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Clustering problem

Let us start with the formal setting of the clustering problem. We shall use
the following notation:

— unit C ® o
— description of unit X ‘e o

— space of units °

— finite set of units, U C U ° C
—cluster,) c C CU °© ® o s o X
— clustering, C = {C;} C ‘Ml . .
— set of feasible clusterings : o

— criterion function,
P:® - RS 4

~
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... Clustering problem

With these notions we can express the clustering problem (®, P) as follows:

Determine the clustering C* € ® for which

P(C*) = glel% P(C)

Since the set of units U/ is finite, the set of feasible clusterings is also

finite. Therefore the set Min(®, P) of all solutions of the problem (optimal
clusterings) is not empty. (In theory) the set Min(®, P) can be determined
by the complete search.

We shall denote the value of criterion function for an optimal clustering by
min(®, P).

~

/
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Clusterings

Generally the clusters of clustering C = {C,C5, ..., C} need not to be
pairwise disjoint; yet, the clustering theory and practice mainly deal with

clusterings which are the partitions of U

i#£j=0C;NC; =
Each partition determines an equivalence relation in U/, and vice versa.

We shall denote the set of all partitions of {/ into k classes (clusters) by
[Ty (U).

- /
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Simple criterion functions

Joining the individual units into a cluster C' we make a certain ’error”’, we
create certain “tension” among them — we denote this quantity by p(C).
The criterion function P(C) combines these “partial/local errors” into a
”global error”.

Usually it takes the form:

S.  P(C)=)> p(C) o M P(C) = max p(C)
CeC

For simple criterion functions usually min (Il 1), P) < min(Ilx(U), P)
— we fix the value of k and set & C ITy(U).

- /
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Cluster-error function / dissimilarities

The cluster-error p(C') has usually the properties:
p(C) >0 and VX el :p({X})=0

In the continuation we shall assume that these properties of p(C') hold.

To express the cluster-error p(C') we define on the space of units a
dissimilarity d : U x U — R for which we require D1 and D2:

DI.VX el :d(X,X)=0
D2. symmetric: VX, Y eU : d(X,Y) =d(Y,X)

Usually the dissimilarity d is defined using another dissimilarity ¢ :
U] x [U] — RS as

-
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/ Cluster-error function / examples \
Now we can define several cluster-error functions:
S. p(C)= )  wX) w(Y) dX,Y)
X, YEC, XY
S PO = Y w(X) w(Y) - d(X,Y)

w(C) x yéoxey
where w : U — R™T is a weight of units, which is extended to clusters by:
w({X}) =w(X), XeuU
’LU(Cl U CQ) — ’UJ(C1) + ’UJ(CQ), Cl M CQ — (Z)

Often w(X) = 1 holds for each X € U. Then w(C') = card(()C).

M. p(C) = e d(X,Y) = diam(C) — diameter

T. p(C) = min Z d(X,Y)

T is a spanning tree over C

\ (X:Y)eT /
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Snyder & Kick’s World trade network / n = 118, m = 514

Matrix rearrangement view on blockmodeling

Pajek - shadow 0.00,1.00 Sep- 5-1998
World trade - alphabetic order

- ERlEAE eHy

k Alphabetic order of countries (left) and rearrangement (right) /
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Ordering the matrix

There are several ways how to rearrange a given matrix — determine an
ordering or permutation of its rows and columns — to get some insight into
its structure:

e ordering by degree;
e ordering by connected components;

e ordering by core number, connected components inside core levels, and
degree;

e ordering according to a hierarchical clustering and some other property.

There exists also some special procedures to determine the ordering such
as seriation and clumping (Murtagh) or RCM — Reverse Cuthill-McKee

algorithm.

- /
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The goal of blockmodeling is to reduce
a large, potentially incoherent network
to a smaller comprehensible structure
that can be interpreted more readily.
Blockmodeling, as an empirical proce-
dure, 1s based on the idea that units in
a network can be grouped according to
the extent to which they are equivalent,
according to some meaningful defini-

tion of equivalence.

Blockmodeling as a clustering problem
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Cluster, clustering, blocks

One of the main procedural goals of blockmodeling is to identify, in a given
network N' = (U, R), R C U x U, clusters (classes) of units that share
structural characteristics defined in terms of /2. The units within a cluster
have the same or similar connection patterns to other units. They form a
clustering C = {C1,Cy, ..., Cy} which is a partition of the set U. Each
partition determines an equivalence relation (and vice versa). Let us denote
by ~ the relation determined by partition C.

A clustering C partitions also the relation R into blocks
R(CZ, Cj> = RN Cz X Cj

Each such block consists of units belonging to clusters C; and C'; and all
arcs leading from cluster C; to cluster C;. If ¢ = j, a block R(C};, C}) is

/
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Structural and regular equivalence

Regardless of the definition of equivalence used, there are two basic

approaches to the equivalence of units in a given network (compare Faust,
1988):

e the equivalent units have the same connection pattern to the same
neighbors;

e the equivalent units have the same or similar connection pattern to
(possibly) different neighbors.

The first type of equivalence i1s formalized by the notion of structural
equivalence and the second by the notion of regular equivalence with the
latter a generalization of the former.

- /
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Structural equivalence

Units are equivalent if they are connected to the rest of the network in
identical ways (Lorrain and White, 1971). Such units are said to be

structurally equivalent.

The units X and Y are structurally equivalent, we write X = Y, iff the
permutation (transposition) 7 = (X Y) is an automorphism of the relation

R (Borgatti and Everett, 1992).

In other words, X and Y are structurally equivalent iff:

sl. XRY < YRX 3. VZeU\{X,Y}: (XRZ< YRZ)
2. XRX< YRY  s4. VZeU\{X,Y}:(ZRX < ZRY)

- /
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on diagonal in diagonal blocks.

00000
00000
00000
00000
11111
11111
11111
11111

-

esNeoNall

)t O

SO —=O

el e O

... Structural equivalence

The blocks for structural equivalence are null or complete with variations

OO0
O OO

)t OO

~

O bl el
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Regular equivalence

Integral to all attempts to generalize structural equivalence is the idea that
units are equivalent if they link in equivalent ways to other units that are
also equivalent.

