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Credits and coursework
“New Media and eScience” MSc

Programme
• 12 credits (30 hours)

– lectures
– hands-on (WEKA)
– seminar – data analysis using 

you own data (e.g., using 
WEKA for survey data analysis)

• contacts: 
– Nada Lavrač nada.lavrac@ijs.si
– Petra Kralj (MPS student)

petra.kralj@gmail.com
– Branko Kavšek: 

branko.kavsek@ijs.si

“Statistics” MSc Programme
• 12 credits (36 hours)
• Individual workload 

– same as for MPS students
• contacts: 

– same as for MPS students

Exam
• 29.11.06 Preliminary presentation of 

your problem/dataset (max. 6 slides)
• 21.2.07 data analysis results (max. 

12 slides, report, presentation and 
report following the CRISP-DM 
methodology)



Course Outline
I. Introduction

– Data Mining and KDD process
– Examples of discovered 

patterns and applications
– Data mining tools and 

visualization
(Ch. 1,2,11,12,13  of  DM&DS 

book)

II. DM Techniques
– Classification of DM tasks and 

techniques
– Predictive DM 

• Decision Tree induction 
(Ch. 3 of Mitchell’s book)

• Learning sets of rules 
(Ch. 7 of IDA book, Ch. 10 
of Mitchell’s book)

– Descriptive DM
• Subgroup discovery
• Association rule induction
• Hierarchical clustering

III. Evaluation
– Evaluation methodology
– Evaluation measures

IV.  Relational Data Mining 
– What is RDM?
– Propositionalization
– Inductive Logic 

Programming
(Ch. 3,4,11 of RDM book)

V. Conclusions and literature



Part I. Introduction

Data Mining and the KDD process
• Examples of discovered patterns and 

applications
• Data mining tools and visualization



What is DM

• Extraction of useful information from data: 
discovering relationships that have not 
previously been known

• The viewpoint in this course: Data Mining is 
the application of Machine Learning 
techniques to “hard” real-life problems



Related areas

Database technology
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• efficient storage, 
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manipulation
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Statistics, 
machine learning,
pattern recognition
and soft computing* 
• classification 

techniques and 
techniques for 
knowledge extraction 
from data

* neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning
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Related areas

Text and Web mining
• Web page analysis
• text categorization
• acquisition, filtering 

and structuring of 
textual information

• natural language 
processing

text and Web 
mining



Related areas

Visualization
• visualization of data 

and discovered 
knowledge
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Point of view in this tutorial

Knowledge 
discovery using 
machine 
learning 
methods

Relation with 
statistics
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Machine Learning and Statistics
• Both areas have a long tradition of developing inductive

techniques for data analysis.
– reasoning from properties of a data sample to 

properties of a population
• KDD = statistics + marketing ? No !
• KDD = statistics + ... + machine learning
• Statistics is particularly appropriate for hypothesis testing 

and data analysis when certain theoretical expectations 
about the data distribution, independence, random 
sampling, sample size, etc. are satisfied

• ML is particularly appropriate when requiring 
generalizations that consist of easily understandable 
patterns, induced both from small and large data samples



Data Mining and KDD
• Data Mining (DM) is a way of doing data analysis, aimed 

at  finding patterns, revealing hidden regularities and 
relationships in the data.

• Knowledge Discovery in Databases (KDD) provides a 
broader view: providing tools to automate the entire 
process of data analysis, including statistician’s art of 
hypothesis selection

• DM is the key element in this much more elaborate KDD 
process 

• KDD is defined as “the process of identifying valid, novel, 
potentially useful and ultimately understandable patterns 
in data.” *

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting Useful 
Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11



KDD Process
KDD Process: overall process of discovering useful knowledge from data

• KDD process involves several phases:
• data preparation
• data analysis (data mining, machine learning, 

statistics)
• evaluation and use of discovered patterns

• Data analysis/data mining is the key phase,                  
only 15%-25% of the entire KDD process



Part I. Introduction

• Data Mining and the KDD process
• Examples of discovered patterns and 

applications
• Data mining tools and visualization



The SolEuNet Project
• European 5FP project “Data Mining and Decision

Support for Business Competitiveness: A European 
Virtual Enterprise”, 2000-2003

• Scientific coordinator IJS, administrative FhG
• 3 MEuro, 12 partners (8 academic and 4 business)

from 7 countries
• main project objectives:

– development of prototype solutions for end-users
– foundation of a virtual enterprise for marketing DM and 

DS expertise, involving business and academia



Developed Data Mining
application prototypes

• Mediana – analysis of media research data 
• Kline & Kline – improved brand name recognition
• Australian financial house – customer quality evaluation, 

stock market prediction
• Czech health farm – predict the use of resources
• UK County Council - analysis of  traffic accident data
• INE Port. statistical bureau – Web page access analysis 

for better INE Web page organization
• Coronary heart disease risk group detection
• Online Dating – understanding email dating promiscuity 
• EC Harris - analysis of building construction projects
• European Commission - analysis of 5th Fr. IST projects: 

better understanding of large amounts of text documents, 
and “clique” identification 



MEDIANA - KDD process

• Questionnaires about journal/magazine reading, watching 
of TV programs and listening of radio programs, since 
1992, about 1200 questions. Yearly publication: frequency 
of reading/listening/watching, distribution w.r.t. Sex, Age, 
Education, Buying power,..

• Data for 1998, about 8000 questionnaires, covering 
lifestyle, spare time activities, personal viewpoints, 
reading/listening/watching of media (yes/no/how much), 
interest for specific topics in media, social status

• good quality, “clean” data
• table of n-tuples (rows: individuals, columns: attributes, in 

classification tasks selected class)



MEDIANA - Pilot study

• Patterns uncovering regularities concerning:
– Which other journals/magazines are read by readers of 

a particular journal/magazine ?
– What are the properties of individuals that are 

consumers of a particular media offer ?
– Which properties are distinctive for readers of different 

journals ?
• Induced models: description (association rules, clusters) 

and classification (decision trees, classification rules)



Decision trees
Finding reader profiles: decision tree for classifying people 

into readers and non-readers of a teenage magazine.



Classification rules
Set of Rules: if Cond then Class
Interpretation:   if-then ruleset, or

if-then-else decision list
Class: Reading of daily newspaper EN (Evening News)
if a person does not read MM (Maribor Magazine) and rarely 

reads the weekly magazine “7Days”
then the person does not read EN (Evening News)
else if a person rarely reads MM and does not read the 
weekly magazine SN (Sunday News) 

then the person reads EN
else if a person rarely reads MM 

then the person does not read  EN
else the person reads EN.



Association rules
Rules X => Y, X, Y conjunction of bin. attributes
• Support:  Sup(X,Y) = #XY/#D = p(XY)
• Confidence: Conf(X,Y) = #XY/#X = p(XY)/p(X) = p(Y|X)
Task: Find all association rules that satisfy minimum 

support and minimum confidence constraints.
Example association rule about readers of yellow 

press daily newspaper SloN (Slovenian News):
read_Love_Stories_Magazine => read_SloN

sup = 3.5% (3.5% of the whole dataset population  
reads both LSM and SloN)

conf = 61% (61% of those reading LSM also read SloN)



Association rules
Finding profiles of readers of the Delo daily 

newspaper
1. read_Marketing magazine 116 =>

read_Delo 95 (0.82)
2. read_Financial_News 223 => read_Delo 180 (0.81)

3. read_Views 201 => read_Delo 157 (0.78)

4. read_Money 197 => read_Delo 150 (0.76)

5. read_Vip 181 => read_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine, 
Financial News, Views, Money and Vip read also
Delo.



Analysis of UK traffic accidents

• End-user: Hampshire County Council (HCC, UK) 
– Can records of road traffic accidents be analysed to 

produce road safety information valuable to county 
surveyors?

– HCC is sponsored to carry out a research project Road
Surface Characteristics and Safety

– Research includes an analysis of the STATS19 
Accident Report Form Database to identify trends over
time in the relationships between recorded road-user
type/injury, vehicle position/damage, and road surface
characteristics



STATS19 Data Base

10

• Over 5 million accidents recorded in 1979-1999
• 3 data tables

Accident ACC7999 
(~5 mil. Accidents,

30 variables)

Where ? When ? 
How many ?

Vehicle VEH7999 
(~9 mil. Vehicles,

24 variables)

Which vehicles ? What 
movement ? Which 

consequences ? 
Casualty CAS7999 

(~7 mil.injuries, 
16 variables)

Who was injured ? 
What injuries ? ...



