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Credits and coursework

“New Media and eScience” MSc
Programme
« 12 credits (30 hours)

— lectures

— hands-on (WEKA)

— seminar — data analysis using
you own data (e.g., using
WEKA for survey data analysis)

* contacts:

— Nada Lavra€ nada.lavrac@ijs.si

— Petra Kralj (MPS student)
petra.kralj@gmail.com

— Branko Kavsek:
branko.kavsek@ijs.si

“Statistics” MSc Programme
« 12 credits (36 hours)

 |ndividual workload
— same as for MPS students

e contacts:
— same as for MPS students

Exam

« 29.11.06 Preliminary presentation of
your problem/dataset (max. 6 slides)

« 21.2.07 data analysis results (max.
12 slides, report, presentation and
report following the CRISP-DM
methodology)



Course Outline

l. Introduction
— Data Mining and KDD process

— Examples of discovered
patterns and applications

— Data mining tools and
visualization

(Ch.1,2,11,12,13 of DM&DS
book)

Il. DM Techniques

— Classification of DM tasks and
techniques

— Predictive DM
 Decision Tree induction
(Ch. 3 of Mitchell’s book)

» Learning sets of rules
(Ch. 7 of IDA book, Ch. 10
of Mitchell’s book)

— Descriptive DM
» Subgroup discovery
» Association rule induction
« Hierarchical clustering
lll. Evaluation
— Evaluation methodology
— Evaluation measures
IV. Relational Data Mining
— What is RDM?
— Propositionalization

— Inductive Logic
Programming
(Ch. 3,4,11 of RDM book)

V. Conclusions and literature



Part . Introduction

jl>Data Mining and the KDD process

« Examples of discovered patterns and
applications

« Data mining tools and visualization



What is DM

« Extraction of useful information from data:
discovering relationships that have not
previously been known

* The viewpoint in this course: Data Mining is

the application of Machine Learning
techniques to “hard” real-life problems



Related areas

Database technology
and data warehouses
« efficient storage,

databases

accgss an_d text and Web machine
manipulation mining learning
of data

computing pattern
recognition




Related areas

Statistics,

machine learning,
pattern recognition
and soft computing”®

 classification
techniques and
techniques for
knowledge extraction
from data

databases

text and Web
mining

machine
learning

computing

pattern
recognition

* neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning



Text and Web mining

Related areas

Web page analysis
text categorization

acquisition, filtering
and structuring of
textual information

natural language
processing

databases

text and Web
mining

machine
learning

f visualization
pattern

recognition

computing



Related areas

Visualization

* visualization of data
and discovered
knowledge

databases

text and Web
mining

machine
learning

computing

pattern
recognition



Point of view in this tutorial

Knowledge
discovery using databases |
machine PN
I . text and Web machine
eammg mining learning

methods
of

computing pattern
recognition

Relation with
statistics



Machine Learning and Statistics

Both areas have a long tradition of developing inductive
techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

« KDD = statistics + marketing ? No !
« KDD = statistics + ... + machine learning

« Statistics is particularly appropriate for hypothesis testing
and data analysis when certain theoretical expectations
about the data distribution, independence, random
sampling, sample size, etc. are satisfied

ML is particularly appropriate when requiring
generalizations that consist of easily understandable
patterns, induced both from small and large data samples




Data Mining and KDD

Data Mining (DM) is a way of doing data analysis, aimed
at finding patterns, revealing hidden regularities and
relationships in the data.

Knowledge Discovery in Databases (KDD) provides a
broader view: providing tools to automate the entire
process of data analysis, including statistician’s art of
hypothesis selection

DM is the key element in this much more elaborate KDD
process

KDD is defined as “the process of identifying valid, novel,
potentially useful and ultimately understandable patterns
in data.” *

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting Useful

Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11



KDD Process

KDD Process: overall process of discovering useful knowledge from data

e Pre- Trans- Data Interpretation/
) Selectlcn _- prccessmg . fcrmatmn Evaluatm_nr *{RY;’
Target Preprocessed Transfnrmed Patterns Knowledge
Data Data Data
4 >

« KDD process involves several phases:
» data preparation

* data analysis (data mining, machine learning,
statistics)

 evaluation and use of discovered patterns

« Data analysis/data mining is the key phase,
only 15%-25% of the entire KDD process




Part . Introduction

« Data Mining and the KDD process

j|> Examples of discovered patterns and
applications

« Data mining tools and visualization




The SolEuNet Project

European 5FP project "Data Mining and Decision
Support for Business Competitiveness: A European
Virtual Enterprise”, 2000-2003

Scientific coordinator |JS, administrative FhG

3 MEuro, 12 partners (8 academic and 4 business)
from 7 countries

main project objectives:
— development of prototype solutions for end-users

— foundation of a virtual enterprise for marketing DM and
DS expertise, involving business and academia



Developed Data Mining
application prototypes

Mediana — analysis of media research data
Kline & Kline — improved brand name recognition

Australian financial house — customer quality evaluation,
stock market prediction

Czech health farm — predict the use of resources
UK County Council - analysis of traffic accident data

INE Port. statistical bureau — Web page access analysis
for better INE Web page organization

Coronary heart disease risk group detection
Online Dating — understanding email dating promiscuity
EC Harris - analysis of building construction projects

European Commission - analysis of 5th Fr. IST projects:
better understanding of large amounts of text documents,
and “clique” identification



MEDIANA - KDD process
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* Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, since
1992, about 1200 questions. Yearly publication: frequency
of reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

« Data for 1998, about 8000 questionnaires, covering
lifestyle, spare time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
Interest for specific topics in media, social status

e good quality, “clean” data

 table of n-tuples (rows: individuals, columns: attributes, in
classification tasks selected class)



MEDIANA - Pilot study
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« Patterns uncovering regularities concerning:

— Which other journals/magazines are read by readers of
a particular journal/magazine ?

— What are the properties of individuals that are
consumers of a particular media offer ?

— Which properties are distinctive for readers of different
journals ?

* Induced models: description (association rules, clusters)
and classification (decision trees, classification rules)




Decision trees

Finding reader profiles: decision tree for classifying people
iInto readers and non-readers of a teenage magazine.

29 Age 25

Doesn’t read Visiting Disco Clubs

7S

Interest in music, astrology, Interest in astrology

travel and scandals
yes
n/ yes

Gender Reads

Doesn’t read Reads
mey \emale

Doesn’t read

/\

Reads Doesn’t read



Classification rules

Set of Rules: if Cond then Class

Interpretation: if-then ruleset, or
if-then-else decision list

Class: Reading of daily newspaper EN (Evening News)

if a person does not read MM (Maribor Magazine) and rarely
reads the weekly magazine “7Days”

then the person does not read EN (Evening News)

else if a person rarely reads MM and does not read the
weekly magazine SN (Sunday News)

then the person reads EN

else if a person rarely reads MM
then the person does not read EN
else the person reads EN.



Association rules

Rules X =>Y, X, Y conjunction of bin. attributes
o Support: Sup(X,Y) = #XY/H#D = p(XY)
 Confidence: Conf(X,Y) = #XY#X = p(XY)Ip(X) = p(Y|X)

Task: Find all association rules that satisfy minimum
support and minimum confidence constraints.

Example association rule about readers of yellow
press daily newspaper SloN (Slovenian News):

read Love Stories Magazine => read_SIoN

sup = 3.5% (3.5% of the whole dataset population
reads both LSM and SloN)

conf = 61% (61% of those reading LSM also read SloN)



Association rules

Finding profiles of readers of the Delo daily
newspaper
1. read_Marketing magazine 116 =>
read_Delo 95 (0.82)
2. read_Financial News 223 =>read Delo 180 (0.81)
3. read_Views 201 => read_Delo 157 (0.78)
4. read Money 197 =>read Delo 150 (0.76)

5.read Vip 181 =>read_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine,
Financial News, Views, Money and Vip read also
Delo.



Analysis of UK traffic accidents

« End-user: Hampshire County Council (HCC, UK)

— Can records of road traffic accidents be analysed to
produce road safety information valuable to county
surveyors?

— HCC is sponsored to carry out a research project Road
Surface Characteristics and Safety

— Research includes an analysis of the STATS19
Accident Report Form Database to identify trends over
time in the relationships between recorded road-user
type/injury, vehicle position/damage, and road surface
characteristics



STATS19 Data Base

Over 5 million accidents recorded in 1979-1999

3 data tables

Accident

Where ? When ?
How many ?

ak

Vehicle

Which vehicles ? What
movement ? Which
consequences ?

Casualty

Who was injured ?

What injuries ? ...

10



Data understanding
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Data quality: Accident location

‘Yaar: 15 ‘Yaar 1988 Yaar 1987

Yaar 1R P




Data preparation

* There are 51 police force areas in UK

 For each area we count the number of
accidents in each:
— Year
— Month
— Day of Week
— Hour of Day



Data preparation

YEAR

pfc 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
a 10023 9431 9314 8965 8655 9014 9481 9069 8705 8829 9399 9229 8738 8199 7453 7613 7602 7042 7381 7362 6905
b 6827 6895 6952 7032 6778 6944 6387 6440 6141 5924 6331 6233 5950 6185 5910 6161 5814 6263 5881 5855 5780
c 2409 2315 2258 2286 2022 2169 2212 2096 1989 1917 2137 2072 2032 1961 1653 1526 1552 1448 1521 1408 1234

MONTH

a 72493 67250 77434 73841 78813 78597 80349 74226 79362 85675 84800 76282
b 2941 2771 3145 3317 3557 3668 3988 4048 3822 3794 3603 3481
c 9261 8574 9651 9887 10649 10590 10813 11299 10810 11614 10884 10306

DAY OF WEEK
12 Sunday Monday Tuesday Wednesday Thursday Friday Saturday
a 96666 132845 137102 138197 142662 155752 125898

b 5526 5741 5502 5679 6103 7074 6510

c 15350 17131 16915 17116 18282 21000 18544

HOUR

a 794 626 494 242 166 292 501 1451 2284 ... 3851 3538 2557 2375 1786 1394 1302 1415

b 2186 1567 1477 649 370 521 1004 4099 7655 ... 11500 11140 7720 7129 5445 4396 3946 4777
c 2468 1540 1714 811 401 399 888 3577 8304 ... 12112 12259 8701 7825 6216 4809 4027 4821




Simple visualization of short
time series

» Used for data understanding

* Very informative and easy to understand
format

« UK traffic accident analysis: Distributions of
number of accidents over different time
periods (year, month, day of week, and hour)



Year/Month distribution
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Day of Week/Month

distribution
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Hour/Month distribution
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More Accidents at “Rush Hour”, Afternoon Rush hour is the
worst
More holiday traffic (less rush hour) in August



Day of Week/Hour distribution
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1. More Accidents at “Rush Hour”, Afternoon Rush hour is the
worst and lasts longer with “early finish” on Fridays
2. More leisure traffic on Saturday/Sunday



Traffic: different modeling
approaches

association rule learning
static subgroup discovery
dynamic subgroup discovery
clustering of short time series
text mining

multi-relational approaches



Some discovered
association rules

» Association rules: Road number and Severity of
accident

— The probability of a fatal or serious accident on
the “"K8” road is 2.2 times greater than the
probability of fatal or serious accidents in the
county generally.