White and Reitz (1983): The equivalence relation ~ on U 1s a regular
equivalence on network N = (U, R) if and only if for all X,Y,Z € U,
X =~ Y mmplies both

Rl. XRZ=3IWel:(YRWAW ~7Z)
R2. ZRX = 3IW €U : (WRY AW ~ Z)

Another view of regular equivalence is based on colorings (Everett, Borgatti
1996): regular equivalent vertices are of the same color and have the same
set of colors 1n their neighborhoods.

- /
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... regular equivalence

Theorem 1 (Batagelj, Doreian, Ferligoj, 1992) Ler C = {C;} be a

partition corresponding to a regular equivalence =~ on the network N' =
(U, R). Then each block R(C,,C,) is either null or it has the property
that there is at least one 1 in each of its rows and in each of its columns.
Conversely, if for a given clustering C, each block has this property then

the corresponding equivalence relation is a regular equivalence.

The blocks for regular equivalence are null or 1-covered blocks.

00000 10100
00000 00101
00000 01000
00000 10110

- /
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/ Establishing Blockmodels \

The problem of establishing a partition of units in a network in terms of a
selected type of equivalence is a special case of clustering problem (®, P):

Determine the clustering C* € ® for which

P(C™) = glelg P(C)

where @ is the set of feasible clusterings and P 1s a criterion function.

Criterion functions can be constructed

e indirectly as a function of a compatible (dis)similarity measure between
pairs of units, or

e directly as a function measuring the fit of a clustering to an ideal
one with perfect relations within each cluster and between clusters

\ according to the considered types of connections (equivalence). /
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Indirect Approach \

RELATION

DESCRIPTIONS
OF UNITS

DISSIMILARITY
MATRIX

STANDARD
CLUSTERING
ALGORITHMS

R

\ original relation

Q path matrix
triads

/ orbits
N

D

N2
hierarchical algorithms,

relocation algorithm, leader algorithm, etc.

/
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/ Dissimilarities \

The property t : U — R is structural property if, for every automorphism
@, of the relation R, and every unit x € U, it holds that t(z) = t(¢(x)).
Some examples of a structural property include

t(u) = the degree of unit u;

t(u)

t(u) = number of triads of type x at the unit w.

number of units at distance d from the unit u;

Centrality measures are further examples of structural properties.

We can define the description of the unit u as [u] = [t1(u), ta(u), .. ., tm(u)].
As a simple example, t; could be degree centrality, to could be closeness
centrality and t3 could be berweenness centrality. The dissimilarity between
units » and v could be defined as d(u,v) = D(|u], [v]) where D is some
(standard) dissimilarity between real vectors. In the simple example, D

kcould be the Euclidean distance between the centrality profiles. /
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Dissimilarities based on matrices

We consider the following list of dissimilarities between units x; and x;
where the description of the unit consists of the row and column of the
property matrix Q = [g;;]. We take as units the rows of the matrix

X =[QQ"]

-
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/ ... Dissimilarities \

Manhattan distance: d,,(z;,x;) = Z(’C]is — Gjs| + |qsi — gsjl)
s=1
Fuclidean distance:
dg(Ti, ;) = \ Z((Qis — 4js)° + (¢si — 4s5)°)
s=1
Truncated Manhattan distance: d(x;, a:j) = Z (|gis — qu| + |qsi — s )
v
Truncated Euclidean distance (Faust, 1988):
ds(ibi,zj) = Z ((Qz’s — st)2 T (QSi — qu)Z)
s=1
\ SF1,j

N /
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... Dissimilarities

Corrected Manhattan-like dissimilarity (p > 0):
de(p)(@isxj) = ds(zi,25) + p - (|95 — @55| + 15 — g5il)

Corrected Euclidean-like dissimilarity (Burt and Minor, 1983):

de(p)(Ti, ) = \/ds(%'al’jV +p- (¢ — 455)° + (@5 — 451)°)

Corrected dissimilarity:

do(p)(zi, x;) \/d (i, x5)

The parameter, p, can take any positive value. Typically, p = 1 or p = 2,
where these values count the number of times the corresponding diagonal

pairs are counted.

- /
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/ ... Dissimilarities \

It is easy to verify that all expressions from the list define a dissimilarity
(i.e. that d(x,y) > 0; d(z,z) = 0; and d(z,y) = d(y,x)). Each of the
dissimilarities from the list can be assessed to see whether or not it is also a
distance: d(z,y) =0 =z =y and d(x,y) + d(y, 2) > d(z, 2).

The dissimilarity measure d is compatible with a considered equivalence ~
if for each pair of units holds

X; ~ Xj ~ d(XZ,XJ) =0

Not all dissimilarity measures typically used are compatible with structural
equivalence. For example, the corrected Euclidean-like dissimilarity 1s
compatible with structural equivalence.

The indirect clustering approach does not seem suitable for establishing
clusterings in terms of regular equivalence since there is no evident way
khow to construct a compatible (dis)similarity measure. /
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Example: Support network among informatics students

The analyzed network consists of social support exchange relation among
fifteen students of the Social Science Informatics fourth year class
(2002/2003) at the Faculty of Social Sciences, University of Ljubljana.
Interviews were conducted in October 2002.

Support relation among students was identified by the following question:

Introduction: You have done several exams since you are in the
second class now. Students usually borrow studying material from

their colleagues.

Enumerate (list) the names of your colleagues that you have most
often borrowed studying material from. (The number of listed
persons 1s not limited.)

- /
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b02

b51

-

go7

b96

928

Class network

gl2

b85

b89

g09
g42

g22 x / g24

g10

b03

g63

Vertices represent students
in the class; circles — girls,
squares — boys. Opposite
pairs of arcs are replaced by
edges.

/
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b51 —

b89 —
b02 —

b96 —_—

b03 S

b85

Indirect approach \

Using Corrected Euclidean-like
dissimilarity and Ward clustering
method we obtain the following
dendrogram.

g10 _

g24 —_—

g09 —

963 —

From 1t we can determine the num-

ber of clusters: ’Natural’ cluster-

ings correspond to clear “jumps’ in

gl12 _

g07 —

928 _

the dendrogram.
If we select 3 clusters we get the

922 —_

g42 —_—

C = {{b51,b89,b02,b96,b03,b85, g10, g24},
k {909, 963, g12}, {907, 928, 922, g42} } /

partition C.

