes presenting gene expression
values. While the standard goal of machine learning is to start from the labeled
examples and construct models/classifiers that can successfully classify new, pre-
viously unseen examples, our main goal is to uncover interesting patterns/rules
that can help to better understand the dependencies between classes (diseases)
and attributes (gene expressions values).

Gene Set ES
Enriched in ALL
1. ALL « GO_Func(’zinc ion binding’) & 0.60

GO_Comp(’chromosomal part’) &
GO_Proc(’interphase of mitotic cell cycle’)
2. ALL « GO_Proc('DNA metabolism’) 0.59
3. ALL «— GO_Func(’ATP binding’) & 0.55
GO_Comp(’chromosomal part’) &
GO_Proc("DNA replication’)
Enriched in AML
1. AML « GO_Func(’metal ion binding’) & 0.54
GO_Comp(’cell surface’) &
GO_Proc(’response to pest,pathogen,parasite’)
2. AML « GO_Comp(’lysosome’) 0.53
3. AML « GO_Proc(’inflammatory response’) & 0.51
GO_Comp(’cell surface’)

Table 2. The top most enriched gene sets found in the leukemia dataset with the
p-value < 0.001.

Sample top-ranked rules, induced by a semantic knowledge discovery engine
for two cancer types (ALL and AML), ranked according to enrichment score
(ES), are listed in Table 2. Note that in Table 2 a term enrichment is used,
meaning the enrichment of differential expression of a set of genes, annotated by
the given conjunction of GO, KEGG and/or ENTREZ terms.

5.2 Systems biology

In the systems biology domain, our goal is to help the expert to find a biological
interpretation of wet lab experiment results. In the particular experiment, the
task is to analyse microarray data in order to distinguish between fast and slowly
growing cell lines. The aim of this study was to explain the differences between



the cases of fast and slowly growing cell lines through differential expression of
gene sets, responsible for cell growth.

Gene Set

1. SLOW-vs-FAST «— GO_Proc(’DNA metabolic process’) &
INTERACT( GO_Comp(’cyclin-dependent
protein kinase holoenzyme complex’))

2. SLOW-vs-FAST «— GO_Proc(’DNA replication’) &
GO_Comp(’'nucleus’) &
INTERACT( KEGG_Path(’Cell cycle’))

3. SLOW-vs-FAST «— . ..

Table 3. Top SEGS rules found in the cell growth experiment. The second rule states
that one possible distinction between the slow and fast growing cells is in genes par-
ticipating in the process of DNA replication which are located in the cell nucleus and
which interact with genes that participate in the cell cycle pathway.

Table 3 gives the top rules resulting from the SEGS search for enriched gene
sets. For each rule, there is a corresponding set of over expressed genes from
the experimental data. Figure 4 shows a part of the Biomine graph which links
a selected subset of enriched gene set to the rest of the nodes in the Biomine
graph.

We believe that SEGS in combination with Biomine may give a wet lab sci-
entist additional hints on what to focus on when comparing the expression data
of cells. Additionally, such an in-silico analysis can considerably lower the costs
of in-vitro experiments with which the researchers in the wet lab are trying to
get a hint of a novel process or phenomena observed. This may be especially true
for situations when just knowing the final outcome one cannot explain the drug
effect, organ function, or disesase satisfactory, since the gross, yet important
characteristics of the cells (organ function) are hidden (do not affect visual mor-
phology) or could not be recognized soon enough. An initial predisposition for
this approach is wide accessibility and low costs of high throughput microarray
analyses which generate appropriate data for in-silico analyses.

6 Conclusions

A prototype version of the gene analytics software, which enchances SEGS and
creates links to Biomine queries and graphs is available as a web application at
http://zulu.ijs.si/web/segs_ga/.

In the future work we plan to enchance the contextualization of genes with
biomedical literature as available in PubMed. To this end, we already have a
preliminary implementation of software, called Texas [6], which createas a prob-
abilistic network (BisoNet, compatible to Biomine) from textual sources. By
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focusing on different types of links between terms (e.g., frequent and rare coocu-
rances) we expect to get hints at some unexpected relations between concepts.

Our long term goal is to help biologists at better understanding of inter-
contextual links between genes and their role in explaining (at least qualitatively)
underlying mechanisms which regulate gene expressions.
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Abstract. Networks are a common way of representing linked infor-
mation. The goal of network abstraction is to transform a large network
into a smaller one, so that the smaller is a useful summary of the original
graph.

In this paper we review different approaches and techniques proposed to
abstract a large network. We classify the approaches along two axes. The
first one consists of elementary simplification techniques used: pruning
of (irrelevant) nodes and edges, partitioning to several smaller networks,
and generalization by replacement of subnetworks by more general struc-
tures. The other axis is objective vs. subjective methods; the latter ones
aim to maintain more information about those parts of a network that
the user has indicated as interesting.

We conclude the review by a brief analysis of which intersections of the
two axes are least researched and could therefore have future potential.

1 Introduction

Networks (or graphs) are a common and powerful representation for linked data:
nodes represent objects and links represent connections between objects. Exam-
ple applications are practically infinite; prominent examples include biological
networks, social networks, communication networks, and World Wide Web.

Networks are often large. Consider networks of thousands of genes, millions
of people, or billions of web pages. While networks are a powerful formalism for
handling and analysing such data, they are too large to be viewed or explored by
users. One solution is to present to the user an abstract view of the information.
We call this network abstraction.

The goal of network abstraction is to extract, from a large graph, a graph that
is simpler and therefore more useful, even though some information is unevitably
lost in the abstraction process — often the explicit aim is to lose (irrelevant)
information. An absracted view can help users capture the structure of a huge
network, or understand connections between distant nodes, or even discover new
knowledge difficult see in a huge graph. This paper is a literature review of some
applicable approaches to network abstraction.



Tazxonomy of network abstraction methods We classify network abstraction tech-

niques roughly along two orthogonal axes: (1) operations performed, and (2) goals.

Three main types of operations to produce abstractions of networks are
prune, partition, and generalize by replacing:

1. Prune peripheral or irrelevant nodes and edges. This reduces the size of the
network, with the aim of keeping only the most interesting or relevant nodes
and edges.

2. Partition the network into smaller ones. Each smaller subnetwork is now
easier to explore individually, while longer connections and larger structures
still require looking at several subnetworks.

3. Replace a part of the network by a more general structure. Generalization
may, for instance, replace a path with a single edge, parallel paths with a
single one, or a subgraph by a node, in order to simplify the network.

The goal of an abstraction technique can be viewed as either objective or
subjective. An objective technique disregards user-specific emphasis on any part
of the network, while a subjective method allows the user to indicate which parts
or the network should retain more of their details. For instance, a connection
subgraph query returns a network (of a limited size) that maximizes the connec-
tivity between given nodes, and thus is a subjective technique (using pruning).

Bias of the review Although we have aimed at covering representative approaches
for network abstraction in general, this review inevitably reflects our own inter-
ests. Our motivation is to abstract large information networks such as Biomine!.
The network model is simply a labeled and weighted graph G = (V, E). Ele-
ments of the vertex set V' are biological entities, such as genes, proteins, articles,
or biological processes, and so on. Edges from the set E have types such as
“codes for”, “interacts with”, or “is homologous to”. The interpretation of an
edge weight is that it is the probability that the edge exists, i.e., the network is
a (Bernoulli) random graph. Biomine currently consists of about 1 million ver-
tices and 10 million edges, making it very hard for experts to analyze without
abstraction techniques.

Structure of the review We structure this review first by the objectivity (Sec-
tion 2) ws. subjectivity (Section 3), and then by the operations (in subsections).
We conlude with brief notes in Section 4.

2 Objective Methods

In this section, we discuss network abstraction methods where the user has no
control over how specific parts of the graph are handled (but there may be
numerous other parameters for the user to set).

! http://biomine.cs.helsinki.fi/
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2.1 Pruning Edges or Nodes

In a complex network, not all nodes or edges are equally important. Removing the
most irrelevant or least central nodes or edges can greatly simplify the network
structure. In addition to methods directly aimed at network abstraction, ranking
nodes from a global viewpoint has been investigated for a long time in the web
and social network domains. Such methods may also be used to identify least
relevant nodes for pruning. We include such methods in this review.

Relative Neighborhood Graph The Relative Neighborhood Graph (RNG) [1,
2] only contains edges whose two endpoints are relatively close: by definition,
nodes a and b are connected by an edge if and only if there is no third node ¢
which is closer to both endpoints a and b than a and b are to eachother. RNG has
originally been defined for points, but it can also be used to prune edges between
nodes a and b that do have a shared close neighbor c. The relative neighborhood
graph then is a superset of the Minimum Spanning Tree (MST) and a subset
of Delaunay Triangulation (DT). According to Toussaint [1], RNG can in most
cases capture a perceptually more significant subgraph than MST and DT.

Node Centrality The field of social network analysis has produced several
methods to measure the importance or centrality of nodes [3—6]. Typical defini-
tions of node importance are the following.

1. Degree centrality simply means that nodes with more edges are more central.

2. Betweenness centrality [7—9] measures how influential a node is in connecting
pairs of nodes. A node’s betweenness is the number of times the node appears
on the paths between all other nodes. It can be computed for shortest paths
or for all paths [10]. Computation of a node’s betweenness involves all paths
between all pairs of nodes of a graph. This leads to high computational costs
for large networks.

3. Closeness centrality [11] is defined as the sum of graph-theoretic distances
from a given node to all others in the network. The distance can be defined as
mean geodesic distance, or as the reciprocal of the sum of geodesic distances.
Computation of a node’s closeness also involves all paths between all pairs
of nodes, leading to a high complexity.

4. Feedback centrality of a vertex is defined recursively by the centrality of its
adjacent vertices.

5. Eigenvector centrality has also been proposed [12].

Node centrality measures focus on selecting important nodes, not on select-
ing a subgraph (of a very small number of separate components). Obviously,
centrality measures can be used to identify least important nodes to be pruned.
For large input networks and small output networks, however, the result of such
straightforward pruning would often consist of individual, unconneted nodes,
not an abstract network in the intended sense.

Methods in the following subsections (2.1 and 2.1) are similar in this sense:
they help to rank nodes individually based on their importance, but do not as
such produce (connected) subgraphs.



PageRank and HITS In Web graph analysis, PageRank algorithm [13,14]
is proposed to find the most important web pages according to the web’s link
structure. It can be understood as the probability of a random walk on a directed
graph; the quality of each page depends on the number and quality of all pages
that link to it. It emphasizes highly linked pages and their links. A closely related
link analysis method is HITS (Hyperlink-Induced Topic Search) [15, 16]. It also
aims to discover web pages of importance. Unlike PageRank, it has two values
for each page, and is processed on a small subset of pages, not the whole web.
Haveliwala [17] discusses the relative benefits of PageRank and HITS.

In their basic forms, both PageRank and HITS value a node just according to
the graph topology. It is relatively easy to add edge weights to them. However,
if one already has a (Bernoulli) probabilistic interpretation of edge weights, the
extension is less trivial.

Birnbaum’s Component Importance Birnbaum importance [18] is directly
defined on (Bernoulli) random graphs where edge weights are probabilities of the
existence of the edge. The Birnbaum importance of an edge depends directly on
the overall effect of the existence of the edge. An edge whose removal has a large
effect on the probability of other nodes to be connected, has a high importance.
The importance of a node can be defined in terms of the total importance of its
edges. This concept has been extended for two edges by Hong and Lei [19].

2.2 Partitioning a Graph

Inside a network, there often are clusters of nodes (called communities in so-
cial networks) within which connections are stronger, while connections between
clusters are weaker and less frequent. In such a situation, a useful abstraction is
to split the network into clusters and present each one of them separately to the
user.

Often, the division is a partition of the original network. In this subsection,
we discuss two popular approaches, namely graph partitioning and hierarchical
clustering, and a method based on edge betweenness. We also touch on the issue
of determining the number of components.

Graph Partitioning A prevalent class of approaches to dividing a network to
small parts is based on graph partitioning [20,21]. The basic goal is to divide
the nodes into subsets of roughly equal size and minimize the sum of weights of
edges crossing different subsets. This problem is NP-complete. However, many
algorithms have been proposed to find a reasonably good partition.

Popular graph partitioning techniques include spectral bisection methods [22,
23] and geometric methods [24, 25]. While they are quite elegant, they have some
downsides. Spectral bisection in its standard form is computationally expensive
for very large networks. The geometric methods in turn require coordinates of
vertices of the graph.
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The multilevel method [26, 27] first collapses sets of nodes and edges to obtain
a smaller graph and partitions the small graph. It then refines the partitioning
while projecting the smaller graph back to the original graph. The multilevel
method combines a global view with local optimization to reduce cut sizes.

An issue with many of these partitioning methods is that they only bisect
networks [28]. Good results are not guaranteed by repeating bisections when
more than two subgroups are needed. For example, if the graph essentially has
three subgroups, there is no guarantee that these three subgroups can be dis-
covered by finding the best division into two and then dividing one of them
again.

Kernighan-Lin (K-L) algorithm [29] is a classical representative for methods
that take a rough partitioning as input. It iteratively looks for a subset of vertices,
from each part of the given graph, so that swapping them will lead to a partition
with smaller edge-cut. It does not create partitions but rather improves them.
The first (very!) rough partitioning can be obtained by randomly partitioning
the set of nodes. Obviously, a weakness of the The K-L method is that it only
has a local view of the problem.

Various modifications of K-L algorithm have been proposed [30,31], one of
them dealing with an arbitrary number of parts [30].

Hierarchical Clustering Another popular technique to divide networks is
hierarchical clustering [32]. It computes similarities (or distances) between nodes,
for which typical choices include Euclidean distance and Pearson correlation
(of neighborhood vectors), as well as the count of edge-independent or vertex-
independent paths between nodes.

Hierarchical clustering is well-known for its incremental approach. Algo-
rithms for hierarchical clustering fall into agglomerative or divisive class. In an
agglomerative process, each vertex is initially taken as an individual group, then
the closest pair of groups is iteratively merged until a single group is constructed
or some qualification is met. Newman [33] indicates that agglomerative processes
frequently fail to detect correct subgroups, and it has tendency to find only the
cores of clusters. The divisive process iteratively removes edges between the least
similar vertices, thus it is totally the opposite of an agglomerative method.

Obviously, other clustering methods can be applied on nodes (or edges) as
well to partition a graph.

Edge Betweenness One approach to find a partitioning is through removing
edges. This is similar to the divisive hierarchical clustering, and is based on the
principle that the edges which connect communities usually have high between-
ness [34]. Girvan and Newman define edge betweenness as the number of paths
that run along that given edge [33]. It can be calculated using shortest-path
betweenness, random-walk betweenness and current-flow betweenness. The au-
thors first use edge centrality indices to find community boundaries. They then
remove high betweenness edges in a divisive process, which eventually leads to
a division of the original network into separate parts. This method has a high



computational cost: in order to compute each edge’s betweenness, one should
consider all paths in which it appears. Many authors have already proposed
different approaches to speed up that algorithm [35, 36].

Number of Subgroups When partitioning a large network into subgroups,
how many subgroups should there be? Some methods depend on user’s input,
some others compute an objective measurement called modularity Q [28, 33, 37]:
it is the difference between the actual and the expected fractions of edges within
the clusters. A large positive modularity indicates that there are more edges
within clusters than we would expect on the basis of chance. Another measure of
the quality of graph fragmentation [38] considers both size and shape of clusters.

2.3 Replacing Subgraphs

The third operation in our taxonomy is replacement of a subgraph by a more
general one, e.g., of a set of closely related nodes by a single representative. This
operation allows to focus on the larger structures and connections in a graph.

Clustering In section 2.2, we already discussed techniques used to discover
clusters (communities) in a network. Clustering methods, especially those that
identify dense subgraphs, can also be used in an opposite way: we can replace a
dense cluster by a single node, so the overall structure of the network becomes
clearer.

Frequent Subgraphs A frequent subgraph may be considered a general pat-
tern whose instances can be replaced by a label of that pattern (i.e., single a node
or an edge representing the pattern). Motivation for this is two-fold. Technically,
this operation can simply be seen as compression; on the other hand, frequent
patterns possibly reflect some semantic structures of the domain and therefore
are useful candidates for replacement. As a simple example, connections of the
type “gene A codes for protein B” are frequent, and they reflect the known re-
lationship between genes and proteins. Depending on the use, it could be useful
to abstract a biological graph by collapsing all gene-protein pairs into a single
node.

In this subsection, we briefly review frequent subgraph mining, where the
goal is to identify subgraphs that appear with a frequency higher than a given
minimum frequency (also called support).

Two early methods use frequent probabilistic rules [39] and compression of
the database [40]. Some early approaches use greedy, incomplete schemes [41,
42]. Many of the frequent subgraph mining methods are based on the Apriori
algorithm [43], for instance AGM [44] and FSG [45, 46]. However, such meth-
ods usually suffer from complicated and costly candidate generation, and high
computation time of subgraph isomorphism [47]. To circumvent these problems,
gSpan [47] explores depth-first search in frequent subgraph mining. CloseG-
raph [48] in turn mines closed frequent graphs, which reduces the size of output
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without losing any information. The Spin method [49] only looks for maximal
connected frequent subgraphs.

Most of the methods mentioned above consider a database of graphs as input,
not a single large graph. More recently, several methods have been proposed to
find frequent subgraphs also in a single input graph [50-53].

3 Subjective Methods

In this section, we discuss abstraction methods for which the user can explicitly
indicate which parts or aspects are more important, according to his interests.
Such network abstraction methods are useful when providing more flexible ways
to query a graph (database).

3.1 Pruning Edges or Nodes

Relevant Subgraph Extraction Given two or more nodes, the idea here
is to extract the most relevant subnetwork (of a limited size) with respect to
connecting the given nodes as strongly as possible. This subnetwork is then in
some sense maximally relevant to the given nodes. There are several alternatives
for defining the objective function, i.e., the quality of the extracted subnetwork.

An early approache by Grotschel et al [54] bases the definition on the count
of edge-disjoint or vertex-disjoint paths from the source to the sink. A similar
principle has later been applied to multi-relational graphs [55], where a pair of
entities could be linked by a myriad of relatively short chains of relationships.

The problem in its general form was later formulated as the connection sub-
graph problem by Faloutsos et al. [56]. The authors also proposed a method
based on electricity analogies, aiming at maximizing electrical currents in a net-
work of resistors. However, Tong and Faloutsos later point out the weaknesses of
using delivered current criterion as a goodness of connection [57]: it only deals
with pair of query nodes, and is sensible to the order of the query nodes. As an
improved method, they propose the center-piece subgraph problem to extract a
subgraph with strong connections to any arbitrary number of nodes.

For random graphs, work from reliability research suggests network reliabil-
ity as suitable measure [58]. This is defined as the probability that the given
original nodes are connected, given that edges fail randomly according to their
probabilities. This approach was then formulated more exactly and algorithms
were proposed by Hintsanen and Toivonen [59]. Hintsanen and Toivonen restrict
the set of terminals to a pair, and propose two incremental algorithms for the
problem.