Data understanding

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
220000

230000

240000

250000

260000

270000

Year of Accident



Data quality: Accident location



Data preparation

• There are 51 police force areas in UK
• For each area we count the number of 

accidents in each:
– Year
– Month
– Day of Week
– Hour of Day



Data preparation
YEAR
pfc 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
a 10023 9431 9314 8965 8655 9014 9481 9069 8705 8829 9399 9229 8738 8199 7453 7613 7602 7042 7381 7362 6905
b 6827 6895 6952 7032 6778 6944 6387 6440 6141 5924 6331 6233 5950 6185 5910 6161 5814 6263 5881 5855 5780
c 2409 2315 2258 2286 2022 2169 2212 2096 1989 1917 2137 2072 2032 1961 1653 1526 1552 1448 1521 1408 1234

MONTH
pfc jan feb m ar apr m ay jun jul aug sep oct nov dec
a 72493 67250 77434 73841 78813 78597 80349 74226 79362 85675 84800 76282
b 2941 2771 3145 3317 3557 3668 3988 4048 3822 3794 3603 3481
c 9261 8574 9651 9887 10649 10590 10813 11299 10810 11614 10884 10306

DAY OF WEEK
12 Sunday Monday Tuesday Wednesday Thursday Friday Saturday
a 96666 132845 137102 138197 142662 155752 125898
b 5526 5741 5502 5679 6103 7074 6510
c 15350 17131 16915 17116 18282 21000 18544

HOUR
pfc 0 1 2 3 4 5 6 7 8 … 16 17 18 19 20 21 22 23
a 794 626 494 242 166 292 501 1451 2284 … 3851 3538 2557 2375 1786 1394 1302 1415
b 2186 1567 1477 649 370 521 1004 4099 7655 … 11500 11140 7720 7129 5445 4396 3946 4777
c 2468 1540 1714 811 401 399 888 3577 8304 … 12112 12259 8701 7825 6216 4809 4027 4821



Simple visualization of short 
time series

• Used for data understanding
• Very informative and easy to understand 

format
• UK traffic accident analysis: Distributions of 

number of accidents over different time 
periods (year, month, day of week, and hour)



Year/Month distribution
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Mar
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Jun

Jul
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Sep
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Nov
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Darker color - MORE accidents



All weekdays (Mon – Fri) are  worse in deep winter, Friday the worst

SUN

FRI

SAT

MON

THU

TUES

WED

Jan        Feb        Mar        Apr        May       Jun       July       Aug       Sept         Oct        Nov        Dec

Day of Week/Month 
distribution



Hour/Month distribution
Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sept

Oct

Nov

Dec

1. More Accidents at “Rush Hour”, Afternoon Rush hour is the 
worst

2. More holiday traffic (less rush hour) in August



SUN

FRI

SAT

MON

THU

TUES

WED

1. More Accidents at “Rush Hour”, Afternoon Rush hour is the
worst and lasts longer with “early finish” on Fridays

2. More leisure traffic on Saturday/Sunday

Day of Week/Hour distribution



Traffic: different modeling 
approaches

• association rule learning
• static subgroup discovery
• dynamic subgroup discovery
• clustering of short time series
• text mining
• multi-relational approaches
• …



Some discovered 
association rules

• Association rules: Road number and Severity of 
accident
– The probability of a fatal or serious accident on 

the “K8” road is 2.2 times greater than the 
probability of fatal or serious accidents in the 
county generally.

– The probability of fatal accidents on the “K7”
road is 2.8 times greater than the probability of 
fatal accidents in the county generally (when 
the road is dry and the speed limit = 70). 



Analysis of documents of 
European IST project

Data source:
• List of IST project descriptions as 1-2 page text 

summaries from the Web (database www.cordis.lu/)
• IST 5FP has 2786 projects in which participate 7886 

organizations
Analysis tasks:
• Visualization of project topics 
• Analysis of collaboration
• Connectedness between organizations
• Community/clique identification 
• Thematic consortia identification
• Simulation of 6FP IST

http://www.cordis.lu/


Analysis of documents of 
European IST project



Visualization into 25 project groups
Health

Data 
analysis

Knowledge 
Management

Mobile 
computing



Telecommunication
Transport

Electronics

No. of joint 
projects

Institutional Backbone of IST



Collaboration between countries (top 12)

Most active 
country

Number of 
collaborations



Part I. Introduction

• Data Mining and the KDD process
• Examples of discovered patterns and 

applications
• Data mining tools and visualization



DM tools



Visualization

• can be used on its own (usually for 
description and summarization tasks)

• can be used in combination with other DM 
techniques, for example
– visualization of decision trees
– cluster visualization
– visualization of association rules
– subgroup visualization



Data visualization: 
Scatter plot



DB Miner: Association rule 
visualization 



MineSet: Decision tree 
visualization 



Part I: Summary
• KDD is the overall process of discovering useful 

knowledge in data
– many steps including data preparation, cleaning, 

transformation, pre-processing
• Data Mining is the data analysis phase in KDD

– DM takes only 15%-25% of the effort of the overall KDD 
process

– employing techniques from machine learning and statistics
• Predictive and descriptive induction have different 

goals: classifier vs. pattern discovery
• Many application areas
• Many powerful tools available



Part II: Standard 
Data Mining Techniques

Classification of Data Mining techniques
• Predictive DM

– Decision Tree induction
– Learning sets of rules 

• Descriptive DM
– Subgroup discovery
– Association rule induction
– Hierarchical clustering



Types of DM tasks 
• Predictive DM:

– Classification (learning of rules, decision 
trees, ...)

– Prediction and estimation (regression)
– Predictive relational DM (ILP) 

• Descriptive DM:
– description and summarization
– dependency analysis (association rule 

learning)
– discovery of properties and constraints
– segmentation (clustering)
– subgroup discovery

• Text, Web and image analysis
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Predictive vs. descriptive 
induction

Predictive induction

Descriptive induction
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Predictive vs. descriptive 
induction

• Predictive induction: Inducing classifiers for solving 
classification and prediction tasks, 
– Classification rule learning, Decision tree learning, ...
– Bayesian classifier, ANN, SVM, ...
– Data analysis through hypothesis generation and testing

• Descriptive induction: Discovering interesting 
regularities in the data, uncovering patterns, ... for 
solving KDD tasks
– Symbolic clustering, Association rule learning, Subgroup 

discovery, ...
– Exploratory data analysis



Predictive vs. descriptive 
induction: A rule learning 

perspective
• Predictive induction: Induces rulesets acting as 

classifiers for solving classification and prediction 
tasks

• Descriptive induction: Discovers individual rules 
describing interesting regularities in the data

• Therefore: Different goals, different heuristics, 
different evaluation criteria



Supervised vs. unsupervised 
learning: A rule learning 

perspective
• Supervised learning: Rules are induced from 

labeled  instances (training examples with class 
assignment) - usually used in predictive induction

• Unsupervised learning: Rules are induced from 
unabeled instances (training examples with no 
class assignment) - usually used in descriptive 
induction

• Exception: Subgroup discovery 
Discovers individual rules describing interesting 
regularities in the data from labeled examples



Part II: Standard 
Data Mining Techniques

• Classification of Data Mining techniques
Predictive DM
– Decision Tree induction
– Learning sets of rules 

• Descriptive DM
– Subgroup discovery
– Association rule induction
– Hierarchical clustering



Predictive DM - Classification

• data are objects, characterized with attributes -
they belong to different classes (discrete labels)

• given objects described with attribute values, 
induce a model to predict different classes

• decision trees, if-then rules, discriminant
analysis, ...



Illustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
O2 young myope no normal  SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal SOFT
O15 pre-presbyohypermetrope yes reduced NONE
O16 pre-presbyohypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NONE



Decision tree for
contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD



Illustrative example:
Customer data

Customer Gender Age Income Spent BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes



Induced decision trees
Income

Age

no

yes

≤ 102000 > 102000

≤ 58 > 58

yes

Gender

Age

no

no

= female = male

≤ 49 > 49

yes



Predictive DM - Estimation

• often referred to as regression
• data are objects, characterized with attributes (discrete 

or continuous), classes of objects are continuous 
(numeric)

• given objects described with attribute values, induce a 
model to predict the numeric class value

• regression trees, linear and logistic regression, ANN, 
kNN, ...



Illustrative example:
Customer data

Customer Gender Age Income Spent
c1 male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

O6-O13 ... ... ... ...
c14 female 61 95000 18100
c15 male 56 44000 12000
c16 male 36 102000 13800
c17 female 57 215000 29300
c18 male 33 67000 9700
c19 female 26 95000 11000
c20 female 55 214000 28800



Customer data: 
regression tree

Income

Age

16500

12000

≤ 108000 > 108000

≤ 42.5 > 42.5

26700



Predicting algal biomass: 
regression tree

Month

Ptot

2.34±1.65Ptot

Si

Si
2.08 ±0.712.97±1.09

Ptot 4.32±2.07

1.28±1.08

Jan.-June

> 9.34 ≤ 10.1 >10.1

July - Dec.

> 2.13
≤ 2.13

≤ 9.1 > 9.1

≤ 9.34

> 5.9

0.70±0.341.15±0.21

≤ 5.9



Part II: Standard 
Data Mining Techniques

• Classification of Data Mining techniques
• Predictive DM

– Decision Tree induction
– Learning sets of rules 

• Descriptive DM
– Subgroup discovery
– Association rule induction
– Hierarchical clustering



Decision tree learning
• Top-Down Induction of Decision Trees 

(TDIDT, Chapter 3 of Mitchell’s book)
• decision tree representation
• the ID3 learning algorithm (Quinlan 1986)
• heuristics: information gain (entropy

minimization)
• overfitting, decision tree pruning
• brief on evaluating the quality of learned trees 

(more in Chapter 5)



PlayTennis: Training examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No



Decision tree representation 
for PlayTennis

Outlook

Humidity WindYes

Overcast RainSunny

High Normal

No

Strong Weak

Yes No Yes

- each internal node is a test of an attribute

- each branch corresponds to an attribute value

- each path is a conjunction of attribute values

- each leaf node assigns a classification



Decision tree representation 
for PlayTennis

Outlook

Humidity WindYes

Overcast RainSunny

High Normal Strong Weak

No Yes No Yes
Decision trees represent a disjunction of conjunctions of constraints 

on the attribute values of instances

( Outlook=Sunny  ∧ Humidity=Normal )   
V           ( Outlook=Overcast )
V     ( Outlook=Rain  ∧ Wind=Weak )



PlayTennis:
Other representations

• Logical expression for PlayTennis=Yes:

– (Outlook=Sunny  ∧ Humidity=Normal) ∨ (Outlook=Overcast) ∨

(Outlook=Rain  ∧ Wind=Weak)

• If-then rules

– IF Outlook=Sunny ∧ Humidity=Normal THEN PlayTennis=Yes

– IF Outlook=Overcast THEN PlayTennis=Yes

– IF Outlook=Rain ∧ Wind=Weak THEN PlayTennis=Yes

– IF Outlook=Sunny ∧ Humidity=High THEN PlayTennis=No

– IF Outlook=Rain ∧ Wind=Strong THEN PlayTennis=No



PlayTennis: Using a decision tree for 
classification

Is Saturday morning OK for playing tennis?

Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong

PlayTennis = No,  because Outlook=Sunny ∧ Humidity=High

Outlook

Humidity WindYes

Overcast RainSunny

High Normal

No

Strong Weak

Yes No Yes



Appropriate problems for 
decision tree learning

• Classification problems: classify an instance into one 
of a discrete set of possible categories (medical 
diagnosis, classifying loan applicants, …)

• Characteristics:
– instances described by attribute-value pairs       

(discrete or real-valued attributes)
– target function has discrete output values             

(boolean or multi-valued, if real-valued then regression trees)
– disjunctive hypothesis may be required
– training data may be noisy                                     

(classification errors and/or errors in attribute values)
– training data may contain missing attribute values



Learning of decision trees

• ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5, 
WEKA, ...
– create the root node of the tree
– if all examples from S belong to the same class Cj

– then label the root with Cj
– else

• select the ‘most informative’ attribute A with values
v1, v2, … vn

• divide training set S into S1,… , Sn according to 
values v1,…,vn

• recursively build sub-trees
T1,…,Tn for S1,…,Sn

• construct decision tree T:

A

...

...T1 Tn

vnv1



Search heuristics in ID3
• Central choice in ID3: Which attribute to test at 

each node in the tree ? The attribute that is most 
useful for classifying examples. 

• Define a statistical property, called information 
gain, measuring how well a given attribute 
separates the training examples w.r.t their target 
classification.

• First define a measure commonly used in 
information theory, called entropy, to characterize 
the (im)purity of an arbitrary collection of examples.



Entropy

• S - training set, C1,...,CN - classes
• Entropy E(S) – measure of the impurity of 

training set S

∑
=

−=
N

c
cc ppSE

1
2log.)( pc - prior probability of class Cc 

(relative frequency of Cc in S)

E(S) = - p+ log2p+ - p- log2p-

• Entropy in binary classification problems 



Entropy
• E(S) = - p+ log2p+ - p- log2p-

• The entropy function relative to a Boolean 
classification, as the proportion p+ of positive 
examples varies between 0  and 1
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Entropy – why ?
• Entropy E(S) = expected amount of information (in 

bits) needed to assign a class to a randomly drawn 
object in S (under the optimal, shortest-length 
code)

• Why ?
• Information theory: optimal length code assigns      

- log2p bits to a message having probability p
• So, in binary classification problems, the expected 

number of bits to encode + or – of a random 
member of S is:

p+ ( - log2p+ ) + p- ( - log2p- ) = - p+ log2p+  - p- log2p-



PlayTennis: Entropy

• Training set S: 14 examples (9 pos., 5 neg.)
• Notation: S = [9+, 5-] 
• E(S) = - p+ log2p+ - p- log2p-
• Computing entropy, if probability is estimated by 

relative frequency

• E([9+,5-]) = - (9/14) log2(9/14) - (5/14) log2(5/14)        
= 0.940 
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PlayTennis: Entropy

• E(S) = - p+ log2p+ - p- log2p-

• E(9+,5-) = -(9/14) log2(9/14) - (5/14) log2(5/14) = 0.940 

Outlook?

{D1,D2,D8,D9,D11}       [2+, 3-]   E=0.970  

{D3,D7,D12,D13}          [4+, 0-]   E=0

{D4,D5,D6,D10,D14}     [3+, 2-]   E=0.970  

Sunny

Overcast

Rain

Humidity?

[3+, 4-]    E=0.985 

[6+, 1-]    E=0.592

High

Normal

Wind?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

Weak

Strong



Information gain 
search heuristic

• Information gain measure is aimed to minimize the 

number of tests needed for the classification of a new 

object

• Gain(S,A) – expected reduction in entropy of S due to 

sorting on A 

• Most informative attribute: max Gain(S,A)
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Information gain 
search heuristic

• Which attribute is more informative, A1 or A2 ?

• Gain(S,A1) = 0.94 – (8/14 x 0.811 + 6/14 x 1.00) = 0.048

• Gain(S,A2) = 0.94 – 0 = 0.94                 A2 has max Gain

Α1

[9+,5−],  Ε = 0.94 

[3+, 3−][6+, 2−]
Ε=0.811 Ε=1.00

Α2

[0+, 5−][9+, 0−]
Ε=0.0 Ε=0.0

[9+,5−],  Ε = 0.94 



PlayTennis: Information gain

• Values(Wind) = {Weak, Strong}

– S = [9+,5-],  E(S) = 0.940

– Sweak = [6+,2-], E(Sweak ) = 0.811

– Sstrong = [3+,3-], E(Sstrong ) = 1.0

– Gain(S,Wind) = E(S) - (8/14)E(Sweak) - (6/14)E(Sstrong) = 0.940 -

(8/14)x0.811 - (6/14)x1.0=0.048
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Wind?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

Weak

Strong



Play tennis: Information gain

• Which attribute is the best?

– Gain(S,Outlook)=0.246        MAX  !

– Gain(S,Humidity)=0.151

– Gain(S,Wind)=0.048

– Gain(S,Temperature)=0.029



Play tennis: Information gain

• Which attribute should be tested here?
– Gain(Ssunny, Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970    MAX  !

– Gain(Ssunny,Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

– Gain(Ssunny,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

Outlook?

{D1,D2,D8,D9,D11}     [2+, 3-]   E > 0  ???

{D3,D7,D12,D13}        [4+, 0-]   E = 0  OK - assign class Yes
Sunny

Overcast

{D4,D5,D6,D10,D14}   [3+, 2-]   E > 0 ???Rain



Probability estimates

• Relative frequency of  positive 
examples in set c :

• Laplace estimate *: 

• m-estimate **:
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* k is number of classes, for k=2: uniform distribution assumption of 2 classes
** m is weight given to prior (i.e. number of ‘virtual’ examples)



Probability estimates: 
Intuitions

• An experiment with N trials, n successes
• Estimating the probability of success of next trial
• Relative frequency: n/N

– reliable when the number of trials is large
– unreliable with small samples, e.g., 1/1 = 1

• Laplace: (n+1)/(N+2), or (n+1)/(N+k), k classes
– assumes a uniform distribution of classes

• m-estimate: (n + m.pa )/(N+m)
– prior probability of success pa, user-defined 

parameter m (weight given to prior, i.e. number of 
‘virtual’ examples)



Heuristic search in ID3
• Search bias: Search the space of decision trees 

from simplest to increasingly complex (greedy 
search, no backtracking, prefer small trees)

• Search heuristics: At a node, select the attribute 
that is most useful for classifying examples, split 
the node accordingly

• Stopping criteria: A node becomes a leaf
– if all examples belong to same class Cj, label the 

leaf with Cj
– if all attributes were used, label the leaf with the 

most common value Ck of examples in the node
• Extension to ID3: handling noise - tree pruning 



Pruning of decision trees

• Avoid overfitting the data by tree pruning
• Pruned trees are

– less accurate on training data
– more accurate when classifying unseen data



Handling noise – Tree pruning

Sources of imperfection

1.  Random errors (noise) in training examples

• erroneous attribute values

• erroneous classification

2. Too sparse training examples (incompleteness)

3.  Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples



Handling noise – Tree pruning

• Handling imperfect data 

– handling imperfections of type 1-3

• pre-pruning (stopping criteria)

• post-pruning / rule truncation

– handling missing values

• Pruning avoids perfectly fitting noisy data: relaxing 
the completeness (fitting all +) and consistency (fitting 
all -) criteria in ID3



Prediction of breast cancer 
recurrence: Tree pruning

Degree_of_malig

Tumor_size

Age no_recur 125
recurrence 39

no_recur 4
recurrence 1 no_recur 4

Involved_nodes

no_recur 30
recurrence 18

no_recur 27
recurrence 10

< 3 ≥ 3

< 15 ≥ 15 < 3 ≥ 3

< 40 ≥40

no_rec 4      rec1



Accuracy and error
• Accuracy: percentage of correct classifications

– on the training set
– on unseen instances

• How accurate is a decision tree when classifying unseen 
instances
– An estimate of accuracy on unseen instances can be computed, 

e.g., by averaging over 4 runs:
• split the example set into training set (e.g. 70%) and test set (e.g. 30%) 
• induce a decision tree from training set, compute its  accuracy on test 

set

• Error = 1 - Accuracy
• High error may indicate data overfitting



Overfitting and accuracy
• Typical relation between tree size and accuracy

• Question: how to prune optimally?
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Overfitting

• Consider error of hypothesis h over:
– training data T: ErrorT(h)

– entire distribution D of data: ErrorD(h)

• Hypothesis h ∈ H overfits training data T if there 
is an alternative hypothesis h’ ∈ H such that
– ErrorT(h) < ErrorT(h’), and

– ErrorD(h) > ErrorD(h’)

• Prune decision trees to avoid overfitting T



Avoiding overfitting
• How can we avoid overfitting?