ECPR Summer School, Ljubljana, July 30 — August 16, 2008

4P HOP ## « X



V. Batagelj: Network Analysis / Clustering and Blockmodeling 26

4 N

Partition in 3 clusters
b96
b85
b02
i On the picture, ver-
N tices in the same
2 922 / 924 cluster are of the
928 same color.
gl10
b03
b51
b89

N /
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Pajek - shadow [0.00,1.00]

b02
b03
gl0
g24 C1
b51
b85
b89
b96
g07

922 c2 B
928 HEN

g42
g09

g12 c3 | | | B
g63 I; || |

H

I o (o]

O O O
N M O F o D ® © K~ N 0O N O N M
O O 4 N 1D ® W ® O N N Y © d ©
0 0 D Do 0 o0 90 Do o oD Do D

-

~

The partition can be used
also to reorder rows and
columns of the matrix repre-
senting the network. Clus-
ters are divided using blue
vertical and horizontal lines.

/

ECPR Summer School, Ljubljana, July 30 — August 16, 2008

4P HOP ## « X




V. Batagelj: Network Analysis / Clustering and Blockmodeling 28

/

N

The second possibility for solving the blockmodeling problem is to construct
an appropriate criterion function directly and then use a local optimization
algorithm to obtain a ‘good’ clustering solution.

Criterion function P(C) has to be sensitive to considered equivalence:

Direct Approach and Generalized

Blockmodeling

P(C) = 0 < C defines considered equivalence.
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Generalized Blockmodeling

A blockmodel consists of structures ob-
tained by identifying all units from the
same cluster of the clustering C. For

an exact definition of a blockmodel we
have to be precise also about which
blocks produce an arc in the reduced
graph and which do not, and of what
fype. Some types of connections are
presented in the figure on the next slide.
The reduced graph can be represented

by relational matrix, called also image

matrix.

N
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Block Types

complete row-dominant

z

regular row-regular

i

null row-functional

(o)

N

col-dominant

col-regular

col-functional
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Generalized equivalence / Block Types
Y Y Y
I T 1 11 01 0 0O 001 0O
X(r1 111 X|11 111} X{00 1 10
I 11 11 00 0 00O 1 1T 1 00
I 11 11 00 0 10 001 01
complete row-dominant col-dominant
Y Y Y
01 0 0O 01 0 0O 01 01O
X101 10 X|01 1 00| X|1 0100
00 1 01 1 01 00 110 11
I 1.0 00 01 0 01 00 0 0O
regular row-regular col-regular
L4 L4 B
00 0 0O 00 01O 0100
X000 0 00 X|OO T 0O xlo 0o 1 0
00 0 0O 1 0 0 0O 0000
00 0 0O 00 01O 00 01
null row-functional .
col-functional

/
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Characterizations of Types of Blocks

~

null

complete
regular
row-regular
col-regular
row-dominant
col-dominant
row-functional

col-functional

non-null

nul

com
reg
rre
cre
rdo
cdo
rfn

cfn

one

all0 *
all 1 ~*

1-covered rows and columns
each row i1s 1-covered

each column is 1 -covered
Jall 1 row *

Jall 1 column *

3! one 1 in each row

3! one 1 in each column

- at least one 1

Ll

A

N

* except this may be diagonal

block is symmetric iff VX, Y € C; x C; : (XRY & Y RX).

/
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Block Types and Matrices

1 1 1 11 1 0 O
1 1 1 1[0 1 0 1
1 1 1 1[0 0 1 O
1 1 1 1}1 O 0 O
O 0 o0 oOoj0 1 1 1
o o0 o o1 O 1 1
o o0 o o1 1 0 1
O 0 o o1 1 1 O
C1 C'2
C1 | complete regular
Cay | null complete

ECPR Summer School, Ljubljana, July 30 — August 16, 2008

4P HOP ## &« X




V. Batagelj: Network Analysis / Clustering and Blockmodeling 34

4 N

Formalization of blockmodeling

Let V' be a set of positions or images of clusters of units. Let u : U — V
denote a mapping which maps each unit to its position. The cluster of units
C'(t) with the same position t € V is

Ct)=p(t) ={X €U : p(X) =t}

Therefore
Cu) ={C(t):teV}

1s a partition (clustering) of the set of units /.

N /
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/ Blockmodel \

A blockmodel is an ordered sextuple M = (V, K, 7T ,Q, 7, a) where:

e V is asetof rypes of units (images or representatives of classes);
o K CV x Visasetof connections;

e 7 is a set of predicates used to describe the rypes of connections
between different classes (clusters, groups, types of units) in a network.
We assume that nul € 7. A mapping 7 : K — 7 \ {nul} assigns

predicates to connections;

e ()is asetof averaging rules. A mapping o : K — () determines rules

for computing values of connections.

A (surjective) mapping 1 : U4 — V determines a blockmodel M of network
N iff it satisfies the conditions: V(¢,w) € K : 7(t,w)(C(t),C(w)) and

Q(t,w) eV xV\K:nu(C(t),C(w)) . /
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Let ~ be an equivalence relation over ¢/ and [X] ={Y el : X ~Y}. We
say that ~ is compatible with T over a network N iff

Equivalences

VX, Y eUU3T € T : T([X], [Y]).

It is easy to verify that the notion of compatibility for 7 = {nul, reg}
reduces to the usual definition of regular equivalence (White and Reitz
1983). Similarly, compatibility for 7 = {nul, com} reduces to structural
equivalence (Lorrain and White 1971).

For a compatible equivalence ~ the mapping u: X — [X] determines a
blockmodel with V- =U/ ~.

The problem of establishing a partition of units in a network in terms of a

selected type of equivalence is a special case of clustering problem that
can be formulated as an optimization problem.

N /
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/ Criterion function \

One of the possible ways of constructing a criterion function that directly

reflects the considered equivalence is to measure the fit of a clustering to
an 1deal one with perfect relations within each cluster and between clusters
according to the considered equivalence.