— The probability of fatal accidents on the “K7”
road is 2.8 times greater than the probability of
fatal accidents in the county generally (when
the road is dry and the speed limit = 70).



Analysis of documents of
European IST project

Data source:

« List of IST project descriptions as 1-2 page text
summaries from the Web (database www.cordis.lu/)

« |IST 5FP has 2786 projects in which participate 7886
organizations

Analysis tasks:

» Visualization of project topics

« Analysis of collaboration

« Connectedness between organizations

« Community/clique identification

* Thematic consortia identification

e Simulation of 6FP IST



http://www.cordis.lu/

Analysis of documents of
European IST project
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Part . Introduction

« Data Mining and the KDD process

« Examples of discovered patterns and
applications

j|> Data mining tools and visualization




DM tools

#: KDMuggets Directory: Data Mining and KEnowledge Dizcovery - Netzcape
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Visualization

* can be used on its own (usually for
description and summarization tasks)

e can be used in combination with other DM
techniques, for example
— visualization of decision trees
— cluster visualization
— visualization of association rules
— subgroup visualization



Data visualization:
Scatter plot
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DB Miner: Association rule
visualization
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MineSet: Decision tree
visualization
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Part I: Summary

KDD is the overall process of discovering useful
knowledge in data

— many steps including data preparation, cleaning,
transformation, pre-processing

Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process

— employing techniques from machine learning and statistics

Predictive and descriptive induction have different
goals: classifier vs. pattern discovery

Many application areas
Many powerful tools available



Part ll: Standard
Data Mining Techniques

j1> Classification of Data Mining techniques
* Predictive DM

— Decision Tree induction
— Learning sets of rules

» Descriptive DM
— Subgroup discovery

— Association rule induction
— Hierarchical clustering



Types of DM tasks

Predictive DM:
— Classification (learning of rules, decision H

trees, ...)
— Prediction and estimation (regression) v

— Predictive relational DM (ILP)
Descriptive DM:
— description and summarization

— dependency analysis (association rule
learning)

— discovery of properties and constraints @ e H
— segmentation (clustering)

— subgroup discovery

Text, Web and image analysis




Predictive vs. descriptive
induction

Predictive induction m
\. -
Descriptive induction



Predictive vs. descriptive
induction

* Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

* Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis



Predictive vs. descriptive
induction: A rule learning
perspective

* Predictive induction: Induces rulesets acting as
classifiers for solving classification and prediction

tasks

* Descriptive induction: Discovers individual rules
describing interesting regularities in the data

* Therefore: Different goals, different heuristics,
different evaluation criteria



Supervised vs. unsupervised
learning: A rule learning
perspective

* Supervised learning: Rules are induced from
labeled instances (training examples with class
assignment) - usually used in predictive induction

« Unsupervised learning: Rules are induced from
unabeled instances (training examples with no
class assignment) - usually used in descriptive
induction

 Exception: Subgroup discovery

Discovers individual rules describing interesting
regularities in the data from labeled examples



Part ll: Standard
Data Mining Techniques

« Classification of Data Mining techniques

> Predictive DM

— Decision Tree induction
— Learning sets of rules

» Descriptive DM
— Subgroup discovery

— Association rule induction
— Hierarchical clustering




Predictive DM - Classification

« data are objects, characterized with attributes -
they belong to different classes (discrete labels)

* given objects described with attribute values,
iInduce a model to predict different classes

* decision trees, if-then rules, discriminant
analysis, ...



lllustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 pre-presbyc hypermetrope yes reduced NONE
O16  pre-presbyc hypermetrope yes normal NONE
O17  presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

019-023

024  presbyopic hypermetrope yes normal NONE



Decision tree for
contact lenses recommendation

reduced / Nﬁ)rmal

NONE
no / yes
myope / \hypermetrope

HARD NONE




lllustrative example:
Customer data

Customer Gender Age Income Spent BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
cl14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Induced decision trees

< 102000/ ! > 102000
<58 / > 58

no yes
= femaleR = male
no

349/ ! > 49

no yes




Predictive DM - Estimation

often referred to as regression

data are objects, characterized with attributes (discrete
or continuous), classes of objects are continuous
(numeric)

given objects described with attribute values, induce a
model to predict the numeric class value

regression trees, linear and logistic regression, ANN,
KNN, ...



lllustrative example:
Customer data

Customer Gender Age Income Spent
c1 male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
cl14 female 61 95000 18100
c15 male 56 44000 12000
c16 male 36 102000 13800
c17 female 57 215000 29300
c18 male 33 67000 9700
c19 female 26 95000 11000

c20 female 55 214000 28800



Customer data:
regression tree

< 108000 / . ! > 108000
12000
< / > 425

16500 26700




Predicting algal biomass:
regression tree

Jan.-June

/ w - Dec.
C_ s 3

<9.34

4

4.32+2.07 2.34+1.65

59

/

<)J. >59
_|_
2.97+1.09 2.08 +0.71 < : g 1.28+1.08

<2.13
{// >213

1.15+0.21 0.7040.34




Part ll: Standard
Data Mining Techniques

« Classification of Data Mining techniques
* Predictive DM

> — Decision Tree induction

— Learning sets of rules

» Descriptive DM
— Subgroup discovery
— Association rule induction
— Hierarchical clustering




Decision tree learning

Top-Down Induction of Decision Trees
(TDIDT, Chapter 3 of Mitchell’s book)

decision tree representation

the ID3 learning algorithm (Quinlan 1986)
heuristics: information gain (entropy
minimization)

overfitting, decision tree pruning

brief on evaluating the quality of learned trees
(more in Chapter 5)



PlayTennis: Training examples

Day Outlook  Temperature Humidity @ Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Owercast Mild High Weak Yes
D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No




Decision tree representation
for PlayTennis

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lormal smn_q/\vveak
No Yes No Yes

- each internal node 1s a test of an attribute
- each branch corresponds to an attribute value
- each path is a conjunction of attribute values

- each leaf node assigns a classification



Decision tree representation
for PlayTennis

Outlook
Sunny J Overcast Rain
Humidity Yes Wind
High /\\lormal Strong Weak
No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances
( Outlook=Sunny A Humidity=Normal )
'/ ( Outlook=Overcast )
'/ ( Outlook=Rain A Wind=Weak )



PlayTennis:
Other representations

* Logical expression for PlayTennis=Yes:

— (Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast) v
(Outlook=Rain A Wind=Weak)

 If-then rules
— IF Outlook=Sunny A Humidity=Normal THEN PlayTennis=Yes
— IF Outlook=Overcast THEN PlayTennis=Yes
— IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes
— IF Outlook=Sunny A Humidity=High THEN PlayTennis=No
— IF Outlook=Rain A Wind=Strong THEN PlayTennis=No



PlayTennis: Using a decision tree for
classification

Outlook
Sunn/ J Overcast Rain
Humidity Yes Wind
High /\\lormal smn_q/\vveak
No Yes No Yes

Is Saturday morning OK for playing tennis?
Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayTennis = No, because Outlook=Sunny A Humidity=High



Appropriate problems for
decision tree learning

 Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

» Characteristics:
— Instances described by attribute-value pairs

(discrete or real-valued attributes)

— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)

— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values



Learning of decision trees

* ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
WEKA, ...

— create the root node of the tree
— if all examples from S belong to the same class C,

— then label the root with Cj
— else

* select the ‘most informative’ attribute A with values
vi,v2, ... vn

« divide training set S into S1,... , Sn according to
values v1,...,vn @
* recursively build sub-trees v/ N\

T1,...,Tn for $1,...,Sn

e construct decision tree T: @ @



Search heuristics in ID3

 Central choice in ID3:; Which attribute to test at
each node in the tree ? The attribute that is most
useful for classifying examples.

* Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

* First define a measure commonly used in
iInformation theory, called entropy, to characterize
the (im)purity of an arbitrary collection of examples.



Entropy

* S - training set, C,,...,Cy - classes

* Entropy E(S) — measure of the impurity of
training set S

N
E (S ): — Z P. ,10g > P. p. - prior probability of class C,
ool (relative frequency of C_ in S)

« Entropy in binary classification problems

E(S) = - p, log,p, - p.log,p.



Entropy

E(S) = - p.log,p. - p_log,p.
The entropy function relative to a Boolean

classification, as the proportion p, of positive
examples varies between 0 and 1

0o N

// \\
5|/ \

2 05 // \\
5oil / \
. \
; \ \ \ A\

0 0,2 0,4 0,6 0,8 1 p*




Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

Why ?
Information theory: optimal length code assigns
- log,p bits to a message having probability p

S0, In binary classification problems, the expected
number of bits to encode + or — of a random
member of S is:

P, (-log,p, )+ p.(-log,p.) =-p,log,p, - p.log,p.