– Pre-pruning (forward pruning): stop growing the tree e.g., 
when data split not statistically significant or too few 
examples are in a split

– Post-pruning: grow full tree, then post-prune

• forward pruning considered inferior (myopic)
• post pruning makes use of sub trees 

Pre-pruning

Post-pruning



How to select the “best” tree
• Measure performance over training data (e.g., 

pessimistic post-pruning, Quinlan 1993)
• Measure performance over separate validation data 

set (e.g., reduced error pruning, Quinlan 1987) 
– until further pruning is harmful DO:

• for each node evaluate the impact of replacing a subtree by a 
leaf, assigning the majority class of examples in the leaf, if the 
pruned tree performs no worse than the original over the 
validation set

• greedily select the node whose removal most improves tree 
accuracy over the validation set

• MDL: minimize
size(tree)+size(misclassifications(tree)) 



PlayTennis:
Converting a tree to rules

IF Outlook=Sunny ∧ Humidity=Normal THEN PlayTennis=Yes
IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain ∧ Wind=Weak THEN PlayTennis=Yes

IF Outlook=Sunny ∧ Humidity=High THEN PlayTennis=No

IF Outlook=Rain ∧ Wind=Strong THEN PlayTennis=No

Outlook

Humidity WindYes

OvercastSunny Rain

High Normal Strong Weak

No Yes No Yes



Rule post-pruning 
(Quinlan 1993)

• Very frequently used method, e.g., in C4.5
• Procedure:

– grow a full tree (allowing overfitting)
– convert the tree to an equivalent set of rules
– prune each rule independently of others
– sort final rules into a desired sequence for use



Selected decision/regression 
tree learners

• Decision tree learners

– ID3 (Quinlan 1979)
– CART (Breiman et al. 1984)
– Assistant (Cestnik et al. 1987)
– C4.5 (Quinlan 1993), C5 (See5, Quinlan)
– J48 (available in WEKA)

• Regression tree learners, model tree learners

– M5, M5P (implemented in WEKA)



Features of C4.5

• Implemented as part of the WEKA data mining 
workbench

• Handling noisy data: post-pruning

• Handling incompletely specified training 
instances: ‘unknown’ values (?)

– in learning assign conditional probability of value v: 
p(v|C) = p(vC) / p(C)

– in classification: follow all branches, weighted by 
prior prob. of missing attribute values



Other features of C4.5
• Binarization of attribute values

– for continuous values select a boundary value 
maximally increasing the informativity of the 
attribute: sort the values and try every possible
split (done automaticaly)

– for discrete values try grouping the values until two
groups remain *

• ‘Majority’ classification in NULL leaf (with no 
corresponding training example)
– if an example ‘falls’ into a NULL leaf during

classification, the class assigned to this example
is the majority class of the parent of the NULL leaf

* the basic C4.5 doesn’t support binarisation of discrete attributes, it supports grouping



Part II: Standard 
Data Mining Techniques

• Classification of Data Mining techniques
• Predictive DM

– Decision Tree induction
– Learning sets of rules 

• Descriptive DM
– Subgroup discovery
– Association rule induction
– Hierarchical clustering



Rule learning
• Rule set representation
• Two rule learning approaches:

– Learn decision tree, convert to rules
– Learn set/list of rules

• Learning an unordered set of rules
• Learning an ordered list of rules

• Heuristics, overfitting, pruning 



Predictive DM - Classification

• data are objects, characterized with attributes -
objects belong to different classes (discrete 
labels)

• given the objects described by attribute values, 
induce a model to predict different classes

• decision trees, if-then rules, ...



Decision tree vs. rule learning: 
Splitting vs. covering

• Splitting (ID3)

• Covering (AQ, CN2)
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Rule set representation
• Rule base is a disjunctive set of conjunctive rules
• Standard form of rules:

IF Condition THEN Class
Class IF Conditions
Class ← Conditions

IF Outlook=Sunny ∧ Humidity=Normal THEN 
PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes
IF Outlook=Rain ∧ Wind=Weak THEN PlayTennis=Yes

• Form of CN2 rules:    
IF Conditions THEN BestClass [ClassDistr]

• Rule base:   {R1, R2, R3, …, DefaultRule}



Illustrative example:
Customer data

Customer Gender Age Income Spent BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes



Consumer data:
classification rules

Unordered rules (independent, may overlap):

Income > 108000 => BigSpender = yes 
Age ≥ 49 & Income > 57000 => BigSpender = yes
Age ≤ 56 & Income < 98500 => BigSpender = no
Income < 51000 => BigSpender = no
33 < Age ≤ 42 => BigSpender = no
DEFAULT BigSpender = yes



Illustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
O2 young myope no normal  SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal SOFT
O15 pre-presbyohypermetrope yes reduced NONE
O16 pre-presbyohypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NONE



Contact lense: 
classification rules

• tear production=reduced => lenses=NONE 
[S=0,H=0,N=12]

• tear production=normal & astigmatism=no =>
lenses=SOFT [S=5,H=0,N=1]

• tear production=normal & astigmatism=yes & spect. 
pre.=myope => lenses=HARD [S=0,H=3,N=2]

• tear production=normal & astigmatism=yes & spect. 
pre.=hypermetrope => lenses=NONE 
[S=0,H=1,N=2]



Unordered rulesets

• rule Class IF Conditions is learned by first 
determining Class and then Conditions 
– NB: ordered sequence of classes C1, …, Cn in 

RuleSet
– But: unordered (independent) execution of rules 

when classifying a new instance: all rules are tried 
and predictions of those covering the example are 
collected; voting is used to obtain the final 
classification

• if no rule fires, then DefaultClass (majority 
class in E)



Contact lense: 
decision list

Ordered (order dependent) rules :

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/

IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD 
ELSE /* spect.pre.=hypermetrope*/

lenses=NONE



Ordered set of rules:
if-then-else decision lists

• rule  Class IF Conditions is learned by first determining 
Conditions and then Class

• Notice: mixed sequence of classes C1, …, Cn in 
RuleBase

• But: ordered execution when classifying a new instance: 
rules are sequentially tried and the first rule that `fires’
(covers the example) is used for classification

• Decision list {R1, R2, R3, …, D}: rules Ri are interpreted 
as if-then-else rules

• If no rule fires, then DefaultClass (majority class in Ecur)



Original covering algorithm
(AQ, Michalski 1969,86)

Basic covering algorithm
for each class Ci do

– Ei := Pi U Ni (Pi pos., Ni neg.)
– RuleBase(Ci) := empty
– repeat {learn-set-of-rules}

• learn-one-rule R covering some positive examples 
and no negatives 

• add R to RuleBase(Ci)
• delete from Pi all pos. ex. covered by R

– until Pi = empty 
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Learning unordered set of rules
• RuleBase := empty 
• for each class Ci do

– Ei := Pi U Ni, RuleSet(Ci) := empty
– repeat {learn-set-of-rules}

• R :=  Class = Ci IF Conditions,   Conditions := true
• repeat {learn-one-rule} 

R’ :=   Class = Ci IF Conditions AND Cond
(general-to-specific beam search of Best R’)

• until stopping criterion is satisfied  
(no negatives covered or Performance(R’) < ThresholdR) 

• add R’ to RuleSet(Ci)
• delete from Pi all positive examples covered by R’

– until stopping criterion is satisfied (all positives covered 
or Performance(RuleSet(Ci)) < ThresholdRS)

• RuleBase := RuleBase U RuleSet(Ci)



Learn-one-rule:
Greedy vs. beam search

• learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’
descendant, no backtracking

• beam search: maintain a list of k best 
candidates at each step; descendants 
(specializations) of each of these k 
candidates are generated, and the resulting 
set is again reduced to k best candidates



Learn-one-rule as heuristic search

Lenses = hard 
IF Astigmatism = no

Lenses = hard 
IF Astigmatism = yes

Lenses = hard 
IF Tearprod. = normal

Lenses = hard 
IF Tearprod. = reduced

Lenses = hard 
IF Tearprod. = normal

AND Spect.Pre. = myope

Lenses = hard 
IF Tearprod. = normal

AND Spect.Pre. = hyperm.

Lenses = hard 
IF Tearprod. = normal
AND Astigmatism = no

Lenses = hard 
IF Tearprod. = normal

AND Astigmatism = yes

[S=5, H=4, N=15]

[S=5, H=0, N=7]

[S=0, H=4, N=8] [S=5, H=4, N=3]

[S=0, H=0, N=12]

...

[S=2, H=3, N=1]

[S=3, H=1, N=2]

[S=0, H=4, N=2]

[S=5, H=0, N=1]

Lenses = hard  IF   true



Learn-one-rule:
PlayTennis training examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No



Learn-one-rule as search: 
PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

...



Learn-one-rule as heuristic search: 
PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

[9+,5−] (14)

[6+,2−] (8)

[3+,3−] (6) [6+,1−] (7)

[3+,4−] (7)

...

[2+,0−] (2)



Heuristics for learn-one-rule:
PlayTennis example 

PlayTennis = yes [9+,5-] (14)
PlayTennis = yes ← Wind=weak  [6+,2-] (8)

← Wind=strong [3+,3-] (6) 
← Humidity=normal [6+,1-] (7)
← …

PlayTennis = yes ← Humidity=normal
Outlook=sunny [2+,0-] (2)

← …
Estimating accuracy with probability: 

A(Ci ← Conditions) = p(Ci | Conditions)
Estimating probability with relative frequency:

covered pos. ex. / all covered ex.  
[6+,1-] (7) = 6/7,  [2+,0-] (2) = 2/2 = 1 



Probability estimates
• Relative frequency of 

covered positive examples:
– problems with small samples

• Laplace estimate : 
– assumes uniform prior 

distribution of k classes

• m-estimate :
– special case: p(+)=1/k, m=k
– takes into account prior 

probabilities pa(C) instead of 
uniform distribution

– independent of the number of 
classes k

– m is domain dependent (more 
noise, larger m)
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Rule learning: summary
• Hypothesis construction: find a set of n rules

– usually simplified by n separate rule constructions

• Rule construction: find a pair (Class, Body)
– e.g. select rule head (class) and construct rule body

• Body construction: find a set of m features
– usually simplified by adding to rule body one feature 

at a time



Learn-one-rule:
search heuristics

• Assume two classes (+,-),  learn rules for + class (Cl). Search 
for specializations of one rule R = Cl ← Cond from RuleBase.