A logical counterpart of this work, in the field of probabilistic logic learning, is
based on ProbLog [60]. In a ProbLog program, each Prolog clause is labeled with
a probability. The ProbLog program can then be used to compute the success
probabilities of queries. In the theory compression setting for ProbLog [61], the
goal is to extract a subprogram of limited size that maximizes the success prob-
ability of given queries. The authors use subgraph extraction as the application
example.



Detecting Interesting Nodes or Paths Some techniques aim to detect in-
teresting paths and nodes, with respect to given nodes. Lin and Chapulsky [62]
focus on determining novel, previously unknown paths and nodes from a labeled
graph. Based on computing frequencies of similar paths in the data, they use
rarity as a measure to find interesting paths or nodes with respect to the given
nodes.

An alternative would be to use node centrality to measure the relative im-
portance; White and Smyth [63] define and compute the importance of nodes in
a graph relative to one or more given root nodes. They have also pointed out
advantages and disadvantages of such measurement based on shortest paths,
k-short paths and k-short node-disjoint paths.

Personalized PageRank On the basis of PageRank, Personlized PageRank
(PPR) is proposed to personalize ranking of web pages. It assigns importances
according to the query or user preferences. Early work in this area includes Jeh
and Widon [64] and Haveliwala [17]. Later, Fogaras et al [65] have proposed
improved methods for the problem.

An issue for network abstraction with these approaches is that they can
idenfity relevant individual nodes, but not a relevant subgraph.

3.2 Partitioning a Graph

We are not aware of subjective partitioning or clustering methods for graphs.
Generic clustering methods that allow user input, such as constrained cluster-
ing [66] or supervised clustering [67], could be applicable on graphs as well.

3.3 Replacing User Input Subgraph

Some substructures may represent obvious or general knowledge, which may
moreover occur frequently. Complementary to the approach of Subsection 2.3
where such patterns are identified automatically, here we consider user-input
patterns or replacement rules. Depending on the nature and precision of that
input, techniques of substructure searching fall into two categories: exact search
and similarity search.

Exact Search Finding all exact instances of a graph structure reduces to the
subgraph isomorphism problem, which is NP-complete. Isomorphisms are map-
pings of node and edge labels that preserve the connections in the subgraph.

Ullmann [68] has proposed a well-known algorithm to number the isomor-
phisms with a refinement procedure that overcomes brute-force tree-search enu-
meration. Cordella et al. [69] include more selective feasibility rules to prune the
state search space of their VF algorithm.

A faster algorithm, GraphGrep [70], builds an index of a database of graphs,
then uses filtering and exact matching to find isomorphisms. The database is
indexed with paths, which are easier to manipulate than trees or graphs. As
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an alternative, GIndex [71] relies on frequent substructures to index a graph
database.

Similarity Search A more flexible search is to find graphs that are similar
but not necessarily identical to the query. Two kinds of similarity search seem
interesting in the context of network abstraction. The first one is the K-Nearest-
Neighbors (K-NN) query that reports the K substructures which are the most
similar to the user’s input; the other is the range query which returns subgraphs
within a specific dissimilarity range to user’s input.

These definitions of the problem imply computation of a similarity measure
between two subgraphs. The edit distance between two graphs has been used
for that purpose [72]: it generally refers to the cost of transforming one object
into the other. For graphs, the transformations are the insertion and removal
of vertices and edges, and the changing of attributes on vertices and edges. As
graphs have mappings, the edit distance between graphs is the minimum distance
over all mappings.

Tian et al. [73] propose a distance model containing three components: one
measures the structural differences, a second component is the penalty associated
with matching two nodes with different labels, and the third component measures
the penalty for the gap nodes, nodes in the query that cannot be mapped to any
nodes in the target graph.

Another family of similarity measures is based on the maximum common
subgraph of two graphs [74]. Fernandez and Valiente [75] propose a graph dis-
tance metric based on both maximum common subgraph and minimum common
supergraph. The maximum percentage of edges in common has also been used
as a similarity measure [76].

Processing pairwise comparisons is very expensive in term of computational
time. Grafil [76] and PIS [77] are both based on GIndex [71], indexing the
database by frequent substructures.

The concept of graph closure [72] represents the union of graphs, by record-
ing the union of edge labels and vertex labels, given a mapping. The derived
algorithm, Closure-tree, organizes graphs in a hierarchy where each node sum-
marizes its descendants by a graph closure: efficiency of similarity query may
improve, and that may avoid some disadvantages of path-based and frequent
substructure methods.

The authors of SAGA (Substructure Index-based Approximate Graph Align-
ment) [73] propose the FragmentIndex technique, which indexes small and fre-
quent substructures. It is efficient for small graph queries, however, process-
ing large graph queries is much more expensive. TALE (Tool for Approximate
Subgraph Matching of Large Queries Efficiently) [78] is another approximate
subgraph matching system. The authors propose to use NH-Index (Neighbor-
hood Index) to index and capture the local graph structure of each node. An
alternative approach uses structured graph decomposition to index a graph
database [79].



4 Conclusion

There is a large literature on methods suitable for network abstraction. We
reviewed some of the most important approaches, classified by whether they
allow user focus or not, as well as by the graph modification operations used by
them. Even though we did not cover the literature exhaustively, we can try to
propose areas for further research based on the gaps and issues observed in the
review.

First, we noticed that different node ranking measures (Sections 2.1-2.1) are
useful for picking out important nodes, as evidenced by search engines, but the
result is just that — a set of nodes. How to better use those ideas to find a
connected, relevant subnetwork is an open question.

Second, while there are lots of methods for partitioning a graph (Section 2.2),
the computational complexity usually is prohibitive for large graphs such as
Biomine, with millions of nodes and edges. Obviously, partitioning would be a
valuable tool for network abstraction there.

Third, we observed that some more classical graph problems have been re-
searched much more intensively for graph databases consisting of a number of
graphs, rather than for a single large graph. This holds especially for frequent
subgraphs (Section 2.3) and subgraph search (Section 3.3).

Fourth, the most obvious gap is for partitioning methods that could be guided
by the user (Section 3.2). Constrained or supervised clustering might be provide
useful starting points here.

Finally, a practical exploration system needs an integrated approach to ab-
straction, using several of the techniques reviewed here to complement each other
in producing a simple and useful abstract network.
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Abstract. In this talk I shall analyze network mining and bisociation
from a logical and probabilistic inference point of view. This is inspired
by the work on ProbLog for link mining [De Raedt, Kimmig, Toivonen,
IJCAT 2007], which is - in turn -based on Biomine [Sevonen et al. DILS
06]. The talk shall introduce a probabilistic semantics for networks and
databases and use it to clarify notions of deduction, abduction and ex-
planations, induction, analogy, abstraction and spread of influence. All
notions will be illustrated in the context of the Biomine network.
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Abstract. We introduce the problem of identifying representative nodes
in probabilistic graphs, motivated by the need to produce different sim-
ple views to large networks. We define a probabilistic similarity measure
for nodes, and then apply clustering methods to find groups of nodes.
Finally, a representative is output from each cluster. We report on exper-
iments with real biomedical data, using both the k-medoids and hierar-
chical clustering methods in the clustering step. The results suggest that
the clustering based approaches are capable of finding a representative
set of nodes.

1 Introduction

Information contained in large networks is difficult to view and handle by users.
The problem is obvious for networks of hundreds of nodes, but the problems
start already with dozens of nodes.

In this paper, we propose identification of a few representative nodes as one
approach to help users make sense of large networks. As an example scenario of
the approach, consider link discovery. Given a large number of predicted links,
it would be useful to present only a small number of representative ones to the
user. Or, representatives could be used to abstract a large set of nodes, e.g.,
all nodes fulfilling some user-specified criteria of relevance, into a smaller but
representative sample.

Our motivation for this problem comes from genetics, where current high-
throughput techniques allow simultaneous analysis of very large sets of genes or
proteins. Often, these wet lab techniques identify numerous genes (or proteins,
or something else) as potentially interesting, e.g., by the statistical significance of
their expression, or association with a phenotype (e.g., disease). Finding repre-
sentative genes among the potentially interesting ones would be useful in several
ways. First, it can be used to remove redundancy, when several genes are closely
related and showing all of them adds no value. Second, representatives might
be helpful in identifying complementary or alternative components in biological
mechanisms.

The network in our application is Biomine [1], an integrated network database
currently consisting of about 1 million biological concepts and about 10 million
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links between them. Concepts include genes, proteins, biological processes, cel-
lular components, molecular functions, phenotypes, articles, etc.; weighted links
mostly describe their known relationships. The data originates from well known
public databases such as Entrez', GO2?, and OMIM?.

The problem thus is to identify few representative nodes among a set of them,
in a given weighted network. The solutions proposed in this paper are based on
defining a probabilistic similarity measure for nodes, then using clustering to
group nodes, and finally selecting a representative from each cluster.

In this framework, two design decisions need to be made: how to measure
similarities or distances of nodes in a probabilistic network (Section 3), and
which clustering method to use on the nodes (Section 4). Experimental results
with real datasets are reported in Section 5, and we conclude in Section 6 with
some notes about the results and future work.

2 Related work

Representatives are used to reduce the number of objects in different applica-
tions. In an opposite direction to our work, clustering can be approximated by
finding representative objects, clustering them, and assigning the remaining ob-
jects to the clusters of their representatives. Yan et al. [2] use k-means or RP
trees to find representative points, Kaufman and Rousseeuw [3] k-medoids, and
Ester et al. [4] the most central object of a data page.

Representatives are also used to reduce the number of datapoints in large
databases, i.e., to eliminate irrelevant and redundant examples in databases to
be tested by data mining algorithms. Riquelme et al. [5] use ordered projections
to find representative patterns, Rozsypal and Kubat [6] genetic algorithms, and
Pan et al. [7] measure the representativeness of a set with mutual information
and relative entropy.

DeLucia and Obraczaka [8] as well as Liang et al. [9] use representative
receivers to limit receiver feedback. Only representatives provide feedback and
suppress feedback from the other group members. Representatives are found
by utilizing positive and negative acknowledgments in such a way that each
congested subtree is represented by one representative.

The cluster approximation and example reduction methods use clustering
algorithms to find representatives, but are not applied on graphs. The feedback
limitation methods again use graph structures, but not clustering to find repre-
sentatives. Other applications like viral marketing [10], center-piece subgraphs
[11], or PageRank [12] search for special node(s) in graphs, but not for represen-
tative nodes. The authors are not aware of approaches to find representatives by
clustering nodes and utilizing the graph structure.

! www.ncbi.nlm.nih.gov/Entrez/
2 www.geneontology.org/
3 www.ncbi.nlm.nih.gov/omim/



3 Similarities in probabilistic graphs

Probabilistic graphs offer a simple yet powerful framework for modeling rela-
tionships in weighted networks. A probabilistic graph is simply a weighted graph
G = (V, E) where the weight associated with an edge e € F is probability p(e)
(or can be transformed to a probability). The interpretation is that edge e ex-
ists with probability p(e), and conversely e does not exist, or is not true, with
probability 1 — p(e). Edges are assumed mutually independent.

The probabilistic interpretation of edge weights p(e) gives natural measures
for indirect relationships between nodes. In this paper we call these similarity
measures, as is conventional in the context of clustering.

Probability of a path Given a path P consisting of edges ey, ..., e, the proba-
bility p(P) of the path is the product p(e1) - ... - p(ex). This corresponds to the
probability that the path exists, i.e., that all of its edges exist.

Probability of the best path Given two nodes u,v € V, a measure of their con-
nectedness or similarity is the probability of the best path connecting them:

s(u,v) = max p(P).
P is a path from u to v
Obviously, this is not necessarily the path with the least number of edges. This
similarity function s(-) is our choice for finding representatives.

Network reliability Given two nodes s and ¢, an alternative measure of their
connectivity is the probability that there exists at least one path (not necessar-
ily the best one) between s and ¢. This measure is known as the (two-terminal)
network reliability (see, e.g., [13]). A classical application of reliability is in com-
munication networks, where each communication link (edge) may fail with some
probability. The reliability then gives the probability that s and ¢ can reach each
other in the network.

Network reliability is potentially a more powerful measure of connectedness
than the probability of the best path, since reliability uses more information
— not only the best path. The reliability measure considers alternative paths
between s and t as independent evidence for their connectivity, and in effect
rewards for such parallelism, while penalizing long paths. The reliability is always
at least as high as the probability of the best path, but can also be considerably
higher.

However, computing the two-terminal network reliability has been shown to
be NP-hard [14]. Fortunately, the probability can be estimated, for instance, by
using a straightforward Monte Carlo approach: generate a large number of real-
izations of the random graph and count the relative frequency of graphs where
a path from s to ¢t exists. For very large graphs, we would first extract a smaller
neighborhood of s and ¢, and perform the computation there. More information
about our techniques can be found, e.g., in [1,15]. Due to the complexity of
computing the network reliability, we stick to the simpler definition of similarity
s(+) as the probability of the best path.
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4 Clustering and representatives in graphs

Our approach to finding representatives in networks is to cluster the given nodes,
using the similarity measure defined above, and then select one representative
from each cluster (Algorithm 1). The aim is to have representatives that are
similar to the nodes they represent (i.e., to other members of the cluster), and
also to have diverse representatives (from different clusters). In clustering, we
experiment with two methods: k-medoids and hierarchical clustering. Both are
well-known and widely used methods which can be applied to our problem of
finding representatives; k-medoids is an obvious choice, since it directly produces
representatives.

Algorithm 1 Find representative nodes

Input: Set S of nodes, graph G, number k of representatives
Output: k representative nodes from S
1: Find k clusters of nodes in S using similarities s(-) in graph G
2: For each of the k clusters, output its most central node (the node with the maximum
similarity to other nodes in the cluster)

k-medoids k-medoids is similar to the better known k-means method, but bet-
ter suited for clustering nodes in a graph. Given k, the number of clusters to be
constructed, the k-medoids method iteratively chooses cluster centers (medoids)
and assigns all nodes to the cluster identified by the nearest medoid. The differ-
ence to the k-means clustering method is that instead of using the mean value
of the objects within a cluster as cluster center, k-medoids uses the best object
as a cluster center. This is a practical necessity when working with graphs, since
there is no well defined mean for a set of nodes. The k-medoids method also im-
mediately gives the representatives. See, e.g., [16, 3] for more information about
the methods.

For very large graphs, a straight forward implementation of k-medoids is not
necessarily the most efficient. In our applications we use the Biomine database
and tools to facilitate faster clustering. Given a set S of nodes, i.e., biological
entities, to be clustered, and k, the number of clusters to be constructed, the
method proceeds as follows. First, the Biomine system is queried for a graph
G of at most 1000 nodes cross-connecting nodes in S as strongly as possible.
The pairwise similarities between nodes are then calculated as the best path
probabilities in G.

The Biomine system uses a heuristic to obtain G, details are omitted here. As
the Biomine network consists of a million nodes, querying it for a graph exceeds
by far the computational complexity of running k-medoids on the extracted
graph. For brevity, we here omit discussion of the computational complexities of
k-medoids and other approaches.



To start the actual clustering, k nodes from S are chosen randomly as initial
medoids. Each remaining node in S is then clustered to the most similar medoid.
If the pairwise similarity between a node and all medoids equals zero, the node
will be considered an outlier and is not assigned to any medoid in this iteration.
Then, a new medoid is calculated for each cluster. The node that has a maximal
product of similarities between each other node in the cluster and itself is chosen
as the new medoid. The last two steps are then repeated until the clustering
converges or the maximum number of iterations is reached.

Example As an example, k-medoids was run with k = 3 and a set of nine genes.
The genes belong to three known groups, each group of three genes being associ-
ated to the same phenotype. The three OMIM phenotypes used in the example
are a pigmentation phenotype (MIM:227220), lactase persistence (MIM:223100),
and Alzheimer disease (MIM: 104300).

<EntrezGene:246742=
o=

EnérezGene:??G
(d ntrezGene:545
EntrezGene:3938

<]

EntrezGene:lG??‘ -

EntrezGene:51151 ‘

‘ EntrezGene:4254

Fig. 1: Clusters (diamonds, boxes, ellipses) and representatives (double borders)
of nine given nodes, and some connecting nodes (circles) on best paths between
them. Lines represent edges between two nodes, dotted lines represent best paths
with several nodes.

The algorithm converged in this case after two iterations. The result of the
example run is shown in Figure 1. Looking at the quality of clustering, only
one gene (EntrezGene:1627) was assigned to another cluster than it should with
respect to the OMIM phenotypes. Apart from this gene, the clustering produced
the expected partitioning: each gene was assigned to a cluster close to its corre-
sponding phenotype. The three representatives (medoids) are genes assigned to
different phenotypes. Hence, the medoids can be considered representative for
the nine genes.

Hierarchical clustering As an alternative clustering method we use hierarchical
clustering. (Again, see, e.g., [16,3] for more information.) A possible problem
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with the k-medoids approach is that it may discover star-shaped clusters, where
cluster members are connected mainly through the medoid. To give more weight
on cluster coherence, we use the average linkage method, as follows.

In the practical implementation, we again start by querying the Biomine
system for a graph G of at most 1000 nodes connecting the given nodes S,
and compute similarities of nodes in S as the probabilities of the best paths
connecting them in G.

The hierarchical clustering proceeds in the standard, iterative manner, start-
ing with having each node in a cluster of its own. In each iteration, those two
clusters are merged that give the best merged cluster as a result, measured by
the average similarity of nodes in the merged cluster. The clustering is finished
when exactly k clusters remain.

After the clusters have been identified, we find the medoid in each cluster (as
in the k-medoids method) and output them as representatives.

Random selection of representatives For experimental evaluation, we also con-
sider a method that selecst representatives randomly. We again query the Biomine
system for a graph G of at most 1000 nodes connecting the given nodes .S, and
compute similarities of nodes in S as the probabilities of the best paths connect-
ing them in G.

We randomly select & medoids and cluster the remaining nodes of S to the
most similar medoid. If the pairwise similarity between a node and all medoids
equals zero, the node will be considered an outlier, as in k-medoids.

5 Experiments

Our goal in this section is to evaluate how successful the method is in finding
representative nodes.

5.1 Test setting

Test data We used data published by Kohler et al. [17], who defined 110 disease-
gene families based on the OMIM database. The families contain three to 41
genes each; each family is related to one disease. Kohler et al. originally used
the families in their experiments on candidate gene prioritization. Given a list
of candidate genes they used a protein-protein interaction network to score the
given genes by distance to all genes that are known to be related to a particular
disease. Then they set up a ranking of the candidate genes based on their scores.
Although their aim was different from ours, and the network they used was only
a protein interaction network, the data sets give a natural real test case for our
problem, too.

Test setting In each test run, k gene families were randomly chosen as the nodes
to find k representatives for. We performed 100 test runs for K = 3 and k£ = 10 of
all three variants (k-medoids, hierarchical, random) of the method, and report



averages over the 100 runs. As k-medoids is sensitive to the randomly selected
first medoids, we applied k-medoids five times in each run and selected the best
result. We applied the random selection of representatives 20 times in each run
and used average values of the measures in order to compensate the random
variation.

