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ABSTRACT 
 

This paper presents experimental results of subgroup 
discovery algorithms SD, CN2-SD and Apriori-SD 
implemented in the Orange data mining software.  The 
experimental comparison shows that algorithms 
perform quite differently on data discretized in 
different ways.  From the experiments, performed in the 
brain ischemia domain, it is impossible to conclude 
which discretization is the most adequate for subgroup 
discovery. 

 

1  INTRODUCTION 
 

This paper addresses the problem of subgroup discovery 
in a medical domain. Subgroup discovery is an appropriate 
method for analyzing medical data, since it provides short 
and understandable descriptions of subgroups regarding the 
property of interest. 

Formally, the task of subgroup discovery is defined as 
follows: given a population of individuals and a specific 
property of the individuals that we are interested in, find 
population subgroups that are statistically ‘most interesting’, 
e.g., are as large as possible and have the most unusual 
statistical (distributional) characteristics with respect to the 
property of interest. 

Standard classification rule learning algorithms can be 
adapted to perform subgroup discovery. In this paper we 
discuss three subgroup discovery algorithms, SD [1], CN2-
SD [2] and Apriori-SD [3], two of which are adaptations of 
classification rule learners: CN2-SD is an adaptation of CN2 
[8] and Apriori-SD is an adaptation of APRIORI [6]. We 
compare the results of these three algorithms, implemented 
in the Orange data mining environment [5], on brain 
ischaemia data [4].  

These algorithms take as their input the training 
examples described by discrete attribute values. Since some 
of the attributes in the brain ischemia domain are 
continuous, data discretization is needed in the pre-
processing phase. Discretization is performed in two 
different ways. 

This paper is organized as follows: Sections 2, 3 and 4 
present the basic ideas of algorithms SD, CN2-SD and 
Apriori-SD, respectively. Section 5 explains how 
subgroups can be used for classification purposes. In 
Section 6 the data set and its pre-processing are presented. 
Experimental results are provided in Section 7. Finally, 
Section 8 provides conclusions and references. 

 

2  THE SD ALGORITHM 
 

The SD algorithm [1] is a variation of the beam search 
algorithm. At the beginning all the subgroup descriptions in 
the beam are initialized to empty. The algorithm builds 
subgroup descriptions in a general-to-specific fashion by 
adding conjunctions to subgroup descriptions. Discovered 
subgroups must satisfy criteria of minimal support and they 
must be relevant. The new subgroup is irrelevant if there 
exists a subgroup R such that true positives of the new 
subgroup are a subset of true positives of R and false 
positives of the new subgroup are a superset of false 
positives of R. 

The algorithm keeps the best subgroup descriptions in a 
beam of fixed width (beam width is a parameter of the 
algorithm). In each iteration of the algorithm it adds a 
conjunction to every subgroup descriptions in the beam and 
replaces the worst subgroup in the beam if the new 
subgroup in better. 

 The goal of the subgroup discovery algorithm SD is to 
find subgroups that maximize the generalization quotient 
heuristic (Equation 1), where TP are the true positives, FP 
are the false positives, and g is a generalization parameter. 
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High quality subgroups cover many target class examples 
and a low number of non-target examples. The number of 
tolerated non-target class examples, relative to the number 
of covered target class examples, is determined by 
parameter g. For low g, induced rules will have high 
specificity since the coverage of every single non-target 
class example is made relatively very ‘expensive’. On the 

 



other hand, by selecting a high g value, more general rules 
will be generated, covering also non-target class instances. 

 

3  THE CN2-SD ALGORITHM 
 

The CN2-SD algorithm [2] consists of two main 
procedures: the bottom-level search procedure that performs 
beam search in order to find a single rule, and a top-level 
control procedure that repeatedly executes the bottom-level 
search and performs the weighting of covered examples to 
induce a rule set.  

The bottom-level procedure performs search in a 
general-to-specific fashion, specializing only the subgroup 
descriptions in the beam by iteratively adding features. This 
procedure stops when no specialized subgroup description 
can be added to the beam, because none of the 
specializations has a higher weighted relative accuracy 
(Equation 2). 
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In this equation, N is the number of all examples, N’ is the 
sum of the weights of all examples, n’(X) is the sum of  
weights of all covered examples, N(Y) is the number of 
examples within the target class, and n’(XY) is the sum of 
the weights of all correctly covered examples. The weights 
are calculated as follows: 
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In this equation, ej is an example that is covered i times. 
 

4  THE APRIORI-SD ALGORITHM 
 

The APRIORI-C algorithm [7] uses techniques from the 
association learning algorithm APRIORI [8] to build 
classification rules. Some adaptations of the APRIORI 
algorithms are needed to perform the classification task, like 
building only the rules with the target variable on the right 
hand side and others, described in [7]. 

The main modification of the APRIORI-C algorithm, 
making it appropriate for subgroup discovery, involve the 
implementation of an example weighting scheme in rule 
post-processing, a modified rule quality function 
incorporating example weights and a probabilistic 
classification scheme. 