• Expected classification accuracy:   A(R) = p(Cl|Cond)
• Informativity (info needed to specify that example covered by 

Cond belongs to Cl):  I(R) =  - log2p(Cl|Cond)
• Accuracy gain (increase in expected accuracy):

AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)
• Information gain (decrease in the information needed):

IG(R’,R) = log2p(Cl|Cond’) - log2p(Cl|Cond)
• Weighted measures favoring more general rules: WAG, WIG

WAG(R’,R) = 
p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond))

• Weighted relative accuracy trades off coverage and relative 
accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - pa(Cl))



Ordered set of rules:
if-then-else rules

• rule  Class IF Conditions is learned by first 
determining Conditions and then Class

• Notice: mixed sequence of classes C1, …, Cn in 
RuleBase

• But: ordered execution when classifying a new 
instance: rules are sequentially tried and the first 
rule that `fires’ (covers the example) is used for 
classification

• Decision list {R1, R2, R3, …, D}: rules Ri are 
interpreted as if-then-else rules

• If no rule fires, then DefaultClass (majority class in
Ecur)



Sequential covering algorithm
(similar as in Mitchell’s book)

• RuleBase := empty 
• Ecur:= E 
• repeat 

– learn-one-rule R
– RuleBase := RuleBase U R
– Ecur := Ecur - {examples covered and correctly 

classified by R}  (DELETE ONLY POS. EX.!)
– until performance(R, Ecur) < ThresholdR

• RuleBase := sort RuleBase by performance(R,E)
• return RuleBase



Learn ordered set of rules
(CN2, Clark and Niblett 1989)

• RuleBase := empty 
• Ecur:= E 
• repeat 

– learn-one-rule R
– RuleBase := RuleBase U R
– Ecur := Ecur - {all examples covered by R}  

(NOT ONLY POS. EX.!)
• until performance(R, Ecur) < ThresholdR
• RuleBase := sort RuleBase by performance(R,E)
• RuleBase := RuleBase U DefaultRule(Ecur)



Learn-one-rule:
Beam search in CN2

• Beam search in CN2 learn-one-rule algo.:
– construct BeamSize of best rule bodies 

(conjunctive conditions) that are statistically 
significant

– BestBody - min. entropy of examples covered 
by Body 

– construct best rule R := Head ← BestBody by 
adding majority class of examples covered by 
BestBody in rule Head

• performance (R, Ecur) : - Entropy(Ecur) 
– performance(R, Ecur) < ThresholdR (neg. num.)
– Why? Ent. > t is bad, Perf. = -Ent < -t is bad



Variations
• Sequential vs. simultaneous covering of data (as 

in TDIDT): choosing between attribute-values vs. 
choosing attributes

• Learning rules vs. learning decision trees and  
converting them to rules

• Pre-pruning vs. post-pruning of rules
• What statistical evaluation functions to use
• Probabilistic classification



Probabilistic classification
• Unlike the ordered case of standard CN2 where rules are 

interpreted in an IF-THEN-ELSE fashion, in the unordered 
case and in CN2-SD all rules are tried and all rules which fire 
are collected

• If a clash occurs, a probabilistic method is used to resolve the
clash

• A simplified example:
class=bird ← legs=2 & feathers=yes [13,0]

class=elephant ← size=large & flies=no [2,10]

class=bird ← beak=yes [20,0]
[35,10]

Two-legged, feathered, large, non-flying 
animal with a beak?  bird !



Performance metrics

• Confusion matrix, contingency table
• Heuristics for guiding the search
• Rule evaluation measures



Confusion matrix and 
Contingency table

 Predicted positive Predicted negative  
Positive examples True pos.  TP False neg. FN Pos
Negative examples False pos. FP True neg.  TN Neg
 PredPos PredNeg N 

Head is 
true (Cl)
Head is 
true (Cl)

Head is false 
(¬Cl)
Head is false 
(¬Cl)

Body is 
true (Cd)
Body is 
true (Cd)

n(Cl.Cd)
true positives
n(Cl.Cd)

true positives

n(¬Cl.Cd)
false positives
n(¬Cl.Cd)
false positives

Body is 
false (¬Cd)
Body is 
false (¬Cd)

n(Cl.¬Cd)
false 

negatives

n(Cl.¬Cd)
false 

negatives

n(¬Cl¬Cd)
true negatives
n(¬Cl¬Cd)
true negatives

n(Cd)n(Cd) n(¬Cd)n(¬Cd)

n(Cl)n(Cl)

n(¬Cl)n(¬Cl)

NN

TP = n(Cl.Cd ) 
• p(Cl.Cd) = 

n(Cl.Cd) / N 
• ...



Confusion matrix and 
rule (in)accuracy

• Suppose two rules are both 80% accurate on an 
evaluation dataset, are they always equally good? 
– e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 

out of 50 negatives; Rule 2 correctly classifies 30 out of 50 
positives and 50 out of 50 negatives

– on a test set which has more negatives than positives, Rule 
2 is preferable; 

– on a test set which has more positives than negatives, Rule 
1 is preferable; unless…

– …the proportion of positives becomes so high that the 
‘always positive’ predictor becomes superior!

• Conclusion: classification accuracy is not always an 
appropriate rule quality measure



What is “high” accuracy? 

• Rule accuracy should be traded off against 
the “default” accuracy of the rule Cl ←true

– 68% accuracy is OK if there are 20% examples of 
that class in the training set, but bad if there are 
80%

• Relative accuracy
– RAcc(Cl ←Cond) = p(Cl | Cond) – p(Cl)



Weighted relative accuracy

• If a rule covers a single example, its accuracy 
is either 0% or 100%
– maximising relative accuracy tends to produce 

many overly specific rules
• Weighted relative accuracy

– WRAcc(Cl←Cond) = p(Cond)[p(Cl | Cond) – p(Cl)]



Remarks on rule evaluation 
measures

• WRAcc is a fundamental rule evaluation measure: 
– WRAcc can be used if you want to assess both accuracy and 

significance
– WRAcc can be used if you want to compare rules with different 

heads and bodies - appropriate measure for use in descriptive 
induction, e.g., association rule learning



Head is 
true (Cl)
Head is 
true (Cl)

Head is 
false (¬Cl)
Head is 
false (¬Cl)

Body is 
true (Cd)
Body is 
true (Cd)

n(Cl.Cd)
true positives
n(Cl.Cd)

true positives

n(¬Cl.Cd)
false 

positives

n(¬Cl.Cd)
false 

positives

Body is 
false (¬Cd)
Body is 
false (¬Cd)

n(Cl.¬Cd)
false 

negatives

n(Cl.¬Cd)
false 

negatives

n(¬Cl¬Cd)
true 

negatives

n(¬Cl¬Cd)
true 

negatives

n(Cd)n(Cd) n(¬Cd)n(¬Cd)

n(Cl)n(Cl)

n(¬Cl)n(¬Cl)

NN

Contingency table

• p(Cl.Cd) = n(Cl.Cd) / N etc.



Rule evaluation measures

• Coverage 
Cov(Cl←Cond) = p(Cond) 

• Support = frequency
Sup(Cl←Cond) =  p(Cl.Cond) 

• Rule accuracy = confidence = precision
Acc(Cl←Cond) = n(Cl.Cond)/n(Cond) = p(Cl | Cond)

• Sensitivity = recall of positives (TPr) 
Sens(Cl←Cond) = n(Cl.Cond) / n(Cl) = p(Cond | Cl)

• Specificity = recall of negatives
Spec(Cl←Cond) = n(¬Cl¬Cond) / n(¬Cl) 

= p(¬Cond | ¬Cl)



Other measures
• Relative sensitivity

– RSens(Cl←Cond) = p(Cond | Cl) – p(Cond)
• Relative specificity

– RSpec(Cl←Cond) = p(¬Cond | ¬Cl) – p(¬Cond)
• Weighted relative sensitivity

– WRSens(Cl←Cond) = p(Cl)[p(Cond | Cl) – p(Cond)]
• Weighted relative specificity

– WRSpec(Cl←Cond) = 
= p(¬Cl)[p(¬Cond | ¬Cl) – p(¬Cond)]

• THEOREM: WRSens(R) = WRSpec(R) = 
WRAcc(R), where
– WRAcc(Cl←Cond) = p(Cond)[p(Cl | Cond) – p(Cl)]



Part II: Standard 
Data Mining Techniques

• Classification of Data Mining techniques
• Predictive DM

– Decision Tree induction
– Learning sets of rules 

• Descriptive DM
– Subgroup discovery
– Association rule induction
– Hierarchical clustering



Descriptive DM

• Often used for preliminary data analysis
• User gets feel for the data and its structure
• Aims at deriving descriptions of characteristics 

of the data
• Visualization and descriptive statistical 

techniques can be used



Descriptive DM
• Description

– Data description and summarization: describe elementary and 
aggregated data characteristics (statistics, …)

– Dependency analysis:
• describe associations, dependencies, …
• discovery of properties and constraints

• Segmentation
– Clustering: separate objects into subsets according to distance and/or 

similarity (clustering, SOM, visualization, ...)
– Subgroup discovery: find unusual subgroups that are significantly 

different from the majority (deviation detection w.r.t. overall class 
distribution)



Part II: Standard 
Data Mining Techniques

• Classification of Data Mining techniques
• Predictive DM

– Decision Tree induction
– Learning sets of rules 

• Descriptive DM
– Subgroup discovery
– Association rule induction
– Hierarchical clustering



Subgroup Discovery

Given: a population of individuals and a 
property of individuals we are interested in

Find: population subgroups that are statistically 
most `interesting’, e.g., are as large as 
possible and have most unusual statistical 
(distributional) characteristics w.r.t. the 
property of interest



Subgroup interestingness
Interestingness criteria:

– As large as possible
– Class distribution as different as possible from 

the distribution in the entire data set
– Significant
– Surprising to the user
– Non-redundant
– Simple
– Useful - actionable



Subgroup Discovery: 
Medical Case Study

• Find and characterize population subgroups with high 
CHD risk (Gamberger, Lavrac, Krstacic) 

• A1 for males: principal risk factors
CHD ← pos. fam. history & age > 46

• A2 for females: principal risk factors
CHD ← bodyMassIndex > 25 & age >63

• A1, A2 (anamnestic info only), B1, B2 (an. and physical 
examination), C1 (an., phy. and ECG)

• A1: supporting factors (found by statistical analysis): 
psychosocial stress, as well as cigarette smoking, 
hypertension and overweight



Subgroup visualization

Subgroups of 
patients with 
CHD risk

[Gamberger, Lavrac
& Wettschereck, 
IDAMAP2002]



Subgroups vs. classifiers
• Classifiers:

– Classification rules aim at pure subgroups
– A set of rules forms a domain model

• Subgroups:
– Rules describing subgroups aim at significantly higher proportion of 

positives
– Each rule is an independent chunk of knowledge

• Link 
– SD can be viewed as

cost-sensitive 
classification

– Instead of FNcost we 
aim at increased TPprofit

negativespositives

true
positives

false
pos.



