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Important vertices in network
It seems that the most important distinction between different vertex indices
is based on the view/decision whether the network is considered directed or
undirected. This gives us two main types of indices:

• directed case: measures of importance; with two subgroups: measures
of influence, based on out-going arcs; and measures of support, based
on incoming arcs;

• undirected case: measures of centrality, based on all lines.

For undirected networks all three types of measures coincide.

If we change the direction of all arcs (replace the relation with its inverse
relation) the measure of influence becomes a measure of support, and vice
versa.
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. . . Important vertices in network

The real meaning of measure of importance depends on the relation
described by a network. For example the most ’important’ person for the
relation ’ doesn’t like to work with ’ is in fact the least popular person.

Removal of an important vertex from a network produces a substantial
change in structure/functioning of the network.
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Normalization

Let p : V → R be an index in network N = (V,L, p). If we want
to compare indices p over different networks we have to make them
comparable. Usually we try to achieve this by normalization of p.

LetN ∈ N(V), where N(V) is a selected family of networks over the same
set of vertices V ,

pmax = max
N∈N(V)

max
v∈V

pN (v) and pmin = min
N∈N(V)

min
v∈V

pN (v)

then we define the normalized index as

p′(v) =
p(v)− pmin

pmax − pmin
∈ [0, 1]
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Degrees

The simplest index are the degrees of vertices. Since for simple networks
degmin = 0 and degmax = n − 1, the corresponding normalized indices
are

centrality deg′(v) =
deg(v)
n− 1

and similary

support indeg′(v) =
indeg(v)

n

influence outdeg′(v) =
outdeg(v)

n

Instead of degrees in original network we can consider also the degrees with
respect to the reachability relation (transitive closure).
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Closeness

Most indices are based on the distance d(u, v) between vertices in a network
N = (V,L). Two such indices are

radius r(v) = maxu∈V d(v, u)

total closeness S(v) =
∑

u∈V d(v, u)

These two indices are measures of influence – to get measures of support
we have to replace in definitions d(u, v) with d(v, u).

If the network is not strongly connected rmax and Smax equal∞. Sabidussi
(1966) introduced a related measure 1/S(v); or in its normalized form

closeness cl(v) =
n− 1∑

u∈V d(v, u)

D = maxu,v∈V d(v, u) is called the diameter of network.

ECPR Summer School, Ljubljana, July 30 – August 16, 2008 s s y s l s y ss * 6



V. Batagelj: Network Analysis / Structure of Networks 3 6'

&

$

%

Betweeness

Important are also the vertices that can control the information flow in the
network. If we assume that this flow uses only the shortest paths (geodesics)
we get a measure of betweeness (Anthonisse 1971, Freeman 1977)

b(v) =
1

(n− 1)(n− 2)

∑
u,t∈V:gu,t>0
u6=v,t6=v,u6=t

gu,t(v)
gu,t

where gu,t is the number of geodesics from u to t; and gu,t(v) is the number
of those among them that pass through vertex v.

If we know matrices [du,v] and [gu,v] we can determine also gu,v(t) by:

gu,v(t) =

 gu,t · gt,v du,t + dt,v = du,v

0 otherwise

For computation of geodesic matrix see Brandes.
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Hubs and authorities
To each vertex v of a network N = (V,L) we assign two values: quality of
its content (authority) xv and quality of its references (hub) yv .

A good authority is selected by good hubs; and good hub points to good
authorities (see Kleinberg).

xv =
∑

u:(u,v)∈L

yu and yv =
∑

u:(v,u)∈L

xu

Let W be a matrix of network N and x and y authority and hub vectors.
Then we can write these two relations as x = WT y and y = Wx.

We start with y = [1, 1, . . . , 1] and then compute new vectors x and
y. After each step we normalize both vectors. We repeat this until they
stabilize.

We can show that this procedure converges. The limit vector x∗ is the
principal eigen vector of matrix WT W; and y∗ of matrix WWT .
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. . . Hubs and authorities

Similar procedures are used in search engines on the web to evaluate the
importance of web pages.

PageRank, PageRank / Google, HITS / AltaVista, SALSA, teorija.

