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Abstract. The task addressed and the method proposed in this paper
aim at improved understanding of differences between similar diseases. In
particular we address the problem of distinguishing between thrombolic
brain stroke and embolic brain stroke as an application of our approach
of contrast set mining through subgroup discovery. We describe method-
ological lessons learned in the analysis of brain ischaemia data and a
practical implementation of the approach within an open source data
mining toolbox.

1 Introduction

Data analysis in medical applications is characterized by the ambitious goal
of extracting potentially new relationships from data, and providing insightful
representations of detected relationships. Methods for symbolic data analysis are
preferred since highly accurate but non-interpretable classifiers are frequently
considered useless for medical practice.

A special data mining task dedicated to finding differences between contrast-
ing groups is contrast set mining [1]. The goal of our research is to find dis-
criminative differences between two groups of ischaematic brain stroke patients:
patients with thrombolic stroke and those with embolic stroke. The problem is
introduced in Section 2.

Contrast set mining can be performed by a specialized algorithm STUCCO
[1], through decision tree induction and rule learning [13], and—as shown in our
recent work—through subgroup discovery [7]. Section 3 presents the results of
decision tree induction on our contrast set mining task and discuss advantages
and disadvantages of this approach. In Section 4 we show an approach to contrast
set mining through subgroup discovery by providing a mathematically correct
translation from contrast set mining to subgroup discovery [7] and an implemen-
tation of the approach in the Orange [2] open source data mining toolbox. Next
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Fig. 1. Distribution of diagnosis of patients in our dataset

we show that the direct “round robin” contrast set mining approach to solve
our descriptive induction task leads to rather disappointing results. We discuss
the reasons for this undesired performance. This lesson learned resulted in a
different, more appropriate “one-versus-all” transformation of contrast set min-
ing to subgroup discovery, justified by the improved results of our experiments,
confirmed by the medical expert.

2 The Brain Ischaemia Data Analysis Problem

A stroke occurs when blood supply to a part of the brain is interrupted, resulting
in tissue death and loss of brain function. Thrombi or emboli due to atheroscle-
rosis commonly cause ischemic arterial obstruction. Atheromas, which underlie
most thrombi, may affect any major cerebral artery. Atherothrombotic infarction
occurs with atherosclerotic involving selected sites in the extracranial and ma-
jor intracranial arteries. Cerebral emboly may lodge temporarily or permanently
anywhere in the cerebral arterial tree. They usually come from atheromas (ulcer-
ated atheroscleritic plaques) in extracranial vessels or from thrombi in a damaged
heart (from mural thrombi in atrial fibrillation). Atherosclerotic or hypertensive
stenosis can also cause a stroke. Embolic strokes, thrombolic strokes and stokes
caused by stenosis of blood vessels are categorized as ischaemic strokes. 80% of
all strokes are ischaemic while the remaining 20% are caused by bleeding.

We analyze the brain ischaemia database, which consists of records of patients
who were treated at the Intensive Care Unit of the Department of Neurology,
University Hospital Center “Zagreb”, Zagreb, Croatia, in year 2003. In total,
300 patients are included in the database (Figure 1):

– 209 patients with the computed tomography (CT) confirmed diagnosis of
brain stroke: 125 with embolic stroke, 80 with thrombolic stroke, and 4
undefined.

– 91 patients who entered the same hospital department with adequate neuro-
logical symptoms and disorders, but were diagnosed (based on the outcomes
of neurological tests and CT) as patients with transition ischaemic brain
attack (TIA, 33 patients), reversible ischaemic neurological deficit (RIND,
12 patients), and severe headache or cervical spine syndrome (46 patients).



Patients are described with 26 descriptors representing anamnestic, physical
examination, laboratory test and ECG data, and their diagnosis. Anamnestic
data: aspirin therapy (asp: yes, no), anticoagulant therapy (acoag: yes, no),
antihypertensive therapy (ahyp: yes, no), antiarrhytmic therapy (aarrh: yes, no),
antihyperlipoproteinaemic therapy – statin (stat: yes, no), hypoglycemic therapy
(hypo: none, yesO – oral, yesI – insulin), sex (m or f), age (in years), present
smoking (smok: yes, no), stress (str: yes, no), alcohol consumption (alcoh: yes,
no) and family anamnesis (fhis: yes, no). Physical examination data are: body
mass index (bmi: ref. value 18.5–25), systolic blood pressure (sys: normal value
< 139 mmHg), diastolic blood pressure (dya: normal value < 89 mmHg) and
fundus ocular (fo: discrete value 0-4). Laboratory test data: uric acid (ua: ref.
value for men < 412 µmol L−1, for women < 380 µmol L−1), fibrinogen (fibr:
ref. value 2.0–3.7 g L−1 ), glucose (gluc: ref. value 3.6–5.8 mmol L−1), total
cholesterol (chol: ref. value 3.6–5.0 mmol L−1), triglyceride (trig: ref. value 0.9–
1.7 mmol L−1), platelets (plat: ref. value 150000–400000) and prothrombin time
(pt: ref. value without th. 0.7–1.2, with anticoagulant th. 0.25–0.4). ECG data:
heart rate (ecgfr: ref. value 60–100 beats/min), atrial fibrillation (af: yes, no)
and left ventricular hypertrophy (ecghlv: yes, no).