Classification Rule Learning for 
Subgroup Discovery: Deficiencies
• Only first few rules induced by the covering 

algorithm have sufficient support (coverage)
• Subsequent rules are induced from smaller and 

strongly biased example subsets (pos. examples 
not covered by previously induced rules), which 
hinders their ability to detect population 
subgroups 

• ‘Ordered’ rules are induced and interpreted 
sequentially as a if-then-else decision list 



CN2-SD: Adapting CN2 Rule 
Learning to Subgroup Discovery

• Weighted covering algorithm
• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights
• Probabilistic classification
• Evaluation with different interestingness 

measures



CN2-SD: CN2 Adaptations
• General-to-specific search (beam search) for best rules
• Rule quality measure: 

– CN2: Laplace: Acc(Class ← Cond) = 
= p(Class|Cond) = (nc+1)/(nrule+k)

– CN2-SD: Weighted Relative Accuracy
WRAcc(Class ← Cond) = 

p(Cond) (p(Class|Cond) - p(Class)) 
• Weighted covering approach (example weights)
• Significance testing (likelihood ratio statistics)
• Output: Unordered rule sets (probabilistic classification)



CN2-SD: Weighted Covering
• Standard covering approach: 

covered examples are deleted from current training set
• Weighted covering approach:

– weights assigned to examples
– covered pos. examples are re-weighted: 

in all covering loop iterations, store 
count i how many times (with how many 
rules induced so far) a pos. example has 
been covered: w(e,i), w(e,0)=1

• Additive weights: w(e,i) = 1/(i+1)
w(e,i) – pos. example e being covered i times

• Multiplicative weights: w(e,i) = gammai , 0<gamma<1
note: gamma = 1 find the same (first) rule again and again                          

gamma = 0 behaves as standard CN2



CN2-SD: Weighted WRAcc Search 
Heuristic

• Weighted relative accuracy (WRAcc) search 
heuristics, with added example weights 
WRAcc(Cl ← Cond) = p(Cond) (p(Cl|Cond) - p(Cl))
increased coverage, decreased # of rules, approx. equal 

accuracy (PKDD-2000)
• In WRAcc computation, probabilities are estimated 

with relative frequencies, adapt:
WRAcc(Cl ← Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) = 

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’ )
– N’ : sum of weights of examples
– n’(Cond) : sum of weights of all covered examples
– n’(Cl.Cond) : sum of weights of all correctly covered examples



Part II: Standard 
Data Mining Techniques

• Classification of Data Mining techniques
• Predictive DM

– Decision Tree induction
– Learning sets of rules 

• Descriptive DM
– Subgroup discovery
– Association rule induction
– Hierarchical clustering



Association Rule Learning
Rules: X =>Y,  if X then Y

X, Y itemsets (records, conjunction of items), where 
items/features are binary-valued attributes)

Transactions: i1     i2  ………………… i50

itemsets (records) t1     1          1                   0 
t2     0          1                   0

Example:   … … … ... 

Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)

• Support:  Sup(X,Y) = #XY/#D = p(XY)

• Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(Y|X)



Association Rule Learning
Given: a set of transactions D

Find: all association rules that hold on the set of transactions 
that have support > MinSup and confidence > MinConf

Procedure:
• find all large itemsets Z, Sup(Z) > MinSup
• split every large itemset Z into XY,  

compute Conf(X,Y) = Sup(X,Y)/Sup(X),
if Conf(X,Y) > MinConf then X =>Y
(Sup(X,Y) > MinSup, as XY is large)



Part II: Standard 
Data Mining Techniques

• Classification of Data Mining techniques
• Predictive DM

– Decision Tree induction
– Learning sets of rules 

• Descriptive DM
– Subgroup discovery
– Association rule induction
– Hierarchical clustering



Hierarchical clustering

• Algorithm (agglomerative 
hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair Ci in Cj;
fuse Ci in Cj in a new cluster

Cr = Ci U Cj;
determine dissimilarities between

Cr and other clusters;

until one cluster left;

• Dendrogram:



Hierarchical clustering

• Fusing the nearest pair of clusters

iC

jC

kC),( ji CCd

),( ki CCd

),( kj CCd

• Minimizing intra-cluster 
similarity

• Maximizing inter-cluster 
similarity

• Computing the dissimilarities   
from the “new” cluster



Hierarchical clustering: example



Results of clustering
A dendogram of 
resistance vectors

[Bohanec et al., “PTAH: 
A system for supporting 
nosocomial infection 
theraphy”, IDAMAP 
book, 1997]



Part II: Summary

• Predictive DM: 
– classification, regression
– trees, rules
– splitting vs. covering
– preventing overfitting

• Descriptive DM: 
– association rules
– subgroup discovery
– clustering



Part III: Evaluation

• Accuracy and Error
• n-fold cross-validation
• Confusion matrix
• ROC



Evaluating hypotheses
• Use of induced hypotheses

– discovery of new patterns, new knowledge
– classification of new objects

• Evaluating the quality of induced hypotheses
– Accuracy, Error = 1 - Accuracy
– classification accuracy on testing examples = 

percentage of correctly classified instances
• split the example set into training set (e.g. 70%) to 

induce a concept, and test set (e.g. 30%) to test its 
accuracy

• more elaborate strategies: 10-fold cross validation, 
leave-one-out, ...

– comprehensibility (compactness)
– information contents (information score), significance 



n-fold cross validation
• A method for accuracy estimation of classifiers
• Partition set D into n disjoint, almost equally-sized 

folds Ti where Ui Ti = D
• for i = 1, ..., n do

– form a training set out of n-1 folds: Di = D\Ti

– induce classifier Hi from examples in Di
– use fold Ti  for testing the accuracy of Hi

• Estimate the accuracy of the classifier by 
averaging accuracies over 10 folds Ti 



•Partition D

T1 T2 T3



•Partition

•Train
D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3



•Partition

•Train
D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3



•Partition

•Train

•Test

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3

T1 T2 T3



(In)Accuracy

• Suppose two classifiers both achieve 80% accuracy 
on an evaluation dataset, are they always equally 
good? 
– e.g., classifier 1 correctly classifies 40 out of 50 positives 

and 40 out of 50 negatives; classifier 2 correctly classifies 30
out of 50 positives and 50 out of 50 negatives

– on a test set which has more negatives than positives, 
classifier 2 is preferable; 

– on a test set which has more positives than negatives, 
classifier 1 is preferable; unless…

– …the proportion of positives becomes so high that the 
‘always positive’ predictor becomes superior!

• Conclusion: accuracy is not always an appropriate 
quality measure



Confusion matrix

• also called contingency table

 Predicted positive Predicted negative  
Positive examples True positives False negatives  
Negative examples False positives True negatives  
     

Classifier 1 
 Predicted positive Predicted negative  
Positive examples 40 10 50 
Negative examples 10 40 50 
 50 50 100  

Classifier 2 
 Predicted positive Predicted negative  
Positive examples 30 20 50 
Negative examples 0 50 50 
 30 70 100 



ROC space
• True positive rate = 

#true pos. / #pos.
– TP1 = 40/50 = 80% 
– TP2 = 30/50 = 60%

• False positive rate
= #false pos. / #neg.
– FP1 = 10/50 = 20%
– FP2 = 0/50 = 0%

• ROC space has FP 
rate on X axis and 
TP rate on Y axis

Classifier 2
Predicted positive Predicted negative

Positive examples 30 20 50
Negative examples 0 50 50

30 70 100

Classifier 1
Predicted positive Predicted negative

Positive examples 40 10 50
Negative examples 10 40 50

50 50 100
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The ROC convex hull
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Rule evaluation measures
• Coverage 

Cov(Cl←Cond) = p(Cond) 
• Support = frequency

Sup(Cl←Cond) =  p(Cl.Cond) 
• Rule accuracy = confidence = precision

Acc(Cl←Cond) = n(Cl.Cond)/n(Cond) = p(Cl | Cond)
• Sensitivity = recall of positives (TPr) 

Sens(Cl←Cond) = n(Cl.Cond) / n(Cl) = p(Cond | Cl)
• Specificity = recall of negatives

Spec(Cl←Cond) = n(¬Cl¬Cond) / n(¬Cl) 
= p(¬Cond | ¬Cl)
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ML metrics in ROC space

true positive rate 
= sensitivity 

= recall
= TP/Pos

false positive rate = 
1 – specificity

= 1 – TN/Neg = 
FP/Neg

rule accuracy
= confidence 

= precision
= TP/(TP+FP)

accuracy on 
negatives

= TN/(TN+FN)



Part III: Summary

• 10-fold cross-validation is a standard classifier 
evaluation method used in machine learning

• ROC analysis very natural for rule learning and 
subgroup discovery
– can take costs into account
– here used for evaluation
– also possible to use as search heuristic

• Upgrade to c>2 classes
– full ROC analysis requires c(c–1) dimensions, distinguishing all 

pairwise misclassification types
– can be approximated by c dimensions



Part IV: 
Relational Data Mining

What is RDM?
• Propositionalization techniques
• Inductive Logic Programming



Predictive relational DM
• Data stored in relational databases
• Single relation - propositional DM

– example is a tuple of values of a fixed number of 
attributes (one attribute is a class)

– example set is a table (simple field values)
• Multiple relations - relational DM (ILP)

– example is a tuple or a set of tuples
(logical fact or set of logical facts)

– example set is a set of tables (simple or complex 
structured objects as field values)



Data for propositional DM
Sample single relation data table



Multi-relational data made 
propositional

• Sample                                                multi-
relation                                                 data 
table

• Making data                             propositional:          
using summary                              attributes



Relational Data Mining (ILP)
• Learning from multiple 

tables
• Complex relational 

problems:
– temporal data: time 

series in medicine, 
trafic control, ...