Measures of representativeness We use two measures of representativeness of
the selected nodes. The first one is based on the similarity of nodes to their
representatives, the second one on how well the k£ (known) families of nodes are
covered by the k representatives.

The first measure is directly related to the objective of the k-medoids method.
The idea is that each node is represented by its nearest representative, and we

simply measure the average similarity of objects to their closest representative
(ASR):

1
zeS,x#m(x)

where S is the set of given vertices, K is the number of clusters, m(z) is the
medoid most similar to x, and s(x, m(z)) denotes the similarity (probability of
best path) between node x and medoid m(x).

The second measure takes advantage of the known families of genes in our
test setting. The rational here is that a representation is better if it covers more
families, i.e., contains a representative in more families. For this purpose, we
calculate the fraction of non-represented classes (NRC):

1 . .
NRC = —|{k | Bj : m; € Hy, j = 1K},

where K is the number of classes and clusters (equal in our current test setting),
m; is the medoid of the jth cluster, and Hy, is the kth original class.

For the k-medoids variant, we also report the number of outliers. Recall
that the method outputs as outliers those nodes that are not connected (in the
extracted subnetwork) to any medoid.

As additional characteristics of the methods we measure how good the un-
derlying clusterings are. Again, we have two measures, one for the compactness
of clusters, and one based on the known classification.

The first additional measure is the average compactness of clusters (ACC),
where the compactness of a given cluster is defined as the minimum similarity
of two objects in the cluster. The average is computed over clusters having at
least two members:

K

1
ACC = — min s(z,y), where k' = |[{k | |Cx| > 1,k = 1..K}|,
K A 1w,y€Ck

i.e., k' is the number on non-trivial clusters. This measure is sensitive to outliers,
and thus may favor the k-medoids variant.
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The second additional measure compares the clustering to the known classes
and measures their difference. We first identify the class best represented by each
cluster, and then calculate how many objects were “wrongly assigned” (WAO):

K
1 :
WAO = E kil k/Iilll.I.lK |Ck\Hk’|.

Rand index could have been used here just as well.

5.2 Results

In terms of average similarity of nodes to their representative (ASR), the k-
medoids method slightly but clearly outperforms the hierarchical method (Fig-
ure 2, left panels). The hierarchical method, in turn, is clearly superior to the
random selection of representatives (Figure 2, right panels). For the k-medoids
variant and k = 3, average similarities in the 100 test runs range from 0.3 to
0.8, and the total average is 0.51. For k = 10 the average is 0.55 and range is
0.4 to 0.8. For the hierarchical variant and k& = 3, the average is 0.48 and range
is 0.1 to 0.8. For k£ = 10 the average is 0.51 and range is 0.3 to 0.7. For the
random variant and k = 3, average is 0.36 and range is 0.2 to 0.7. For k£ = 10
average is 0.43 and range is 0.3 to 0.6. These differences are no big surprise,
since the k-medoids method more directly aims to maximize this measure than
the hierarchical method, which however performs better than random choice of
representatives. Further, the k-medoids method may output some nodes as out-
liers. The average fraction of outliers in the experiments was 1.9 % for k = 3
and 4.5 % for k = 10.

The fraction of non-represented classes is a more neutral measure of perfor-
mance since neither variant directly maximizes this. The results indicate that the
k-medoids variant is slightly better with respect to this measure for k = 3 (Ta-
ble 1), but for k¥ = 10 the hierarchical variant is clearly superior. Both methods
clearly outperform the random selection of representatives.

To gain a better understanding of the performance of the methods, we look at
the quality of clusterings produced. It is not surprising that clusters produced by
the hierarchical method are on average more compact than those produced by the
k-medoids method (Figure 3), as the hierarchical method more directly optimizes
this measure. It is however somewhat surprising that k-medoids performs only
slightly better than the random variant. The average compactness (minimum
similarity within a cluster) is 0.20 (k = 3) and 0.23 (k = 10) for k-medoids, 0.33
(k = 3) and 0.48 (k = 10) for the hierarchical variant, and 0.16 (k = 3) and 0.21
(k = 10) for the random variant, with considerable spread and variance in all
results.

In terms of wrongly assigned objects, the hierarchical variant clearly out-
performs k-medoids (Table 2). The k-medoids variant outperforms the random
selection of representatives, but for £ = 10 only by a small difference.
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Fig.2: Average similarity of objects to their nearest representative (ASR). In
each panel 100 runs are visualized. Each point represents one run, thereby com-
paring ASR values of two variants (see x- and y-axis).

k=3 k=10
k-medoids 14 % | 29%
hierarchical | 16 % | 21 %
random 34 % | 39%

Table 1: Fraction of non-represented classes (NRC).
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Fig. 3: Average compactness of nontrivial clusters (ACC). In each panel 100 runs
are visualized. Fach point represents one run, thereby comparing ACC values of
two variants (see x- and y-axis).

k=3 k=10
k-medoids 18% | 44 %
hierarchical | 15 % | 25 %
random 27 % | 46 %

Table 2: Wrongly assigned objects (WAO).



6 Conclusions

We have described the problem of finding representative nodes in large prob-
abilistic graphs. We based our definition of node similarity on a simple proba-
bilistic interpretation of edge weights. We then gave a clustering-based method
for identifying representatives, with two variants: one based on the k-medoids
methods, one on the hierarchical clustering approach.

We performed a series of 100 experiments on a real biomedical data, using
published gene families [17] and the integrated Biomine network [1]. We mea-
sured the success of finding representatives with two measures: the similarity
of nodes to their representatives, and the fraction of classes represented by the
output.

In our experimental comparison, the k-medoids based variant and the hierar-
chical method are promising approaches. A look at the quality of the clusterings
indicates that the success of the methods in identifying the underlying clusters
depends on the measure used, and may also depend on the number of clusters to
be constructed. According to the results, the hierarchical method is more robust,
especially when looking for more than just couple of representatives.

More work is needed to understand the reasons for the differences of the
two approaches. Further, the problem of finding representative nodes needs to
be validated in real applications. Based on the simple methods introduced here,
and the initial experimental results, the clustering approach seems to be capable
of reliably identifying a high quality set of representatives.
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Michael R. Berthold, Ulrik Brandes, Tobias Kotter,
Martin Mader, Uwe Nagel, Kilian Thiel

Department of Computer and Information Science,
University of Konstanz, 78457 Konstanz, Germany
firstname.lastnameQuni-konstanz.de

Abstract. Spreading activation is a popular technique for retrieving
and ranking indirectly related information by activating query items and
spreading their activation along relatedness links. Almost every use of
the technique is accompanied by its own set of restrictions on the dy-
namics, though, and the usual motivation is a reduced computational
demand or an improved fit to specific types of data. We show that
in linear, constraint-free scenarios spreading activation would actually
yield query-independent results, so that applications crucially depend on
the imposed restrictions. To avoid this undesirable behavior, we study
natural modifications that ensure query-dependent results even without
heuristic restrictions and provide experimental evidence for their effec-
tiveness.

1 Introduction

Spreading activation methods have been introduced first by Quillian and Collins
[1,2] to query networks. These methods allow relevant subgraphs, nodes, or
edges according to a given query to be extracted. For this purpose specific nodes
of a network are activated and the activation is spread iteratively to adjacent
nodes until the process is terminated. The result is determined from the subset
of activated nodes, their activation level, and induced subgraph.

Initially spreading activation techniques have been applied to semantic net-
works, and later on in fields of Information Retrieval (IR) as well [3-5], origi-
nating from past work in associative retrieval [6] based on associative networks.
The fundamental idea of associative retrieval is that related information is con-
nected in the network. It is assumed that therefore relevant information can
be retrieved by considering the associations to concepts known to be relevant
or specified by the user. In the fields of IR the associated units of information
are usually documents, parts of documents, concepts, index terms, keywords,
or authors. Spreading activation is used to retrieve, for example, relevant docu-
ments, authors or terms related to a given query. Besides IR, spreading activation
methods have been applied to other areas, such as trust propagation [7], ontology
extension [8], word sense disambiguation [9], or recommender systems [10].

To our knowledge, all these methods share the usage of constraints to con-
trol the spread of activation inside a network, such as distance constraints to
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terminate the spreading procedure after a certain number of iterations or fan-
out constraints to affect the path of spreading. We show that, without these
constraints, spreading activation models converge to specific fixed points. These
convergence points are usually independent of the initial query. This behavior
turns pure (constraint free) spreading activation into an inadequate technique
to answer queries. This drawback can be overcome by applying constraints or
other methods, that induce convergence points depending on the initial query.
We show that the cumulation of single iteration results of spreading activation,
both converges and relates the fixed point to the query. For this orthogonal ap-
proach to constraints, three different cumulation strategies are compared, which
turn out to be very similar when the iteration process continues infinitely. Ad-
ditionally the behavior of convergence for normalized systems is shown and an
outlook to non-linear systems is given.

The document is organized as follows: The next section defines the underlying
framework of spreading activation. It describes and formalizes the basic func-
tionality all spreading activation methods have in common, the basic constraints
and drawbacks, as well as a matrix and vector representation of the spreading
activation procedure. Based on this representation we show in Section 3 the con-
vergence of pure spreading activation to a fixed point, which makes it inadequate
to answer queries. A solution to overcome this drawback is the accumulation of
iteration results, described in Section 4. In Section 4.2 the accumulation and
the convergence behavior of normalized systems is examined. We complete this
section with a short inspection of convergence in non-linear systems. In Section 5
we present two application scenarios of spreading activation, a simple query ex-
pansion and an iterative cosine similarity method based on a term-document
network. We empirically demonstrate the behavior of convergence for these ap-
plication scenarios in Section 6. For this purpose we used a network created from
parts of the SMART document collection. Section 7 concludes the document.

2 Preliminaries

The functionality of spreading activation is related to neural networks. Both
methods have in common that units can be activated through their incoming
activation, and edges spread the outgoing activation to adjacent units. In [11]
eight major aspects of a neural network are defined. Based on these aspects the
functionality of spreading activation can be specified in terms of three compo-
nents described below.

2.1 Framework

The activation is spread on a graph G = (V, E,w), with weights w : F — R.
For ease of exposition we assume that V' = {1,...,n} and that G is undirected,
but our results easily generalize to directed graphs. We extend w to V x V by
letting w(u,v) = 0 if (u,v) ¢ E. The set of neighbors of v € V is denoted by
N(v) = {u: {u,v} € E}. The trisection consists of input, activation, and output.



For each part a function and a state exists. The function specifies the transition
to a certain state at a time k. The state at time k of all nodes is represented
by a vector al*) € RV, where ag,k) is the activation of v € V. The state at time
k > 0 is obtained from the state at time k — 1 via the following three families of

functions.

— Input function in, : R® — R. The input function aggregates the incoming
activation of a node v and defines the input i = in, (0(*=1)) of that node at
time k. A prototypical choice is the sum of the weighted outgoing activation
of the adjacent nodes

in,(0*~1) = Z oF D (u,v),
u€N (v)

with o&k_l) as the output activation of node u at time k£ — 1.

— Activation function act, : R — R. The activation function determines the
level of activation ag,k) = actv(isjk)) of a node v at time k and thus whether
a node is activated, i.e. whether its activation is spread to adjacent nodes
in the next iteration. To introduce non-linearity into the system e.g. sign,
threshold, sigmoid functions are used.

— Output function out, : R — R. The output function determines the outgoing
activation oS,’“) = out, (ag,k)) of a node v at time k. Output functions can be
used to normalize the output in certain ways. This could have systematic
reasons, for example, to ensure that the sum of activation in the whole

network is constant, or could be a necessity by design.

Initially some nodes, usually those representing the query, are activated first.
The activation spreads across incident edges to adjacent nodes and activates
these nodes as well. This process is usually terminated after a certain number
of iterations, activated nodes or other abort criteria. The subgraph induced by
the activated nodes represents the result of the query. A ranking of the nodes
as often required in IR can be obtained by sorting the nodes according to their
output activation henceforth simply denoted as activation.

2.2 Constraints

In general not only constraints like termination criteria are used to regulate the
networks spread. The most common constraints according to Crestani [12] are
listed below:

— Distance constraint: the activation decreases based on the distance to the
initially activated nodes and finally stops at a certain distance, based on
the argument that the strength of the relation decreases with their semantic
distance.

— Fan-out constraint: the spread of activation expires at nodes with a high
out-degree, in order to avoid a too wide spreading.
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— Path constraint: the activation spreads across preferential paths, reflecting
specific inference rules.

— Activation constraint: to avoid the activation of all nodes which receive ac-
tivation at all, a threshold function can be applied. In this case a certain
degree of input activation is required to activate the node.

In our examination we do not consider threshold functions as a constraint.
The reason is that in contrast to the other constraints the activation constraint
is not based on structural properties of the network but solely on the activation
level itself.

Crestani [12] argues that constraints are neccessary, because pure (constraint-
free) spreading activation has three serious drawbacks:

1. Without control the activation will spread all over the network.

2. Semantics of relations, represented as edge labels can hardly be interpreted
and considered.

3. The implementation of an inference procedure based on the semantics of
relations (edge labels) is difficult.

In this paper we propose a fourth important drawback, in case of linear
activation functions, that is convergence to one fixed points which is independent
of the query.

2.3 Matrix notation

In linear systems a common activation and output function is the identity func-
tion. In this context we now point out how to express the corresponding spread-
ing activation process in matrix notation. This will then be used to examine the
convergence behavior.

Given a graph G = (V, E,w) and an initial activation a® we can express a
complete activation step by omitting the (identity) activation and output func-

tions as
alt) = Z alt =V (u, v).
u€N (v)
Define the weight matrix W € R™*"™ with (W), = w(u,v) and w(u,v) = 0 if
(u,v) ¢ E then this can be written as

alk) = Z alf=D(W),,.
ucV

Consequently the complete activation vector a*) indexed by the nodes of V can
be written in matrix notation as a*) = Wa*~1). Recursive substitution yields

att) = ka®),

We will use this notation to examine different variants of constraint-free spread-
ing activation.



3 Query Independence

A simple method of eigenvector calculation is power iteration. The elements of
k) _ _welk—D
"= [Welk=1)]]

secutive elements is sufficiently small. Under some conditions on W and e(©)
this series will converge to the principal eigenvector corresponding to the eigen-
value of W having maximum absolute value. The conditions for this convergence
can be derived from the Perron-Froebenius Lemma (see e.g. [13]) and basically
guarantee the uniqueness of the eigenvalue with maximum absolute value.

In our context it is sufficient to assume that G is connected and not bipartite
and e is not orthogonal to the principal eigenvector. For practical reasons most
spreading activation systems have an underlying network which is sufficiently
connected and therefore these requirements are usually met. In this case the
principal (in terms of absolute value) eigenvalue of W, called spectral radius
p(W) is positive and has exactly one associated eigenvector with non-negative
components.

Consequently after a sufficient number of iterations, the activation vector will
approach eigenvector centrality. While this may actually be a reasonable default
answer, it is not at all related to the query.

the sequence e are computed until the change between two con-

4 Avoiding Query Independence

Since a ranking procedure with a result independent of the initial activation is
not useful we will have a look at some approaches to overcome this problem
without adding constraints. An initial idea can be derived from Katz’ [14] status
centrality. For a (directed) graph with adjacency matrix W it is defined as:

cKatz(W) = Z (OzVVT)]~c 1,
k=1

where 1 is the vector of all ones and « is a decay factor. For « limited by
0 < a < p(W)~! this series converges analog to the geometric series and can
be written in a closed form as ciat, (W) = ((I - onVT)71 — I) 1. Katz’ results

where stated for adjacency matrices with entries being either 0 or 1 but they
also hold for the more general case of W being a matrix with real numbers as
edge weights.

4.1 Iteration with Memory

We will examine three different approaches to combine or modify the activations
of the single iterations in order to obtain a final activation significantly depending
on the initial activations, that is the query:

1. Accumulation: the final activation is defined as the sum of all intermediate
activation states.
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2. Activation renewal: the initial activations are renewed in each step.
3. Inertia: activations of the previous state are partially retained.

The main idea for the combinations of the iteration steps as presented here
is interpretable as an approach to balance between a local and a global factor.
The transition between the local and the global factor corresponds to the tran-
sition from direct via indirect node similarities to the principal eigenvector of
the system. The accumulation process of the iteration steps is then supposed to
achieve a balance between the two factors by an appropriate weighting of the
single steps.

1. Accumulation In the first approach the final activation a* of nodes relative
to the initial activation is determined as a linear combination of the individual

iteration steps:
a*=> Ak)ja® = (Z A(k)W’“) al®
k=0 k=0

where (k) is a decay function. Generally we use A(k) = aF.

If A is limited to the form A(k) = aF, constraint-free spreading activation
can be seen as a generalization of Katz status with an added bias to a starting
vector consisting of initially activated nodes. In this case a* can be determined
directly by the matrix multiplication

a* = (I —aW)ta®,
as long as 0 < a < p(W)~L.
2. Activation renewal Another variant of spreading activation is obtained by

renewing the activation of the initially activated nodes to strengthen their influ-
ence:

a® — a0 L prat—1.

By recursive substitution we can give a closed form for a(®):

k
a®) = <Z Wi> al®,

i=0
This is identical to the first variant with A(k) = 1 therefore convergence can only

be guaranteed for graphs G with p(G) < 1.

3. Inertia The third method we will examine is obtained by partially retaining
the previous state:
aF) = a(k=1) 4 yyak—1),

This approach can also be expressed by adding self loops to each node with a
weight of 1 which can be seen in the respective closed form:

alk) — I+ W)ka(o).



The result is a ranking which corresponds to the principal eigenvector of (I+W).
Extending the approach by cumulating the activations of the iterations up to
infinity analog to the first variant with A\(k) = o yields:

a* = ((1—a)l —aW) "a®,

Again this result only holds if 0 < o < p(I + W)~!. Note further that this
modification of the adjacency matrix shifts the spectrum of W by adding 1
to each eigenvalues but results in the same eigenvectors. The spectrum shift
may also influence convergence speed which is dependent on the ratio of the
two eigenvalues with greatest absolute value. Another result of this modification
affects the usability on bipartite graphs. Those have a symmetric spectrum (each
positive eigenvalue has a negative complement) and therefore convergence of the
power iteration method can not be guaranteed, which can be bypassed by the
spectrum shift from the added self loops.

Since all three presented approaches are only slight modifications of the first
by either using a fixed decay factor or modifying the graph we will concentrate
our experiments on the first variant.

4.2 Normalization

There are two arguments for the introduction of normalization into spreading
activation. On the one hand spreading functions designed for a specific purpose
could inherently demand normalization, like the application proposed in Section
5.3. On the other hand we have seen in the previous section that in the accu-
mulation method, the influence of the single iteration steps is a combination
of the decay factor o and the spectral radius of the network. Normalizing the
actvitation vectors in each iteration is a way to eleminate the restriction posed
on « by the spectral radius. Therefore o can be chosen liberally between 0 and
1 in linear systems with normalization.