PlayTennis: Entropy

Training set S: 14 examples (9 pos., 5 neq.)
Notation: S = [9+, 5-]

E(S) = - p. logyp. - p.log,p.
Computing entropy, if probability is estimated by
relative frequency

S| . |S |j [|S| 'S |
E(S):—(+-log+ —| ——-log——
S| S| ) US| S|

E([9+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
= 0.940



PlayTennis: Entropy

* E(S) =-p.log,p.-p.log,p.
« E(9+,5-) = -(9/14) log,(9/14) - (5/14) log,(5/14) = 0.940

sunn {D1,D2,D8,D9,D11} [2+, 3-] E=0.970
L% (0307012013}  [4+,0-] E=0
(D4,D5,06,010,D14}  [3+, 2-] E=0.970

Hi [3+’ 4—] E=0.985
Humidity? Nermal—. [6+,1-] E=0.592
Weg [6+,2-] E=0.811

Wind? StreRg— 134+ 3-] E=1.00



Information gain
search heuristic

* Information gain measure is aimed to minimize the
number of tests needed for the classification of a new
object

« Gain(S,A) — expected reduction in entropy of S due to
sorting on A

Gain(S,A)=E(S)- ). |SV|-E(SV)

veValues(A) | S ‘

* Most informative attribute: max Gain(S,A)



Information gain
search heuristic

 Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94

/N /N

[6+, 2—] [3+, 3-] [9+, 0] [0+, 5-]
E=0.811 E=1.00 E=0.0 E=0.0

« Gain(S,A1)=0.94 — (8/14 x 0.811 + 6/14 x 1.00) = 0.048
 Gain(S,A2)=094-0=0.94 A2 has max Gain



PlayTennis: Information gain

Gain(S,A)=E(S)- Sy

veValues(A) | S |

EGS))

« Values(Wind) = {Weak, Strong}
Wea [6+,2-] E=0.811

Wind? Strerg— 13+ 3-] E=1.00
— S =[9+,5-], E(S)=0.940
— Syeak = [6+,2-], E(Seac) = 0.811
— Sgtrong = [31,3-], E(Sgyrong ) = 1.0
— Gain(S,Wind) = E(S) - (8/14)E(S,,cax) - (6/14)E(S
(8/14)x0.811 - (6/14)x1.0=0.048

0.940 -

strong) =



Play tennis: Information gain

 Which attribute is the best?
— Gain(S,0Outlook)=0.246 MAX |
— Gain(S,Humidity)=0.151
— Gain(S,Wind)=0.048

— Gain(S, Temperature)=0.029



Play tennis: Information gain

Rain . {D4,D5,D6,D10,D14} [3+,2-] E>0???

Overcast

Outlook?
{D3,0D7,D12,D13} [4+,0-] E=0 OK - assign class Yes

{D1,D2,D8,D9,D11} [2+ 3-] E>Q ?2?? <>

 Which attribute should be tested here?

— Gain(S

Sunny

Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !

sunny?

— Gain(S Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

sunny?

— Gain(S.,..,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

sunny?



Probability estimates

» Relative frequency of positive n"(c)
examples in set ¢ : p(+|c) = n(c)
 Laplace estimate *: n*(c)+1 n*(c)+1
p(+[€)= p(+[€)=
n(c)+2 n(c)+Kk
* m-estimate **: n“(c)+m-p,(+
(| = PO R

* k 1s number of classes, for k=2: uniform distribution assumption of 2 classes
** m 1s weight given to prior (i.e. number of ‘virtual’ examples)



Probability estimates:
Intuitions

An experiment with N trials, n successes
Estimating the probability of success of next trial
Relative frequency: n/N

— reliable when the number of trials is large

— unreliable with small samples, e.g., 1/1 =1

Laplace: (n+1)/(N+2), or (n+1)/(N+k), k classes
— assumes a uniform distribution of classes
m-estimate: (n + m.pa)/(N+m)

— prior probability of success pa, user-defined
parameter m (weight given to prior, i.e. number of
‘virtual’ examples)



Heuristic search in ID3

Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

Stopping criteria: A node becomes a leaf

— If all examples belong to same class C;, label the
leaf with C;

— If all attributes were used, label the leaf with the
most common value C, of examples in the node

Extension to ID3: handling noise - tree pruning



Pruning of decision trees

* Avoid overfitting the data by tree pruning

* Pruned trees are

— less accurate on training data
— more accurate when classifying unseen data

/%}?k@ 4




Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
 erroneous attribute values
* erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples



Handling noise — Tree pruning

« Handling imperfect data
— handling imperfections of type 1-3
* pre-pruning (stopping criteria)
 post-pruning / rule truncation
— handling missing values

* Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3



Prediction of breast cancer
recurrence: Tree pruning

Degree_of_malig

<3 > 3
Tumor_size Involved_nodes
<15 > 15 <3 >3
Age no_recur 125 ho_recur 30 no_recur 27
recurrence 39 recurrence 18 recurrence 10
no_recur 4

recurrence 1~ no_recur 4

ho_rec 4 recl



Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— On unseen instances

How accurate is a decision tree when classifying unseen
Instances

— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
 split the example set into training set (e.g. 70%) and test set (e.g. 30%)

 induce a decision tree from training set, compute its accuracy on test
set

Error = 1 - Accuracy
High error may indicate data overfitting



Overfitting and accuracy

 Typical relation between tree size and accuracy

0.9

0.85 -

0.8

0.75

—— On training data

0.7
/ \\J ——On test data

0.65
0.6

0.55

0.5 T T T T T 1
0 20 40 60 80 100 120

« Question: how to prune optimally?



Overfitting

* Consider error of hypothesis h over:
— training data T: ErrorT(h)
— entire distribution D of data: ErrorD(h)

* Hypothesis h € H overfits training data T if there
IS an alternative hypothesis h’ € H such that
— ErrorT(h) < ErrorT(h’), and
— ErrorD(h) > ErrorD(h’)

* Prune decision trees to avoid overfitting T



Avoiding overfitting

 How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning
\ Post-pruning

forward pruning considered inferior (myopic)
post pruning makes use of sub trees



How to select the “best” tree

« Measure performance over training data (e.g.,
pessimistic post-pruning, Quinlan 1993)

 Measure performance over separate validation data
set (e.g., reduced error pruning, Quinlan 1987)

— until further pruning is harmful DO:

» for each node evaluate the impact of replacing a subtree by a
leaf, assigning the majority class of examples in the leaf, if the
pruned tree performs no worse than the original over the
validation set

» greedily select the node whose removal most improves tree
accuracy over the validation set

« MDL: minimize
size(tree)+size(misclassifications(tree))



PlayTennis:
Converting a tree to rules

Outlook
SUHV %vean
Humidity Yes Wind
High Aormal S’rroV\Waak
No Yes No Yes

IF Outlook=Sunny A Humidity=Normal THEN PlayTennis=Yes
IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes

IF Outlook=Sunny A Humidity=High THEN PlayTennis=No

IF Outlook=Rain A Wind=Strong THEN PlayTennis=No



Rule post-pruning
(Quinlan 1993)

* Very frequently used method, e.g., in C4.5

* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use



Selected decision/regression
tree learners

 Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (See5, Quinlan)
— J48 (available in WEKA)

* Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)



Features of C4.5

* Implemented as part of the WEKA data mining
workbench

« Handling noisy data: post-pruning
* Handling incompletely specified training
Instances: ‘'unknown’ values (?)

— in learning assign conditional probability of value v:
p(v|C) = p(vC) / p(C)

— in classification: follow all branches, weighted by
prior prob. of missing attribute values



Other features of C4.5

 Binarization of attribute values

— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)

— for discrete values try grouping the values until two
groups remain *
« ‘Majority’ classification in NULL leaf (with no
corresponding training example)

— if an example ‘falls’ into a NULL leaf during
classification, the class assigned to this example
IS the majority class of the parent of the NULL leaf

x the basic €C4.5 doesn't support binarisation of discrete attributes, it supports grouping



Part ll: Standard
Data Mining Techniques

« Classification of Data Mining techniques
* Predictive DM

— Decision Tree induction

:> — Learning sets of rules

» Descriptive DM
— Subgroup discovery
— Association rule induction
— Hierarchical clustering




Rule learning

* Rule set representation
* Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
* Learning an unordered set of rules
 Learning an ordered list of rules
* Heuristics, overfitting, pruning



Predictive DM - Classification

« data are objects, characterized with attributes -
objects belong to different classes (discrete
labels)

* given the objects described by attribute values,
iInduce a model to predict different classes

» decision trees, if-then rules, ...



Decision tree vs. rule learning:
Splitting vs. covering

« Splitting (ID3) + +

« Covering (AQ, CN2)




Rule set representation

* Rule base is a disjunctive set of conjunctive rules

« Standard form of rules:
IF Condition THEN Class

Class IF Conditions
Class « Conditions

IF Outlook=Sunny A Humidity=Normal THEN
PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes

 Form of CN2 rules:
IF Conditions THEN BestClass [ClassDistr]

 Rule base: {R1, R2, R3, ..., DefaultRule}



lllustrative example:
Customer data

Customer Gender Age Income Spent BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
cl14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Consumer data:
classification rules

Unordered rules (independent, may overlap):

Income > 108000 => BigSpender = yes

Age > 49 & Income > 57000 => BigSpender = yes
Age < 56 & Income < 98500 => BigSpender = no
Income < 51000 => BigSpender = no

33 < Age <42 => BigSpender = no

DEFAULT BigSpender = yes




lllustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
02 young myope no normal SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young hypermetrope no reduced NONE

06-013
O14  ore-presbyc hypermetrope no normal SOFT
O15 ore-presbyc hypermetrope yes reduced NONE
O16  ore-presbyc hypermetrope yes normal NONE
O17  presbyopic myope no reduced NONE
O18  presbyopic myope no normal NONE

019-023

024  presbyopic hypermetrope yes normal NONE



Contact lense:
classification rules

 tear production=reduced => lenses=NONE
[S=0,H=0,N=12]

* tear production=normal & astigmatism=no =>
lenses=SOFT [S=5,H=0,N=1]

 tear production=normal & astigmatism=yes & spect.
pre.=myope => lenses=HARD [S=0,H=3,N=2]

 tear production=normal & astigmatism=yes & spect.
pre.=hypermetrope => lenses=NONE

[S=0,H=1,N=2]



Unordered rulesets

 rule Class IF Conditions is learned by first
determining Class and then Conditions

— NB: ordered sequence of classes C1, ..., Cnin
RuleSet

— But: unordered (independent) execution of rules
when classifying a new instance: all rules are tried
and predictions of those covering the example are

collected; voting is used to obtain the final
classification

* if no rule fires, then DefaultClass (majority
class in E)



Contact lense:
decision list

Ordered (order dependent) rules :

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope®/
lenses=NONE



Ordered set of rules:
iIf-then-else decision lists

rule Class IF Conditions is learned by first determining
Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new instance:
rules are sequentially tried and the first rule that “fires’
(covers the example) is used for classification

Decision list {R1, R2, R3, ..., D}: rules Ri are interpreted
as if-then-else rules

If no rule fires, then DefaultClass (majority class in Ecur)



Original covering algorithm
(AQ, Michalski 1969,86)

Basic covering algorithm
for each class Ci do - .