In this paper, the goal of data analysis is to discover regularities that dis-
criminate between thrombolic and embolic stroke patients. Despite the fact that
the immediate treatment for all kinds of ischeamic strokes is the same, the dis-
tinction between thrombolic and embolic stroke patients is important in later
phases of patient recovery and to better determine the risk factors of the specific
diseases.

It must be noted that this dataset does not consist of healthy individuals but
of patients with serious neurological symptoms and disorders. In this sense, the
available database is particularly appropriate for studying the specific character-
istics and subtle differences that distinguish patients with different neurological
disorders. The detected relationships can be accepted as generally true char-
acteristics for these patients. However, the computed evaluation measures only
reflect characteristics specific to the available data, not necessarily holding for
the general population or other medical institutions [12].

3 Searching for Contrast Sets by Decision Tree Induction

Decision trees [11] are a classical machine learning technique. By selecting the at-
tribute that best distinguishes between the classes and putting it as a root node,
they partition the examples into subsets of examples where the same method is
recursively applied. We have induced a decision tree in Figure 2 for a problem of
distinguishing between two types of patients with brain stroke (marked “emb”
and “thr”) and patients with normal (marked “norm”) brain CT test results.1

1 In the experiments we used rigorous pruning parameters to induce small and com-
prehensible decision trees, using a decision tree learner implemented in the Orange
data mining toolbox [2]. Due to noisy data and harsh pruning the decision tree has
low classification accuracy (58% accuracy estimated by 10 fold crossvalidation).



Fig. 2. A decision tree distinguishing between patients with embolic brain stroke,
thrombolic brain stroke and patients with normal brain CT test results.

The interpretation of the decision tree by the medical expert is that fibrino-
gen (“fibr”) is the “most informative” attribute distinguishing between patients
with and without brain ischaemia, and that atrial fibrillation (“af”) is the at-
tribute that best distinguishes between groups of embolic and thrombolic pa-
tients. While the induced decision tree well represents the medical knowledge
applied in patient diagnosis, the intention of this experiment was not to produce
a classifier, but to generate a descriptive model and to investigate the advantages
and disadvantages of decision tree induction for contrast set mining.

In the contrast set mining setting, the main advantage of decision trees is
the simplicity of their interpretation. On the other hand, there are many disad-
vantages. A decision tree partitions the space of covered examples, disallowing
the overlapping of the discovered patterns. All the contrasting patterns (rules
formed of decision tree paths) include the same root attribute (fibrinogen), which
is disadvantageous compared to contrast set rule representations. Moreover, due
to attribute repetitions and thus a limited set of attributes appearing in decision
tree paths, the variety of contrasting patterns is too limited.

4 Contrast Set Mining through Subgroup Discovery

A data mining task devoted to finding differences between groups is contrast set
mining (CSM). It was defined by Bay and Pazzani [1] as finding “conjunctions of
attributes and values that differ meaningfully across groups”. If was later shown
that contrast set mining is a special case of a more general rule discovery task
[13]. Finding all the patterns that discriminate one group of individuals from all
other contrasting groups is not appropriate for human interpretation. Therefore,
as is the case in other descriptive induction tasks, the goal of contrast set mining
is to find only the descriptions that are “unexpected” and “most interesting” to
the end-user [1].

On the other hand, a subgroup discovery (SD) task is defined as follows:
Given a population of individuals and a property of those individuals that we are



Contrast Set Mining (CSM) Subgroup Discovery (SD) Rule Learning (RL)

contrast set subgroup description rule condition

group class (property of interest) class

attribute value pair feature condition

examples in groups examples of examples of

G1, . . . Gn Class and Class C1 . . . Cn

examples for which subgroup covered
contrast set is true examples

Table 1. Table of synonyms from different communities.

interested in, find population subgroups that are statistically “most interesting”,
i.e., are as large as possible and have the most unusual statistical (distributional)
characteristics with respect to the given property of interest [14].

Putting these two tasks in a broader rule learning context, note that there are
two main ways of inducing rules in multiclass learning problems: learners either
induce the rules that characterize one class compared to the rest of the data
(the standard one versus all setting, used in most classification rule learners), or
alternatively, they search for rules that discriminate between all pairs of classes
(known as the round robin approach used in classification rule learning, proposed
by [3]). Subgroup discovery is typically performed in a one vs. all rule induction
setting, while contrast set mining implements a round robin approach (of course,
with different heuristics and goals compared to classification rule learning).