– structured data:
representation of 
molecules and their 
properties in protein 
engineering, 
biochemistry, ...



Basic Relational Data Mining tasks

Predictive RDM

Descriptive RDM
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Predictive ILP
• Given:

– A set of observations
• positive examples E +
• negative examples E -

– background knowledge B
– hypothesis language LH
– covers relation

• Find:
A hypothesis H ∈ LH, such that (given B) H
covers all positive and no negative examples

• In logic, find H such that
– ∀e ∈ E + : B  ∧ H |=  e  (H is complete)
– ∀e ∈ E - : B  ∧ H |=/= e  (H is consistent)

• In ILP, E are ground facts, B and H are 
(sets of) definite clauses

+ + +
+++

- - - --
-

Η



Predictive ILP
• Given:

– A set of observations
• positive examples E +
• negative examples E -

– background knowledge B
– hypothesis language LH
– covers relation
– quality criterion

• Find:
A hypothesis H ∈ LH, such that (given B) H is 
optimal w.r.t. some quality criterion, e.g., max. 
predictive accuracy A(H)  

(instead of finding a hypothesis H ∈ LH, such 
that (given B) H covers all positive and no
negative examples)

+ +
++

- - - --
-

Η
+

++
+

-
-



Descriptive ILP
• Given:

– A set of observations
(positive examples E +)

– background knowledge B
– hypothesis language LH
– covers relation

• Find:
Maximally specific hypothesis H ∈ LH, such 
that (given B) H covers all positive examples

• In logic, find H such that ∀c ∈ H, c is true in 
some preferred model of B ∪E (e.g., least 
Herbrand model M (B ∪E ))

• In ILP, E are ground facts, B are (sets of) 
general clauses

+ + +
+++ Η



Sample problem
Knowledge discovery

E + = {daughter(mary,ann),daughter(eve,tom)}
E - = {daughter(tom,ann),daughter(eve,ann)}

B = {mother(ann,mary), mother(ann,tom), 
father(tom,eve), father(tom,ian), female(ann), 
female(mary), female(eve), male(pat),male(tom), 
parent(X,Y) ← mother(X,Y), parent(X,Y) ←
father(X,Y)}

ann

mary tom

eve ian



Sample problem
Knowledge discovery

• E + = {daughter(mary,ann),daughter(eve,tom)}
E - = {daughter(tom,ann),daughter(eve,ann)}

• B = {mother(ann,mary),mother(ann,tom),father(tom,eve),
father(tom,ian),female(ann),female(mary),female(eve),
male(pat),male(tom),parent(X,Y)←mother(X,Y),
parent(X,Y)←father(X,Y)}

• Predictive ILP - Induce a definite clause
daughter(X,Y) ← female(X), parent(Y,X).

or a set of definite clauses
daughter(X,Y) ← female(X), mother(Y,X).
daughter(X,Y) ← female(X), father(Y,X).

• Descriptive ILP - Induce a set of (general) clauses
← daughter(X,Y), mother(X,Y).
female(X)← daughter(X,Y).
mother(X,Y); father(X,Y) ← parent(X,Y).



Sample problem
Logic programming

E + = {sort([2,1,3],[1,2,3])}
E - = {sort([2,1],[1]),sort([3,1,2],[2,1,3])}

B : definitions of permutation/2 and sorted/1

• Predictive ILP

sort(X,Y) ← permutation(X,Y), sorted(Y).

• Descriptive ILP

sorted(Y) ← sort(X,Y).

permutation(X,Y) ← sort(X,Y)
sorted(X) ← sort(X,X)



Sample problem: 
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.



RDM knowledge representation 
(database)

TRAIN EASTBOUND
t1 TRUE
t2 TRUE
… …
t6 FALSE
… …

TRAIN EASTBOUND
t1 TRUE
t2 TRUE
… …
t6 FALSE
… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rect angle short none 2
c2 t1 rect angle long none 3
c3 t1 rect angle short peaked 2
c4 t1 rect angle long none 2
… … … …

CAR TRAIN SHAPE LENGTH ROOF WHEELS
c1 t1 rect angle short none 2
c2 t1 rect angle long none 3
c3 t1 rect angle short peaked 2
c4 t1 rect angle long none 2
… … … …

LOAD CAR OBJECT NUMBER
l1 c1 circle 1
l2 c2 hexagon 1
l3 c3 t riangle 1
l4 c4 rect angle 3
… … …

LOAD CAR OBJECT NUMBER
l1 c1 circle 1
l2 c2 hexagon 1
l3 c3 t riangle 1
l4 c4 rect angle 3
… … …

LOAD_TABLELOAD_TABLE

CAR_TABLECAR_TABLE



ER diagram for East-West trains

TrainTrainDirectionDirection

HasHas

CarCar

ShapeShape

LengthLength

RoofRoof

WheelsWheels

11

MM

HasHas LoadLoad
11 11

NumberNumber ObjectObject



ILP representation: 
Datalog ground facts

• Example: 
eastbound(t1).

• Background theory:
car(t1,c1).     car(t1,c2).       car(t1,c3).    car(t1,c4).
rectangle(c1).   rectangle(c2).    rectangle(c3).  rectangle(c4).
short(c1).      long(c2).       short(c3).    long(c4).
none(c1).        none(c2). peaked(c3).    none(c4).
two_wheels(c1).  three_wheels(c2).  two_wheels(c3). two_wheels(c4).
load(c1,l1).     load(c2,l2).      load(c3,l3).    load(c4,l4).
circle(l1).      hexagon(l2).      triangle(l3).   rectangle(l4).
one_load(l1).    one_load(l2).     one_load(l3).   three_loads(l4).

• Hypothesis (predictive ILP):
eastbound(T) :- car(T,C),short(C),not none(C).



ILP representation: 
Datalog ground clauses

• Example: 
eastbound(t1):-

car(t1,c1),rectangle(c1),short(c1),none(c1),two_wheels(c1),
load(c1,l1),circle(l1),one_load(l1),

car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,l2),hexagon(l2),one_load(l2),

car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,l3),triangle(l3),one_load(l3),

car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,l4),rectangle(l4),three_load(l4).

• Background theory: empty 
• Hypothesis: 

eastbound(T):-car(T,C),short(C),not none(C).



ILP representation: Prolog terms

• Example: 
eastbound([c(rectangle,short,none,2,l(circle,1)),

c(rectangle,long,none,3,l(hexagon,1)),
c(rectangle,short,peaked,2,l(triangle,1)),
c(rectangle,long,none,2,l(rectangle,3))]).

• Background theory: member/2, arg/3
• Hypothesis: 

eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).



First-order representations

• Propositional representations: 
– datacase is fixed-size vector of values
– features are those given in the dataset

• First-order representations: 
– datacase is flexible-size, structured object

• sequence, set, graph
• hierarchical: e.g. set of sequences

– features need to be selected from potentially infinite set



Complexity of RDM problems

• Simplest case: single table with primary key
– example corresponds to tuple of constants
– attribute-value or propositional learning

• Next: single table without primary key
– example corresponds to set of tuples of constants
– multiple-instance problem

• Complexity resides in many-to-one foreign keys
– lists, sets, multisets
– non-determinate variables



Part IV: 
Relational Data Mining

• What is RDM?
Propositionalization techniques

• Inductive Logic Programming



Rule learning: 
The standard view

• Hypothesis construction: find a set of n rules
– usually simplified by n separate rule constructions

• exception: HYPER

• Rule construction: find a pair (Head, Body)
– e.g. select head (class) and construct body by 

searching the VersionSpace
• exceptions: CN2, APRIORI

• Body construction: find a set of m literals
– usually simplified by adding one literal at a time

• problem (ILP): literals introducing new variables



Rule learning revisited

• Hypothesis construction: find a set of n rules
• Rule construction: find a pair (Head, Body)
• Body construction: find a set of m features

– Features can be either defined by background knowledge or 
constructed through constructive induction

– In propositional learning features may increase expressiveness 
through negation

– Every ILP system does constructive induction 
• Feature construction: find a set of k literals

– finding interesting features is discovery task rather than classification 
task e.g. interesting subgroups, frequent itemsets

– excellent results achieved also by feature construction through 
predictive propositional learning and ILP (Srinivasan)



First-order feature construction

• All the expressiveness of ILP is in the features
• Given a way to construct (or choose) first-order 

features, body construction in ILP becomes 
propositional
– idea: learn non-determinate clauses with LINUS by 

saturating background knowledge (performing 
systematic feature construction in a given language bias)



Standard LINUS
• Example: learning family relationships

• Transformation to propositional form:

• Result of propositional rule learning:
Class = ⊕ if (female(X) = true) ∧ (parent(Y,X) = true

• Transformation to program clause form:
daughter(X,Y) ← female(X),parent(Y,X)

Training examples
daughter(sue,eve).       (+) parent(eve,sue). female(ann).
daughter(ann,pat).       (+) parent(ann,tom). female(sue).
daughter(tom,ann).      (-) parent(pat,ann). female(eve).
daughter(eve,ann).       (-) parent(tom,sue).