— Ei:=Pi U Ni (Pi pos., Ni neg.)
— RuleBase(Ci) := empty 2t

— repeat {learn-set-of-rules}

 learn-one-rule R covering some positive examples
and no negatives

« add R to RuleBase(Ci)
« delete from Pi all pos. ex. covered by R
— until Pi = empty



Learning unordered set of rules

* RuleBase := empty
» for each class C, do
— E, ;= P, U N, RuleSet(C;) := empty
— repeat {learn-set-of-rules}
« R:= Class = C; IF Conditions, Conditions :=true

« repeat {learn-one-rule}
R':= Class = C; IF Conditions AND Cond

(general-to-specific beam search of Best R’)

 until stopping criterion is satisfied
(no negatives covered or Performance(R’) < ThresholdR)

» add R’ to RuleSet(C))
+ delete from P, all positive examples covered by R’
— until stopping criterion is satisfied (all positives covered
or Performance(RuleSet(C;)) < ThresholdRS)

» RuleBase := RuleBase U RuleSet(C))



Learn-one-rule:
Greedy vs. beam search

 |learn-one-rule by greedy general-to-specific
search, at each step selecting the best’
descendant, no backtracking

* beam search: maintain a list of k best
candidates at each step; descendants
(specializations) of each of these k
candidates are generated, and the resulting
set is again reduced to k best candidates



Learn-one-rule as heuristic search

Lenses = hard IF true [S=5, H=4, N=15]

Lenses = hard
IF Astigmatism = no

Lenses = hard
IF Tearprod. = reduced

[5=0, HE0, NS e = hard Lenses = hard [S=0, H=0, N=12]
IF Astigmatism = yes |F Tearprod. = normal
[S=0, H=4, N=8] S=5, H=4, N=3]

Lenses = hard
IF Tearprod. = normal

AND Spect.Pre. = myope Lenses = hard

[S=2, H=3, N=1] _ _ IF Tearprod. = normal
Lenses = Tard Lenses = Eard AND Astigmatism = yes
IF Tearprod. = normal IF Tearprod. = normal (S=0, H=4, N=2]

AND Spect.Pre. = hyperm. AND Astigmatism = no
[S=3, H=1, N=2] [S=5, H=0, N=1]



Learn-one-rule:
PlayTennis training examples

Day Outlook  Temperature Humidity @ Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Owercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Owercast Mild High Weak Yes
D13 Owercast Hot Normal Weak Yes

D14 Rain Mild High Strong No




Learn-one-rule as search:
PlayTennis example

Play tennis = yes IF

Play ftennis = yes

: Play tennis = yes
IF Wind=weak

IF Humidity=high

Play tennis = yes Play tennis = yes
IF Wind=strong IF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play fennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal, = IF Humidity=normal,
Wind=strong Outlook=sunny



Learn-one-rule as heuristic search:
PlayTennis example

Play tennis = yes IF [9+,5—] (14)

Play tennis = yes
IF Wind=weak
[6+92_] (8)

Play tennis = yes
IF Humidity=high

Play tennis = yes Play tennis = yes [3+,4-1(7)
IF Wind=strong IF Humidity=normal

[3+,3-] (6) [6+,1-] (7)

Play tennis = yes
IF Humidity=normal,

Wind=weak Play tennis = yes
_ _ IF Humidity=normal,
Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal, = IF Humidity=normal,

Wind=strong Outlook=sunny
[2+9O_] (2)



Heuristics for learn-one-rule:

PlayTennis example

PlayTennis = yes [9+,5-] (14)

PlayTennis = yes <« Wind=weak [6+,2-] (8)
<« Wind=strong [3+,3-] (6)
< Humidity=normal [6+,1-] (7)
“— ...

PlayTennis = yes <« Humidity=normal
Outlook=sunny [2+,0-] (2)
“— ...
Estimating accuracy with probability:
A(Ci « Conditions) = p(Ci | Conditions)

Estimating probability with relative frequency:
covered pos. ex. / all covered ex.
[6+,1-] (7) =6/7, [2+,0-] (2)=2/2 =1



Probability estimates

Relative frequency of
covered positive examples:
— problems with small samples

Laplace estimate :

assumes uniform prior
distribution of k classes

m=-estimate :

special case: p(+)=1/k, m=Kk
takes into account prior
probabilities pa(C) instead of
uniform distribution

independent of the number of
classes k

m is domain dependent (more
noise, larger m)

pP(Cl|Cond) =
~ n(Cl.Cond)
~ n(Cond)

~ n(Cl.Cond) +1
n(Cond) +k K

2

~ n(Cl.Cond)+m.p,(Cl)
n(Cond)+m




Rule learning: summary

 Hypothesis construction: find a set of n rules
— usually simplified by n separate rule constructions

* Rule construction: find a pair (Class, Body)
— e.g. select rule head (class) and construct rule body

 Body construction: find a set of m features

— usually simplified by adding to rule body one feature
at a time



Learn-one-rule:
search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl <~ Cond from RuleBase.

Expected classification accuracy: A(R) = p(Cl|Cond)

Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(Cl|Cond)

Accuracy gain (increase in expected accuracy):
AG(R',R) = p(Cl|Cond’) - p(CI|Cond)

Information gain (decrease in the information needed):
IG(R’,R) = log,p(CI|Cond’) - log,p(Cl|Cond)

Weighted measures favoring more general rules: WAG, WIG
WAG(R',R) =

p(Cond’)/p(Cond) . (p(CI|Cond’) - p(Cl|Cond))
Weighted relative accuracy trades off coverage and relative

accuracy VWWRAcc(R) = p(Cond).(p(CIl|Cond) - pa(Cl))



Ordered set of rules:
iIf-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
iInstance: rules are sequentially tried and the first

rule that fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in
E

Cu r)



Sequential covering algorithm
(similar as in Mitchell’s book)

RuleBase = empty
ECUI’:= E
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E_, = E., - {examples covered and correctly

classified by R} (DELETE ONLY POS. EX.!)
— until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
return RuleBase



Learn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase = empty
ECUI’:= E
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E_, = E, - {all examples covered by R}
(NOT ONLY POS. EX.!)

until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)

RuleBase := RuleBase U DefaultRule(E

CUF)



Learn-one-rule:
Beam search in CN2

 Beam search in CN2 learn-one-rule algo.:

— construct BeamSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R := Head « BestBody by

adding majority class of examples covered by
BestBody in rule Head

 performance (R, E_,) : - Entropy(E_,)
— performance(R, E_ ) < ThresholdR (neg. num.)
— Why? Ent. > tis bad, Perf. = -Ent < -t is bad



Variations

Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

Learning rules vs. learning decision trees and
converting them to rules

Pre-pruning vs. post-pruning of rules
What statistical evaluation functions to use
Probabilistic classification



Probabilistic classification

Unlike the ordered case of standard CN2 where rules are
interpreted in an 1F-THEN-ELSE fashion, in the unordered

case and in CN2-SD all rules are tried and all rules which fire
are collected

If a clash occurs, a probabilistic method is used to resolve the
clash

A simplified example:

class=bird <« legs=2 & feathers=yes [13,0]

class=elephant < size=large & flies=no [2,10]

class=bird < beak=yes [20,0] - /v -
[35,10] , 4

Two-legged, feathered, large, non-flying
animal with a beak? bird !



Performance metrics

« Confusion matrix, contingency table
* Heuristics for guiding the search
* Rule evaluation measures



Confusion matrix and
Contingency table

Predicted positive | Predicted negative
Positive examples | True pos. TP False neg. FN Pos
Negative examples | False pos. FP True neg. TN Neg
PredPos PredNeg N
Body is Body is

true (Cd) false (—Cd)

Head is n(Cl.Cd) n(Cl.-Cd) n(Cl) TP =n(CI.Cd )

true (Cl) true positives faise

negatives o p(CICd) —
n(Cl.Cd) /N

Head is false | p(CI.Cd) | n(—Cl-Cd) n(—Cl)

(—Cl) false positives | true negatives

n(Cd) | n(=Cd) N




Confusion matrix and
rule (in)accuracy

« Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?

— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40
out of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on a test set which has more negatives than positives, Rule
2 is preferable;

— on a test set which has more positives than negatives, Rule
1 is preferable; unless...

— ...the proportion of positives becomes so high that the
‘always positive’ predictor becomes superior!
« Conclusion: classification accuracy is not always an
appropriate rule quality measure



What is “high” accuracy?

* Rule accuracy should be traded off against

the “default” accuracy of the rule

— 68% accuracy is OK if there are 20% examples of
that class in the training set, but bad if there are

80%
* Relative accuracy
— RAcc(Cl «—Cond) = p(Cl | Cond) — p(ClI)



Weighted relative accuracy

* |If a rule covers a single example, its accuracy
is either 0% or 100%

— maximising relative accuracy tends to produce
many overly specific rules

* Weighted relative accuracy
— WRAcc(Cl«-Cond) = p(Cond)[p(Cl | Cond) — p(Cl)]



Remarks on rule evaluation
measures

« \WRACcc is a fundamental rule evaluation measure:

— WRACcc can be used if you want to assess both accuracy and
significance

— WRACcc can be used if you want to compare rules with different
heads and bodies - appropriate measure for use in descriptive
induction, e.g., association rule learning



Contingency table

Body is Body is
true (Cd) false (—Cd)
Headis | n(cl.cd) | MCl-—=Cd)
true (Cl) trug positivgs ne;aelltsi\e/es n(CI)
cad 1S ( false ) true n(—.CI)
false (—Cl) positives negatives
n(Cd) | n(-Cd) N
+ p(Cl.Cd) = n(CI.Cd) / N etc.