Given a clustering C = {C1,Cs, ..., C}, let B(C,, C,) denote the set of
all ideal blocks corresponding to block R(C,,, C,). Then the global error of

clustering C can be expressed as

P(C)= > min  d(R(C,,C,), B)
O, .CoeC BeB(C,,Cy)

where the term d(R(C,,, C,), B) measures the difference (error) between
the block R(C,, C,) and the ideal block B. d is constructed on the basis of
characterizations of types of blocks. The function d has to be compatible

Qith the selected type of equivalence. /
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/ ... criterion function \

For example, for structural equivalence, the term d(R(C,,,C,), B) can be

expressed, for non-diagonal blocks, as

d(R(Cy,Cy),B)= > |rxy —bxyl.
XeC,,YEC,
where rx v is the observed tie and bx v is the corresponding value in an
1deal block. This criterion function counts the number of 1s in erstwhile
null blocks and the number of Os in otherwise complete blocks. These two
types of inconsistencies can be weighted differently.

Determining the block error, we also determine the type of the best fitting

ideal block (the types are ordered).

The criterion function P(C) is sensitive iff P(C) = 0 < u (determined
by C) is an exact blockmodeling. For all presented block types sensitive
kcriterion functions can be constructed (Batagelj, 1997). /
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expressions for deviations have the following meaning:

kThroughout the number of elements in a block is n,n..

/ Deviations Measures for Types of Blocks \

We can efficiently test whether a block R(X,Y) is of the type T' by
making use of the characterizations of block types. On this basis we can
construct the corresponding deviation measures. The quantities used 1n the

St — total block sum = # of 1s in a block,

N, = card(X ) — # of rows in a block,

Ne = card(Y ) # of columns in a block,

Dr — # of non-null rows 1n a block,

Pe — # of non-null columns 1n a block,

m, — maximal row-sum,

me — maximal column-sum,

Sd — diagonal block sum = # of 1s on a diagonal,
d — diagonal error = min(sq, n,. — Sq).

/
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... Deviations Measures for Types of Blocks

row-regular
col-regular
regular
row-functional
col-functional
density ~y

(nr — pr)ne

(nc — pc)nr

(ne — pe)nr + (nr — pr)pe
St — pr + (nr — pr)nc

st — Pc + (Ne — pe)nr

max (0, ynyne — St)

Connection 0(X,Y;T)

St nondiagonal
null { st +d— sq diagonal
complete { NyrMNe — St nondiagonal

P NeNe — St +d+ sg — Ny diagonal
. (ne — my — )ny diagonal,s; = 0
Lezador ol (ne — My )y otherwise
: (ny —me — 1)ne diagonal,sg = 0
col-dominant { (ny — me)ne otherwise

N

to distinguish diagonal blocks and non-diagonal blocks.

For the null, complete, row-dominant and column-dominant blocks it is necessary

/
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4 N

Solving the blockmodeling problem

The obtained optimization problem can be solved by local optimization.

Once a partitioning 1 and types of connection 7 are determined, we can
also compute the values of connections by using averaging rules.

N /
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/

N

Benefits from Optimization Approach \

ordinary / inductive blockmodeling: Given a network A and set of
types of connection 7, determine the model M;

evaluation of the quality of a model, comparing different models,
analyzing the evolution of a network (Sampson data, Doreian and

Mrvar 1996): Given a network N, a model M, and blockmodeling i,
compute the corresponding criterion function;

model fitting / deductive blockmodeling: Given a network N, set of
types 7, and a family of models, determine p» which minimizes the
criterion function (Batagelj, Ferligoj, Doreian, 1998).

we can fit the network to a partial model and analyze the residual
afterward;

we can also introduce different constraints on the model, for example:
units X and Y are of the same type; or, types of units X and Y are not

connected; . . . /
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4 N

Pre-specified blockmodeling

In the previous slides the inductive approaches for establishing blockmodels
for a set of social relations defined over a set of units were discussed.
Some form of equivalence 1s specified and clusterings are sought that are

consistent with a specified equivalence.

Another view of blockmodeling is deductive in the sense of starting with a
blockmodel that is specified in terms of substance prior to an analysis.

In this case given a network, set of types of ideal blocks, and a reduced
model, a solution (a clustering) can be determined which minimizes the

criterion function.

N /
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/

N

Pre-Specified Blockmodels

*

*

*

0

center -

periphery

The basic types of models are:

10
* b
hierarchy

The pre-specified blockmodeling starts with a blockmodel specified, in
terms of substance, prior to an analysis. Given a network, a set of ideal
blocks 1s selected, a family of reduced models 1s formulated, and partitions

are established by minimizing the criterion function.

*

~

0

*

clustering  bipartition

0
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4 N

Prespecified blockmodeling example

We expect that center-periphery model exists in the network: some students
having good studying material, some not.

Prespecified blockmodel: (com/complete, reg/regular, -/null block)
1 2

I | [comreg] -

2 | [comreg] -

Using local optimization we get the partition:

C = {{b02,b03,b51,b85,b89,1b96, g09},
{907, 910, g12, 922, g24, 928, g42, g63} }

N /
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/

N

b02

b51

g07

2 clusters solution

gl2

b96

b85

g09
g42

g22 x g24
928 /

gl10

b03

b89

g63
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/

Pajek - shadow [0.00,1.00]
g07 H N BN
g10 B .H
012 - HEE
922 .
624 N

g28 N [= N

g42

B
g63
b8s )
ho2 H B i
03 I. l.ll
g09
b51 B
89 N
b96 .7

Model

g07
g10
gl2
g22
g24
028
g42
g63
b85
b02
b03
g09
b51
b89
b96

N

Image and Error Matrices:

| 1 2
I | reg - 110 3
2 lreg -| 2|0 2

Total error = 5
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The Student Government at the University of Ljubljana in
1992

The relation 1s determined by the following question (Hlebec, 1993):

Of the members and advisors of the Student Government, whom
do you most often talk with about the matters of the Student
Government?

m
1

e g
=
~ B
colE

— N
.HwB

minister 1 1
p.minister 2
minister 2 3
minister 3 4
minister 4 5 .
minister 5 6 S|
7 .
8
9
1
1

- —lovg

kel e ek ek e

minister 6
minister 7
adviser 1
adviser 2
adviser 3

[

¢ e e el el e e *
p—
p—

N
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~

A Symmetric Acyclic Blockmodel of Student Government

@‘é’ The obtained clustering in 4

clusters 1s almost exact. The
© only error 1s produced by the
arc (a3, mb).