Examples: Krebs, Krempl.
Net/Paths between 2 vertices/Diameter
Net/Vector/Centrality/Closeness
Net/Vector/Centrality/Betweeness
Net/Vector/Important Vertices/1-Mode:Hubs-Authorities
Net/Vector/Clustering Coefficients
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Clustering
Let G = (V, E) be simple undirected graph. Clustering in vertex v is
usually measured as a quotient between the number of lines in subgraph
G1(v) = G(N1(v)) induced by the neighbors of vertex v and the number of
lines in the complete graph on these vertices:

C(v) =


2|L(G1(v))|

deg(v)(deg(v)− 1)
deg(v) > 1

0 otherwise

We can consider also the size of vertex neighborhood by the following
correction

C1(v) =
deg(v)

∆
C(v)

where ∆ is the maximum degree in graph G. This measure attains its largest
value in vertices that belong to an isolated clique of size ∆.
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Acyclic networks

v1
v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

acyclic.paj

Network G = (V, R) , R ⊆ V × V
is acyclic, if it doesn’t contain any
(proper) cycle.

R ∩ I = ∅

In some cases we allow loops.
Examples: citation networks, ge-
nealogies, project networks, . . .
In real-life acyclic networks we
usually have a vertex property p :
V → R (most often time), that is
compatible with arcs

(u, v) ∈ R⇒ p(u) < p(v)
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Basic properties of acyclic networks

Let G = (V, R) be acyclic and U ⊆ V , then G|U = (U , R|U), R|U =
R ∩ U × U is also acyclic.

Let G = (V, R) be acyclic, then G′ = (V, R−1) is also acyclic. Duality.

The set of sources MinR(V) = {v : ¬∃u ∈ V : (u, v) ∈ R} and the set
of sinks MaxR(V) = {v : ¬∃u ∈ V : (v, u) ∈ R} are nonempty (in finite
networks).

Transitive closure R of an acyclic relation R is acyclic.

Relation Q is a skeleton of relation R iff Q ⊆ R, Q = R and relation Q is
minimal such relation – no arc can be deleted from it without destroying the
second property.

A general relation (graph) can have several skeletons; but in a case of
acyclic relation it is uniquely determined Q = R \R ∗R.
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Depth

v13

v25

v36

v42 v52

v66

v75

v81

v94

v101

v114

Mapping h : V → N+ is called depth or
level if all differences on the longest path
and the initial value equal to 1.

U ← V; k ← 0
while U 6= ∅ do
T ← MinR(U); k ← k + 1
for v ∈ T do h(v)← k

U ← U \ T

Drawing on levels. Macro Layers.
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p-graph of Bouchard’s genealogy