Rule evaluation measures

Coverage

Cov(Cl«Cond) = p(Cond)

Support = frequency

Sup(Cl«—Cond) = p(CIl.Cond)

Rule accuracy = confidence = precision I
Acc(Cl«-Cond) = n(Cl.Cond)/n(Cond) = p(CIl | Cond)

Sensitivity =recall of positives (TPr)
Sens(Cl«—Cond) = n(Cl.Cond) / n(Cl) = p(Cond | CI)

Specificity =recall of negatives
Spec(Cl«-Cond) = n(—-CIl-Cond) / n(-Cl)

= p(—Cond | —Cl) —



Other measures

Relative sensitivity

— RSens(Cl«-Cond) = p(Cond | Cl) — p(Cond)
Relative specificity

— RSpec(Cl«—Cond) = p(—-Cond | =CI) — p(—-Cond)
Weighted relative sensitivity

— WRSens(Cl«-Cond) = p(Cl)[p(Cond | Cl) — p(Cond)]

Weighted relative specificity
— WRSpec(Cl«-Cond) =
= p(—=Ch[p(=Cond | =CI) — p(—=Cond)]
THEOREM: WRSens(R) = WRSpec(R) =
WRAcc(R), where
— WRACcc(Cl«—Cond) = p(Cond)[p(CI | Cond) — p(ClI)]



Part ll: Standard
Data Mining Techniques

« Classification of Data Mining techniques
* Predictive DM

— Decision Tree induction
— Learning sets of rules

j1> Descriptive DM

— Subgroup discovery
— Association rule induction
— Hierarchical clustering




Descriptive DM

Often used for preliminary data analysis
User gets feel for the data and its structure

Aims at deriving descriptions of characteristics
of the data

Visualization and descriptive statistical
techniques can be used



Descriptive DM

 Description

— Data description and summarization: describe elementary and
aggregated data characteristics (statistics, ...)

— Dependency analysis:
« describe associations, dependencies, ...
« discovery of properties and constraints

« Segmentation

— Clustering: separate objects into subsets according to distance and/or
similarity (clustering, SOM, visualization, ...)

— Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)



Part ll: Standard
Data Mining Techniques

« Classification of Data Mining techniques
* Predictive DM

— Decision Tree induction
— Learning sets of rules

» Descriptive DM

> — Subgroup discovery

— Association rule induction
— Hierarchical clustering




Subgroup Discovery

Given: a population of individuals and a
property of individuals we are interested in

Find: population subgroups that are statistically
most interesting’, e.g., are as large as
possible and have most unusual statistical
(distributional) characteristics w.r.t. the
property of interest



Subgroup interestingness

Interestingness criteria:

— As large as possible

— Class distribution as different as possible from
the distribution in the entire data set

— Significant

— Surprising to the user
— Non-redundant

— Simple

— Useful - actionable



Subgroup Discovery:
Medical Case Study

Find and characterize population subgroups with high
CHD risk (Gamberger, Lavrac, Krstacic)

A1 for males: principal risk factors
CHD <« pos. fam. history & age > 46
A2 for females: principal risk factors
CHD <« bodyMassindex > 25 & age >63

A1, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECG)

A1: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight



Subgroup visualization

Il
subjects

Subgroups of
patients with
CHD risk

[Gamberger, Lavrac
& Wettschereck,
IDAMAP2002]



Subgroups vs. classifiers

« Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model

« Subgroups:

— Rules describing subgroups aim at significantly higher proportion of
positives

— Each rule is an independent chunk of knowledge
« Link
— SD can be viewed as
cost-sensitive

classification
— Instead of FNcost we
aim at increased TPprofit

positives negatives

false
pos.

true
positives




Classification Rule Learning for
Subgroup Discovery: Deficiencies

* Only first few rules induced by the covering
algorithm have sufficient support (coverage)

« Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

* ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list



CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

Weighted covering algorithm

Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Probabilistic classification

Evaluation with different interestingness
measures



CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =

= p(Class|Cond) = (n.+1)/(n 1. tK)
— CN2-SD: Weighted Relative Accuracy

WRAcc(Class « Cond) =
p(Cond) (p(Class|Cond) - p(Class))

Weighted covering approach (example weights)
Significance testing (likelihood ratio statistics)
Output: Unordered rule sets (probabilistic classification)



CN2-SD: Weighted Covering

« Standard covering approach:
covered examples are deleted from current training set
* Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
in all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
» Additive weights: w(e,1) = 1/(i+1)
w(e, 1) — pos. example e being covered 1 times

* Multiplicative weights: w(e, 1) = gamma! , O<gamma<l

note: gamma = 1 => find the same (first) rule again and again
gamma = O =» behaves as standard CN2



CN2-SD: Weighted WRAcc Search
Heuristic

 Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRAcc(Cl <~ Cond) = p(Cond) (p(Cl|Cond) - p(Cl))
increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* |In WRAcc computation, probabillities are estimated
with relative frequencies, adapt:
WRAcc(Cl <~ Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) =
n'(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(CI)/N")
— N’ : sum of weights of examples

— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples



Part ll: Standard
Data Mining Techniques

« Classification of Data Mining techniques
* Predictive DM

— Decision Tree induction
— Learning sets of rules

» Descriptive DM

— Subgroup discovery

> — Association rule induction

— Hierarchical clustering




Association Rule Learning

Rules: X =>Y, if Xthen Y

X, Y itemsets (records, conjunction of items), where
items/features are binary-valued attributes)

Transactions: 102 e, i50
itemsets (records) 11 1 0
2 0 1 0

Example:

Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)

o Support: Sup(X,Y) = #XYH#D = p(XY)

* Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)Ip(X) = p(Y|X)



Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have support > MinSup and confidence > MinConf

Procedure:

« find all large itemsets Z, Sup(Z) > MinSup

« gsplit every large itemset Z into XY,
compute Conf(X,Y) = Sup(X,Y)/Sup(X),
if Conf(X,Y) > MinConf then X =>Y
(Sup(X,Y) > MinSup, as XY is large)



Part ll: Standard
Data Mining Techniques

« Classification of Data Mining techniques
* Predictive DM

— Decision Tree induction
— Learning sets of rules
» Descriptive DM

— Subgroup discovery
— Association rule induction

:> — Hierarchical clustering




Hierarchical clustering

o Al go rithm (agglomerative

hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair Cjin Cj;
fuse Ciin Cj in a new cluster
C=CU CJ,
determine dissimilarities between
C: and other clusters;

until one cluster left;

* Dendrogram:

e
e

cluster level



Hierarchical clustering

* Fusing the nearest pair of clusters

* Minimizing intra-cluster

o
i d(C, L
G5 similarity
d(G.4; C. | » Maximizing inter-cluster
similarity
'/ d(Cka)

« Computing the dissimilaritiesﬁ
from the "new” cluster



Hierarchical clustering: example

X Y Z W V xy) z w v

A
x| O @ 1 5 556 (y)| 0 141 5 566
; A wT‘"T 14 0 141424 5§ Z 0 4471 5
+ |
1 o z 0 441 5 w 0 @
4 | w 0 1
1 -._v:_z_ P v 0
0% 4
a) sample problem b) dissimilarity matrix c) dissimilarity matrix after 'fusing’
elements x and y
xy) z (wyv) (xy.z) (w,v) S +6 ;o6
xy)| 0 556 (xy.2)| © - e E
0 5 -3
z (w.v) 0 1=
(w,v) 0 T o) S s W s g
T 1] '—‘E'—:.[;—"“

d) dissimilarity matrix after fusing' f) dendrogram

elements w and v

e) dissimilarity matrix after
fusing' cluster (x,y) and
element z



Results of clustering

Ptah - [Clustering of Samples] = A dendogram Of
=| File Analyses Graph Options Window Help = resistance VeCtorS
v | ] (k] =
Antibiotics: {BETAL),AM,CB,CC,CFP,CIP,CI¥,CPM,CT,GM,MET,NET,P [Bohanec et al., “PTAH:
Bacterium: 110 STAPHYLOCOCCUS AUREUS ’ .
1 .z A system for supporting
T e nosocomial infection
v - | theraphy”, IDAMAP
3 _.B._.._. E.._R
. e & book, 1997]
1 ... .. E..... ] l
36 .. _ ... ... ... B —'_I -
- T _—
1 . ... ... E._.._. |
1 E.RREE_EE. . B
1 B BE. _RE.__R
3 E.R _.RE B
2 ... EE. B ]
1 ... .. E_EER B
2 ....E.E.EE._R N
1 ..B._..._. ER .
3 _.E.E.RE.E. _E
- T EEREER B — I
2 ..E_.E.RE_E ..
. rereoem —
i ..E.E.. . E..__ER
1 RE.RE.RE.__E___.

From: 1-1-94 To: 3-3-95 Samples: 73 Antibiotics: 13 Bacteria: 1



Part II: Summary

 Predictive DM:

— classification, regression
— trees, rules
— splitting vs. covering
— preventing overfitting
e Descriptive DM:
— association rules
— subgroup discovery
— clustering



Part lll: Evaluation

Accuracy and Error
n-fold cross-validation

Confusion matrix
ROC



Evaluating hypotheses

* Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

- Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

« split the example set into training set (e.g. 70%) to

induce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— information contents (information score), significance



n-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized
folds T,where U, T,=D

for i=1,...,ndo

— form a training set out of n-1 folds: Di = D\T,
— induce classifier H; from examples in Di

— use fold T, for testing the accuracy of H,

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,



ePartition
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(In)Accuracy

« Suppose two classifiers both achieve 80% accuracy
on an evaluation dataset, are they always equally
good?

— e.g., classifier 1 correctly classifies 40 out of 50 positives

and 40 out of 50 negatives; classifier 2 correctly classifies 30
out of 50 positives and 50 out of 50 negatives

— on a test set which has more negatives than positives,
classifier 2 is preferable;

— on a test set which has more positives than negatives,
classifier 1 is preferable; unless...