N /
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/

CRI
NIG

SEN
SLO
TUN

ZAF

BEL
JPN

TUR

IRL

ITA
AUT

CHI
CZE

ISR

N

Pajek - shadow [0.00,1.00]
[ ] \ | || | [ | [ |
e, paemnEERRRRn i
HRV
KOR [ | N [ | HEEEEEN
HE | EE || N BN
POL || E. [
PRY \ F ||
[ [ [ [ [] [ u \ .!
(T[] [ =\ NN NN
URU H [ = \.\
USA
| | | | | L] |
ARG [ ]
||
CHN ||
ECU |
||
RUS |
SDA \ |
BRA
MEX |
PRT
DNK HE | N
SWE H
DEU
ENG |
FRA
ESP
BGR
CHE
GRC
MAR
NLD
NOR
sco
YUG

CAM
CRI
HRV
KOR
NIG
POL
PRY
SEN
SLO
TUN
URU
USA
ZAF
ARG
BEL
CHN
ECU
JPN
RUS
SDA
TUR
BRA
MEX
PRT
IRL
DNK
SWE
DEU
ITA
AUT
CHE
CHI
CZE
GRC
ISR
MAR
NLD
NOR
SCo
YUG

~

The player’s market of the Fifa
Football Worldchampionship 2002
(Japan/Korea).

The data, collected by L. Krem-
pel, describe the 733 players of all
32 participating national teams and
the clubs and countries where each
of these players have contracts.
For acyclic (below diagonal blocks
are zero-blocks) regular block-
model we get a solution with 8

clusters and Error = 30

/

ECPR Summer School, Ljubljana, July 30 — August 16, 2008

4P HOP ## &« X




V. Batagelj: Network Analysis / Clustering and Blockmodeling

51

//”

Demo with Pajek

Read Network Tina.net
Net/Transform/Arcs——->Edges/Bidirected Only/Max
Draw/Draw

Layout/Energy/Kamada—-Kawai/Free

Operations/Blockmodeling/Random Start

extend the dialog box to see the model

Draw/Draw—Partition

N

Operations/Blockmodeling/Restricted Options [On]

[4, Ranks.MDL], [Repetitions, 100], [Clusters, 4], [RUN]
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/

Blockmodeling in 2-mode networks

at the beginning of this lecture.

It 1s also possible to formulate this goal as a generalized blockmodeling

column-partition.

N

We already presented some ways of rearranging 2-mode network matrices

problem where the solutions consist of two partitions — row-partition and

/

52
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(s O

(] [ (] (]
upreme Court Voting for Twenty-Six Important Decisions
Issue Label Br Gi So St OC Ke Re Sc Th
Presidential Election PE - - - -+ o+ o+ o+ o+

Criminal Law Cases

Illegal Search 1 CL1 + + + + + + - - -
Illegal Search 2 CL2 + + 4+ + + + - - -
lllegal Search 3 CL3 |+ + + - - - - + + | The Supreme Court Justices and
Seat Belts CL4 - -+ - -+ o+ o+ 4+
Stay of Execution s | & & & & ¢ @ = - - their ‘votes’ on a set of 26 “impor-

Federal Authority Cases o )
Federalism FAL T - - - - + + + + + | tant decisions” made during the
Clean Air Action FA2 + + 4+ + + + + + o+ .
Clean Water FA3 - - - -+ o+ o+ o+ 2000-2001 term, Doreian and Fu-
Cannabis for Health FA4 0O + + + + + + + + .
United Foods FA5 R S Jjimoto (2002).
NY Times Copyrights FA6 -+ + -+ 4+ o+ 4+ 4+ . . .

Civil Rights Cases The Justices (in the order in

Voting Rights CR1 + + + 4+ + - - - - . . .
Title VI Disabilities cR2 | - - - - + + + + + | which they joined the Supreme
PGA v. Handicapped Player CR3 + + + + + + + - - 2

Tmmigration Law Cases Court) are: Rehnquist (1972),
Immigration Jurisdiction Im1 + + + 4+ -+ - - - 5
Deporting Criminal Aliens Im2 + + + + + - - - - SteVenS (1975)7 O Conner (198 1)7
Detaining Criminal Aliens Im3 + + 4+ 4+ -+ - - - .
Citizenship Im4 - -+ o+ o+ o+ Scalia (1982), Kennedy (1988),

Speech and Press Cases ;
Legal Aid for Poor SP1 + + + + - o+ - - - Souter ( 1990)’ GlnSburg ( 1993)
Privacy SP2 + + + + + o+ - - -
Free Speech sps |+ . T T T L L . | andBreyer (1994).
Campaign Finance SP4 + + + 4+ + - - - -
Tobacco Ads SP5 - - - -+ o+ o+ 4+ o+

Labor and Property Rights Cases

Labor Rights LPR1 - - - -+ o+ o+ o+ o+

\Property Rights LPR2 - - - -+ o+ o+ o+ o+ /
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/

/

...Supreme Court Voting / a (4,7) partition

P 20T PTOCYZ00508333855585¢9
Occaggagﬁ';-mﬁ38©§'©32'>@©©'o=*3
B 2828 =25 2 RHoOOFHFs >S5 2 =L S5 I [ O 335
128 <2383 2%0322>20322883Xx00z%8
2 2 g 33 203 1255 2Pp=g=< Iz o3

n ) ® 9 T O T uw n T WwFT T = D 5 N R = F Q

® ® Q9 S o o o = = T

Rehnquest

Thomas

Scalia

Kennedy
OConner

Breyer
Ginsburg . .
Souter . .
Stevens . . .

upper — conservative / lower — liberal

N /
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Signed graphs

A signed graph is an ordered pair (G, o) where

e G = (V,R) is a directed graph (without loops) with set of vertices V
and set of arcs R C V x V;

e 0: R— {p,n} isasign function. The arcs with the sign p are positive
and the arcs with the sign n are negative. We denote the set of all
positive arcs by R™ and the set of all negative arcs by R~ .

The case when the graph 1s undirected can be reduced to the case of directed
graph by replacing each edge e by a pair of opposite arcs both signed with
the sign of the edge e.

N /
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4 N

Balanced and clusterable signed graphs

The signed graphs were introduced in Harary, 1953 and later studied by
several authors. Following Roberts (1976, p. 75-77) a signed graph (G, o)

1S:

e halanced iff the set of vertices ) can be partitioned into two subsets
so that every positive arc joins vertices of the same subset and every
negative arc joins vertices of different subsets.

e clusterable 1ff the set of V' can be partitioned into subsets, called
clusters, so that every positive arc joins vertices of the same subset and
every negative arc joins vertices of different subsets.