Following these arguments we take a look at systems where the activation
vector is normalized in each iteration:

(k—1)
alh) = Wa .
[Walk=1|
We restrict our analysis to the case in which || - || denotes the I3 norm, analog

to the power iteration method discussed above. Different norms can be dis-
cussed with the same arguments. Apparently the sequence of al®) converges
under the assumptions of the Perron-Froebenius Lemma to the eigenvector of
W corresponding to the eigenvalue p(WW). Again we look at the limit of the series
Yoo a*a® in the hope that the influence of a(® yields a useful ranking of the
fixed point of the series. Here we show that such a fixed point always exists,
even if W does not satisfy the Perron-Froebenius conditions. In a later section
we will analyze the quality of the resulting ranking empirically.
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Theorem 1. Given a matric W € R™™ and o € [0,1) there exists a vector
a*e[-(1—a) ' (1- a)_l]n such that

a* = lim Zaka(k)

with (1)
ath - W

[Walk=1]|

Proof. Since ||a® | = 1 it is apparent that |al")| < 1 Vi € V. Therefore each a
is bounded by the geometric series:

NE

a; < adF=1—-a)!
k=0
and
(o]
aj > - af=—(1-a)".
k=0
Since lim akagk) = 0 this concludes the proof.

k—o0

4.3 A Glimpse at Non-Linear Systems

To emphasize node activations some authors make use of special activation func-
tions. The simplest approach is to use sign or threshold functions [2,15, 16]. In
threshold functions a constant is subtracted from the activation value of a node
and afterwards the sign function (sgn) is applied to the result, mapping it to
{-=1,1}. Apparently a sign function is a special case of thresholds with a zero
constant. Other authors use sigmoid functions [12,17] as a continuous approx-
imation. When using the threshold function as activation method, spreading
activation equals the processes of discrete Hopfield networks with parallel node
processing. In our framework parallel processing is always assumed while in Hop-
field networks also strategies of processing nodes in arbitrary orders have been
examined.

In this method convergence is not completely characterizable as for the sys-
tems presented above. In the following we will apply the most general result
about convergence in this field to spreading activation. Then we will have a look
at the number of fixed points in such systems. This is not intended as a full
review of the current state of art but aims to give a context for comparison with
the systems analyzed hitherto.

Convergence In this part we will concentrate on the results of Kwong and Xu
presented in [18] who generalize preliminary results of Hopfield [19] for sequential
activation and Goles, Fogelman and Pellegrin [20] for parallel activation.



A discrete, parallel Hopfield network is defined by a tuple (W, t) where W is a
matrix of connection strengths (weights) and t is a vector of thresholds. In each
iteration step all neurons of the network are simultaneously (in parallel) acti-
vated depending on the output of the adjacent neurons in the previous iteration.
In difference to the linear systems described earlier the activation function of

the neurons applies a threshold: aS,’“) = sgn (iS,’“) — tv). In spreading activation

applications the thresholds are usually equal for all nodes, such that t =¢-1 for
some threshold value t.

For the most general convergence criterion a Matrix W* is derived from W
by modifying its diagonal:

n

(W*)ij _ (W)zz - k2::1 |(W)k1 — (W)1k| yifi=3j .

(W)ij Jifi# g
Using this definition we can present the following theorem proven by Kwong
and Xu in [18].

N[

Theorem 2. Let (W,T) be a Hopfield network, W not necessarily symmetric.
Given that W* is positive semidefinite (W, T) will converge to a stable state.

Restated in the context of spreading activation this can be interpreted analogous
to the third variant of linear systems described in Section 4. It is known that if
W* is positive semidefinite then trace(W*) = 3" (W*);; > 0 and all principal
minors of W* are positive semidefinite. Under these properties it is apparent that
a necessary condition for Theorem 2 is that (W) > 330, [(W)gi — (W )| In
the graph the spreading process is applied to, nodes necessarily have self loops
with a weight that dominates the asymmetry of their directed edges.

For the symmetric case it is therefore sufficient that W itself is positive
semidefinite, which was already shown in [20]. Goles et al. further show that
even without this condition the network will converge to a cycle with a maximum
length of 2. We can therefore reason that activations as presented here will in
undirected graphs either converge to a single state or flip between two final
states. Note further that Theorem 1 can be applied here directly.

Fized Points We characterized some situations in which spreading activation
systems using threshold functions will converge to fixed points and we showed
that some retrieval systems are pointless because they only have a single fixed
point. This raises the question if systems based on Hopfield networks have enough
fixed points to be practicably usable in information retrieval. Since a thorough
examination of this points is beyond the scope of this paper we will restrict
ourself to some hints on previous work. Results regarding the number of fixed
points in the context of Hopfield networks are generally concerned with methods
building matrices with a predetermined number of fixed points. A good intro-
duction on this topic in the context of Hopfield networks can be found in Haykin
[21, Chapter 14]. Still, even if matrices are designed in such ways there also ex-
ist additional spurious fixed points. However, results in this field apply only to
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the predetermined fixed points and make no statement on their overall number.
Therefore, they are not applicable to investigate the number of fixed points in
our scenario.

Yet, there is an analogy to Hopfield networks appearing in physics, namely
spin-glass systems. Those are also examined for their convergence but, as opposed
to results in Hopfield networks, in a way that no distinction between wanted and
spurious fixed points is made. The number of possible fixed points to expect in
these systems is given by McEliece and Posner in [22]. Here a detailed analysis
of the average number of fixed points in symmetric networks without self loops
is given. The average number of fixed points is roughly 2%, with n being the
number of nodes in the network.

5 Application

For empirical examinations of the theoretical results derived above we define two
application scenarios.

The first is an example of a simple linear system. In [23, 24] spreading acti-
vation techniques are used for concept exploration and query expansion. We will
follow this approach by using a term co-occurrence network to expand a given
query in Section 5.2. Here the knowledge about domain specific term similarities,
encoded in the co-occurrence network, is utilized by spreading activation.

An application of normalized systems is given in Section 5.3 where spreading
activation is used to query a term-document network for documents based on
cosine similarity. The approach is similar to those in [25,26]. In this model,
alternating cosine similarities between (virtual) documents and (virtual) terms
contribute to the result.

5.1 Preliminaries

The basis for both application scenarios is a bipartite document-term-graph.
The nodes of the graph G = (V, E) are partitioned into V. = D W T, where
partition D has a node for each document and partition 7" one for each term.
The edge set consists of E = {{d,t}:d € D,t € T,w(d,t) > 0}, where w(d,t) is
a function describing the relation between documents and terms. Without loss
of generality, we assume that G is connected, that is, there exists a path between
any two nodes in the graph.

Throughout our experiments, we will use the tf-idf values of terms and doc-
uments as weighting function w(d,t). A standard definition of tf-idf values is

w(d, ) = thdiy, — 2D 1o <1 N |D|>

Nq T

where f(t,d) is the absolute frequency of term ¢ in document d, n; is the number
of documents in which term ¢ appears and ng is the number of terms contained
in document d.



Typical text-mining approaches work with the so called vector space model,
where each document is a vector in the |T'|-dimensional space spanned by the
|T| terms in the collection. Using this representation, the documents d of the
collection are often ranked by calculating a similarity measure between their
corresponding vector representations d and the vector representation dq of a
query document d,;. Most prominent among these is the cosine similarity, given
by

ddq

cos(d:da) = 1 g da

Note that, vice versa the terms of the collection can be represented as a vector
in the vector space spanned by the documents.

5.2 A Simple Linear System: Query Expansion on a Term
Co-occurrence Network

The first application we examine is a case of a linear system without normaliza-
tion. We construct a co-occurrence graph of terms G, from the original bipartite
graph G. Each term in G is also a node in G.. The weighting function between
pairs of terms is defined as

we(i,j) = Y w(d,d)w(d, j),

deD

that is, the weight between two terms 4,5 € T is the inner product of their
corresponding vectors in the vector space model. The edge set of G, can then be
defined appropriately by E. = {{i,j} : w(i,7) > 0}. Based on the co-occurrence
graph G, one could try to perform query expansion by a spreading activation
technique on the graph. This could be achieved by providing a simple activation

function as
al’ = 3" we(i,j) -l
JEN.(3)

where k is the current iteration, the input and output functions are the identity
functions and N (i) = {j : {j,i} € E.}. It is easy to see, that this method can
be directly transformed into a matrix power iteration of the adjacency matrix
W, € RT*T of G, where (W.);; = w.(i, 7). Also note that G, is not bipartite.
Thus, independent of the initial activated terms, the resulting activation will
converge to the principal eigenvector of W, corresponding to p(W.,).

After the query terms have been expanded by spreading activation, the result-
ing term vector can be used to rank the documents, for example, by calculating
the cosine similarity between the documents and the expanded term vector. We
will use this ranking to investigate the performance of the accumulation strategy
in Section 6.

5.3 A System with Normalization: Alternating Cosine Similarity

To examine the statements about systems with normalization, let us now con-
sider the bipartite network proposed in Section 5.1. Every given activation of the
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term-partition corresponds to a vector of a virtual document in the vector space
model; vice versa, every activation of the vertices in the document partition may
be seen as a virtual term. The spreading activation framework proposed in the
following is designed to yield as activation at a given time the cosine similarity
to the virtual document, resp. term given by the current activation levels of the
other partition.

As in [25], a single spreading of activation on the bipartite network yields the
standard cosine similarity measure between a virtual query document and the
documents in the network. To achieve the desired activation, spreading functions
for each partition have to be defined appropriately. In the following, let k& be the
index for the current iteration, where one iteration is a spreading of activation
from the document partition to the term partition and backwards. Initially, i.e.
k = 0, the query terms are activated and activation is just spread from the term
to the document partition.

For the term partition 7" the combined activation function is:

a&kil)w(d, t)

a(k)* deN(t)

(k) _ .
Y w(d,t)’ - a
deN(t)

For the partition containing the documents D the combined activation func-
tion is defined similarly; the only difference is that documents receive their ac-
tivation from the activation state of terms in the same iteration k:

> aPw(d,t)

teN(d)

> w(d,t)?- [al?)
teN(d)

Given a query document dg, let dq be the corresponding normalized vec-
tor space representation of d,. Then the cosine similarity of d, to every docu-
ment d in the network is calculated by activating the terms contained in dg, i.e.

ad =

a,EO) = (dq)+, and spreading the activation to the document partition using the
spreading function as defined above, since

> ago)w(d, t)

dd
a((io): LEN(D) = 1 = cos(d, dy).
> w(dt)?- 2l ldlllidg]l
teN(d)

As stated above, the overall resulting activation of the document partition,
represented as a vector az(0) can be seen as a virtual term. When the next
spreading is executed, i.e. the spreading function for the term partition is applied,
each term will receive its cosine similarity to this virtual term as activation, and
SO on.

To analyze the convergence properties of the proposed framework, it will
now be transformed into a matrix representation, such that the statements of



the previous section can be applied. Let W € RP*T be the matrix constituted
by the weighting function w(d,t), i.e. (W)4 = w(d,t). Let Wp € RP*T be the
lo-row-normalization of W, that is

(Wb)ar = w(d, t)/|d]|

Analogous, let W € RT*P be the 12-row-normalized version of the transposed
matrix W, i.e.

(Wr)ta = w(d, t)/|[t].

Furthermore, let a(Dk) denote the output vector at time k, restricted to the com-

()
T

ponents corresponding to documents, and a;.’ analogous for the restriction on

terms, i.e.
(k) _ (k) (k) _ 4(k)
ap,’ = a and a;’ = a .
b D T T
Now, the spreading functions as given above can be reformulated in matrix

notation as
(k)

(k) _ Wp-ap
ap ®)
lar”|l
where 1
a® _ Wrajp ™"
T k—1)) °
Bl
When put together this yields
-1
@ _ DWTa(Dk—D .HWTag_l) _ WpWraly ™
D k—1 k—1 - k—1 :
[Nt [ W [EY | [Wraly |

By recursive substitution we have a power iteration representation of the spread-
ing activation framework presented here, i.e.

*) (WTWD)ka(TO)
ap’ =Wp ko (0)
[(WrWp)kaz’|

The matrix WrWp represents a connected, non-bipartite graph and therefore
satisfies the conditions for convergence by the Perron-Froebenius Lemma. Hence,
the statements of the previous section apply to the proposed spreading activation
framework. Thus again, the resulting activation will converge to the principal
eigenvector of WprWp transformed to the document space by a multiplication
with Wp. The strategy of accumulating the activation of the individual iterations
will be reviewed experimentally in the next section.

6 Experimental Results

To demonstrate exemplarily that pure spreading activation does not work to
find relevant items, and how, in contrast, the cumulation of iteration results and
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Test collection TIME|MED
Number of documents 425 | 1033
Number of queries 83 30

Average number of relevant documents 3.9 |23.2
Spectral radius p(G.) 1.81 | 1.28

Table 1. SMART test collection statistics

additional constraints affect the search results, we applied spreading activation
to parts of the SMART test collection®. For the experiments we used two corpora,
TIME and MED, with the given queries and reference rankings. The number of
documents, queries and average relevant documents of the test sets, as well as
spectral radius p(G.) of their co-occurrence graphs, are listed in Table 1. For
the sake of brevity we only give illustrations for the TIME dataset and state
differences encountered in MED where necessary.

To build the bipartite document-term graph described in section 5.1, the
data went through common preprocessing steps: stop words were filtered, words
were stemmed and converted to lower case. Furthermore the tf-idf values have
been computed for each word and used as edge weights. The queries have been
preprocessed in the same way. A query was applied by activating the nodes
representing the query terms with an initial activation of 1. Activation was then
spread across the graph according to the two procedures described in section 5.2
and 5.3. The resulting documents were ordered according to their final activation
value. Precision and recall was measured in order to compare the results of the
two methods and of different numbers of iterations. For each test collection the
precision was measured at 11 equidistant points of recall for each query result.
Finally, the average precision over all queries for each of the 11 recall points was
computed.

We investigate two strategies of obtaining a final result based on the individ-
ual iterations: First, we look at pure iteration results. Afterwards, we evaluate
the cumulation strategy Accumulation, as described in Section 4.1. We want to
stress that the purpose of the following experiments is not to test whether the
presented applications perform well compared to others. In contrast, we demon-
strate the failure of pure spreading activation and the effectiveness of cumulation
regarding query-dependent results.

6.1 Pure Iteration

The final result in these tests is the activation of the last iteration. Previous it-
erations are not cumulated or taken into account. Figure 1a shows the precision-
recall results of the query expansion application, which forms a linear system
with no normalization. Figure 1b displays the results of the alternating cosine
similarity application, which is a system with normalization. In all precision re-
call plots, the continuous line represents the precision of the initial state. This

! ftp://ftp.cs.cornell.edu/pub/smart
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(a) Query expansion application (b) Alternating cosine similarity applica-
tion

Fig. 1. Precision and recall results of single iterations of spreading activation.

corresponds exactly to the cosine similarity measure between the query vector
and the documents in both applications, and serves as a baseline for our inves-
tigations. The dotted lines depict the precision corresponding to the results of
iterations 1-5, 10, and 100.

As predicted by the theoretical results, the empirical tests show that conver-
gence to the query-independent fixed point is not adequate in order to generate
satisfying query results. The precision curves of the 10" and the 100*" iteration
are almost identical, due to the convergence of the system. In both systems,
only the first and second iteration outperform the cosine measure for some recall
ranges. The performance decreases with each additional iteration. One could
now put a constraint on the maximum number of iterations of the spreading
method to terminate the process early enough before the fixed point is reached.
However, the determination of the optimal number of iterations is complicated.
In case of the TIME dataset, the first iteration performs best; but for MED, the
results of the first iteration are already worse than the standard cosine measure.
This shows that the constraint when to abort spreading can vary for different
queries and datasets.

To illustrate the convergence behavior Figure 2 shows the trajectories of
the iteration process for some sample queries. Activations of each step are pro-
jected into 2 dimensions with multi-dimensional scaling (MDS, [27]). MDS is
a projection of data into a lower-dimensional space, such that dissimilarities of
vectors in the high-dimensional space are conserved in the projection as good
as possible. As dissimilarities for the MDS we used an inverted cosine between
the activation vectors in document space. The dissimilarity of two vectors ry
and rs is dis(ry,ry) = 1 — cos(ry, re). We used this angular dissimilarity, to aid
the geometric interpretation of the progress of intermediate results. Clearly, for
comparison of two rankings, a metric based on ranking inversions would be more
appropriate since activation vectors resulting in equal rankings would be pro-
jected onto the same coordinates with this measure. In contrast, the dissimilarity
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Fig. 2. Trajectories of 7 queries of the alternating cosine similarity application with
pure spreading activation. Coordinates are obtained by projecting intermediate re-
sults into 2D with MDS, such that angular distances between activation vectors are
conserved. Each query starts at a dot, marking the result of iteration 0, subsequent
iterations are marked by dashes and finally meet at the principal eigenvector of the
system.

based on the cosine has the ability to differentiate between different activation
vectors implying the same ranking. This is more suiting to illustrate how fast
and to what extend the individual intermediate results approach the common
fixed point. In the figure, consecutive intermediate results are connected by a
line, starting at the activation of direct cosine distance depicted as a dot. It is
evident from the trajectories that all activation results converge very quickly to
the same fix point, that is, the principal eigenvector of the system.

6.2 Accumulation

The second method we examine is Accumulation as described in Section 4.1.
Here, the activation of each iteration is cumulated, with a particular decay, to a
final result. This assures convergence to a fixed point dependent on the query, if
the decay rate meets certain conditions.

As stated in Section 4, the decay factor a for non-normalized systems must
obey a < p(G.)~! to ensure convergence. In our case we use as denominator a
value that is just higher than the spectral radius, that is, « = 1/1.9 = 0.526
for the TIME collection and o = 1/1.3 = 0.769 for the MED collection. The
precision and recall values of the query expansion application in Section 5.2
are displayed in Figure 3. In this and subsequent precision-recall figures, the
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Fig. 3. Precision and recall results of the query expansion application with accumu-
lated spreading activation. From initial state (continuous line) accumulated up to 5th
iteration (dotted lines), with a decay of a = 0.526.

embedded bar chart in the top-right corner displays the decay of o* to show the
influence of the single iteration results on the final result.

The performance of accumulation is better than that of pure spreading ac-
tivation. Yet, depending on the possible decay value, the first few iterations
contribute most, and later iterations less. We argued for systems with normal-
ization for exactly this reason, that is, being able to choose the decay factor
« independently of the spectral radius. Also, the computation of the spectral
radius can be very time-consuming.

For normalized systems like the alternating cosine distance application, we
have shown that there are no constraints on a except that it must obey 0 < a <
1. When « is set to a low value, the single iterations loose influence on the final
results very quickly, whereas later iterations still contribute quite significantly
when « is set to a high value. The trajectories of the intermediate results, dis-
played in Figure 4, illustrate the influence of a on the results. The trajectory
of intermediate results of pure spreading activation is outlined in gray in each
figure. The dark arrows depict the trajectories of intermediate results for each
value of . The accumulated results converge to a fixed point, which is depen-
dent on the query, and different from the principal eigenvector of the system.
Still, the trajectory of angles between intermediate results point in the direction
of this eigenvector. Therefore, the greater the value of a, the more will the fixed
point of an accumulation system approach the fixed point of the pure system
with respect to their angular distance in the high-dimensional space. This im-
plies that with a high value of «, the system will give more “general” answers to
a query, whereas, with a low value of «, it will return more “specific” answers.