Section 4.1 shows that, using a round robin setting, a CSM task can be
directly translated into a SD task. The experiments in brain ischaemia data
analysis were performed using a novel implementation of our subgroup discovery
algorithms in the Orange data mining toolbox, characterized by excellent data
and model visualization facilities (see Section 4.2).

The direct transformation of a CSM task into a SD task in the round robin
setting showed some problems when used for contrast set mining for distinguish-
ing between thrombotic and embolic patient groups (see Section 5). This lead
to a modified task transformation, following the more “natural” one-versus-all
subgroup discovery setting (see Section 6).

4.1 Round Robin Transformation: Unifying CSM and SD

Even though the definitions of subgroup discovery and contrast set mining seem
different, the tasks are compatible [7]. From a dataset of class labeled instances
(the class label being the property of interest) by means of subgroup discovery [4]
we can find contrast sets in a form of short interpretable rules. Note, however,
that in subgroup discovery we have only one property of interest (class) for
which we are building subgroup descriptions, while in contrast set mining each
contrasting group can be seen as a property of interest.

Moreover, using the dictionary of Table 1, it is now easy to show that a two-
group contrast set mining task CSM(G1, G2) can be directly translated into



the following two subgroup discovery tasks: SD(Class = G1 vs. Class = G2)
and SD(Class = G2 vs. Class = G1). And since this translation is possible for
a two-group contrast set mining task, it is—by induction—also possible for a
general contrast set mining task. This induction step is as follows:

CSM(G1, . . . , Gn)
for i=1 to n do

for j=1, j 6= i to n do
SD(Class = Gi vs. Class = Gj)

4.2 Implementations of Subgroup Discovery Algorithms and
Subgroup Visualization in Orange

There are several algorithms that are adaptations of rule learners to perform
the subgroup discovery task: SD [4], CN2-SD [10] and Apriori-SD [6]. We have
reimplemented these algorithms [9] in Orange [2] with some minor adaptations
compared to the descriptions in the original papers. The difference arises from
the internal representation of the data in Orange, based on attributes and not
on features (attribute values). Data need to be discretized in the preprocessing
phase, as the implementations construct attribute-value pairs from discretized
data on the fly while constructing rules. Despite this data representation limi-
tation, the algorithm reimplementation in Orange is worthy, as it offers various
data and model visualization tools and has excellent facilities for building new
visualizations.

We here briefly describe just the APRIORI-SD algorithm [6], an adaptation
of the algorithm for mining classification rules with association rule learning
techniques APRIORI-C [5], which was used in our experiments. The main mod-
ifications of APRIORI-C, making it appropriate for subgroup discovery, involve
the implementation of an example weighting scheme in rule post-processing, a
modified rule quality function incorporating example weights and a probabilistic
classification scheme.

Orange goes beyond static visualization, by allowing the interaction of the
user and combination of different visualization techniques. In Figure 3 an exam-
ple of a visual program in the Orange visual programming tool Orange Canvas is
shown.2 The first widget from the left (File) loads the dataset (in this example
we load the Brain Ischemia dataset with three classes). The following widget
(Discretize) takes care of data discretization in the preprocessing phase. It is
followed by the new widget Build Subgroups which is in charge of building sub-
groups. In this widget the user chooses the algorithm for subgroup discovery and
sets the algorithm parameters.

We have implemented a new subgroup visualization technique called the
visualization by bar charts [8], described in the next paragraph. The widget
Subgroup Bar Visualization provides the visualization of the subgroups. It can
2 This visual program is just one example of what can be done by using the Subgroup

discovery tool implemented in Orange. Subgroup evaluation and different method
for visualizing the contents of subgroups are also available.



Fig. 3. An example of a visual program in the interactive interface for subgroup
discovery implemented in Orange.

be connected to several other widgets for data visualization. In our case we
connected it to existing Linear Projection visualization (see the left-hand side of
Figure 3) which visualizes the entries of the entire dataset as empty shapes and
the entries belonging to the group selected in the Subgroup Bar Visualization
widget as full shapes. By moving the mouse over a certain shape in the Linear
Projection widget the detailed description of the entry is displayed.

In the bar chart visualization (shown below the Orange Canvas in Figure 3)
the first line’s purpose is to visualize the distribution of the entire example set.
The area on the right represents the positive examples and the area on the left
represents the negative examples. Each following line represents one subgroup.
The positive and the negative examples of each subgroup are drawn below the
positive and the negative examples of the entire example set. Subgroups are
sorted by the relative share of positive examples. Examples of this visualization
are shown in Figures 4 and 5.