N /
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4 N

... Properties

The (semi)walk on the signed graph is positive iff it contains an even
number of negative arcs; otherwise it 1s negative.

The balanced and clusterable signed graphs are characterised by the
following theorems:

THEOREM 1. A signed graph (G, o) is balanced iff every closed semiwalk
1S positive.

THEOREM 2. A signed graph (G, o) is clusterable iff G contains no closed
semiwalk with exactly one negative arc.

N /
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Chartrand’s example — graph

8 7 1 2 3 4 5 6 7 8 9

o o..
I1f/0O0n O O p 0 0 0 p
9 6 2ln 0 p O 0O O0On O O
- 310 p 0O p 00 0 O O
410 0 p 0n 0 n O O
1 5 5/(p 0 0n O p O 0 O
6(0 0 00 p 0n O p
770 n 0m 0 n O p O

o @ @

2 3 4 810 0 0 0O OO p 0 n
9ip 0 0 0 0O p 0 n O

In the figure the graph from Chartarand (1985, p. 181) and its value matrix
are given. The positive edges are drawn with solid lines, and the negative
edges with dotted lines.

N /
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Chartrand’s example — closures

1 234567 809 1 23 45 6 7 8 9
lla a a a a a a a a llpnnnoppnnop
2la a a a a a a a a 2lIn pppnnnmnmn
3la a a a a a a a a 3l m pppnnmnmnn
4la a a a a a a a a 4Im pppnnnmnmn
Sla a a a a a a a a Sl pnnnppnmnap
6la a a a a a a a a 6|lp nnnppnmnap
7la a a a a a a a a Tln mnnmnmnopUpn
8la a a a a a a a a 8lmmnnmnmnppn
91a a a a a a a a a 9/l pnnnoppmnmnop

On the left side of the table the corresponding balance-closure is given —
the graph is not balanced. From the cluster-closure on the right side of the
table we can see that the graph is clusterable and it has the clusters

Vl — {1757679}7 V2 — {27374}7 V3 — {778}

N /
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/ Clusterability and blockmodeling \

To the sign graph clusterability problemu corespond three types of blocks:
e null all elements in a block are 0;
e positive all elements in a block are positive or 0;
e negative all elements 1n a block are negative or 0;

If a graph is clusterable the blocks determined by the partition are: positive
or null on the diagonal; and negative or null outside the diagonal.

The clusterability of partition C = {C,C5,...,Ck} can be therefore
measured as follows (0 < a < 1):

Pa(C)ZOéZ Z max (0, —wy, )+(1—a) Z Z max (0, Wyy)

ceCu,veC c,c’ec ueC,vel”
C£C/!
kThe blockmodeling problem can be solved by local optimization. /
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/ Slovenian political parties 1994 (S. Kropivnik) \

1 2 3 4 5 6 7 8 9 10
1 0 -215 114 -89 -77 94 -170 176 117 -210
2|-215 0 -217 134 77 -150 57 -253 -230 49
SDSS 31 114 -217 0 -203 -80 138 -109 177 180 -174
LDS 41 -89 134 -203 0 157 -142 173 -241 -254 23
ZSESS 51 -77 77 -80 157 0 -188 170 -120 -160 -9

6
7
8
9

SKD
Z1.SD

ZS 94 -150 138 -142 -188 0 -97 140 116 -106
DS -170 57 -109 173 170 -97 0 -184 -191 -6
SLS 176 -253 177 -241 -120 140 -184 0 235 -132
SPS-SNS 117 -230 180 -254 -160 116 -191 235 0 -164
SNS 101-210 49 -174 23 -9 -106 -6 -132 -164 0

SKD - Slovene Christian Democrats; ZL.SD — Associated List of Social Democrats; SDSS — Social Democratic Party of Slovenia;
LDS - Liberal Democratic Party; ZSESS and ZS — two Green Parties, separated after 1992 elections; DS — Democratic Party;
SLS — Slovene People’s Party; SNS — Slovene National Party; SPS SNS — a group of deputies, former members of SNS, separated after 1992 elections

\Network Stranke94. /
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4 N

Slovenian political parties 1994 / reordered

1 3 6 8 9 2 4 5 7 10
SKD 1 0 114 94 176 117|-215 -89 -77 -170 -210
SDSS 3| 114 0 138 177 180|-217 -203 -80 -109 -174
7S 6| 94 138 0 140 116(-150 -142 -188 -97 -106
SLS 8 176 177 140 0 235|-253 -241 -120 -184 -132
SPS-SNS 9| 117 180 116 235 0]-230 -254 -160 -191 -164
Z1.SD 21-215 -217 -150 -253 -230 0 134 77 57 49
LDS 41 -89 -203 -142 -241 -254| 134 0 157 173 23
ZSESS 5| -77 -80 -188 -120 -160| 77 157 0 170 -9
DS 7(1-170 -109 -97 -184 -191| 57 173 170 0 -6
SNS 10(-210 -174 -106 -132 -164| 49 23 -9 -6 0

S. Kropivnik, A. Mrvar: An Analysis of the Slovene Parliamentary Parties Network. in Developments in data analysis, MZ 12,
FDV, Ljubljana, 1996, p. 209-216.

N /
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3-way blockmodeling

We started to work on blockmodeling of 3-way networks. We developed
the indirect approach to structural equivalence blockmodeling in 3-way
networks. Indirect means — embedding the notion of equivalence in a
dissimilarity and determining it using clustering.

3-way network is defined by three sets of units X, Y and Z. There are three
basic cases:

e all three sets are different (3-mode netork)
e two sets are the same (2-mode network)
e all three sets are the same (1-mode network)

For all three cases we constructed compatible dissimilarities for structural
equivalence .