The precision and recall results corresponding to the alternating cosine simi-
larity application are shown in Figure 5 for two values of a. Again, the results of
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Fig. 4. Trajectories of intermediate results of the alternating cosine similarity applica-
tion with accumulated spreading activation and different decay factors. The trajecto-
ries of Figure 2 are depicted in gray for comparison, while trajectories of accumulated
results with given decays are shown in black.

accumulation perform significantly better than those of pure spreading activa-
tion. With a low value of o, the resulting rankings do not differ very much from
the result of just calculating the cosine similarities of documents to the query.
In contrast, a high value of « significantly changes the ranking. For the TIME
dataset, accumulation with a high value of a yields a good precision for low
recall ranges, but performs worse than the baseline in higher recall ranges. For
the MED dataset, a high value of « also significantly changes the ordering, but
more in the intermediate recall ranges. However, in MED a low value of « results
in better performance. This demonstrates that an optimal value for « can not be
determined without knowledge about the underlying dataset. Nevertheless, the
continuity of results corresponding to continuous choices for a, and the natural
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Fig. 5. Precision and recall results of the alternating cosine similarity application with
accumulated spreading activation and two different decay factors. From initial state
(continuous line) accumulated up to 5™ iteration (dotted lines).

interpretability of this parameter gives the accumulation strategy an advantage
over the choice of a discrete constraint to control spreading.

7 Conclusions

Commonly used spreading activation strategies are based on linear systems with
additional constraints. We pointed out that, without constraints, these systems
can be directly transformed to a power iteration method. Therefore some set
constraints is essential to avoid convergence to query-independent fixed points.
We proposed accumulation of single iteration results as an orthogonal approach
to constraints and showed that this leads to query dependent results. To ensure
convergence in this method, a decay factor decreasing the influence of subse-
quent iterations, has to be introduced. We confirmed our theoretical findings
empirically using two application scenarios. Furthermore, the influence of the
decay factor on the results was shown exemplarily with these applications. The
experiments suggest that the decay factor could be a promising tool to control
the degree of generality of the results.

The effect of non-linear activation functions with regard to their convergence
behavior remains to be analyzed more thoroughly in the context of spreading
activation. Furthermore, other decay and combination functions can be exam-
ined. Additionally, traditional constraints can be combined with the proposed
methods.
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Abstract: Ordinary graphs only support discrete structures. In this paper we present
an approach towards embedding continuous data — like time stamps or series of mea-
surements — in discrete graph models. These continuous meta-information implicitly
define relations between vertices which are not explicitly defined in the graph itself.
We call this an induced Non-Discrete Graph Structure (NoDeS). The model is helpful
for visualization of time-dependent models or values from physical domains. We pro-
vide a formal definition of NoDeS based on graphs and two mappings, instance and
annotation based, to already known graph structures and visualizations. A visualiza-
tion of multi-partite projection provides a representation of information from several
contexts, enabling NoDeS for a generic context switching mechanism which is used
for interaction with these structures. Finally, we introduce an application concept for
agent-driven event scheduling using NoDeS.

1 Introduction

In discrete mathematics graphs are a solid theoretical approach to model and visual-
ize relations between items and to visualize complex structures in many different areas
(cf. [DLO7]). While these structures are static and discrete we thought about adding con-
tinuous data to classic graph structures. This supports visualizing relations between in-
stances as well as sticking continuous node features like time measurements for instance.
In this paper we present the formal description of this enhanced graph structure as well as
interaction sequences of end-users.

We first give a brief overview of related work in the area of graph visualization and systems
related to web searching and the visualization of hypermedia structures. Then we intro-
duce our approach towards embedding continuous domains into graphs. A concept for the
interactive visualization of the presented structure is discussed in Section 4. Finally, in
Section 5, we present an application example based on the problem of Agent-driven event
scheduling to show how our approach can be used.



2 Related Work

Related work can be found in the field of graph visualization and graph layouting. Cook
and Holder, although mostly concerned with graph mining, provide a good overview on the
state of the art and current systems, [CHO7]. For a general overview there are several sur-
veys on graph visualization available (c.f. [HMMO0], [DBETT94], [Tam99]). According
to [DLO7], there are three major methods for graph layouting: force-directed, hierarchical
and topology-shape-metrics, where the force directed method introduced by [Ead84] is
most used today, despite its disadvantageous behavior in interactive systems [HMMO0],
such as presented in Sec. 5. Special visualizations can be used to accommodate data spe-
cific features such as time lines: [DRS04] introduces a 2.5D time-series data visualization,
which uses stacks to represent time-dependent advances in data series. However, all ex-
isting layout and visualization methods do not take continuous domains into account and
rather rely on the inherent relations of the continuous data, such as ordering and distance,
being encoded into the discrete graph structure.

A large number of visualization systems is available. Approaches tailored to web searching
and the visualization of hypermedia structures can be found among the web meta-search
clustering engines (Vivismo', iBoogiez, SnakeT?, WhatsOnWeb?) and in the field of se-
mantic wikis (iMapping Wiki [HKV06]).

Combining visualization methods become more interesting in the context of heterogeneous
information networks as they are heavily used throughout the BISON project.

3 A Structure for Visualizing Continuous Node Features

For our approach, we use the graph definition as proposed in [Die06]:

A graph is a pair G = (V, E) of disjoint sets with E C V2, i.e. the elements
of E are two-element subsets of V', where elements from V' are vertices and
elements from F are edges connecting the vertices.

Often the term node is used when referring to vertices and edges may be called links,
especially in hyperlink structures.

http://vivismo.com/
’http://www.iboogie.com/
Shttp://snaket.di.unipi.it
‘http://whatsonweb.diei.unipg.it
Shttp://www.bisonet.eu
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We call a vertex v continuous if meta-data from a continuous domain is mapped to v.
There are two different mappings to ordinary graphs:

Mapping with meta-data. In the first mapping, continuous information is attached as
meta-data to existing vertices (cf. Fig. 1). If there is a complete linkage between a con-
tinuous and a discrete domain, i.e. for each vertex from the continuous domain there is
a matching vertex from the discrete domain, the continuous information can be attached
to the discrete vertices. This resembles ordinary graphs with embedded meta-information.
However, since the continuous vertices are only attached to other vertices, they are not a
genuine part of the graph structure. It is not possible to distinguish between the contin-
uous vertex and the mapping vertex in the graph structure and it is not possible to label
the edges as they do not explicitly exist. Also, algorithms need to take this mapping into
account and have to recognize attached meta-information as distinct vertices.

Ordinary Graph Structure with enhanced Node Features:

instance A 7 meta-information
of instance C

instance C f ==

meta-information /

instance B \ of instance A

Figure 1: Graph with attached meta-information.

Mapping with meta-nodes. The second — preferred — mapping uses discrete nodes as
instances from the continuous domain (cf. Fig. 2). Instead of attaching meta-information
to existing nodes, we create meta-nodes which serve as a discrete instance of a value from
the continuous domain. In contrast to the first mapping, these nodes do not represent any
information other than the value from the continuous domain and yet can be treated as
ordinary graph elements, i.e. meta-information can be attached and labeled edges can be
added. However, two nodes representing the same value must be considered equal, i.e.
before adding a meta-node, the graph must be searched for already existing nodes repre-
senting the desired value. As an advantage of this approach the resulting graph structure
may contain continuous domains and still is an ordinary graph where existing algorithms
can be applied. As a disadvantage meta-nodes do not represent relationships between ele-
ments from the continuous domain, i.e. two distinct nodes may have a very large distance,
but also represent two very similar values. A distinction function needs to be used to
decide whether two nodes should be considered equal to avoid cluttering the graph with
similar value representations (with the penalty of imprecise representation of the contin-
uous domain), which can introduce model knowledge about the underlying data, e.g. by
using fuzzy sets.



Non-Discrete Graph Structure (NoDeS):

instance A _ implicit link _

’//,,/'meta—information

"/ of instance C

’ ‘_/\\ instance C O}\)

\ o p
instance B . __~ \\ meta-information /
. ofinstance A__~

Figure 2: Interconnected meta-information, visualized as implicit links between vertices.

While both approaches result in an ordinary, annotated graph, the continuous graph struc-
ture differs in its semantics. The continuous vertices are bridges into the continuous do-
main rather than independent discrete elements. There may be an indirect relationship
between those continuous vertices, if it is implied by the continuous domain, e.g. some
distance measure. When calculating distances in the graph, those measures may be taken
into account.

To introduce continuous vertices, the set V' is built by the union of r multiple, arbitrary
domains
V=ViuWu...uV,

where each domain V7, ..., V, may be either discrete or continuous, i.e. values from a
continuous domain are embedded by adding a vertex as its discrete representative. The
resulting graph not only contains vertices from discrete domains, but also elements from
the continuous domain and their implicit connections, which are formed by the intrinsic
ordering and distance function of the respective domain. For example, a pair of numbers
in R is implicitly linked by the distance between the numbers (their difference) and has an
ordering which implies a directed edge in the graph. The set of edges in the non-discrete
graph structure is built from the set of explicit edges and the set of all edges induced by
the continuous domain:
E= EDiscrete U EImplicit

This type of graph we call Non-Discrete graph Structure (NoDeS) induced by a domain.
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4 Interactive Visualization of NoDeS

Interactive variants of a NoDeS visualization can be easily implemented by setting single
nodes or sets of nodes sensitive for user interactions like selecting, dragging and drop-
ping. With slight adaptations, the NoDeS structure is not only interactive, but also allows
to act context sensitive in a users perspective. Therefore NoDeS provide a generic context
switching concept which allows to transfer the graph structure to different types of appli-
cations. Discrete vertices and meta-vertices, representing continuous data, are linked to
each other (cf. Fig. 3).

vertices
representing
continuous data
links _—~1 ™~
V3
discrete
Vl <
discrete
o—2> 1
v, Vv,
discrete discrete

continuous domain

Figure 3: Generic structure of NoDesS.

Besides the indirect connections within the continuous domains, NoDeS can be defined
as multi-partite graph structures if connections are only made between distinct domains
from Vi, ..., V5 (cf. Sec. 3). The resulting graph is visualized using methods for multi-
partite graphs, comparable to flow diagrams, like shown in [vdVvWO0O0]: To interact in
this information network we use direct manipulation, more precisely drag-and-drop, to
support vague user requests. The laws of form like the principle of proximity can be applied
to create context proximity and to map users intentions. Imaginable are user queries like
in scheduling applications: “I tend to not using this room for our meeting” or “It is not
necessary for this special person to take part at our meeting”. This creates implicit context
proximity comparable to [TS00].

Furthermore visualization and interaction are integrated in the same user interface, which
supports directness. It is left to be evaluated whether this technique enhances usability and
user experience. A good evaluation result will show the benefit of direct interaction of this
information network.



5 Application Example

In this chapter we discuss an application, which benefits from NoDeS as the underlying
graph structure: Agent-driven event scheduling (cf. [Pay93], [PG02]).

Timeline Person  Timeline Person  Timeline aft)

: p1 |
Appointment . P2

il
[ Y

\

uonouny , Ajjiqelisapun

Figure 4: NoDeS used as schedule structure. Appointments are positioned along the continuous
timelines but part of the graph structure and linked with the participants. The “undesirability func-
tion” steers priorities and the “leeway” between appointments.

From an application point of view, we refer to examinations of groupware aspects at the ex-
ample of calendar applications like done in [GS86], on the work of Beard (cf. [BPH190]),
who proposed a visual calendar for group meetings. Transferring the single user schedul-
ing (cf. Personal Information Management (PIM) Systems, e.g. [JT06]) into multiple user
applications, we also consider Computer Supported Cooperative Work (CSCW) topics
like Community Building and user management. This transfer of a single into a multiuser
mode is also discussed in [Eri06]. To our knowledge there is no approach using a graph
of appointments and participants to represent the scheduling problem. We show a solution
which uses NoDeS to formulate event scheduling as a minimization problem.

According to [LD89] we need to consider the prospect that calendars are a special form
of continuous data integration. Contrary to time measurements we do not need to care
about every second. When dealing with calendar scheduling problems we deal with ap-
pointments, which have a start time, an end time and a consequential duration time. The
time line can be discretized by dividing the continuous time line into subsequent slots.
The length of these slots decides the solution of the calendar, i.e. the granularity in which
appointments can be made. However, the discretization yields some major disadvantages:

e The granularity of the calendar has to be chosen prior to its initial creation, i.e.
whenever the resolution needs to be changed, the graph structure must be recalcu-
lated.

e The graph structure is bloated by nodes representing empty slots or subsequent
nodes belonging to the same appointment.
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Table 1: Steps for calendar preparation: From multiple calendars to a map showing free slots.

2 U = T
| - - -
Calendar | = [ = = _ Calendar |
Calendar Il V |” |— Calendar Il |
Step 1 Calendar Il Step 2 Calendar Il
Identified free i
entified free time | -
e
Colendar 1 -
— L]
—
Calendar Il Depending on — —_
priority level i
Calendar |, Il and Il overlaid
Step 3 Calendar Il Step 4

e From a semantic point of view, the calendar graph represents a sequence of time
slots, where some of these slots may have special states denoting them as real ap-
pointments, rather than nodes representing appointments themselves. Especially
when linking to a distinct appointment, it is difficult to decide which of the time
slots contained in this appointment should be considered the major vertex for this
appointment, i.e. to which of the slots the edge should be connected. Solving this
issue by connecting any time slot to the appointment only shifts the problem, as all
slots belonging to the appointment must be evaluated to obtain its neighbors.

e When the appointment is moved, the whole link structure must be adapted, i.e. edges
removed and re-inserted in other vertices in the graph. Moving an appointment
should be possible by just changing its start and end time.

To remedy these disadvantages we propose a graph representation which contains only
existing appointments as vertices, which can have an arbitrary start and end on the con-
tinuous time line (cf. Fig. 4). Continuous node features are tagged to the classes “Ap-
pointments”, which are linked to discrete vertices like persons (e.g. P1, P2) taking part
in the specific appointment. An “undesirability function” denotes the fitness of a specific
time for scheduling a meeting: « represents the grade of “undesirability” of a date, where
a value of zero represents a free time slot and greater values the grade to which the slot
is blocked, i.e. its priority over other appointments. The slope of the graph, A, specifies
the “leeway” between appointments. The higher the value, the more will an appointment
block time beyond its boundaries, leading to more free time between the specific dates. A
A-value of zero leads to subsequent appointments with no free time between them. This is



Coordinator
(Initiator of
Scheduling)

£ =i

Member / Community

Figure 5: System architecture for scheduling application.

important to adapt vague scheduling. For optimal scheduling of a meeting the sum of the
undesirability functions for all participants needs to be minimal.

Before using various calendars they first need to be prepared: By overlaying them (cf.
Table 1) different steps of gray types appear, which allow a categorization of time slots:
black (blocked, inevitable), gray (normal), white (free) and arbitrary fine-grained levels
between them.

A possible technical realization of this special example is shown in in Fig. 5. First we as-
sume the user maintains an online accessible calendar with priorities for each appointment.
Similar to [JFRT01] and [ESTT97] our system architecture provides a central coordinator,
who initiates the scheduling. Given these information the following steps will be accom-
plished by the system:

1. A distinct ID is generated by the system.

2. Community members send and update their calendar data.

W

. Estimated time slots are published.
4. The coordinator sends the first free time slots as a request to the user community.

5. The appointment has been accepted, otherwise go back to step 2.

Further examples of possible applications can be found in physics for instance: In thermo-
dynamics and quantum physics usual discrete iterations are thus extended into a continu-
ous flow (cf. [AF98]).

In future work one can also consider social aspects of scheduling and group meetings like
thought about in [Pal99]. Also enhancements of our scheduler in a more personalized way
like done in [TGWO06] are possible. For readers who would like to read up more precisely
on calendar use we suggest Brush’s “Taking a closer look to calendar use” ([BT05]).
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6 Conclusion

In this paper we proposed a conceptual design approach towards graph structures which is
able to support continuous node features, called NoDeS. We presented an application, the
agent-driven event scheduling, to provide a use-case for embedding continuous informa-
tion in form of time-dependent nodes into the discrete structure of a network comprising
human participants and resources such as meeting rooms.

This approach can be transferred to different domains. For example, to support creative
exploration and discovery by switching between contexts (BISON) or to provide visualiza-
tion and exploration of huge and complex data structures in energy and logistic networks
(ViERforES).
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Abstract. This paper investigates the role of outliers in literature-based
knowledge discovery. It shows that detecting interesting outliers that appear in
the literature about a given phenomenon can help generate novel plausible
scientific hypotheses. The underlying assumption is that whereas the majority
of domain literatures describe matters related to common understanding of the
domain, some particular observations that appear rarely in the literature can
indicate a promising direction towards novel discoveries. This rarity principle is
used in our method called RaJoLink to guide the knowledge discovery process.
The presented method focuses on the role of outliers in the closed discovery
process as implemented in the RaJoLink literature mining methodology.

Keywords: rarity, outliers, bisociations, literature mining, knowledge
discovery.

1 Introduction

In statistics, an outlier is an observation that is numerically distant from the rest of
the data, or more formally, it is an observation that lies outside the overall pattern of a
distribution [1]. While in many data sets outliers may be due to data measurement
errors (therefore it would be best to discard them from the data), there are also several
examples where outliers actually led to important discovery of intriguing information.
Outlier mining has proved to have important applications in fraud detection and
network intrusion detection [2], [3], [4]. Similarly, much attention to the study of
outliers is paid in economics, particularly in finance and business, where rare events
can be a sign of interesting unusual activities or observations like, for instance,
potential sales opportunities [S]. A specifically challenging aspect of outlier detection
is emerging within the climate research and extreme weather events prediction. There
has been much interest in investigating the impacts, intensity and distribution of rare
extreme events over a certain period of time [6]. Current attention to rare weather
phenomena is driven by their possibility to become regionally more variable or
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extreme menace to human life, civil infrastructure and natural ecosystems, which may
have significant socioeconomic impacts [7]. Rarity as a principle has been extensively
researched in the field of ecology statistics [8]. These investigations include the rarity
driven by biodiversity and conservation policies [9]. Considering this, special concern
of ecologists has been devoted to studying rare species [10]. They recognized two
syndromes of rarity: habitat-limited species that were rare because their habitat was
rare and dispersal-limited species that were rare because they stayed behind due to a
catastrophic turnover of old growth. While ecologists’ primary concern was
preventing the extinction of rare species, they also identified the potential of
dispersal-limited species to adapt to changed environment.

Data analysis with machine learning methods applied to large collections of textual
data in databases enables discovering pieces of knowledge, which - when put together
- might describe still unknown connections between phenomena. In this way, they
contribute to the formation of new hypotheses in different fields. Connectivity of
numerous large data sets that may include textual data and their computer-supported
analysis contributes also in a methodological sense to the development of e-science.
In particular, information that is related across different contexts is difficult to identify
with the conventional associative approaches. It is, however, these kinds of context-
crossing associations, called bisociations [11], that are often needed for innovative
discoveries.