Denis/BEAUREGARD/ Bernard/BEAUREGARD/
Madeleine/BENARD/

Joseph-Louis/BEAUREGARD/
Laura/COTE/

Louis/BEAUREGARD/
Ade’lia/MORIN/

Pierre/BEAUREGARD/
Zoe’/LANGEVIN/

Louis/LANGEVIN/
Ange’lique/CHARTIER/

Joseph/CHARTIER/
Rosalie/FONTAINE/

Joseph/FONTAINE/
Rosalie/JALBERT/

Pierre/JALBERT/
Marie-Josephte/FOURNIER/

Joseph/FOURNIER/
Elisabeth/GAGNE/

Pierre/GAGNE/
Louise/FAURE/

Louis/GAGNE/
Marie/MICHEL/

Lucien/BOUCHARD/
Audrey/BEST/

Philippe/BOUCHARD/
Alice/SIMARD/

Joseph/BOUCHARD/
Lydia/MARTEL/

Sixte/BOUCHARD/
Marie-Anne/LAROUCHE/

Omer/BOUCHARD/
Mathilde/TREMBLAY/

Jean-Baptiste/BOUCHARD/
Rosalie/TREMBLAY/

Jean-Baptiste/BOUCHARD/
Ursule/TREMBLAY/

Louis/BOUCHARD/
Franc,oise/DUFOUR/

Antoine/BOUCHARD/
Madeleine/SIMARD/

Claude/BOUCHARD/
Louise/GAGNE/

Jacques/BOUCHARD/
Noe’’lle/TOUSCHARD/

Hon.Sauveur/TREMBLAY/
Ange’lique/LAVOIE/

Charles/TREMBLAY/
Fe’licite’/DUCHESNE/

Nicolas/TREMBLAY/
Louise/SIMARD/

Pierre/TREMBLAY/
Madeleine/ROUSSIN/

Pierre/TREMBLAY/
Ozanne/ACHON/

Philibert/TREMBLAY/
Jehanne/CONGNET/

Jean/ACHON/
He’l‘ene/REGOURDE/

Epiphane/TREMBLAY/
Marie/CHEVALIER/

J.-M.-Moi’’se/TREMBLAY/
Elisabeth/POTVIN/

Jean-Baptiste/CHEVALIER/
Marie-The’r‘ese/POULIN/

Vildebond/LAROUCHE=GAUTHIER/
Mon./LAFORGE=PRADET/

Michel/LAROUCHE=GAUTHIER/
Marie/TREMBLAY/

Louis/LAROUCHE=GAUTHIER/
Dorothe’e/BOUCHARD/

Vincent/TREMBLAY/
Catherine/LABRANCHE/

Jean-Baptiste/LAFORGE=PRADET/
Constance/FORTIN/

Joseph-Marie/PRADET/
Genevi‘eve/BELLEY/

J.Thierry/FORTIN/
Sylvie/TREMBLAY/

The’ophile/MARTEL/
Claudia/HUDON/

Basile/MARTEL/
He’l‘ene/SAVARD/

Isaac/MARTEL/
Christine/BOUCHARD/

Joseph/MARTEL/
Genevi‘eve/GAGNE/

Joseph/BOUCHARD/
Marie-Anne/TREMBLAY/

Jean-Louis/BOUCHARD/
Madeleine/TREMBLAY/

Louis-Rock-Augustin/TREMBLAY/
Ursule-Constance/SIMARD/

Joseph/SAVARD/
Franc,oise/BERGERON/

Octave/HUDON/
Arthe’mise/LABRI/

Jean-Baptiste/HUDON=BEAULIEU/
Th‘ecle/MIVILLE=DESCHENES/

Louis/HUDON=BEAULIEU/
Marie-Anne/LEBEL/

Benoi^t/MIVILLE=DESCHENES/
Josephte/PELLETIER/

Amable/LABRI=MIGNAULT/
Marguerite/COLLIN/

Charles/LABRI=MIGNAULT/
Dorothe’e/CORDEAU=DESLAURIERS/

Joseph/COLLIN/
Marie-Rose/ROY/

Xavier/SIMARD/
Evange’lineAnge’line/BOUCHARD/

Thomas/SIMARD/
Philom‘ene/BOUCHARD/

Frs {Bastien selon biog.}/SIMARD/
Jose’phine/LAVOIE/

Se’bastien/SIMARD/
Anne/SIMARD/

Dominique/SIMARD/
Marie-Josephte/BOUCHARD/

JosephNoe’’l/SIMARD/
Genevi‘eve/TREMBLAY/

Etienne/SIMARD/
Rosalie/BOUCHARD/

Louis/TREMBLAY/
Madeleine/BONNEAU/

Joseph/BOUCHARD/
Franc,oise/FORTIN/

Jean/SIMARD/
Catherine/PERRON/

Martin/LAVOIE/
Madeleine/BLUTEAU/

Etienne/LAVOIE/
The’r‘ese/TREMBLAY/

Pierre/BLUTEAU/
Agathe/SIMARD/

Pierre/BLUTEAU/
Judith/SIMARD/

Adolphe/BOUCHARD/
Flavie/TREMBLAY/

Didace>Pierre-Isidore/BOUCHARD/
Justine/MERCIER/

Joseph/BOUCHARD/
Judith/BLUTEAU/

Jean-Noe’’l/BOUCHARD/
Madeleine/SIMARD/

Etienne/MERCIER/
Monique/SIMARD/

Etienne/MERCIER/
Marie-Louise/LEFRANCOIS/

Basile/SIMARD/
Monique/GRAVEL/

Thomas/TREMBLAY/
Marie-Anne/DESGAGNES/

Alexis/TREMBLAY/
Fe’licite’/GAGNON/

Michel/DESGAGNES/
Marie-Josephte/LECLERC/

The’odule/BOUCHARD/
Louise/TREMBLAY/

Alexis/TREMBLAY/
Olympe/TREMBLAY/

Andre’/TREMBLAY/
Marie-Reine/TREMBLAY/

Andre’/TREMBLAY/
Eme’rentienne/LAVOIE/

Antoine/TREMBLAY/
Marguerite/LAVOIE/

Colomban/TREMBLAY/
Ros./BOIVIN/

Ignace/TREMBLAY/
Appoline/SIMARD/

Roch/BOIVIN/
Pe’lagie/FORTIN/
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Compatible numberings

v14

v27

v311

v43 v58

v610

v79

v82

v96

v101

v115

Injective mapping h : V → 1..|V| compat-
ible with relation R is called a compatible
numbering.
’Topological sort’

U ← V; k ← 0
while U 6= ∅ do

select v ∈ MinR(U); k ← k + 1
h(v)← k

U ← U \ {v}

Matrix display of acyclic network with vertices reordered according to a
compatible numbering has a zero lower triangle.
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. . . Compatible numberings

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v1 v2 v3 v4 v5 v6 v7 v8 v9 v1