— ...the proportion of positives becomes so high that the
‘always positive’ predictor becomes superior!
« Conclusion: accuracy is not always an appropriate
quality measure



Confusion matrix

Predicted positive

Predicted negative

Positive examples

True positives

False negatives

Negative examples

False positives

True negatives

 also called contingency table

Classifier 1

Predicted positive | Predicted negative
Positive examples 40 10 50
Negative examples 10 40 50
50 50 100

Classifier 2

Predicted positive

Predicted negative

Positive examples 30 20 50
Negative examples 0 50 50
30 70 100



ROC space

. Classifier 1
True positive rate =

Precicted positive | Predicted negative
#true POsS. / #pOS. ZZ:ZZ::::::;:S ‘118 lg 28 Classifier 2
- TP1 = 40/50 = 80% = = = Predicted positive | Predicted negative
— TP, =30/50 = 60% T 550
30 70 100

False positive rate
= #false pos. / #neq.

— FP, =10/50 = 20%
~ FP,=0/50 = 0%
ROC space has FP

rate on X axis and
TP rate on Y axis



The ROC convex hull

true positive rate

100% 1
L J
80%
60%
[ |
40%
L 2
20% & Confirmation rules
I B WRAGC
CN2
0% + t |
0% 20% 40% 60% 80%

false positive rate

100%




The ROC convex hull

true positive rate

100% -
L
80% //
60% ,/
20% /
0% !
0% 20% 40% 60% 80%

false positive rate

100%




Choosing a classifier

true positive rate

100% 1

80%

7’

60% —
o %
20%

0%

40% 60%

false positive rate

80%

100%

FPcost
_ 1
FNcost é
Neg _,
Pos

slope=4=2



Choosing a classifier

true positive rate

100%

80%

60%

40% /
20%

0%

0%

20%

40% 60%

false positive rate

80%

100%




Rule evaluation measures

Coverage

Cov(Cl«Cond) = p(Cond)

Support = frequency

Sup(Cl«—Cond) = p(CIl.Cond)

Rule accuracy = confidence = precision I
Acc(Cl«-Cond) = n(Cl.Cond)/n(Cond) = p(CIl | Cond)

Sensitivity =recall of positives (TPr)
Sens(Cl«—Cond) = n(Cl.Cond) / n(Cl) = p(Cond | CI)

Specificity =recall of negatives
Spec(Cl«-Cond) = n(—-CIl-Cond) / n(-Cl)

= p(—Cond | —Cl) —



ML metrics in ROC space

true positive rate
= sensitivity

= recall

= TP/Pos

accuracy on
negatives
= TN/(TN+FN)

100%

80%

60%

20% 4 -

0% £

40% 7/

[ —
7/
//

/I
|~

20%

40%

60% 80%

100%




Part lll: Summary

 10-fold cross-validation is a standard classifier
evaluation method used in machine learning

« ROC analysis very natural for rule learning and

subgroup discovery
— can take costs into account
— here used for evaluation
— also possible to use as search heuristic

* Upgrade to c>2 classes
— full ROC analysis requires c(c—1) dimensions, distinguishing all
pairwise misclassification types
— can be approximated by ¢ dimensions



Part IV:
Relational Data Mining

> What is RDM?

* Propositionalization techniques
 Inductive Logic Programming




Predictive relational DM

 Data stored in relational databases

 Single relation - propositional DM

— example is a tuple of values of a fixed number of
attributes (one attribute is a class)

— example set is a table (simple field values)

* Multiple relations - relational DM (ILP)

— example is a tuple or a set of tuples
(logical fact or set of logical facts)

— example set is a set of tables (simple or complex
structured objects as field values)



Data for propositional DM

Sample single relation data table

1D [Name |[Fiost |Street JCaty |Zap  |%ex  |Social [Io- |Age [Glub |Res
Marne Stalim|oome Slalus|ponse
ID |Zip (S [So|In AC% Re
ex come |ge ]
34TE|Smilh |[John |38, Sarn BA6TT [male [winglo [iG0 32 mem |- St 8°Jub 5P
|J=.:|-|ﬂ_1 'ﬂl{'!tﬂn T[}I: h{'!'l' le ann ann ann .. ann ann [uun ann
. i 3478(34677|m |si |60-70|32|me |nr
3479|Due  |Tane [45, [luven [43666 [famale|lmar [iR0- |46 |oon- |res- 3479/43666]f |mal80-90|45nmfre
Sea  |Jtion mned |A0k mem- [ponse
Ct ber Customer table for analysis.
Rasic cuslomor Lable
ID |Zip (S [Sofln [A|CI [Re|DeliverjPaymt |Store [Store [Store
ex|g [come|geub [SP |Mode |Mode |Size |Type |Locatn
J478|34677|m [si |60-70|32/me|nr |regular|cash |small [franchiselcity
3479|143666(f |ma|80-90(45[nmre |express|credit |large |indep [rural

Customer table including order and store information.




Multi-relational data made

propositional

« Sample
relation
table

* Making data
using summary

ID |Zip |S |SoIn |A|C] |[Re|Delivery |[Paymt |Store |Store  |Store
ex |Gt [come|gefub [SP |Mode =~ |Mode |Size |[Type |Locatn
3478|34677|m [si [60-70(32|me|nr |regular |cash |[small |franchise|city
3478|34677|m [si [60-70({32|me|nr |[express |check |small [franchise|city
3478|34677(m [s1 |60-70(32\me[nr [regular |check [large |[indep |rural
3479|43666|f |ma(80-90(45|nm|re |express [credit |large [indep |rural
3479|43666(f |ma|80-90(45|\nm|re |regular |credit [small [franchise|city
Customer table with multiple orders.
ID |Zip (S [So|In |A |CQl |Re[No. of Orders|No. of Stores
€X|St [come |ge(ub [8D
347834677 m (si [60-TO[32|me|nr |3 2
3479(43666/f |mal80-90|45 nm|re (2 2

Customer table using summary attributes.




Relational Data Mining (ILP)

Learning from multiple
tables

Complex relational
problems:

— temporal data: time
series in medicine,
trafic control, ...

— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...

customer
ID [Zip |S [So |l |A[CI [Re
/ ex|St |[come|ge|yb [sP
3478(34677m |si |60-70[32|me |nr
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Relational representation of customers, orders and stores.




Basic Relational Data Mining tasks

Predictive RDM m
=

Descriptive RDM



Predictive ILP

Given:

— A set of observations
« positive examples E *
* negative examples E -

— background knowledge B
— hypothesis language L,,
— covers relation

Find:
A hypothesis H < L, such that (given B) H
covers all positive and no negative examples

In logic, find H such that
— VeeE":B A H|= e (His complete)
— VeeE :B A H|=/=e (His consistent)

In ILP, E are ground facts, B and H are
(sets of) definite clauses



Predictive ILP

« Given:
— A set of observations

« positive examples E *
* negative examples E -

— background knowledge B
— hypothesis language L,,
— covers relation

— quality criterion

 Find:
A hypothesis H < L, such that (given B) H is

optimal w.r.t. some quality criterion, e.g., max.
predictive accuracy A(H)

(instead of finding a hypothesis H € L, such
that (given B) H covers all positive and no
negative examples)



Descriptive ILP

Given:

— A set of observations
(positive examples E )

— background knowledge B

— hypothesis language L,

— covers relation

Find:
Maximally specific hypothesis H < L, such
that (given B) H covers all positive examples

In logic, find H such that Vc € H, cis true in
some preferred model of B UE (e.g., least
Herbrand model M (B UE ))

In ILP, E are ground facts, B are (sets of)
general clauses



Sample problem
Knowledge discovery

E " = {daughter(mary,ann),daughter(eve, tom)}
E ~ = {daughter(tom,ann) ,daughter(eve,ann)}

B = {mother(ann,mary), mother(ann,tom),
father(tom,eve), father(tom,iran), female(ann),

female(mary), female(eve), male(pat),male(tom),
parent(X,Y) <« mother(X,Y), parent(X,Y) <«
father(X,Y)}
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N
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Sample problem
Knowledge discovery

E * = {daughter(mary,ann),daughter(eve, tom)}
E ~ = {daughter(tom,ann) ,daughter(eve,ann)}

B = {mother(ann,mary) ,mother(ann,tom), father(tom,eve),
father(tom, 1an),female(ann),female(mary), female(eve),
male(pat) ,male(tom),parent(X,Y)<«<mother(X,Y),
parent(X,Y)«Tfather(X,Y)}

Predictive ILP - Induce a definite clause
daughter(X,Y) « female(X), parent(Y,X).
or a set of definite clauses
daughter(X,Y) « female(X), mother(Y,X).
daughter(X,Y) « female(X), father(Y,X).

Descriptive ILP - Induce a set of (general) clauses

< daughter(X,Y), mother(X,Y).
female(X)« daughter(X,Y).

mother(X,Y); father(X,Y) « parent(X,Y).



Sample problem
Logic programming

E*={sort([2,1,3].[1,2,3])}
E ={sort([2,1],[1]).sort([3.,1,2],[2,1,3])}

B : definitions of permutation/2 and sorted/1
* Predictive ILP

sort(X,Y) <« permutation(X,Y), sorted(Y).
 Descriptive ILP

sorted(Y) <« sort(X,Y).

permutation(X,Y) < sort(X,Y)
sorted(X) <« sort(X,X)



Sample problem:
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

@) R A o— R I e | S e B j



RDM knowledge representation
(database)

LOAD_TABLE TRAIN_TABLE
LOAD CAR OBJECT NUMBER TRAIN EASTBOUND
1 ol circle 1 t1 TRUE
12 c2 hexagon 1 t2 TRUE
13 c3 | triangle 1
14 c4  rectangle 3 t6 FALSE

T
CAR "TRAIN SHAPE LENGTH ROOF WHEHS
c1 t1 rectangle short none | 2
c2 t1 rectangle long none 3
c3 t1 rectangle short peaked | 2
c4 t1 rectangle long none 2

oog]




ER diagram for East-West trains




ILP representation:
Datalog ground facts

Example: s LT AT 09—
eastbound(t1). RS aj
Background theory:

car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).
two_wheels(c1). three _wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,I11). load(c2,12). load(c3,13). load(c4,14).
circle(l1). hexagon(l2).  triangle(I3). rectangle(l4).
one_load(l1). one load(l2). one load(l3). three loads(l4).