The aim of this paper is to present an approach to rarity-based knowledge
discovery from text documents that can be used to explore implicit relationships
across different domains of expertise. The approach upgrades the RaJoLink method
[12] which provides a novel approach to the knowledge discovery from literature,
based on the principle of rare terms from scientific articles together with the notion of
bisociation. RaJoLink is intended to support experts in their overall process of open
knowledge discovery, where hypotheses have to be generated, and in the closed
knowledge discovery process, where hypotheses are tested. It was demonstrated in
[12], [13], and [14] that this method can successfully support the user-guided
knowledge discovery process.

The motivation for our focus on rare items/terms in the literature has grounds in the
associationist creativity theory [15], and pays special attention to the category of
context-crossing associations, called bisociations [11]. Bisociation implicates the
literal processes of mind when making completely new connections between concepts
from contexts or categories that are usually considered separate contexts or
categories. Mednick [15] defines creative thinking as the faculty of generating new
combinations of distant associative elements (e.g. words). He explicates how thinking
of concepts that are not strictly related to the elements under research inspires
unforeseen useful connections between elements. In this manner, bisociations
considerably improve the creative process. Through the history of science, this
mechanism has been the crucial element of progressive insights and paradigm shifts.
Nevertheless, no comprehensive ICT methodology has yet been developed on this
basis. Hence, we firmly believe that our method contributes to this particular
approach to scientific discovery, which is based on an existing, but hitherto not
computationally implemented notion of bisociation.

This paper describes an upgrade of the RaJoLink methodology, focusing on rare
terms in the literature from different domains/contexts, aimed at creative knowledge
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discovery through bisociative reasoning. The detected rare terms may indicate the
discovery of the so-called bridging terms/concepts, enabling the exploration of the
potentially interesting bisociative links between the domains, which may be indicative
of new insights/discoveries. The methodology has been applied to a challenging
medical domain: the set of records for our studies was selected from the domain of
autism. Autism belongs to a group of pervasive developmental disorders that are
portrayed by an early delay and abnormal development of cognitive, communication
and social interaction skills of a person [16]. It is a very complex and not yet
sufficiently understood domain, where precise causes are still unknown, hence we
have chosen it as our experimental testing domain.

This paper is organized as follows. Section 2 presents the related work in the area
of literature mining. Section 3 introduces the literature-based knowledge discovery
process and further explores rarity as a principle for guiding the knowledge discovery
in the upgraded RaJoLink method. Section 4 presents the RaJoLink approach by
focusing on outliers in the closed discovery process. Section 5 illustrates the
application of outlier detection to the autism literature. Section 6 provides discussion
and conclusions.

2 Related Work in Literature Mining

Novel interesting connections between disparate research findings can be extracted
from the published literature. Analysis of implicit associations hidden in scientific
literature can guide the hypotheses formulation and lead to the discovery of new
knowledge. To support such literature-based discoveries in medical domains,
Swanson has designed the ABC model approach [17] that investigates whether an
agent A influences a phenomenon C by discovering complementary structures via
interconnecting phenomena B. Two literatures are complementary if one discusses the
relations between A and B, while a disparate literature investigates the relations
between B and C. If combining these relations suggests a previously unknown
meaningful relation between A and C, this can be viewed as a new piece of
knowledge that might contribute to a better understanding of phenomenon C.

Weeber and colleagues [18] defined the hypothesis generation approach as an open
discovery process and the hypothesis testing as a closed discovery process. In the
open discovery process only the phenomenon under investigation (C) is given in
advance, while the target agent A is still to be discovered. In the closed discovery
process, both C and A are known and the goal is to search for linking phenomena B in
order to support the validation of the hypothesis about the connection between A and
C. Smalheiser and Swanson [19] developed an online system named
ARROWSMITH, which takes as input two sets of titles from disjoint domains A and
C and lists terms b that are common to literature A and C; the resulting terms b are
used to generate novel scientific hypotheses.? As stated by Swanson [20], his major

2 Here we use the notations A, B, and C that are written in uppercase letter symbols to represent
a set of terms (e.g., literature or collection of records), while with a, b, and ¢ (lowercase
symbols) we represent a single term.



focus in literature-based discovery has been on the closed discovery process, where
both A and C have to be specified in advance.

Several researchers have continued Swanson’s line of research. An on-line
literature-based discovery tool called BITOLA has been designed by Hristovski [21].
It uses association rule mining techniques to find implicit relations between
biomedical terms. Weeber and colleagues [22] developed Literaby, the concept-based
Natural Language Processing tool. The units of analysis that are essential for their
approach are UMLS Metathesaurus concepts. The open discovery approach
developed by Srinivasan and colleagues [23], on the other hand, relies almost
completely on Medical Subject Headings (MeSH). Yetisgen-Yildiz and Pratt [24]
proposed a literature-based discovery system called LitLinker. It mines biomedical
literature by employing knowledge-based and statistical methods. All the pointed
systems use MeSH descriptors [25] as a representation of scientific medical
documents, instead of using title, abstract or full-text words. Thus, problems arise
since MeSH indexers normally use only the most specific vocabulary to describe the
topic discussed in a document [25] and therefore some significant terminology from
the documents’ content may not be covered. The Swanson’s literature-based
discovery approach has been extended also by Lindsay and Gordon [26], who used
lexical statistics to determine relative frequencies of words and phrases. In their open
discovery approach they search for words on the top of the list ranked by these
statistics. However, their approach fails when applied to Swanson’s first discoveries
and extensive analysis has to be based on human knowledge and judgment.

3 The Upgraded RaJoLink Knowledge Discovery Process

The aim of knowledge discovery investigated in this paper is to detect the
previously unnoticed concepts (chances) at the intersections of multiple meaningful
scenarios. As a consequence, tools for indicating rare events or situations prove to
play a significant role in the process of research and discovery [27]. From this
perspective, researchers have to be sensitive to curious or rare observations of
phenomena in order to provide novel possible opportunities for reasoning [28] and be
aware of the powerful support that data mining tools can have for choosing
meaningful scenarios [27].

Outliers actually attract a lot of attention in the research world and are becoming
increasingly popular in text mining applications as well. Detecting interesting outliers
that rarely appear in a text collection can be viewed as searching for the needles in the
haystack. This popular phrase illustrates the problem with rarity since identifying
useful rare objects is by itself a difficult task [28].

The rarity principle that we apply in the RaJoLink literature-based discovery is a
fundamental difference from the previously proposed methods and represents a
unique contribution of the RaJoLink method. In our earlier work [12], [13], and [14]
we presented the idea of extending the Swanson’s ABC model to handle the open
discovery process with rare terms from the domain literature. For that purpose we
employed the Txt2Bow utility from the TextGarden library [29] in order to compute
total frequencies of terms in the entire text corpus/corpora.
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Already in the original RaJoLink method the rarity principle is employed as a
means to find new interesting pieces of knowledge that were previously unrelated in
the available literature. The rationale behind it is that if a piece of information is
abundant in the set of articles, it may be speculated that its impact to the field under
study is well-covered; however, if it appears rarely, not many researchers are
acquainted with it, so it might be worth exploring it further. Similarly to dispersal-
limited species from ecology, such pieces of information might be either on their way
to extinction or might embody a potential for new development in the field. In order
to distinguish between the two options, expert guidance is needed in the process.

To support the extraction of information from scientific articles and to simplify the
processing and analysis of such information we have designed the RaJoLink method.
RaJoLink provides a framework for literature-based discovery from texts written in
English. The entire RaJoLink method involves three principal steps, Ra, Jo and Link,
which have been named after the key elements of each step: Rare terms, Joint terms
and Linking terms. Note that the steps Ra and Jo implement the open discovery, while
the step Link corresponds to the closed discovery. The methodological description of
the three steps has been provided in our previous publications [12], [13], and [14].

We developed a software tool that implements the RaJoLink method and provides
decision support to experts. It can be used to find scientific articles in MEDLINE
database [30], to compute statistics about the data, and to analyze them to discover
eventually new knowledge. By such exploration, massive amounts of textual data are
automatically collected from databases, and text mining methods are employed to
generate and test hypotheses. In the step Ra, a specified number (set by user as a
parameter value) of interesting rare terms in literature about the phenomenon C under
investigation are identified. In the step Jo, all available articles about the selected rare
terms are inspected and interesting joint terms that appear in the intersection of the
literatures about rare terms are identified and selected as the candidates for A. In
order to provide explanation for hypotheses generated in the step Jo, our method
searches for links between the literature on joint term a and the literature on term C.

The upgraded RaJoLink methodology for creative knowledge discovery consists of
the following steps.

e The crucial step in the RaJoLink method is to identify rare elements within
scientific literature, i.e., terms that rarely appear in articles about a certain
phenomenon.

e Sets of literature about rare terms are then identified and considered together
to formulate one or more initial hypotheses in the open discovery process.

e Next, in the closed discovery process, RaJoLink focuses on outlying and their
neighbouring documents in the documents’ similarity graphs. We construct
such graphs with the computational support of a semi-automatic tool for
ontology construction, called OntoGen [31].

e Outlying documents are then used as a heuristic guidance to speed-up the
search for the linking terms (bridges) between different domains of expertise
and to alleviate the burden from the expert in the process of hypothesis testing.



4 Outlier Detection in the RaJoLink Knowledge Discovery Process

This paper focuses mainly on the steps of the closed discovery process. The closed
discovery process is supported by using the OntoGen tool [31]. One of its features is
its capacity of visualizing the similarity between the selected documents of interest.
The main novelty of the upgraded RaJoLink methodology is to visualize outlying
(and their neighbouring) documents in the documents’ similarity graph (Figure 1) to
find bisociations in the combined set of literatures A and C. Our argumentation is that
outlying documents of two implicitly linked subjects can be used to search for
relevant linking terms (bridges) between the two subjects. The idea of this paper of
representing instances of literature A together with instances of literature C in the
same similarity graph with the purpose of searching for their bisociative links is a
unique aspect of our method in comparison to the literature-based discovery
investigated by other researchers.
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Fig. 1. A graph representing instances of literature A and instances of literature C according to
their content similarity. Outliers are positioned far enough away from the most typical
representatives of the two heretofore unrelated literatures A and C.

In the closed discovery process of the RaJoLink method, linking terms b that
bridge the literature A and the literature C can be considered as outliers. Having
disparate literatures A and C, both domains are examined by the combined dataset of
literatures A and C in order to assess whether they can be connected by implicit
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relations. Within the whole corpus of texts consisting of literatures A and C, which
acts as input for step Link (i.e. the closed discovery) of RaJoLink, each text document
represents a single record.

Each document from the two literatures is represented by a set of words using
frequency statistics based on Bag of Words (BoW) text representation [32]. BoW
representation and the appearance of co-occurring words are employed as a measure
of content similarity between documents. Its computation is performed with OntoGen,
which was designed for interactive data-driven construction of topic ontologies [31].
The content similarity is based on the textual description of documents and is
measured using the standard TF*IDF (term frequency inverse document frequency)
weighting method [33]. This way, all the records are sorted according to similarity
and the content related documents are obtained by comparing neighbouring
documents from the list. The similarity between documents is visualized with
OntoGen in the document’s similarity graph, as illustrated in Figure 1.

5 Application of Outlier Detection in the Autism Literature

Figure 2 shows the similarity graph representing instances of literature A and
instances of literature C (AUTISM context) according to their content similarity,
where A denotes a set of documents containing term calcineurin (i.e., the so-called
CALCINEURIN context), and C denotes a set of documents containing term autism
(i.e., the so-called AUTISM context).

The presented linking approach suggests a novel way to improve the evidence
gathering phase when analyzing individual a terms in their potential connection with
the term C. In fact, even Srinivasan and colleagues, who declared to have developed
the algorithms that require the least amount of manual work in comparison with other
studies [23], still need significant time and human effort for collecting evidence
relevant to the hypothesized connections. In the comparable upgraded RalJoLink
approach, the domain expert should be involved only in the conclusive actions of the
Link step to accelerate the choice of significant linking terms. In this step, similarity
graph visualization proves to be extremely beneficial for speeding the process of
discovering the bridging concepts. Not only that the documents detected as outliers
are visualized and their contents presented on the screen by simply clicking on the
pixel representing the document (see Figure 2), but also the keywords are listed,
explicitly indicating a set of potential bridging concepts (terms) to be explored by the
domain experts.
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Fig. 2. OntoGen’s similarity graph representing instances of the literature A (CALCINEURIN
context) and instances of the literature C (AUTISM context) according to their content
similarity. The distinctive article about the substance calcineurin (CN 437) is visualized among
the autism context documents.

6 Conclusions

Current literature-based approaches depend strictly on simple, associative information
search. Commonly, literature-based association is computed using measures of
similarity or co-occurrence. Because of their ‘hard-wired’ underlying criteria of co-
occurrence or similarity, these methods often fail to discover relevant information,
which is not related in obvious associative ways. Especially information related
across separate contexts is hard to identify with the conventional associative
approach. In such cases the context-crossing connections, called bisociations, can help
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generate creative and innovative discoveries. The RaJoLink method has the potential
for bisociative relation discovery as it allows switching between contexts by exploring
rare observations in intersections between contexts.

Similar to Swanson’s closed discovery approach [17], the search for linking terms
consists of looking for terms b that can be found in separate sets of records, namely in
the literature A as well as in the literature C. However, our focusing is on outliers
from the two sets of records and their neighbouring documents. Thus we show how
outlying documents in the similarity graphs yield useful information in the closed
discovery, where connections have to be found between the literatures A and C. In
fact, such visual analysis can show direction to the previously unseen relations, which
provide new knowledge. This is an important aspect and significant contribution of
our method to literature-based discovery research.

Most of the data analysis research is focused on discovering mainstream relations.
These relations are well statistically supported; findings usually confirm the
conjectured hypothesis. However, searching for rare items can be beneficial to finding
new, previously unseen relations. This paper provides insight into the relationship
between outliers and the literature-based knowledge discovery. The focus is on the
use of the associationist creativity theory in the literature-based discovery with
particular attention to the context-crossing associations, called bisociations. An
important feature of our approach is the way of detecting the bridging concepts
connecting unrelated literatures, which we have performed by the OntoGen’s
similarity graphs. We used them for representing instances of the literature A together
with instances of the literature C according to their content similarity with the goal to
find out outliers from the two sets of literatures and their neighbouring documents.
We showed that with the similarity graphs that enable the visual analysis of the
literature it is easier to detect the documents, which are very interesting for a
particular link analysis investigation, for the reason that such outlying documents
often represent particularities in domain literature. Therefore, to test whether the
hypothetical observation could be related to the phenomenon under investigation or
not, we compare the sets of literature about the initial phenomenon with the literature
about the hypothetically related one in the documents’ similarity graphs. By our
original discovery of linking terms between the literature on autism and the literature
on calcineurin we proved that such combination of two previously unconnected sets
of literatures in a single content similarity graph can be very effective and useful [12],
[13], and [14]. From the similarity graphs that we drew with OntoGen we could
quickly notice, which documents from the observed domain are semantically more
related to another context. They were positioned in the middle portions of the
similarity curves.

Acknowledgments. This work was partially supported by the project Knowledge
Technologies (grant P2-0103) funded by the Slovene National Research Agency, and
the EU project FP7-211898 BISON (Bisociation Network for Creative Information
Discovery).



References

1. Moore, D. S., McCabe, G. P.: Introduction to the Practice of Statistics, 3rd ed. New York:
W. H. Freeman (1999)

2. Aggarwal, C. C., Yu, P. S.: An effective and efficient algorithm for high-dimensional outlier
detection. Int J Very Large Data Bases 14(2), pp. 211--221 (2005)

3. Lazarevic, A., Kumar, V., Srivastava, J.: Intrusion detection: A survey. In: Kumar, V.,
Srivastava, J., and Lazarevic, A. (eds.) Massive Computing, Managing Cyber Threats.
Springer, US, pp. 19--80 (2005)

4. Singhal, A., Jajodia, S.: Data warehousing and data mining techniques for intrusion detection
systems. Distrib Parallel Databases 20(2), pp. 149--166 (2006)

5. Leung, C. K.-S., Thulasiram, R. K., Bondarenko, D. A.: An Efficient System for Detecting
Outliers from Financial Time Series. In: Bell D and Hong J (eds.) Flexible and Efficient
Information Handling. Lect Notes Comput Sci 4042, Springer, Berlin, pp. 190--198 (2006)

6. IPCC Climate change 2007: The physical science basis. Contribution of Working Group I to
the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 996 pp
(2007)

7. Frei, C., Schir, C.: Detection probability of trends in rare events: Theory and application to
heavy precipitation in the Alpine region. J Clim 14(7), pp 1568--1584 (2001)

8. Ellison, A. M., Agrawal, A. A.: The Statistics of Rarity. Ecology 86(5), pp. 1079--1080
(2005)

9. Carney, R. S.: Basing conservation policies for the deep-sea floor on current-diversity
concepts: A consideration of rarity. Biodiversity and Conservation 6(11), pp. 1463--1485
(1997)

10.Boughton, D.: Paradoxes in science: A new view of rarity. Science findings of Pacific
Northwest Research Station 35, (2001)

11.Koestler, A. The act of creation. MacMillan Company, New York (1964)

12. Petri¢, 1., Urbanci¢, T., Cestnik, B., Macedoni-Luks$i¢, M.: Literature mining method
RaJoLink for uncovering relations between biomedical concepts. J. Biomed. Inform. 42(2),
pp- 219--227 (2009)

13.Petri¢, 1., Urbanci¢, T., Cestnik, B.: Discovering hidden knowledge from biomedical
literature. Informatica 31(1), pp. 15--20 (2007)

14. Urbancic, T., Petric, 1., Cestnik, B., Macedoni-Luksi¢, M.: Literature mining: towards better
understanding of autism. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007.
Proceedings of the 11th Conference on Artificial Intelligence in Medicine in Europe. pp.
217--226. Amsterdam, The Netherlands (2007)

15.Mednick, S. A.: The associative basis of the creative process. Psychol. Rev. 69(3), pp. 220--
232 (1962)

16.American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders,
4th Edition, Text Revision. Washington, DC (2000)

17.Swanson, D. R.: Undiscovered public knowledge. Library Quarterly 56(2), pp. 103--118
(1986)

18.Weeber, M., Vos, R., Klein, H., de Jong-van den Berg, L. T. W.: Using concepts in
literature-based discovery: Simulating Swanson’s Raynaud—fish oil and migraine—
magnesium discoveries. J. Am. Soc. Inf. Sci. Tech. 52(7), pp. 548--557 (2001)

19.Smalheiser, N. R., Swanson, D. R.: Using ARROWSMITH: a computer-assisted approach
to formulating and assessing scientific hypotheses. Comput. Methods Programs Biomed.
57(3), pp. 149--153 (1998)

20.Swanson, D. R., Smalheiser, N. R., Torvik, V. L.: Ranking indirect connections in literature-
based discovery: The role of Medical Subject Headings (MeSH). J. Am. Soc. Inf. Sci. Tech.
57(11), pp. 1427--1439 (2006)