0

v1
1

v10

v8

v4

v1

v11

v9

v2

v5

v7

v6

v3
v1

0

v8 v4 v1 v1
1

v9 v2 v5 v7 v6 v3
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Compatible numberings and functions on acyclic networks

Let the function f : V → R be defined in the following way:

• f(v) is knownn in sources v ∈ MinR(V)

• f(v) = F ({f(u) : uRv})

If we compute the values of function f in a sequence determined by a
comptible numbering we can compute them in one pass since for each
vertex v ∈ V the values of f needed for its computation are already known.
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Compatible numberings – CPM

CPM (Critical Path Method): A project consists of tasks. Vertices of a
project network represent states of the project and arcs represent tasks.
Every project network is acyclic. For each task (u, v) its execution time
t(u, v) is known. A task can start only when all the preceeding tasks are
finished. We want to know what is the shortest time in which the project
can be completed.

Let T (v) denotes the earliest time of completion of all tasks entering the
state v.

T (v) = 0, v ∈ MinR(V)

T (v) = max
u:uRv

(T (u) + t(u, v))
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Citation networks

The citation network analysis
started in 1964 with the paper of
Garfield et al. In 1989 Hummon
and Doreian proposed three indices
– weights of arcs that provide us
with automatic way to identify
the (most) important part of the
citation network. For two of these
indices we developed algorithms to
efficiently compute them.
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. . . Citation networks

In a given set of units/vertices U (articles, books, works, etc.) we introduce
a citing relation/set of arcs R ⊆ U × U

uRv ≡ v cites u

which determines a citation network N = (U , R).

A citing relation is usually irreflexive (no loops) and (almost) acyclic. We
shall assume that it has these two properties. Since in real-life citation
networks the strong components are small (usually 2 or 3 vertices) we
can transform such network into an acyclic network by shrinking strong
components and deleting loops. Other approaches exist. It is also useful to
transform a citation network to its standardized form by adding a common
source vertex s /∈ U and a common sink vertex t /∈ U . The source s is
linked by an arc to all minimal elements of R; and all maximal elements of
R are linked to the sink t. We add also the ‘feedback’ arc (t, s).

ECPR Summer School, Ljubljana, July 30 – August 16, 2008 s s y s l s y ss * 6
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Search path count method

The search path count (SPC)
method is based on counters n(u, v)
that count the number of differ-
ent paths from s to t through the
arc (u, v). To compute n(u, v) we
introduce two auxiliary quantities:
n−(v) counts the number of differ-
ent paths from s to v, and n+(v)
counts the number of different paths
from v to t.
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Fast algorithm for SPC

It follows by basic principles of combinatorics that

n(u, v) = n−(u) · n+(v), (u, v) ∈ R

where

n−(u) =
{

1 u = s∑
v:vRu n−(v) otherwise

and

n+(u) =
{

1 u = t∑
v:uRv n+(v) otherwise

This is the basis of an efficient algorithm for computing n(u, v) – after the
topological sort of the graph we can compute, using the above relations
in topological order, the weights in time of order O(m), m = |R|. The
topological order ensures that all the quantities in the right sides of the
above equalities are already computed when needed.
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Hummon and Doreian indices and SPC

The Hummon and Doreian indices are defined as follows:

• search path link count (SPLC) method: wl(u, v) equals the number
of “all possible search paths through the network emanating from an
origin node” through the arc (u, v) ∈ R.