N /
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/ Example 1: Artificial dataset \

Randomly generated ideal structure rndTest (c (5, 6,4),c (35, 35, 35)

64

-
o o
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Example 1: Dendrograms

Dendrogram of agnes(x = dist3m(t, 0, 1), method = "ward") Dendrogram of agnes(x = dist3m(t, 0, 2), method = "ward") Dendrogram of agnes(x = dist3m(t, 0, 3), method = "ward")
o o 8 —_
5 § | £ § 7 £ g 7
£ £ £
© - o - o 4
[TTTTTCTTTTTIT (T FITTTTTTT (77T ] FWHWF LTI TTTTTTTL AT
moa--xomvs o= fsszo-onwnsomexnemscax  coso- ErarET-o o sxwoa-noe-—owsesxws ctwerwsecc-smeo-x —ousxnmoss Eamnenz
dist3m(t, 0, 1) dist3m(t, 0, 2) dist3m(t, 0, 3)
Agglomerative Coefficient = 1 Agglomerative Coefficient = 1 Agglomerative Coefficient = 1
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/

Example 1: Solutions

Click on the picture!

N
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Dendrogram of agnes(x = dist3m(kr, 0, 1), method = "ward")

f=]
2
Y
o
g
N
5 g
2 3
-
T
o ~
S <
—
9 o9
3
< <
o _
wn

dist3m(kr, 0, 1)
Agglomerative Coefficient = 0.61

Height

Dendrogram of agnes(x = dist3m(kr, 0, 2), method = "ward")

o
=]
<

300

200

100

dist3m(kr, 0, 2)
Agglomerative Coefficient = 0.75

Height

Example 2: Krackhardt / Dendrograms

Dendrogram of agnes(x = dist3m(kr, 0, 3), method = "ward")

Q
o
®

o
re}
34

100 150 200

50

Al

dist3m(kr, 0, 3)
Agglomerative Coefficient = 0.67

Al5
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Example 2: Krackhardt / Solutions
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Blockmodeling of Valued Networks

Batagelj and Ferligoj (2000) proposed an approach to blockmodel of valued
networks as an example of relational data analysis. These ideas were
further developed by Ziberna (2007) who proposed some approaches for
generalized blockmodeling of valued networks.

The first one 1s a straightforward generalization of the generalized block-
modeling of binary networks to valued blockmodeling. The second
approach 1s homogeneity blockmodeling where the basic 1dea is that the
inconsistency of an empirical block with its ideal block can be measured by
within block variability of appropriate values. Ziberna provided new ideal
blocks appropriate for blockmodeling of valued networks together with
definitions of their block inconsistencies.

N /

ECPR Summer School, Ljubljana, July 30 — August 16, 2008 4 } K ® N * - R




V. Batagelj: Network Analysis / Clustering and Blockmodeling

4 N

More on blockmodeling

EEHLII:TUHM ANALYSIS IN THE SOCIAL :SIHE-'JEES Fe]

Generalized
Blockmodeling

The details about the generalized block-
modeling can be found in our book:

P. Doreian, V. Batagelj, A. Ferligo;:
Generalized Blockmodeling, CUP, 20053.

Patrick Doreian
Vladimir Batagelj
Anuska Ferligoj

N

ECPR Summer School, Ljubljana, July 30 — August 16, 2008

70



http://uk.cambridge.org/catalogue/catalogue.asp?isbn=0521840856

V. Batagelj: Network Analysis / Clustering and Blockmodeling 71

4 N

Conditions for hierarchical clustering methods

The set of feasible clusterings ® determines the feasibility predicate ®(C) = C €
® defined on P(P(U)\ {0}); and conversely @ = {C € P(PU)\{0}) : &(C)}.

In the set ® the relation of clustering inclusion C can be introduced by
CiCCy, =V, € Cl,Cz cCor:(CiNCy E {@,01}

we say also that the clustering C; is a refinement of the clustering Cs.

It is well known that (I1({/), C) is a partially ordered set (even more, semimodular

lattice). Because any subset of partially ordered set is also partially ordered, we
have: Let & C II(i/) then (®, C) is a partially ordered set.

The clustering inclusion determines two related relations (on ®):
CiCcCe=CiEC2NC, #Co — strict inclusion, and

CiECo=CiCCoANdCedP: (CiCCNANCLCCy) — predecessor.

N /
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/Conditions on the structure of the set of feasible clusterings\

We shall assume that the set of feasible clusterings ® C I1(I/) satisfies the following

conditions:
F1. O={{X}:XelU}lecd

F2.  The feasibility predicate @ is local — it has the form ¢(C) = A .o ©(C)
where ¢(C) is a predicate defined on P(U) \ {0} (clusters).

The intuitive meaning of ¢(C') is: ¢(C) = the cluster C' is ’good’. Therefore
the locality condition can be read: a ’good’ clustering C &€ & consists of *good’
clusters.

F3. The predicate @ has the property of binary heredity with respect to the
fusibility predicate ¥ (C1, C2), i.e.,

CinNCy = DA @(01) YA\ QO(CQ) YA\ ¢(01, CQ) = 90<C1 U CQ)

This condition means: in a good’ clustering, a fusion of two ’fusible’ clusters

Kproduces a ’good’ clustering. /
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/

...conditions

FS5. The interpolation property holds in @, i.e.,

true — all conditions F1-F5 are satisfied.

N

F4. The predicate v is compatible with clustering inclusion C, i.e.,

VCl, Cred: (Cl [ CQ/\Cl\CQ = {01,02} = ¢(01,CQ)\/¢(02701))

(C1 C CaAcard(()Cq) > card(()Co)+1 = dC e @ : (C; = CAC C Cy))

These conditions provide a framework in which the hierarchical methods
can be applied also for constrained clustering problems ® (U/) C IIx(U).

In the ordinary problem both predicates ¢(C') and ¥(C,, C,) are always

~

\V/C1,CQ S

/
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/

Clustering with relational constraint

feasible clusterings, usually in the following form:

in the graph (U, R) of the required type of connectedness }

Example: regionalization problem — group given territorial units into

part of the territory.

N

Suppose that the units are described by attribute data a: U/ — [U{] and related
by a binary relation R C U x U that determine the relational data (U, R, a).

We want to cluster the units according to the similarity of their descriptions,
but also considering the relation R — it imposes constraints on the set of

®(R) = {C € P(U) : each cluster C € C is a subgraph (C,RNC x C

regions such that units inside the region will be similar and form contiguous

~

/

74
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/

Some types of relational constraints

We can define different types of sets of feasible clusterings for the same

relation R. Some examples of types of relational constraint ®*(R) are

~

type of clusterings

type of connectedness

?'(R)
?*(R)
(R)
(R)
(R)

3

>
N

5

iS)

R

weakly connected units
weakly connected units that contain at most one center
strongly connected units

clique

the existence of a trail containing all the units of the cluster

Trail — all arcs are distinct.