117



118

21.Hristovski, D., Peterlin, B., Mitchell, J. A., Humphrey, S. M.: Using literature-based
discovery to identify disease candidate genes. Int. J. Med. Inform. 74(2-4), pp. 289--298
(2005)

22.Weeber, M.: Drug discovery as an example of literature-based discovery. In: DZeroski, S.,
Todorovski, L. (eds.) Computational Discovery of Scientific Knowledge. LNCS 4660, pp.
290--306 Springer, Berlin, Heidelberg (2007)

23.Srinivasan, P., Libbus, B.: Mining MEDLINE for implicit links between dietary substances
and diseases. Bioinformatics 20(Suppl 1), pp. 1290--296 (2004)

24 Yetisgen-Yildiz, M., Pratt, W.: Using statistical and knowledge-based approaches for
literature-based discovery. J. Biomed. Inform. 39(6), pp. 600--611 (2006)

25.Nelson, S. J., Johnston, D., Humphreys, B. L.: Relationships in Medical Subject Headings.
In: Bean, C. A., Green, R. (eds.) Relationships in the organization of knowledge. pp. 171--
184. Kluwer Academic Publishers, New York (2001)

26.Lindsay, R. K., Gordon, M. D.: Literature-based discovery by lexical statistics. J. Am. Soc.
Inf. Sci. 50(7), pp. 574--587 (1999)

27.0hsawa, Y.: Chance discovery: the current states of art. Chance Discoveries in Real World
Decision Making 30, pp. 3--20 (2006)

28.Magnani, L.: Chance discovery and the dissmbodiment of mind. In: Khosla, R., Howlett, R.
J., Jain L. C. (eds.) Knowledge-Based Intelligent Information and Engineering Systems: 9th
International Conference, KES 2005. pp. 547--553 Melbourne, Australia (2005)

29.Grobelnik, M., Mladeni¢, D.: Extracting human expertise from existing ontologies. In: EU-
IST Project IST-2003-506826 SEKT (2004)

30.MEDLINE Fact Sheet [Online], URL:http://www.nlm.nih.gov/pubs/factsheets/medline.html

31.Fortuna, B., Grobelnik, M., Mladeni¢, D.: Semi-automatic data-driven ontology construction
system. In: Bohanec, M., Gams, M., Rajkovi¢, V., Urban¢i¢, T., Bernik, M., Mladeni¢, D.,
Grobelnik, M., Hericko, M., Kordes, U., Marki¢, O., Musek, J., Osredkar, M. ],
Kononenko, I, Novak Skarja, B. (eds.) Proceedings of the 9th International multi-
conference Information Society. pp. 223--226. Ljubljana, Slovenia (2006)

32.Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv.
34(1), pp. 1--47 (2002)

33.Salton, G., Buckley, C.: Term Weighting Approaches in Automatic Text Retrieval.
Information Processing and Management 24(5), pp. 513--523 (1988)



Characterizing Semantic Relatedness
of Search Query Terms

Dominik Benz, Beate Krause, G. Praveen Kumar,
Andreas Hotho, and Gerd Stumme

Knowledge & Data Engineering Group, University of Kassel,
34121 Kassel, Germany
{benz,krause,praveen,hotho, stumme }@cs.uni-kassel.de

Abstract. Mining for semantic information in search engine query logs
bears great potential for both the optimization of search engines and boot-
strapping Semantic Web applications. The interaction of a user with a
search engine (more specifically clicklog information) has recently been
viewed as implicit tagging of resources by query terms. The resulting struc-
ture — previously called a logsonomy — exhibits structural similarities to
folksonomies, which evolve during the expclicit process of annotating re-
sources with freely chosen keywords in social bookmarking systems. For
the folksonomy case, appropriate measures of relatedness have shown to
be capable to harvest the emerging semantics inherent in the tripartite
graph of users, tags and resources. Motivated by the reported structural
similarities, in this work we extend this methodology to logsonomies. More
specifically, we apply several measures of query term relatedness to the
logsonomy graph and provide a semantic characterization for each mea-
sure by grounding it against user-validated relatedness measures based on
WordNet. Comparing the outcome with prior results of analyzing folkson-
omy data we find that the formalization of log data in logsonomies retains
the semantic information. Some relatedness measures we applied prove to
be able to capture these emergent semantics similarly to the folksonomy
case, while others exhibit different characteristics. In this way we provide
a novel and systematic approach to compare the emergent semantics of
user interactions with search engines and social bookmarking systems. We
conclude that the type of semantic information inherent in both emerging
structures is similar, and inform the choice of an appropriate measure of
query term relatedness for a given task.

1 Introduction

Folksonomies are complex systems consisting of user-defined labels added to web
content such as bookmarks, videos or photographs by different users. In contrast
to classical search engines, which index the web and offer a simple user interface to
search in this index, a folksonomy can be explored in different dimensions taking
users, tags and resources into account. With logfiles containing queries and clicks
of search engine users, a similar relation between users, query terms and a resource
can be found: a user submits a query and clicks on a specific URL. The resulting
structure of this process, previously called logsonomy [1], is a tripartite graph of a
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set of users, queries and clicked URLs with hyperedges, each connecting one query,
one clicked URL and one specific user.

While folksonomies aggregate explicit lightweight metadata annotations (namely
tags), logsonomies can hence be seen as implicit annotations by user clicks. Pre-
vious work [1] revealed that both show similar structural characteristics, e.g.,
small world properties, a power law distribution of tags and users, and a simi-
lar co—occurrence behaviour of tags. These first insights indicate the possibility
that logsonomies contain — similar to the folksonomy graph — inherent semantics
emerging from the “collaborative” process of searching similar information and
being interested in the same resources.

In prior work, we found that measures of semantic relatedness based on the
folksonomy graph are able to extract these emerging semantics [2]. Motivated by
the structural analogies mentioned above, we explore in this paper the potential
of logsonomies to extract semantic relations between different queries or query
parts. In [2], different relatedness measures considering statistical, distributional
and structural characteristics of a folksonomy have been applied to learn about
related tags on a large-scale snapshot of the social bookmarking system del.icio.us.
These measures are the co-occurrence count, three distributional measures which
use the cosine similarity in the vector spaces spanned by users, tags and resources,
respectively, and FolkRank [3], a graph-based measure which is an adaptation of
the well-known PageRank [4] to folksonomies.

We will apply these measures in the same manner to a logsonomy built from an
AOL click dataset. This allows for a direct comparison of the findings of tag related-
ness in folksonomies to the ones in logsonomies. Especially, the semantic grounding
based on a comparison of related tags / query terms to semantic relations of terms
in the lexical database WordNet helps to characterize the major differences of re-
latedness measures between folk- and logsonomies. We follow the choice of [2] and
measure the semantic term relatedness within WordNet by using both the taxo-
nomic path length and a similarity measure by Jiang and Conrath [5]. The latter
resembles most closely to what humans perceive as semantically related [6], while
the first allows the inspection of the edge composition of paths leading from one
tag to the corresponding related tags, which has proven to be especially insightful.

Learning about the hidden structure of a search engine’s query vocabulary will
be interesting for a variety of applications: similar or related tags can be used to
refine and expand search queries, to correct spelling errors or to improve a search
engine’s ranking. For example, first results show that the tag context related-
ness is often able to extract synonyms of a given query term. Other measures (like
FolkRank) seem to point to more general terms, which can be useful for broadening
a search. Another application of our work is harvesting the usage-driven seman-
tics of search query logs by ontology learning procedures based on logsonomies.
This would directly tackle the knowledge acquisition problem of many Semantic
Web applications. Our work establishes hereby the connection between prior work
(like [7] on mining for semantics in search query logs) and recent approaches of
bridging the gap between the “Web 2.0” and the Semantic Web.

In this paper, we bring together two research branches: First, work targeted
on harvesting semantic information from social annotations (i. e., by appropriate
measures of semantic relatedness), and second work on structural similarities be-



tween interactions of users with social bookmarking systems and search engines.
We expect synergies for both directions by posing the following research questions:

— Is there evidence for emergent semantics in logsonomies as it is in folksonomies?

— Can we infer further structural similarities or differences between folksonomies
and logsonomies by comparing the output of relatedness measures on both
structures?

— Does a given measure of relatedness exhibit the same semantic characteristics
when applied to a folksonomy and to a logsonomy graph?

The rest of the paper is organised as follows. Section 3 briefly defines folk- and
logsonomies, describes the construction of logsonomies and the datasets used for
computing tag and query term relatedness. In Section 4, we introduce the applied
relatedness measures. Some qualitative insights are presented in Section 5, while
a thorough analysis of query term relatedness is conducted in Section 6. Finally,
implications of this work to other fields are discussed and an outlook on future
work given.

2 Related Work

In this section, we discuss related work which considers the analysis of semantics
in query click logs. To the best of our knowledge, a comprehensive comparison of
the semantics extracted from folksonomies and search engine logs has not been
conducted before, but each data structure has been considered individually.

Besides a variety of analytical studies about the nature of clickdata, extensive
reseach has been conducted in the area of information retrieval where click data
was used to expand queries and to improve the retrieval performance. For a de-
tailed discussion of folksonomies, social bookmarking systems and the extraction
of semantics the reader may refer to [2].

The transformation of clickdata to a tripartite hypergraph as well as a com-
parison to folksonomy properties has been carried out in [1]. The work could show
similar structural properties of logsonomies and folksonomies. Given these results,
the analysis of query term similarity seems to be very promising.

A further consideration of the tripartite structure of query logs has been pre-
sented in [8], where an algorithm to rank resources based on the relationships
among users, queries and resources was proposed. In [7], Baeza-Yates and Tiberi
proposed to present query-logs as an implicit folksonomy where queries can be
seen as tags associated to documents clicked by people making those queries. The
authors extracted semantic relations between queries from a query-click bipar-
tite graph where nodes are queries and an edge between nodes exists when at
least one equal URL has been clicked after submitting the queries. As an exten-
sion of the above work, Francisco et al. [9] cluster these bipartite graphs using
clique percolation and priori induced cliques and consequently extract semantic
relations between queries. However, the semantic grounding of the relations is
not in the core of this work. By constructing a folksonomy-alike structure, we
can build on systematic investigations of various topological characteristics of the
well-established folksonomy model. Our tag-tag—co-occurrence analysis is closely
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related to the graph analysis of [9], but operates on a different kind of dataset cre-
ated by splitting the original search queries into single search terms. This dataset
is compared to results of the del.icio.us folksonomy. Overall, our contribution is
a comparison between hypergraphs constructed of real-world folksonomy and log-
sonomy datasets. We are not aware of other work which examines differences and
commonalities of user interactions with folksonomy and search engine systems as
we do in this paper.

3 Folksonomies and Logsonomies

As mentioned above, social bookmarking systems contain ezplicit annotations
while search engine clicklogs provide implicit annotations of resources. In this
section, we provide a formal model of folksonomies and show how search engine
clicklogs can be adapted to this model, resulting in logsonomies. We consequently
detail on the datasets used to evaluate our approach.

3.1 Formal Model of a Folksonomy

The central data structure of a social bookmarking system is called folksonomy. It
can be seen as a lightweight classification structure which is built from tag anno-
tations (i. e., freely chosen keywords) added by different users to their resources.
A folksonomy consists thus of a set of users, a set of tags, and a set of resources,
together with a ternary relation between them.

Following [3], we formally define a folksonomy as a tuple F := (U,T,R,Y)
where

— U, T, and R are finite sets, whose elements are called users, tags and resources,
resp., and

— Y is a ternary relation between them, i. e., Y C U x T x R, whose elements
are called tag assignments (TAS for short).

For convenience we also define, for all u € U and r € R, TAGS(u,r) := {t €
T | (u,t,r) € Y}, i e., TAGS(u,r) is the set of all tags that user u has assigned
to resource r. The set of all posts of the folksonomy is P := {(u, S,r) |u € U,r €
R, S = TAaGS(u,r),S # 0}. Thus, each post consists of a user, a resource and all
tags that the user has assigned to the resource.

3.2 Adaptation to Search Engine Query Logs: Logsonomies

In order to apply our established folksonomy analysis techniques [2] to search en-
gine logs, we need similar structures on both sides. We adhere to the approach
described in [1] and transform a search engine log into a folksonomy alike struc-
ture, called logsonomy. User IDs represent the users of a folksonomy,! and the
clicked URLSs represent resources. The latter are implicitly annotated by the given

! In datasets other than the AOL data at hand, one may need to switch to session IDs,
if there are no explicit user IDs in the log files.



query; in order to mimic most closely social annotations, we split composed queries
into single words. These query terms are thus all substrings of a query that are
separated by whitespaces. They correspond to the tags in a folksonomy. For sake
of simplicity, we will also use the term “tag” when addressing “query words” in
the remainder of the paper. This means when we talk about relatedness of “tags”
in a logsonomy, we do talk about relatedness of query words. The decision to use
the splitted queries instead of complete ones was motivated by the findings of [1]
that the resulting network structure comes closer to an actual folksonomy.

More formally, this transformation of a search engine log to a logsonomy can
be described as follows:

— Let U be the set of users of the search engine.

— T be the set of query terms contained in the queries the users gave to the
search engine,

— R be the set of URLs which have been clicked by the search engine users.

We add a tuple (u,t,7) to Y whenever user u clicked on resource r of a re-
sult set after having submitted the query term ¢ (eventually with other terms).
The resulting relation Y C U x T x R corresponds to the tag assignments in a
folksonomy.

The process of creating a logsonomy shows similarities to the creation of a
folksonomy. Users describe an information need by means of a query. They then
restrict the result set of the search engine by clicking on those URLs whose snippets
indicate that the web page has some relation to the query. These query/click
combinations result in the logsonomy. However, one needs to keep some major
differences in mind, when applying folksonomy techniques to logsonomies:

— Users have a bias towards clicking the top URLs of a result list. In query log
analysis, these clicks are usually discounted.

— While tagging a specific resource can be seen as an indicator for relevance,
users may click on a resource to check if the result is important and then
disappointedly return to the initial search list. We nevertheless assume that
the act of clicking already indicates an association between query and resource
in the logsonomy, since the log data under study did not contain any explicit
user feedback (which could have been used for further differentiation).

— In logsonomies, we interpret the query as the description of the underlying,
clicked resource. Splitting these descriptions in single words may destroy or
change the intended meaning.

— Queries are processed by search engines which do not publish the techniques
applied. One does not know to which extent the query terms serve as a descrip-
tion of search results. They may be ignored or enhanced with similar query
terms.

— When a resource never comes up in a search result, it cannot be tagged as
such.

3.3 Datasets

In order to make our results comparable to prior work on semantic relatedness
measures on folksonomies, we detail here on the social bookmarking data which was
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Table 1. Folksonomy and Logsonomy Datasets

dataset || |U| |R| Y|
Del.icio.us 10,000 476,378 12,660,470 101,491,722
AOL split queries 10,000 463,380 1,284,724 26,227,550

the basis of [2] before describing the click data we used to build the logsonomies.
Table 1 summarizes some statistics about both datasets.

Social Bookmarking Data. For our experiments, we used data from the social
bookmarking system del.icio.us, collected in November 2006. In total, data from
667,128 users of the del.icio.us community were collected, comprising 2,454, 546
tags, 18,782,132 resources, and 140, 333, 714 tag assignments. As one main focus
of this work is to characterize tags by their properties of co—occurrence with other
tags, we restricted our dataset to the 10,000 most frequent tags of del.icio.us,
and to the resources/users that have been associated with at least one of those
tags. One could argue that tags with low frequency have a higher information
content in principle — but their inherent sparseness makes them less useful for the
study of both co-occurrence and distributional measures. The size of the restricted
folksonomy is shown in Table 1.

Click Data. We used a click dataset from the AOL search engine. The data was
collected from March, 1st to May, 31st 2006. The original dataset consists of
657,426 unique user IDs, 10,154,742 unique queries, and 19,442,629 click-through
events [10]. We constructed the logsonomy as described in Section 3.2. Again,
we apply the restriction of only using the 10,000 most frequent tags (i. e., query
words) to the dataset. The resulting sizes are shown in Table 1. Since the AOL
data was only available with truncated URLSs, we reduced the URLSs to host-only
URLs, i. e., we removed the path of each URL leaving only the host name.

4 Measures of Relatedness

The underlying structure of a logsonomy can — analogously to a folksonomy —
also be regarded as an undirected tri-partite hyper-graph (see section 3.2). As mea-
sures of similarity and relatedness are not well-developed for this kind of data yet,
we follow the approach of [2] and stick to two- and one-mode views on the data.
These views are complemented by a graph-based approach for discovering related
tags (FolkRank), which makes direct use of the three-mode structure. Please note
that the remaining paragraphs of this section summarize the measures of related-
ness used in our prior work [2]; we include their description in order to explain
their adaption to logsonomies. For a detailed description of the computational
complexity of each measure, we refer to [2].

Co-Occurrence. Given a logsonomy (U,T,R,Y), we define the query word co-
occurrence graph as a weighted undirected graph whose set of vertices is the set T
of query words. Two query words t; and t, are connected by an edge, iff there is



at least one query (u, Ty, r) with t1,ty € Ty, The weight of this edge is given by
the number of queries that contain both ¢; and to, i. e.,

w(ty,te) == card{(u,r) € U X R | t1,t2 € Tyr} . (1)

Co-occurrence relatedness between query words is given directly by the edge
weights. For a given query word ¢t € T, the tags that are most related to it are
thus all the tags ¢’ € T with ¢’ # ¢ such that w(¢,¢') is maximal. We will denote
this co-occurrence relatedness by co-occ.

Distributional Measures. We introduce three distributional measures of query word
relatedness that are based on three different vector space representations of query
words. The difference between the representations — and thus between the measures
— is the feature space used to describe the tags, which varies over the possible three
dimensions of the logsonomy. Specifically, for X € {U, T, R} we consider the vector
space RX, where each query word t is represented by a vector v, € RX, as described
below.

Tag Context Similarity. The Tag Context Similarity (TagCont) is computed in
the vector space R, where, for tag t, the entries of the vector v, € RT are defined
by vy = w(t,t') for t # t' € T, where w is the co-occurrence weight defined
above, and vy = 0. The reason for giving weight zero between a node and itself
is that we want two tags to be considered related when they occur in a similar
context, and not when they occur together.

Resource Context Similarity. The Resource Context Similarity (ResCont) is
computed in the vector space R, For a tag t, the vector v; € R is constructed
by counting how often a tag ¢ is used to annotate a certain resource r € R:
vy = card{u € U | (u,t,r) € Y} .

User Context Similarity. The User Context Similarity (UserCont) is built sim-
ilarly to ResCont, by swapping the roles of the sets R and U: For a tag t, the
vector v; € RY is defined as vy, = card{r € R | (u,t,7) €Y} .

In all three representations, we measure vector similarity by using the cosine mea-

sure, as is customary in Information Retrieval [11]: If two tags ¢; and to are rep-

resented by vi,vs € R¥, their cosine similarity is defined as: cossim(ty, to) =
%

— V1-V2
c0s £(v1,2) = LT

FolkRank. FolkRank employs the principle of the PageRank algorithm [12] for
folksonomies [3]: a resource which is tagged with important tags by important
users becomes important itself. The same holds, symmetrically, for tags and users.
By modifying the weights for a given tag in the random surfer vector, FolkRank
can compute a ranked list of relevant tags.