Algorithm Apriori-SD [3] is very similar to the CN2-SD 
algorithm, since they have very similar top-level control 
procedures that repeatedly execute the bottom-level search 
and perform the weighting of covered examples to induce a 
rule set. In Apriori-SD, a set of potential subgroup 
descriptions is generated at the beginning of the control 
procedure by executing the Apriori-C algorithm. The 
condition parts of the generated rules can be interpreted as 
subgroup descriptions. 

The bottom-level procedure in Apriori-SD finds the 
subgroup with the highest weighted relative accuracy 
(WRAcc, Equation 2) among the subgroup descriptions 
(rules) generated by algorithm Apriori-C. It removes the 

found subgroup description from the set and returns this 
rule. 
 

 
 
5  SUBGROUP DESCRIPTIONS AS CLASSIFIERS 
 

Even though subgroup discovery belongs to descriptive 
induction, using and testing it as a classifier enables us to 
better evaluate the general descriptive usefulness and 
generalization properties of the found subgroups.  

Subgroup discovery can be used as predictive induction 
by building subgroups for every class within the target 
variable. When classifying a new example, this approach 
calculates the average of distributions of all the discovered 
subgroups that cover this example and classifies it into the 
class that has the highest probability estimation. In this way 
the votes of all the subgroups have the same weight when 
deciding in which class to classify, regardless how many 
examples they cover. 
 

6  BRAIN ISCHAEMIA DATA 
 

The brain ischemia dataset consists of records of 
patients who have been treated in the Intensive Care Unit of 
the Department of Neurology, University Hospital Center 
“Zagreb”, in Zagreb, Croatia during the year 2003. 300 
patients are included in the database: 209 with confirmed 
diagnosis of brain attack, and 91 patients who entered the 
same department with adequate neurological symptoms and 
disorders, but were diagnosed with other diagnosis. In this 
paper, the goal of subgroup discovery is to discover 
regularities that characterize brain attack patients. 

Patients are described with 26 attributes; 14 of them are 
discrete, 12 continuous. They are described in [4]. 

Since the subgroup discovery algorithms we compare in 
this paper take as their input discrete attribute descriptions 
of data, we need to discretize the continuous attributes. We 
do it in two ways: one is by performing the entropy based 
discretization [10] as implemented in Orange, the other is 
by performing binarization in feature construction and 
feature subset selection [9] and using the results as binary 
attributes. 
• The Orange implementation of the entropy based 

discretization transforms 14 continuous attributes into 
seven discrete attributes: six binary and one with three 
values. Five attributes are discarded as irrelevant. 

• By performing feature generation and feature selection 
on the continuous attributes we obtain 509 features of 
the form attribute<value or attribute>value. We use them 
as binary attributes, therefore when they appear in a 
subgroup description, they look like “attribute>value 
=y” or “attribute>value =n”, where y and n stand for 
logical values true and false, respectively. 

 

7  EXPERIMENTAL RESULTS 
 

We performed tests of all three algorithms on data 
discretized in both ways. Unfortunately we were unable to 
test the algorithms CN2-SD and Apriori-SD on the data, 

 



discretized by feature generation and selection because the 
implementations of these algorithms are not capable of 
dealing with that many attributes. 

We first ran the algorithms on the entire data set and 
calculated which subgroups are on the convex hull in the 
ROC space (marked by *) and calculated the corresponding 
area under the ROC convex curve (AUC). In another 
experiment we performed ten-fold cross validation and 
calculated the average classification accuracy (CA) of the 
algorithms. The results are shown in the following tables.  

Tables 1 to 4 show the results of three subgroup 
discovery algorithms on the brain ischemia domain. The 
discovered subgroups show the importance of attributes Age 
and Fibr, since all the algorithms discovered subgroups 
containing these attributes in their subgroup descriptions. 

The tables are formatted as follows: The first column 
contains subgroups names. The second column contains 
subgroup descriptions, where spaces between conjuncts 
denote logical and. Columns TPr and FPr show the rate of 
positive and negative examples covered by each individual 
subgroup. The asterisks in the last column denotes that the 
specific rule is on the ROC convex hull. The numbers in the 
last column show  the classification accuracy obtained by 
performing ten-fold cross validation. 

Apriori-SD (Table 1) has a high classification accuracy 
while its area under the ROC convex hull is not large. 
Algorithm CN2-SD (Table 2) produced only three very 
short and understandable rules. 

 
TPr FPr CA Ref. Subgroup description 
[%] [%] AUC

a1 D_Fibr≥4.30  54 5 * 
a2 D_Age≥66.0  D_RRsys≥158.0  48 8   

a3 
D_Age≥66.0  D_Gluc≥5.90   
AHyp=yes  39 4 

  
a4 D_au≥378.0  D_Gluc≥5.90  27 2 * 

a5 
D_Age≥66.0  D_Gluc≥5.90  
D_RRdya≥89.0  Stat=no  37 3 

* 

a6 
D_Gluc≥5.90  D_RRsys≥158.0  
ASS=no  Ahypo=no  29 4 

  
a7 FA=yes  AHyp=yes  28 5   
a8 alcoh=yes  stres=no  28 5   
a9 D_au≥378.0  AHyp=yes  28 4   
a10 D_Age≥66.0  Fhis=yes  Stat=no  31 4   

a11 

D_Gluc≥5.90  D_RRsys≥158.0 
D_RRdya≥89.0  ASS=no 
Acoag=no  Stat=no  

28 3 
  

a12 D_Age≥66.0  Smok=no  stres=no  28 5   
classification accuracy     0.83 
area under ROC convex hull 0.74 

 
Table 1: Subgroup descriptions induced by algorithm 
Apriori-SD on discretized data. 
 