• search path node pair (SPNP) method: wp(u, v) “accounts for all
connected vertex pairs along the paths through the arc (u, v) ∈ R”.

We get the SPLC weights by applying the SPC method on the network
obtained from a given standardized network by linking the source s by an
arc to each nonminimal vertex from U ; and the SPNP weights by applying
the SPC method on the network obtained from the SPLC network by
additionally linking by an arc each nonmaximal vertex from U to the sink t.

ECPR Summer School, Ljubljana, July 30 – August 16, 2008 s s y s l s y ss * 6
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Vertex weights

The quantities used to compute the arc weights w can be used also to define
the corresponding vertex weights t

tc(u) = n−(u) · n+(u)

tl(u) = n−l (u) · n+
l (u)

tp(u) = n−p (u) · n+
p (u)

They are counting the number of paths of selected type through the vertex
u.
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Properties of SPC weights

The values of counters n(u, v) form a flow in the citation network – the
Kirchoff’s vertex law holds: For every vertex u in a standardized citation
network incoming flow = outgoing flow:∑

v:vRu

n(v, u) =
∑

v:uRv

n(u, v) = n−(u) · n+(u)

The weight n(t, s) equals to the total flow through network and provides a
natural normalization of weights

w(u, v) =
n(u, v)
n(t, s)

⇒ 0 ≤ w(u, v) ≤ 1

and if C is a minimal arc-cut-set
∑

(u,v)∈C w(u, v) = 1.

In large networks the values of weights can grow very large. This should be
considered in the implementation of the algorithms.
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Nonacyclic citation networks
If there is a cycle in a network then there is also an infinite number of trails
between some units. There are some standard approaches to overcome the
problem: to introduce some ’aging’ factor which makes the total weight
of all trails converge to some finite value; or to restrict the definition of a
weight to some finite subset of trails – for example paths or geodesics. But,
new problems arise: What is the right value of the ’aging’ factor? Is there
an efficient algorithm to count the restricted trails?

The other possibility, since a citation network is usually almost acyclic, is
to transform it into an acyclic network

• by identification (shrinking) of cyclic groups (nontrivial strong compo-
nents), or

• by deleting some arcs, or

• by transformations such as the ’preprint’ transformation.
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Preprint transformation
The preprint transformation
is based on the following
idea: Each paper from a
strong component is du-
plicated with its ’preprint’
version. The papers in-
side strong component cite
preprints.

Large strong components in citation network are unlikely – their presence
usually indicates an error in the data. An exception from this rule is the HEP
citation network of High Energy Particle Physics literature from arXiv. In
it different versions of the same paper are treated as a unit. This leads to
large strongly connected components. The idea of preprint transformation
can be used also in this case to eliminate cycles.
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Genealogies
Another example of acyclic networks are genealogies. In ’Sources’ we
already described the following network representations of genealogies:

I wife

fathermother

sisterbrother

son daughter

f-grandfather f-grandmotherm-grandfatherm-grandmother

stepmother

son-in-lawdaughter-in-law

sister-in-law

grandson

sister

grandson

I & wife

father & mother

f-grandfather & f-grandmother m-grandfather & m-grandmother

father & stepmother

son-in-law & daughterson & daughter-in-law

brother & sister-in-law
 Iwife

 father  mother

sister brother

son daughter

f-grandfather f-grandmother m-grandfather m-grandmother

stepmother

son-in-lawdaughter-in-law

sister-in-law

grandson

I & wife

father & mother

f-grandfather & f-grandmother m-grandfather & m-grandmother

father & stepmother

son-in-law & daughterson & daughter-in-law

brother & sister-in-law

Ore graph, p-graph, and bipartite p-graph

paper
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Properties of representations

p-graphs and bipartite p-graphs have many advantages:

• there are less vertices and lines in p-graphs than in corresponding Ore
graphs;

• p-graphs are directed, acyclic networks;

• every semi-cycle of the p-graph corresponds to a relinking marriage.
There exist two types of relinking marriages: blood marriage: e.g.,
marriage among brother and sister, and non-blood marriage: e.g., two
brothers marry two sisters from another family.