Hypothesis (predictive ILP):

eastbound(T) :- car(T,C),short(C),not none(C).



ILP representation:
Datalog ground clauses

Limm

Example:
eastbound(t1):-
car(t1,c1),rectangle(c1),short(c1),none(c1),two_wheels(c1),
load(c1,11),circle(I1),one_load(I1),
car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,12),hexagon(l2),one_load(l2),
car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,13),triangle(13),one_load(I3),
car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,l14),rectangle(l4),three load(l4).

Background theory: empty

Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C).



ILP representation: Prolog terms

 Example:

eastbound([c(rectangle,short,none,2,l(circle, 1)),
c(rectangle,long,none,3,I(hexagon, 1)),
c(rectangle,short,peaked,2,I(triangle,1)),
c(rectangle,long,none,2,l(rectangle,3))]).

« Background theory: member/2, arg/3

* Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).



First-order representations

. representations:
— datacase is
— features are those given in the dataset

* First-order representations:

— datacase is flexible-size, structured object
* sequence, set, graph
* hierarchical: e.g. set of sequences

— features need to be selected from potentially infinite set



Complexity of RDM problems

« Simplest case: single table with primary key
— example corresponds to tuple of constants
— attribute-value or propositional learning
* Next: single table without primary key
— example corresponds to set of tuples of constants
— problem
« Complexity resides in many-to-one foreign keys
— lists, sets, multisets
— non-determinate variables



Part IV:
Relational Data Mining

 What is RDM?
j|> Propositionalization techniques
* Inductive Logic Programming




Rule learning:
The standard view

 Hypothesis construction: find a set of n rules

— usually simplified by n separate rule constructions
« exception: HYPER

* Rule construction: find a pair (Head, Body)

— e.g. select head (class) and construct body by
searching the VersionSpace
» exceptions: CN2, APRIORI

 Body construction: find a set of m literals

— usually simplified by adding one literal at a time
« problem (ILP): literals introducing new variables



Rule learning revisited

Hypothesis construction: find a set of n rules
Rule construction: find a pair (Head, Body)

Body construction: find a set of m features

— Features can be either defined by background knowledge or
constructed through constructive induction

— In propositional learning features may increase expressiveness
through negation

— Every ILP system does constructive induction

Feature construction: find a set of k literals

— finding interesting features is discovery task rather than classification
task e.g. interesting subgroups, frequent itemsets

— excellent results achieved also by feature construction through
predictive propositional learning and ILP (Srinivasan)



First-order feature construction

 All the expressiveness of ILP is in the features

« Given a way to construct (or choose) first-order
features, body construction in ILP becomes
propositional
— idea: learn non-determinate clauses with LINUS by

saturating background knowledge (performing
systematic feature construction in a given language bias)



Standard LINUS

Example: learning family relationships

Training examples

Background knowledge

daughter(sue,ewe). (+) |parent(eve,sue). female(ann).
daughter(ann,pat). (+) |parent(ann,tom). female(sue).
daughter(fom,ann).  (-) |parent(pat,ann). female(ewe).
daughter(eve,ann). (-) [parent(tom,sue).

Transformation to propositional form:

Class | Variables Propositional features
X Y fX) | fY) | pOX,X) | p(X,Y) | p(Y,X) | p(Y,Y) X=Y
S) sue | eve | true | true | false | false true false false
) ann | pat | true | false | false | false | true false false
© |tom | ann | false | true | false | false true false false
&) eve | ann | true | true | false | false | false | false false

Result of propositional rule learning:

Class = @ if (female(X) = true) A (parent(Y,X) = true

Transformation to program clause form:
daughter(X,Y) « female(X),parent(Y,X)




Representation issues (1)

* |In the database and Datalog ground fact
representations individual examples are not
easily separable

 Term and Datalog ground clause
representations enable the separation of
individuals

* Term representation collects all information
about an individual in one structured term



Representation issues (2)

 Term representation provides strong
language bias

 Term representation can be flattened to be
described by ground facts, using

— structural predicates (e.g. car(t1,c1),
load(c1,I1)) to introduce substructures

— utility predicates, to define properties of
invididuals (e.g. long(t1)) or their parts
(e.g., long(c1), circle(l1)).

* This observation can be used as a language
bias to construct new features



Declarative bias for first-order

feature construction

In ILP, features involve interactions of local variables

Features should define properties of individuals (e.g. trains,
molecules) or their parts (e.g., cars, atoms)

Feature construction in LINUS, using the following language
bias:

one free global variable (denoting an individual, e.g. train)

one or more structural predicates: (e.g., has_car(T,C)) ,each
introducing a new existential local variable (e.g. car, atom), using either
the global variable (train, molecule) or a local variable introduced by
other structural predicates (car, load)

one or more utility predicates defining properties of individuals or their
parts: no new variables, just using variables

all variables should be used
parameter: max. number of predicates forming a feature



Sample first-order features

The following rule has two features ‘has a short car’ and ‘has a
closed car’:

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

The following rule has one feature ‘has a short closed car’:

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

Equivalent representation:
eastbound(T):-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).



LINUS revisited

« Standard LINUS:
— transforming an ILP problem to a propositional problem
— apply background knowledge predicates

* Revisited LINUS:

— Systematic first-order feature construction in a given
language bias

 Too many features?
— use a relevancy filter (Gamberger and Lavrac)



LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two
utility predicates:

eastbound(T):- westbound(T):-
hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarLongJagged(T), not hasCarShortFlat(T),
not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).

Meaning:

eastbound(T):-

hasCar(T,C1),hasLoad(C1,L1),Ishape(L1,tria),iInumber(L1,1),

not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),

not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),Ishape(L3,circ)).
westbound(T):-

not (hasCar(T,C1),cshape(C1,ellipse)),

not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),

not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).



Part IV:
Relational Data Mining

* What is RDM?
* Propositionalization techniques

Inductive Logic Programming
— |LP as search
— ILP techniques and implementations
* Propositionalisation (LINUS, RSD)
« Specialization techniques (MIS, FOIL, ...)
— Top-down search of refinement graphs
» Generalization techniques (CIGOL, GOLEM)

— Inverse resolution

— Relative least general generalization
— Combining top-down and bottom-up

— Inverse entailment (PROGOL)



ILP as search of program clauses

* An ILP learner can be described by

— the structure of the space of clauses

* based on the generality relation

 Let C and D be two clauses.
C is more general than D (C |= D) iff

covers(D) < covers(C)
« Example: p(X,Y) < r(Y,X) is more general than
P(X,Y) « r(Y,X), q(X)

— Its search strategy

 uninformed search (depth-first, breadth-first, iterative
deepening)

* heuristic search (best-first, hill-climbing, beam search)
— its heuristics

» for directing search

« for stopping search (quality criterion)



ILP as search of program clauses

« Semantic generality
Hypothesis H, is semantically more general than H, w.r.t.

background theory B if and only if B U H; |5 H,
« Syntactic generality or 6-subsumption
(most popular in ILP)
— Clause c; #-subsumes ¢, (c, > ,C,)
if and only if 36:c,6 c c,
— Hypothesis H, > 6 H,
if and only if Vc, € H, exists ¢, € H, such that c, > 6c,
 Example

c1 = daughter(X,Y) < parent(Y,X)
c2 = daughter(mary,ann) < female(mary),
parent(ann,mary),
parent(ann,tom).
c1 &-subsumes c, under 6= {X/mary,Y/ann}



ILP as search of program clauses

* Two strategies for learning
— Top-down search of refinement graphs
— Bottom-up search
* building least general generalizations
* inverting resolution (CIGOL)
* inverting entailment (PROGOL)



More general
(induction)

A

v

More
specific




Generality ordering of clauses

Training examples Background knowledge
daughter(mary,ann). @ | parent(ann,mary). female(ann.).
daughter(eve,tom). ® | parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). © | parent(tom,ian).

daughter(X,Y) «

daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
parent(Y,X) parent(X,2)

daughter(X,Y) « female(X)

daughter(X,Y) « daughter(X,Y) « Part of the refinement
female (X) female(X) graph for the family
female(Y) parent(Y,X) relations problem.



Greedy search of the best clause

Training examples Background knowledge

daughter(mary,ann). parent(ann,mary).

female(ann.).

daughter(eve,tom). parent(ann,tom).

female(mary).

female(eve).

@
D

daughter(tom,ann). © | parent(tom,eve).
S)

daughter(eve,ann). parent(tom,ian).

daughter(X,Y) « 2/4

daughter(X,Y) « X=Y daughter(X,Y) «
0/0 parent(Y,X)
2/3
daughter(X,Y) « female(X)
2/3
daughter(X,Y) « daughter(X,Y) «
female (X) 1,2 female(X) o2

female(Y) parent(Y,X)

daUghter(X,Y) “—
parent(X,Z)



FOIL

Language: function-free normal programs
recursion, negation, new variables in the body, no
functors, no constants (original)

Algorithm: covering

Search heuristics: weighted info gain

Search strategy: hill climbing

Stopping criterion: encoding length restriction

Search space reduction: types, infout modes
determinate literals

Ground background knowledge, extensional
coverage

Implemented in C



Part IV: Summary

« RDM extends DM by allowing multiple tables
describing structured data

« Complexity of representation and therefore of
learning is determined by one-to-many links

 Many RDM problems are individual-centred
and therefore allow strong declarative bias



Part V:
Conclusions and Literature

[,

«

%



Machine Learning and Statistics

Both areas have a long tradition of developing inductive
techniques for data analysis.

— reasoning from properties of a data sample to properties
of a population

KDD = statistics + marketing ? No !
KDD = statistics + ... + machine learning

Use statistics for hypothesis testing and data analysis
where many assumptions hold

— about data independence, data distribution, random
sampling, etc.

Use machine learning hypothesis generation, possibly from
small data samples




DM and Statistics ...