If we compare the classification accuracy of algorithm 
SD on differently discretized data, we can see that the 
simple entropy based discretization (Table 4) works better 
for small values of the generalization parameter g, while the 
feature based discretization (Table 3) is better for large 
values of the g parameter. 
 

TPr FPr CA Ref. Subgroup description 
[%] [%] AUC 

c1 D_Fibr≥4.30  54 5 * 
c2 D_Age≥66.0  D_Fibr≥4.30 41 1 * 
c3 D_Fibr≥4.30  Fhis=yes  34 1 * 

classification accuracy     0.77 
area under ROC convex hull 0.75 

 
Table 2: Subgroup descriptions induced by algorithm CN2-
SD on discretized data. The algorithm induced 20 
descriptions, but only three of those are different. 
 
 

TPr FPr CA 
Ref. Subgroup description 

[%] [%] AUC 
generalization parameter value 5 0.75 
g5a Fibr>2.75=n  Age>62.50=y 44 1  
g5b Fibr>2.75=n  Plat<145.50=n 

Age>70.50=y 34 0  

g5c Fibr>2.75=n  PT<0.99=n 33 0  
generalization parameter value 10 0.76 
g10a Acoag=yes=n  Trig<1.48=n 

Trig>1.48=y  Fibr>4.55=n 49 2  

g10b Fibr>2.75=n  Age>60.50=y 43 0 * 
g10c Acoag=yes=n  Trig<1.48=n 

Trig>1.42=y  Fibr>4.55=n 49 2 * 

generalization parameter value 20 0.74 
g20a Trig<1.48=n  Age>59.50=y 

Plat<133.0=n 66 10 * 

g20b Trig<1.48=n  Age>55.50=y 60 7  
g20c Trig>1.48  Age>59.50 

Gluc>6.85 Plat>133.0   61 7 * 

generalization parameter value 50 0.8 
g50a Trig<1.48=n  Plat<145.50=n 78 21  
g50b Trig<1.52=n  Age>61.50=y 75 16 * 
g50c Trig<1.48=n  Plat<133.0=n 77 19 * 
generalization parameter value 100 0.85 
g100a Trig<1.52=n 84 31 * 
g100b Trig<1.52=n  

RRsys>169.0=n 82 29  

g100c Trig<1.52=n  Plat<145.50=n 82 27 * 
average classification accuracy 0.78 
area under the ROC convex hull  0.85 
 
Table 3: Subgroup descriptions induced by algorithm SD 
on feature data. The subgroup descriptions and the 

 



classification accuracy are induced for different values of 
generalization parameter g in the range [5, 100]. 

 
 

TPr FPr CA Ref. Subgroup description 
[%] [%] AUC

generalization parameter value 5     0.8 
d5a D_Fibr≥4.30 54 5 * 

d5b 

D_Age≥66.0  D_Gluc≥5.90  
D_RRdya≥89.0  
D_RRsys≥158.0   

34 2 
* 

d5c D_Fibr≥4.30  Stat=no 47 4   
generalization parameter value 10   0.81 
d10a D_Fibr≥4.30 54 5 * 

d10b 
D_Age≥66.0   
D_RRsys≥158.0  Stat=no 43 5 

  
d10c D_Fibr≥4.30  Stat=no 47 4   
generalization parameter value 20   0.8 
d20a D_Age≥66.0  66 23 * 
d20b D_Fibr≥4.30 54 5   
d20c D_Age≥66.0  D_RRdya≥89.0 54 14   
generalization parameter value 50   0.7 
d50a D_RRdya≥89.0 80 55   
d50b D_Gluc≥5.90 74 48   
d50c AHyp=yes 74 46   
generalization parameter value 100     0.81 
d100a D_Age≥66.00 66 23   
d100b D_RRdya≥89.00 80 55   
d100c   - - - * 
average classification accuracy 0.78 
area under the ROC convex hull 0.76 
 
Table 4: Subgroup descriptions induced by algorithm SD on 
discretized data. The subgroup descriptions and the 
classification accuracy are induced for different values of 
the generalization parameter in the range [5, 100]. 
 
8  CONCLUSIONS 
 

In this paper we confronted three subgroup discovery 
algorithms on the brain ischemia domain. We discovered 
that algorithms perform quite differently on data discretized 
in different ways. From the experiments we made it is 
impossible to conclude which discretization is the most 
adequate for subgroup discovery – this evaluation should be 
performed by the medical expert in future work. 
Additionally, comparison of algorithms on many other 
domains should be performed to get relevant statistical 
results from which one could conclude which algorithm and 
discretization perform the best. 
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