• p-graphs are more suitable for analyses.

Bipartite p-graphs have an additional advantage: we can distinguish
between a married uncle and a remarriage of a father. This property enables
us, for example, to find marriages between half-brothers and half-sisters.
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Genealogies are sparse networks
A genealogy is regular if every person in it has at most two parents.
Genealogies are sparse networks – number of lines is of the same order as
the number of vertices.

For a regular Ore genealogy we have (V – vertices, A – arcs, E – edges):

|A| ≤ 2|V|, |E| ≤ 1
2
|V|, |L| = |A|+ |E| ≤ 5

2
|V|

p-graphs are almost trees – deviations from trees are caused by relinking
marriages (Vp, Ap – vertices and arcs of p-graph):

|Vp| = |V| − |E|+ nmult, |V| ≥ |Vp| ≥
1
2
|V|, |Ap| ≤ 2|Vp|

and for a bipartite p-graph, we have

|V| ≤ |Vb| ≤
3
2
|V|, |Ab| ≤ 2|V|+ nmult
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Number of vertices and lines in Ore and p-graphs

data |V| |E| |A| |L|
|V| |Vi| nmult |Vp| |Ap|

|Ap|
|Vp|

Drame 29606 8256 41814 1.69 13937 843 22193 21862 0.99

Hawlina 7405 2406 9908 1.66 2808 215 5214 5306 1.02

Marcus 702 215 919 1.62 292 20 507 496 0.98

Mazol 2532 856 3347 1.66 894 74 1750 1794 1.03

President 2145 978 2223 1.49 282 93 1260 1222 0.97

Royale 17774 7382 25822 1.87 4441 1431 11823 15063 1.27

Loka 47956 14154 68052 1.71 21074 1426 35228 36192 1.03

Silba 6427 2217 9627 1.84 2263 270 4480 5281 1.18

Ragusa 5999 2002 9315 1.89 2347 379 4376 5336 1.22

Tur 1269 407 1987 1.89 549 94 956 1114 1.17

Royal92 3010 1138 3724 1.62 1003 269 2141 2259 1.06

Little 25968 8778 34640 1.67 8412 1.01

Mumma 34224 11334 45565 1.66 11556 1.00

Tilltson 42559 12796 54043 1.57 16967 1.00
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Relinking index
Let n denotes number of vertices
in p-graph, m number of arcs, k

number of weakly connected com-
ponents, and M number of maxi-
mal vertices (vertices having output
degree 0, M ≥ 1).
The relinking index is defined as:

RI =
k + m− n

k + n− 2M

For a trivial graph (having only one
vertex) we define RI = 0.
It holds 0 ≤ RI ≤ 1. RI = 0 iff
network is a forest.
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Pattern searching
If a selected pattern determined by a given graph does not occur frequently
in a sparse network the straightforward backtracking algorithm applied for
pattern searching finds all appearences of the pattern very fast even in the
case of very large networks. Pattern searching was successfully applied to
searching for patterns of atoms in molecula (carbon rings) and searching for
relinking marriages in genealogies.

Damianus/Georgio/
Legnussa/Babalio/

Marin/Gondola/
Magdalena/Grede/

Nicolinus/Gondola/
Franussa/Bona/

Marinus/Bona/
Phylippa/Mence/

Sarachin/Bona/
Nicoletta/Gondola/

Marinus/Zrieva/
Maria/Ragnina/

Lorenzo/Ragnina/
Slavussa/Mence/

Junius/Zrieva/
Margarita/Bona/

Junius/Georgio/
Anucla/Zrieva/

Michael/Zrieva/
Francischa/Georgio/

Nicola/Ragnina/
Nicoleta/Zrieva/

Three connected relinking marriages in the
genealogy (represented as a p-graph) of ra-
gusan noble families. A solid arc indicates
the is a son of relation, and a dotted arc
indicates the is a daughter of relation.
In all three patterns a brother and a sister
from one family found their partners in the
same other family.
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. . . Pattern searching