To apply the FolkRank to a logsonomy, we assigned high weights to a specific
query term ¢ in the random surfer vector. The final outcome of the FolkRank is
then (among others) a ranked list of tags which FolkRank judges as related to
t. Refer to [2] for a more detailed description of the experimental procedure and
to [3] for a detailed description of the FolkRank algorithm.
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Table 2. Examples of most related tags for each of the presented measures.

[rank [ tag [ measure T 1 [ 2 [ 3 [ 4 [ 5 |
co-occurrence song love music day songs
folkrank song Tove music myspace songs
5 lyrics tag context titles listen lyric called theme
resource context|| wanna lyric gonna ya goodbye
user context song music songs school center
co-occurrence channel daily fox paper newport
folkrank channel fox daily [newspaper county
37 news tag context news.com|newspaper | weather |obituaries| newspapers
resource context||news.com| arrested killed accident local
user context county center edging state city
co-occurrence tabs chords tab free bass
folkrank tabs chords lyrics tab music
399 guitar tag context banjo drum piano acoustic bass
resource context tabs tab tablature| chords acoustic
user context chords tabs tab guitars chord
co-occurrence || smoking | paintball parts laws control
folkrank guns rifle paintball parts sale
474 gun tag context guns pistol rifles rifle handgun
resource context|| smoking pistol rifle handgun guns
user context safes guns pistol holsters pellet
co-occurrence tumor stem injury |symptoms tumors
folkrank cancer |symptoms| tumor blood disease
910 brain tag context pancreas | intestinal liver thyroid lungs
resource context|| tumor tumors |[syndrome| damage [complications
user context stem feline tumor acute urinary
co-occurrence herb life patterns hd pattern
folkrank herb  |motorcycle| vests patterns shooting
4764 vest tag context vests sweaters jacket sweater knit
resource context|| jacket set bag shorts stainless
user context herb hd vests sec lawsuits

5 Qualitative Insights

A first natural question that arises when trying to compare tag relatedness mea-
sures on both logsonomies and folksonomies is to which extent both vocabularies
overlap. We found that 4,451 out 10, 000 tags? were present in both datasets (i. e.,
roughly 44%). Looking up these tags in an English dictionary showed that 92%
of them are proper English words; this confirms the intuition that the vocabu-
lary used for tagging and searching is substantially different, but has an overlap of
“generic” terms. Figure 1 plots the tag rank for each overlapping tag in the folkson-
omy (del.icio.us) against its rank in the logsonomy (AOL). Please note that a low
tag rank corresponds to a high usage frequency. One can see that high-frequency
(i. e., low-rank) tags in the folksonomy tend to be frequently used in a logsonomy
as well (roughly the top 1,000 tags); apart from this, there seems to be no special
correlation between the usage frequency of tags in both datasets.

Following the methodology of [2], our next step was to compute, for each of
the 10,000 most frequent tags of the AOL log, its most closely related tags using
each of the measures described above.

Table 2 provides a few examples of the related tags returned by the measures
under study. A first observation is that the cooccurrence relatedness seems to

2 Please recollect that we use for sake of simplicity the term “tag” to subsume tags in a
folksonomy and query words in a logsonomy.



Table 3. Overlap between the 10 most closely related tags.

Hco—occurrence[FolkRank[tag context|resource context‘

user context 2.28 2.16 0.71 111 |
resource context 1.93 2.25 1.5
tag context 0.88 1.1
FolkRank 5.91

often “restore” compound expressions like news channel, guitar tabs, brain tumor.
This can be naturally attributed to the way how the logsonomy was constructed,
namely by splitting queries (and consequently also compound expressions) using
whitespace as delimiter. We could observe this behaviour also partially in our last
study on folksonomy data (see [2]), however to a much lesser extent. Another
observation which is identical to the folksonomy data is that cooccurrence and
folkrank relatedness seem to often return the same related tags.

The tag context relatedness seems to yield substantially different tags. Our
experience from folksonomy data (where this measure discovered preferentially
synonym or “sibling” tags) seems to also prove true for logsonomy data: The most
related by tag context relatedness is often a synonym (e.g., gun — guns, vest —
vests), whereas the remaining tags can be regarded as “siblings”. For example,
for the tag brain it gives other organs of the body, whereas for the tag guitar
it gives other music instruments. When we talk about “siblings” we mean that
these tags could be subsumed under a common parent in some suitable concept
hierarchy; in this case, e.g., under organs and music instruments, respectively.
In our folksonomy analysis, this effect was even stronger for the resource context
relatedness — a finding which does not seem to hold for logsonomy data, based on
this first inspection. The resource context relatedness does exhibit some similarity
to the tag context relatedness, but gives in general a mixed picture. User context
relatedness is even more blurred — the latter observation is again in line with the
folksonomy side.

These first observations suggest that despite the reported differences, especially
the tag context in a logsonomy seems to hold a similar semantic information to
the one we found in folksonomy data.

Our next systematic step is to check whether the most closely related tags are
shared across the measures of relatedness. We consider the 10,000 most popular
tags in AOL, and for each of them we compute the ten most related tags according
to each of the relatedness measures. Table 3 reports the average number of shared
tags for the relatedness measure we investigate. The results are again very close
to our folksonomy analysis — in general, there is a rather small overlap between
the lists of the 10 most related tags (between 0.71 and 2.28) — with an exception
of almost six shared tags in average between cooccurrence and FolkRank. This
supports our assumption that the computation of FolkRank on a logsonomy also
tends to be dominated by the tag-tag cooccurrence network.

To better investigate this point, for each of the 10,000 most frequent tags in
the AOL log, we computed the average rank (according to global frequency) of
its ten most closely related tags, according to each of the relatedness measures
under study. The results are shown in Figure 2, along with the folksonomy results
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Fig. 1. Correlation between the tag ranks in the AOL logsonomy and the delicious folk-
sonomy.

for comparison. One can see that co-occurrence, resource and user context relat-
edness show almost identical behaviour compared to folksonomies: Especially the
co-occurrence relatedness does have the same strong bias towards high-frequency
(i. e., low-rank) tags, independently of the frequency of the original tag. This effect
is not so strong for the context measures; however, the distribution for tag context
relatedness shows a significant difference: For very popular tags (roughly the top
2000 tags), its most related tags are comparatively rarely used ones (with a tag
rank around ~3500). We hypothesize that this could reflect the topical diversity of
both datasets: Because the folksonomy is dominated by technophile topics, its most
popular tags are probable to fall into that category. This implies especially that
“sibling” tags of a “technical” tag are probably also used frequently. If the topical
diversity among the popular tags in the logsonomy is higher, then the sibling tags
are more probable to point towards less frequently used tags — which is what we
observe here. Another remarkable difference is the behaviour of FolkRank; despite
its high overlap with the co-occurrence relatedness reported in Table 3, their pro-
files differ significantly. The strongly peaked plot of folkrank suggests that there
might exist some “outliers” — i. e., very infrequent tags — besides the overlap with
the co-occurrence relatedness.

The last question we asked ourselves in this first step is to which extent a given
measure returns the same tags when applied to a logsonomy and a folksonomy. To
this end we restricted the examination to the overlapping 4451 tags (i. e., for each
tag in the overlap, we computed its ten most closely related tags by all measures,
whereby the most related tags had to be in the overlap again). Interestingly, we
did not find a significant overlap between any two measures (the overlap values
ranged from 0.5 to 2.3). For this reason we skip the inclusion of the complete
overlap table, as it does not provide additional information. We take this as an
indicator that — despite the similarities reported above — the actual semantics
contained in folksonomies and logsonomies differ.
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Fig. 2. Average rank of the related tags as a function of the rank of the original tag.

Table 4. WordNet coverage of logsonomy tags.

# top-frequency tags 100| 500{1,000{5,000{10,000
fraction in WordNet (AOL split query logsonomy)|{|95 %[96 %| 94 %| 88 %| 81 %
fraction in WordNet (del.icio.us folksonomy) 82 %|80 %| 79 %| 69 %| 61 %

6 Semantic Analysis

Following the qualitative analysis of the previous section, we now go one step fur-
ther to a more formally grounded characterization of the measures under consider-
ation. In our previous work [2], we introduced the notion of Semantic Grounding:
The basic idea hereby is to ground the relations between the original and the
related tags by looking up the tags in an external structured dictionary of word
meanings. Within these structured knowledge representations, there exist often
well-defined metrics of semantic similarity; based on these, one can infer which
type of semantic relation holds between the original and the related tags.

We follow this approach and use WordNet [13], a semantic lexicon of the English
Language. The core structure we exploit hereby is its built-in taxonomy of words,
grouped into synsets, which represent distinct concepts. Each synset consists of one
or more words, and is connected via the is-a relation to other synsets. The resulting
directed acyclic graph connects hyponyms (more specific synsets) to hypernyms
(more general synsets).

Based on this semantic graph structure, several metrics of semantic similarity
have been proposed. The most intuitive one is simply counting the number of nodes
one has to traverse from one synset to another one. We adopted this tazonomic
shortest-path length for our experiments. In addition, we use a measure of semantic
distance introduced by Jiang and Conrath [5] which combines the taxonomic path
length with an information-theoretic similarity measure by Resnik [14]. The choice
of this measure was guided by a work of Budanitsky and Hirst [6], who showed
by means of a user study that the Jiang-Conrath distance comes most closely to
what humans perceive as semantically related. We use the implementation of those
measures available in the WordNet: :Similarity library [15].
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Fig. 3. Average semantic distance, measured in WordNet, from the original tag to the
most closely related one. The distance is reported for each of the measures of tag similarity
discussed in the main text (labels on the left). Grey bars (bottom) show the taxonomic
path length in WordNet. Black bars (top) show the Jiang-Conrath measure of semantic
distance.

A natural prerequisite for the semantic grounding described above is that a
significant fraction of the most popular tags in the logsonomy (in other words, the
most popular search query terms) is present in WordNet. Despite some limiting
factors (different languages, misspellings, queries for names of persons or things,
...), Table 4 shows a relatively high overlap — 81 % of the 10,000 most popular
search terms are in fact proper English words. This is significantly more than in
our previous work with a snapshot of the del.icio.us folksonomy, which is probably
due to the more idiosyncratic nature of folksonomy tags. The higher overlap puts
the following grounding process on an even more solid basis.

Following the pattern proposed in [2], we carry out a first assessment of our
measures of relatedness by measuring — in WordNet — the average semantic distance
between a tag and the corresponding most closely related tag according to each
of the relatedness measures under consideration. For each tag of our logsonomy,
we find its most closely related tag using one of our measures; if we can map this
pair to WordNet (i.e., if both tags are present), we measure the semantic distance
between the two synsets containg these two tags. If any of the two tags occurs in
more than one synset, we use the pair of synsets which minimizes the path length.

Figure 3 reports the average semantic distance between the original tag and
the most related one, computed in WordNet by using both the taxonomic path
length and the Jiang-Conrath distance. Overall, the diagrams are quite similar in
respect to structure and scale. In both cases, the random relatedness (where we
associated a given tag with a randomly chosen one) constitutes the worst case
scenario.

Similar to our prior results for folksonomies (i. e., those shown in Figure 3a),
for the logsonomy the tag and resource context relatedness measures yield the
semantically most closely related tags. However, in the logsonomy case, the context
resource relatedness could not repeat the superior performance it showed for the
folksonomy. We attribute this to the way how the logsonomy is built: When users
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Fig. 4. Probability distribution for the lengths of the shortest path leading from the origi-
nal tag to the most closely related one. Path lengths are computed using the subsumption
hierarchy in WordNet.

tag implicitly a certain URL by clicking on it, they are probably not as aware of
the actual content of this page as a user who explicitly tags this URL in a social
bookmarking system.

Another remarkable difference compared to the folksonomy data is that the co-
occurrence relatedness yields tags whose meanings are comparatively distant from
the one of the original tag. A further examination (see section 5) revealed that
co-occurrence often “reconstructs” compound expressions; e. g., the most related
tag to power according to co-occurrence relatedness is point. This is a natural
consequence of splitting queries and consequently splitting compound expressions
as we did; so our results confirm the intuitive assumption that the semantics of
isolated parts of a compound expression usually are semantically complementary.

Figure 3b shows — as in the folksonomy case — that the analysis of the semantic
measures for the logsonomy data yields basically the same results with the path
length as with the Jiang-Conrath measure. Therefore, we will stick to the simpler-
to-understand path length in the sequel.
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Fig. 5. Edge composition of the shortest paths of length 1 (left) and 2 (right). An “up”
edge leads to a hypernym, while a “down” edge leads to a hyponym.

A more fine-grained analysis of the nature of related tags can be obtained
by analyzing the shortest paths that lead from a given tag to its most closely
related tag (according to our measures under consideration). Figure 4 displays
the normalized distribution P(n) of shortest-path lengths n (number of edges)
connecting a tag to its closest related tag in WordNet. The most obvious analogy
to [2] is the strong peak of both tag and resource context relatedness at a path
length of 0. Paths of length 0 reveal a synonym relation in WordNet, which means
that the two query words appear in the same synset in WordNet. Interestingly,
the co-occurrence measure shows very low probability of finding synonyms, but is
highest when it comes to longer path lengths (for example n = 6). This again is
in line with our assumption, that the co-occurrence relatedness finds compound
expressions which appear to have longer path lengths within WordNet.

For both the logsonomy and the folksonomy and for all measures under study, a
path length of 1 occurs very infrequently. This indicates that none of the measures
frequently returns direct hypernyms or direct hyponyms. The contrast between
high and low probabilities for the path lengths of 0 and 1 can be attributed to
the fact, that a path length of 1 leads to either a hypernym or a hyponym in the
WordNet hierarchy, never to a sibling. None of the applied measures reveal such
a hierarchical relation.

Next, we focus on the shortest path lengths of n = 1 and n = 2 in the two
datasets, e. g., the potential hypernym/hyponym and sibling relations. For n = 2
(right-hand side of the subfigures in Figure 5), all measures show — both for folk-
sonomies and logsonomies — a prevalent peak for siblings (1-up/l-down, corre-
sponding to a hypernym edge (up) and a hyponym edge (down)). This observation
especially holds for the tag, resource and user context measures. Surprisingly, in the
logsonomy, this also holds (though with a lower probability) for the co-occurrence
relatedness — in contrast to the folksonomy case. Considering the process of search,
some users probably tend to describe their information need with “sibling” query
terms like microwave oven or black white. When interpreting these results, one also
has to keep in mind that the absolute number of 1-up-1-down pairs is much larger
for tag and resource context relatedness (424 / 367) compared to the other three



0.4
co-occ —+—
0.35 folkrank
TagCont —*— /\
L ResCont —=—
03 UserCont /
> 0.25 /
) 0.2 / \
[
= 0.15 i
JEIINN
0.1 / K\‘\
0.05 / \‘\\;\\
0 — 1 L L T

-8 -6 -4 -2 0 2 4 6 8
level displacement

Fig. 6. Probability distribution of the level displacement Al in the WordNet hierarchy.

measures (279 / 257 / 200 for co-occurrence, FolkRank and user context, respec-
tively). For paths with n = 1, we observe — except of the user context relatedness
— a slight preference towards hypernym edges (e. g., one level up in the WordNet
taxonomy). This finding is the strongest for the FolkRank, but also the other three
measures show a slight tendency to reveal hypernyms rather than hyponyms. Es-
pecially for the co-occurrence relatedness this behaviour is rather different from
our results on folksonomies; again we think that one can see this as another in-
dicator that co-occurrence relatedness restores compound terms in the logsonomy
case.

When we generalize the analysis of Figure 5 to paths of arbitrary length, how-
ever, the slight tendency towards hypernym edges for the context relatedness mea-
sure vanishes. Figure 6 displays the hierarchical displacement Al, i. e., the differ-
ence in hierarchical depth between the synset where the path starts and the synset
where the path ends. Al is the difference between the number of edges towards a
hypernym (up) and the number of edges towards a hyponym (down). We do not
include the folksonomy data for comparison here because it is nearly identical (see
[2]). In both cases, we observe a strong peak at Al = 0 for all context relatedness
measures, which means that the measures do not imply a systematic bias towards
more general or more specific terms. The average value of Al for all the contex-
tual measures is Al ~ 0 (dotted line at Al = 0). The probability distributions for
both co-occurrence and folkrank relatedness are less symmetric and have both an
average of Al ~ 0.55 (right-hand dotted line). This means that for these measures
— as we have already observed — the related tags lie preferentially higher in the
WordNet hierarchy.

7 Conclusions and Outlook

In this paper, we investigated emergent semantics in search engine logs by means
of term relatedness measures that have been shown to reveal semantic information
inherent in the folksonomy graph [2]. We built our analysis on a folksonomy-like
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representation of the logdata, namely on logsonomies, because prior work showed
promising structural similarities between log- and folksonomies [1]. This approach
allowed us to directly compare log- and folksonomies in respect to the kinds of
semantics captured by the different relatedness measures. In order to provide a
semantic grounding of the measures under study, we used WordNet and well-
established measures of semantic relatedness.

Resuming the research questions stated in the introduction of this paper, we
can summarize our contributions as follows:

Emergent semantics in Logsonomies: The presence of inherent semantics in query
log data has been reported before. Our contribution is to show that — despite some
differences — the formalization of log data into logsonomies retains the semantic
information and facilitates the application of established folksonomy analysis tech-
niques to capture the semantics. However, the process of logsonomy construction
seems to play an important role: In our case (i. e., when tags are created by split-
ting the original queries), the co-occurrence relatedness tends to restore compound
expressions contained in the original queries.

Comparison of semantics in logsonomies and folksonomies: Our presented ap-
proach allows for a direct comparison of the semantics emerging from explicit
tagging in social bookmarking systems and implicit tagging by clicking on search
engine results. The results demonstrate that the type of inherent semantic infor-
mation is similar in both cases, but the actual instances seem to vary. In other
words: Both structures allow mining for synonym and sibling terms, but the actual
synonyms and siblings retrieved for a given term differ.

Characteristics of relatedness measures: Interestingly, applying the resource con-
text relatedness to logsonomies is much less precise in discovering semantically
close terms, compared to a folksonomy. We attribute this mainly to incomplete
user knowledge about the content of a result page they click on, leading e. g., to
“erroneous” clicks. The behaviour of the tag context measure is more similar to the
folksonomy case, which recommends it as a candidate for synonym and “sibling”
term identification. Additionally, the semantics of the co-occurrence relatedness is
strongly influenced by the process of constructing the logsonomy.

In general, we think that our work can help to model the semantic implications
of user interactions with search engines. Ultimately, a deeper understanding of this
will facilitate the improvement of search engines (e. g., via query expansion) on the
one hand, and the harvesting of ontologies for Semantic Web applications on the
other hand. We are currently working on voting approaches for combining several
measures of relatedness in order to separate even more clearly e. g., synonym and
sibling terms. Another promising research direction is to further characterize and
understand the structural differences between logsonomies and folksonomies which
are responsible for the different behaviour of some relatedness measures.
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