Background knowledge

Variables Propositional features
X Y f(X) f(Y) p(X,X) p(X,Y) p(Y,X) p(Y,Y) X=Y

⊕ sue eve true true false false true false false

⊕ ann pat true false false false true false false
tom ann false true false false true false false
eve ann true true false false false false false

Class



Representation issues (1)
• In the database and Datalog ground fact 

representations individual examples are not 
easily separable 

• Term and Datalog ground clause 
representations enable the separation of 
individuals

• Term representation collects all information 
about an individual in one structured term 



Representation issues (2)
• Term representation provides strong 

language bias
• Term representation can be flattened to be 

described by ground facts, using
– structural predicates (e.g. car(t1,c1), 

load(c1,l1))  to introduce substructures
– utility predicates, to define properties of 

invididuals (e.g. long(t1)) or their parts 
(e.g., long(c1), circle(l1)).

• This observation can be used as a language 
bias to construct new features



Declarative bias for first-order 
feature construction

• In ILP, features involve interactions of local variables
• Features should define properties of individuals (e.g. trains, 

molecules) or their parts (e.g., cars, atoms) 
• Feature construction in LINUS, using the following language 

bias:
– one free global variable (denoting an individual, e.g. train)
– one or more structural predicates: (e.g., has_car(T,C)) ,each 

introducing a new existential local variable (e.g. car, atom), using either 
the global variable (train, molecule) or a local variable introduced by 
other structural predicates (car, load)

– one or more utility predicates defining properties of individuals or their 
parts: no new variables, just using variables

– all variables should be used
– parameter: max. number of predicates forming a feature



Sample first-order features
• The following rule has two features ‘has a short car’ and ‘has a 

closed car’: 
eastbound(T):-hasCar(T,C1),clength(C1,short),

hasCar(T,C2),not croof(C2,none).
• The following rule has one feature ‘has a short closed car’: 

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

• Equivalent representation: 

eastbound(T):-hasShortCar(T),hasClosedCar(T).

hasShortCar(T):-hasCar(T,C),clength(C,short).

hasClosedCar(T):-hasCar(T,C),not croof(C,none).



LINUS revisited
• Standard LINUS: 

– transforming an ILP problem to a propositional problem
– apply background knowledge predicates

• Revisited LINUS: 
– Systematic first-order feature construction in a given 

language bias
• Too many features?

– use a relevancy filter (Gamberger and Lavrac)



LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two 
utility predicates:

eastbound(T):- westbound(T):-
hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarLongJagged(T),  not hasCarShortFlat(T),
not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).

Meaning:
eastbound(T):-
hasCar(T,C1),hasLoad(C1,L1),lshape(L1,tria),lnumber(L1,1),
not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),
not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),lshape(L3,circ)).

westbound(T):-
not (hasCar(T,C1),cshape(C1,ellipse)),
not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),
not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).



Part IV: 
Relational Data Mining

• What is RDM?
• Propositionalization techniques

Inductive Logic Programming
– ILP as search
– ILP techniques and implementations

• Propositionalisation (LINUS, RSD)
• Specialization techniques (MIS, FOIL, …)

– Top-down search of refinement graphs
• Generalization techniques (CIGOL, GOLEM)

– Inverse resolution
– Relative least general generalization

– Combining top-down and bottom-up
– Inverse entailment (PROGOL)



ILP as search of program clauses

• An ILP learner can be described by
– the structure of the space of clauses

• based on the generality relation 
• Let C and D be  two clauses. 

C is more general than D (C |= D) iff
covers(D) ⊆ covers(C) 

• Example: p(X,Y) ← r(Y,X) is more general than 
p(X,Y) ← r(Y,X), q(X) 

– its search strategy
• uninformed search (depth-first, breadth-first, iterative 

deepening)
• heuristic search (best-first, hill-climbing, beam search)

– its heuristics
• for directing search
• for stopping search (quality criterion)



• Semantic generality
Hypothesis H1 is semantically more general than H2 w.r.t. 
background theory B if and only if  B ∪ H1 |= H2

• Syntactic generality or θ-subsumption
(most popular in ILP)
– Clause c1 θ -subsumes c2 (c1 ≥ θ c2) 

if and only if ∃θ : c1θ ⊆ c2
– Hypothesis H1 ≥ θ H2

if and only if ∀c2 ∈ H2 exists c1 ∈ H1 such that c1 ≥ θ c2

• Example
c1 = daughter(X,Y) ← parent(Y,X)
c2 = daughter(mary,ann) ← female(mary),

parent(ann,mary),
parent(ann,tom).

c1 θ -subsumes c2 under θ = {X/mary,Y/ann}

ILP as search of program clauses 



• Two strategies for learning
– Top-down search of refinement graphs
– Bottom-up search

• building least general generalizations
• inverting resolution (CIGOL)
• inverting entailment (PROGOL)

ILP as search of program clauses



More general 
(induction)

More 
specific



Generality ordering of clauses

Training examples Background knowledge
daughter(mary,ann).        ⊕ parent(ann,mary). female(ann.).
daughter(eve,tom).       ⊕ parent(ann,tom). female(mary).
daughter(tom,ann).         parent(tom,eve). female(eve).
daughter(eve,ann).          parent(tom,ian).

daughter(X,Y) ←

daughter(X,Y) ← X=Y daughter(X,Y) ←
parent(Y,X)

daughter(X,Y) ←
parent(X,Z)

daughter(X,Y) ← female(X)

daughter(X,Y) ←
female (X)
female(Y)

daughter(X,Y) ←
female(X)

parent(Y,X)

...
...

... ...

Part of the refinement 
graph for the family 
relations problem.



Greedy search of the best clause

daughter(X,Y) ←

daughter(X,Y) ← X=Y daughter(X,Y) ←
parent(Y,X)

daughter(X,Y) ← female(X)

daughter(X,Y) ←
parent(X,Z)

daughter(X,Y) ←
female (X)
female(Y)

daughter(X,Y) ←
female(X)

parent(Y,X)

...
...

... ...

2/4

0/0
2/3

2/3

1/2 2/2

Training examples Background knowledge
daughter(mary,ann).        ⊕ parent(ann,mary). female(ann.).
daughter(eve,tom).       ⊕ parent(ann,tom). female(mary).
daughter(tom,ann).         parent(tom,eve). female(eve).
daughter(eve,ann).          parent(tom,ian).



FOIL
• Language:   function-free normal programs 

recursion, negation, new variables in the body, no 
functors, no constants (original)

• Algorithm:   covering
• Search heuristics:   weighted info gain
• Search strategy:   hill climbing
• Stopping criterion:   encoding length restriction
• Search space reduction:   types, in/out modes 

determinate literals
• Ground background knowledge, extensional 

coverage
• Implemented in C



Part IV: Summary

• RDM extends DM by allowing multiple tables 
describing structured data

• Complexity of representation and therefore of 
learning is determined by one-to-many links

• Many RDM problems are individual-centred 
and therefore allow strong declarative bias



Part V: 
Conclusions and Literature



Machine Learning and Statistics
• Both areas have a long tradition of developing inductive

techniques for data analysis.
– reasoning from properties of a data sample to properties 

of a population
• KDD = statistics + marketing ? No !
• KDD = statistics + ... + machine learning
• Use statistics for hypothesis testing and data analysis 

where many assumptions hold
– about data independence, data distribution, random 

sampling, etc.
• Use machine learning hypothesis generation, possibly from 

small data samples



DM and Statistics …

• KDD a broader view: provide tools to 
automate the entire process of data analysis, 
including statistician’s art of hypothesis 
selection
[Fayyad et al., Comm ACM]

• Eventually, what is done in DM could be done 
with statistics. Attractive in DM is the relative 
ease with which new insights can be gained 
(though not necessary interpreted)
[P Cabena et al., Discovering data mining: from concept to 
implementation, 1997]



Statistics:
Primary Data Analysis

form a hypothesis

collect data

test hypothesis
on collected data

experimental design

survey design

Three slides on 
statistics-
machine 
learning 
relationship by  
Blaž Zupan



Data Mining:
Secondary Data Analysis

use already
collected data

find unsuspected
relationships
(hypothesis)

verify hypothesis



Data analysis with DM and 
Statistics

use already
collected data

find unsuspected
relationships
(hypothesis)

statistically test hypothesis
on collected data

collect
additional data

experimental design

survey design



Summary: Statistics vs. ML

• Statistics and Machine Learning have long 
histories of developing inductive techniques 
for data analysis

• Statistics is particularly good when certain 
theoretical expectations about the data 
distribution, independence, random sampling, 
etc. are satisfied

• Machine Learning and Data Mining are
particularly good when requiring 
generalizations that consist of easily 
understandable patterns 



Literature:
Rule induction and ILP

• Chapter “Rule Induction” by P. Flach and N. 
Lavrač in the book “Intelligent Data Analysis”, 
edited by Michael Berthold and David Hand , 
Springer 2003 (2nd edition)



ILP: Techniques and 
Applications, Ellis Horwood 1994

• Description of LINUS and standard ILP 
techniques

• book by Lavrac and Dzeroski available at 
http://www-ai.ijs.si/SasoDzeroski/ILPBook/



Relational Data Mining,
Springer 2001

• Recent developments in propositionalization
(revisited LINUS and much more) – a chapter in 
RDM book

• http://www-ai.ijs.si/SasoDzeroski/RDMBook/
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