To speed up the search or to consider some additional properties of the
pattern, a user can set some additional options:

• vertices in network should match with vertices in pattern in some
nominal, ordinal or numerical property (for example, type of atom in
molecula);

• values of edges must match (for example, edges representing
male/female links in the case of p-graphs);

• the first vertex in the pattern can be selected only from a given subset
of vertices in the network.
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Relinking patterns in p-graphs

A3

A4.1
B4 A4.2

A5.1
A5.2

B5

A6.1
A6.2

A6.3

C6

B6.1 B6.2 B6.3

B6.4

A2

All possible relinking marriages in p-
graphs with 2 to 6 vertices. Patterns are
labeled as follows:

• first character – number of first
vertices: A – single, B – two, C
– three.

• second character: number of ver-
tices in pattern (2, 3, 4, 5, or 6).

• last character: identifier (if the two
first characters are identical).

Patterns denoted by A are exactly the
blood marriages. In every pattern the
number of first vertices equals to the
number of last vertices.
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Frequencies normalized with number of couples in
p-graph × 1000.

pattern Loka Silba Ragusa Turcs Royal
A2 0.07 0.00 0.00 0.00 0.00
A3 0.07 0.00 0.00 0.00 2.64
A4.1 0.85 2.26 1.50 159.71 18.45
B4 3.82 11.28 10.49 98.28 6.15
A4.2 0.00 0.00 0.00 0.00 0.00
A5.1 0.64 3.16 2.00 36.86 11.42
A5.2 0.00 0.00 0.00 0.00 0.00
B5 1.34 4.96 23.48 46.68 7.03
A6.1 1.98 12.63 1.00 169.53 11.42
A6.2 0.00 0.90 0.00 0.00 0.88
A6.3 0.00 0.00 0.00 0.00 0.00
C6 0.71 5.41 9.49 36.86 4.39
B6.1 0.00 0.45 1.00 0.00 0.00
B6.2 1.91 17.59 31.47 130.22 10.54
B6.3 3.32 13.53 40.96 113.02 11.42
B6.4 0.00 0.00 2.50 7.37 0.00
Sum 14.70 72.17 123.88 798.53 84.36

Most of the relinking marriages happened in the genealogy of Turkish nomads; the second is

Ragusa while in other genealogies they are much less frequent.
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Bipartite p-graphs: Marriage among half-cousins

Benjamin Simoniti

Anton Simoniti & Jozefa Mavric

Jozefa Mavric

Josip Mavric & Marjuta Zamar

Josip Mavric

Natalija Mavric

Alojz Mavric & Angela Zuljan

Alojz Mavric

Josip Mavric & Rezka Zamar

Benjamin Simoniti & Natalija Mavric
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Triads

 

  

1 - 003

 

  

2 - 012

 

  

3 - 102

 

  

4 - 021D

 

  

5 - 021U

 

  

6 - 021C

 

  

7 - 111D

 

  

8 - 111U

 

  

9 - 030T

 

  

10 - 030C

 

  

11 - 201

 

  

12 - 120D

 

  

13 - 120U

 

  

14 - 120C

 

  

15 - 210

 

  

16 - 300

Let G = (V, R) be a simple di-
rected graph without loops. A triad
is a subgraph induced by a given set
of three vertices.
There are 16 nonisomorphic (types
of) triads. They can be partitioned
into three basic types:

• the null triad 003;

• dyadic triads 012 and 102; and

• connected triads: 111D, 201,
210, 300, 021D, 111U, 120D,
021U, 030T, 120U, 021C,
030C and 120C.
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Triadic spectrum

Moody

Several properties of a
graph can be expressed
in terms of its triadic
spectrum – distribution
of all its triads. It also
provides ingredients for
p∗ network models. A
direct approach to de-
termine the triadic spec-
trum is of order O(n3);
but in most large graphs
it can be determined
much faster.
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