This visualization method allows simple comparison between subgroups and
is therefore useful. It is very intuitive and attractive to end-users. All the dis-
played data is correct and not misleading. It is very simple and does not display
the contents of data, but it can be connected to other data visualizations in
Orange (Figure 3) in order to allow in depth investigations.

5 Experimental Evaluation of the Round Robin CSM

The goal of our experiments was to find characteristic differences between pa-
tients with thrombolic and embolic ischeamic stroke. We approached this task
by applying the round robin transformation from contrast set mining to sub-
group discovery, described in Section 4.1. We ran this experiment and asked the
experts for interpretation.



The resulting rules mainly include the feature AF = no for thrombolic pa-
tients and AF = yes for embolic patients, which are very typical for the cor-
responding diseases. However, the rules turned out to be non-intuitive to the
medical expert. For example, the rule

af = yes & sys < 185 & fo = 1 → embolic

covering many embolic and just one thrombolic patient (TP =33, FP = 1) was
interpreted as “people with suspected thromb in the heart (af = yes) and visible
consequences of hypertension in the eyes (FO = 1)”. The feature sys < 185 says:
patients with not extremely high systolic blood pressure, though high blood
pressure is characteristic for both the diseases and the boundary 185 is very
high, since everything above 139 is considered high in medical practice.3

We investigated further the reasons why the rules were difficult to interpret
for domain experts. The reason comes from the task itself: Medical physicians
are not used to distinguish between two types of disease given the condition that
a patient has a disease, but are rather used to find characteristics for a specific
type of a disease compared to the entire population. Another motivation is to
avoid rules as

fhis = yes & smok = yes & asp = no & dya < 112.5 → embolic

This rule has good covering properties (TP=28, FP=4), but practically describes
healthy people with family history of brain stroke. It is undoubtedly true that
this pattern is present in the dataset, but it is not the reason why these patients
have a certain type of disease. The algorithm just could not know that the
combination of these features is not characteristic for group differentiation simply
because it did not have normal people as a reference.

6 Experimental Evaluation of the One-Versus-All CSM

As the medical expert was not satisfied with the results of the comparison of
thrombolic and embolic patients, we investigated the reasons and learned a lesson
in medical contrast set mining. To overcome the problems related to the original
definition of contrast set mining we need to modify the task: instead of using
the round robin approach where we compare classes pairwise, we use a one vs.
all approach which is standard in subgroup discovery. In this way we give the
algorithm also the information about healthy patients.

Our dataset is composed of three groups of patients, as described in Section
2 and shown on Figure 1. An approach we claim is applicable in many similar
domains where the differences between two varieties of one disease are as follows:
To find characteristics of the embolic patients we perform subgroup discovery on
the embolic group compared to the rest of the patients (thrombolic and those
with a normal CT). Similarly, when searching for characteristics of thrombolic
patients, we compare them to the rest of the patients (embolic and those with a
normal CT).
3 In our dataset there are 56 patients with sys > 185.



Fig. 4. Characteristic descriptions of embolic patients displayed in the bar chart
subgroup visualization: on the right side the positive cases, in our case embolic
patients, and on the left hand side the others - thombolic and normal CT.

Fig. 5. Characteristic descriptions of thrombolic patients.

In this setting, we ran the experiment with Orange implementation of Apriori-
SD. We used the following parameter values: minimal support = 15%, minimal
confidence = 30%, the parameter for tuning the covering properties k = 5. The
results are displayed in Figures 4 and 5.

Strokes caused by embolism are most commonly caused by heart disorders.
The first rule displayed on Figure 4 has only one condition confirming atrial
fibrillation (af = yes) as an indicator for embolic brain stroke. The combination
of features from the second rule also shows that patients with antihyperten-
sive therapy (ahyp = yes) and antiarrhytmic therapy (aarrh = yes), therefore
patients with heart disorders, are prone to embolic stroke.

Thrombolic stroke is most common with older people, and often there is
underlying atherosclerosis or diabetes. In the rules displayed in Figure 5 the
features presenting diabetes do not appear. The rules rather describe patients
without heart or other disorders but with elevated diastolic blood pressure and
fibrinogen. High cholesterol, age and fibrinogen values appear characteristic for
all ischeamatic strokes.

7 Conclusions

This paper has shown that contrast set mining and subgroup discovery are very
similar data mining tasks, and has presented approaches to solving a contrast
set mining task by decision tree learning and by transforming the contrast set



mining problem to a subgroup discovery problem. As shown in [7], the subgroup
discovery approach to contrast set mining has several advantages. Its application
in brain ischemia data analysis has shown that sometimes the right task to
address is one-vs-all contrast set mining rather then the classical round robin
formulation of contrast set mining.
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6. B. Kavšek and N. Lavrač. APRIORI-SD: Adapting association rule learning to
subgroup discovery. Applied Artificial Intelligence, pages 543–583, 2006.
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