« KDD a broader view: provide tools to
automate the entire process of data analysis,
iIncluding statistician’s art of hypothesis
selection
[Fayyad et al., Comm ACM]

* Eventually, what is done in DM could be done
with statistics. Attractive in DM is the relative
ease with which new insights can be gained
(though not necessary interpreted)

[P Cabena et al., Discovering data mining: from concept to
Implementation, 1997]



Statistics:
Primary Data Analysis

‘ form a hypothesis ‘

v experimental design

‘ collect data

survey design ‘

\ 4
test hypothesis
on collected data Three slides on
statistics-
machine
learning

relationship by
Blaz Zupan



Data Mining:
Secondary Data Analysis

use already
collected data

!

find unsuspected
relationships verify hypothesis ‘

(hypothesis) ‘




Data analysis with DM and
Statistics

experimental design

use already
collected data ‘ survey design ‘

find unsuspected
relationships
(hypothesis)

l

statistically test hypothesis
on collected data

collect
additional data
A




Summary: Statistics vs. ML

« Statistics and Machine Learning have long
histories of developing inductive techniques
for data analysis

« Statistics is particularly good when certain
theoretical expectations about the data
distribution, independence, random sampling,
etc. are satisfied

 Machine Learning and Data Mining are
particularly good when requiring
generalizations that consist of easily
understandable patterns



Literature:
Rule induction and ILP

* Chapter "Rule Induction” by P. Flach and N.
Lavrac in the book “Intelligent Data Analysis”,
edited by Michael Berthold and David Hand ,
Springer 2003 (2nd edition)



ILP: Techniques and
Applications, Ellis Horwood 1994

« Description of LINUS and standard ILP
techniques

* book by Lavrac and Dzeroski available at
http://www-ai.ijs.si/SasoDzeroski/ILPBook/

INDUCTIV
LOGIC P ROGRMIMWG




Relational Data Mining,
Springer 2001

 Recent developments in propositionalization
(revisited LINUS and much more) — a chapter in
RDM book

« http://www-ai.ijs.si/SasoDzeroski/RDMBook/

Relational Data Mining

Relatiofs Saso Dzeroski and Nada Lavrac, editors

M Eﬁ;{ S Springer, Berlin, 2001
Front matter (foreword by Heikki Mannila , preface)

& o
s Table of contents (as it appears in the book - PDF, with abstracts - HTML)

Buy this book from Springer.



Acknowledgments

* Colleagues:

 Peter Flach, Dragan Gamberger, Saso Dzeroski, Blaz
Zupan (joint work, some slides borrowed)

» Marko Grobelnik, Dunja Mladenic¢ (Sol-Eu-Net)
* Funding agencies:
« MVZT, EC (project Sol-Eu-Net)



	Data Mining �and Knowledge Discovery ��Part of �“New Media and eScience” MSc Programme�and “Statistics” MSc Programme ��2006-2
	Course participants
	IPS Courses - 2006/07 �A. Data Mining and Knowledge Discovery�B. Knowledge Management
	Credits and coursework
	Course Outline
	Part I. Introduction
	What is DM
	Related areas
	Related areas
	Related areas
	Related areas
	Point of view in this tutorial
	Machine Learning and Statistics
	Data Mining and KDD
	KDD Process
	Part I. Introduction
	The SolEuNet Project
	Developed Data Mining application prototypes
	MEDIANA - KDD process
	MEDIANA - Pilot study
	Decision trees
	Classification rules
	Association rules
	Association rules
	Analysis of UK traffic accidents
	  STATS19 Data Base
	Data understanding
	Data quality: Accident location
	Data preparation
	Data preparation
	Simple visualization of short time series
	Year/Month distribution
	Day of Week/Month distribution
	Hour/Month distribution
	Day of Week/Hour distribution
	Traffic: different modeling approaches
	Some discovered �association rules 
	Analysis of documents of �European IST project
	Analysis of documents of �European IST project
	Visualization into 25 project groups
	Institutional Backbone of IST 
	Collaboration between countries (top 12)
	Part I. Introduction
	DM tools
	Visualization
	Data visualization: �Scatter plot
	DB Miner: Association rule visualization 
	MineSet: Decision tree visualization 
	Part I: Summary
	Part II: Standard �Data Mining Techniques
	Types of DM tasks 
	Predictive vs. descriptive induction
	Predictive vs. descriptive induction
	Predictive vs. descriptive induction: A rule learning perspective
	Supervised vs. unsupervised learning: A rule learning perspective
	Part II: Standard �Data Mining Techniques
	Predictive DM - Classification
	Illustrative example:�Contact lenses data
	Decision tree for�contact lenses recommendation
	Illustrative example:�Customer data
	Induced decision trees
	Predictive DM - Estimation
	Illustrative example:�Customer data
	Customer data: �regression tree
	Predicting algal biomass: regression tree
	Part II: Standard �Data Mining Techniques
	Decision tree learning
	PlayTennis: Training examples
	Decision tree representation �for PlayTennis
	Decision tree representation �for PlayTennis
	PlayTennis:�Other representations
	PlayTennis: Using a decision tree for classification
	Appropriate problems for �decision tree learning
	Learning of decision trees
	Search heuristics in ID3
	Entropy
	Entropy
	Entropy – why ?
	PlayTennis: Entropy
	PlayTennis: Entropy
	Information gain �search heuristic
	Information gain �search heuristic
	PlayTennis: Information gain
	Play tennis: Information gain
	Play tennis: Information gain
	Probability estimates
	Probability estimates: �Intuitions
	Heuristic search in ID3
	Pruning of decision trees
	Handling noise – Tree pruning
	Handling noise – Tree pruning 
	Prediction of breast cancer recurrence: Tree pruning
	Accuracy and error
	Overfitting and accuracy
	Overfitting 
	Avoiding overfitting
	How to select the “best” tree
	PlayTennis:�Converting a tree to rules
	Rule post-pruning �(Quinlan 1993)
	Selected decision/regression �tree learners
	Features of C4.5
	Other features of C4.5
	Part II: Standard �Data Mining Techniques
	Rule learning
	Predictive DM - Classification
	Decision tree vs. rule learning: Splitting vs. covering
	Rule set representation
	Illustrative example:�Customer data
	Consumer data:�classification rules
	Illustrative example:�Contact lenses data
	Contact lense: �classification rules
	Unordered rulesets
	Contact lense: �decision list
	Ordered set of rules:�if-then-else decision lists
	Original covering algorithm�(AQ, Michalski 1969,86)
	Learning unordered set of rules
	Learn-one-rule:�Greedy vs. beam search
	Learn-one-rule as heuristic search
	Learn-one-rule:�PlayTennis training examples
	Learn-one-rule as search: �PlayTennis example 
	Learn-one-rule as heuristic search: PlayTennis example 
	Heuristics for learn-one-rule:�PlayTennis example 
	Probability estimates
	Rule learning: summary
	Learn-one-rule:�search heuristics
	Ordered set of rules:�if-then-else rules
	Sequential covering algorithm� (similar as in Mitchell’s book)
	Learn ordered set of rules�(CN2, Clark and Niblett 1989)
	Learn-one-rule:�Beam search in CN2
	Variations
	Probabilistic classification
	Performance metrics
	Confusion matrix and �Contingency table
	Confusion matrix and �rule (in)accuracy
	What is “high” accuracy? 
	Weighted relative accuracy
	Remarks on rule evaluation measures
	Contingency table
	Rule evaluation measures
	Other measures
	Part II: Standard �Data Mining Techniques
	Descriptive DM
	Descriptive DM
	Part II: Standard �Data Mining Techniques
	Subgroup Discovery
	Subgroup interestingness
	Subgroup Discovery: �Medical Case Study
	Subgroup visualization
	Subgroups vs. classifiers
	Classification Rule Learning for Subgroup Discovery: Deficiencies
	CN2-SD: Adapting CN2 Rule Learning to Subgroup Discovery
	CN2-SD: CN2 Adaptations
	CN2-SD: Weighted Covering 
	CN2-SD: Weighted WRAcc Search Heuristic
	Part II: Standard �Data Mining Techniques
	Association Rule Learning
	Association Rule Learning
	Part II: Standard �Data Mining Techniques
	Hierarchical clustering
	Hierarchical clustering
	Hierarchical clustering: example
	Results of clustering
	Part II: Summary
	Part III: Evaluation
	Evaluating hypotheses
	n-fold cross validation
	(In)Accuracy
	Confusion matrix
	ROC space
	The ROC convex hull
	The ROC convex hull
	Choosing a classifier
	Choosing a classifier
	Rule evaluation measures
	ML metrics in ROC space
	Part III: Summary
	Part IV: �Relational Data Mining
	Predictive relational DM
	Data for propositional DM
	Multi-relational data made propositional
	Relational Data Mining (ILP)
	Basic Relational Data Mining tasks
	Predictive ILP
	Predictive ILP
	Descriptive ILP
	Sample problem�Knowledge discovery
	Sample problem�Knowledge discovery
	Sample problem�Logic programming
	Sample problem: �East-West trains
	RDM knowledge representation (database)
	ER diagram for East-West trains
	ILP representation: �Datalog ground facts
	ILP representation: �Datalog ground clauses
	ILP representation: Prolog terms
	First-order representations
	Complexity of RDM problems
	Part IV: �Relational Data Mining
	Rule learning: �The standard view
	Rule learning revisited
	First-order feature construction
	Standard LINUS
	Representation issues (1)
	Representation issues (2)
	Declarative bias for first-order feature construction
	Sample first-order features
	LINUS revisited
	LINUS revisited:�Example: East-West trains
	Part IV: �Relational Data Mining
	ILP as search of program clauses
	ILP as search of program clauses 
	ILP as search of program clauses
	Generality ordering of clauses
	Greedy search of the best clause
	FOIL
	Part IV: Summary
	Part V: �Conclusions and Literature
	Machine Learning and Statistics
	DM and Statistics …
	Statistics:�Primary Data Analysis
	Data Mining:�Secondary Data Analysis
	Data analysis with DM and Statistics
	Summary: Statistics vs. ML
	Literature:�Rule induction and ILP
	ILP: Techniques and Applications, Ellis Horwood 1994
	Relational Data Mining,�Springer 2001
	Acknowledgments