A set of units L C C'is a center of cluster C in the clustering of type #*(R)
iff the subgraph induced by L is strongly connected and R(L)N(C'\ L) = (.
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Some graphs of dlfferent types

AAVA

a clique strongly connected umts
4 5 4

1 3

weakly connected units weakly connected units

with a center {1, 2,4}

N

/

76
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/ Properties of relational constraints
The sets of feasible clusterings ®*(R) are linked as follows:
d4(R) C ®3(R) C ®?(R) C P1(R)
®4(R) C ®°(R) C P*(R)
If the relation R is symmetric, then ®3(R) = ®(R)
If the relation R is an equivalence relation, then ®*(R) = ®*(R)

Here are also examples of the corresponding fusibility predicates:

Y1(C1,Cy) =3IX € C13Y € Cy : (XRY V YRX)

bi(Ch,Cy) = VX € C1YY € Cy - (XRY A YRX)
Vo (C1,Cq) = (X € 1Y € I, : XRY) V (IX € [1TY € Ty : YRX)
kFor 13 the property F5 fails.

Y2(C1,Cy) = (IX € LAY € O3 : XRY) V (IX € C1TY € Ly : YRX)
P3(C1,Co) = (X € C13Y € Oy : XRY) A (IX € C13Y € Oy : YRX)

~

/

77
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Agglomerative method for relational constraints

We can use both hierarchical and local optimization methods for solving
some types of problems with relational constraint (Ferligoj, Batagel; 1983).

1. k:=n; Ck):={{X}: XelU};
2. while 3C;, C; € C(k): (i # 7 AN (C;, C;)) repeat

2.1. (Cp, Cy) :=argmin{D(C;,C;):i # j ANY(Cy, Cj) };
2.2. C:=C,UC; k:=k—1;

2.3. C(k):=C(k+1)\{C,,C,tu{C};

2.4. determine D(C, Cy) for all Cs € C(k)

2.4. adjust the relation R as required by the clustering type
3. m:=k

The condition (C;, C;) is equivalent to C; RC'; for tolerant, leader and
strict method; and to C; RC; A C; RC; for two-way method.

N /
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Adjusting relation after joining

strict leader tolerant
ks s Z ; s @1 — tOIerant
i I d? — leader
p q (pc.)q) (p?q) (pyq) @4 — tWO'Way
2. . . & @5 — strict

%(ﬂ
OO
o0
w

w

P q (p,q) (p,q) (p,q) 1
3
S S S S
P q (p,a) (p,a) (psq) " s
L.
S S S S
(o]

(p,q) (p,q) (p,q)

N /
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Example - problem

d e f g~ h: i ]
a 4 6 6 2 4 2 3
b l—34. #¢ 5 3 4
€ &~.5 .7 9 3 2 6§
d 0 3 2 4 8 6 3
e Qo B 0 adhot Bt 7
f B -6 8 § 1
g 0 4 8 2
h 0 3 4
i o B
J 0
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In the original approach a complete dissimilarity matrix is needed. To

Dissimilarities between clusters

obtain fast algorithms we propose to consider only the dissimilarities

between linked units.
Let (U,R), RCU xUbeagraphand ) C S, T CU and SNT = (.
We call a block of relation R for S and T its part R(S,T)=RNS x T.

The symmetric closure of relation R we denote with R=RUR It

A A

holds: R(S,T) = R(T,S).

For all dissimilarities between clusters D(S,T") we set:

D({s}. () = d(s,t) sRt

o0 otherwise

Qhere d is a selected dissimilarity between units.

~
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Dmin(saTl UTQ) —

N

Minimum

Dpin(S,T) =  min

(s,t)ER(S,T)

d(s,t)

min d(s,t) =

(s,t)ER(S,T1UTS)

min( min  d(s,

(S,t)ER(S,Tl)

t),

(s,t)ER(S,T)
min(Dmin(S, Tl), Dmin(S7 TQ))

min  d(s,t)) =

/
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/

DmaX(SaTl UT2) —

N

Maximum

Dnax(S,T) =  max

(s,t)ER(S,T)

d(s,t)

max d(s,t) =

(s,t)ER(S,T1UTS)

max( max  d(s,t),

(Sat)ER(SaTl)

(5,t)ER(S,T2)
maX(DmaX(S, Tl), DmaX(Sa TQ))

max  d(s,t)) =

/
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Average

w : V — R —is a weight on units; for example w(v) = 1, for all v € U.

1
Da(S8,T) = —= e
w(R(S,T)) (S,t)gzj%(S,T)

A A A

’UJ(R(S, T1 U TQ)) = UJ(R(S, Tl)) -+ ’lU(R(S, Tg))
w(R(S, Ty UT2))Da(S, T1 UT2) = 3, e sy umy) Ui t) =
=D (s.t)e(s.1) WS 8) + D216 nerismy) U t) =

A A

= w(R(S,T1)) - Da(S, T1) + w(R(S,T5)) - Da(S,T5))

D, (S, T,UTy) = w(R(S,Ty)) D, (S.Ty)+ w(R(S,T5))
o wRES T OT) Y wR(S,T; UTy))

N /
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Hierarchies

The agglomerative clustering procedure produces a series of feasible clusterings
C(n),C(n—1),...,C(m) with C(m) € Max ® (maximal elements for C).

Their union 7 = |J,_  C(k) is called a /ierarchy and has the property
VCp, Cqe €T : CpoNCq €{0,Cp,Cq}

The set inclusion C is a free or hierarchical order on 7. The hierarchy 7 is complete
iffid € 7.

For W C U we define the smallest cluster C (W) from 7 containing W as:
cl. W CCr(W)
c2. VCeT :(WCC=Cr(W)CC)

C'r is a closure on 7 with a special property

2¢&Cr({X,Y})=Cr({X,Y}) cCr({X,Y,Z}) =Cr({X,Z2}) = Cr({Y,Z}

N /
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/

A mapping h : T — R is a level function on T iff

1. VXel:h({X})=0

2. Cp, CCy;= h(Cp) < h(Cy)

A simple example of level function is h(C') = card(()C) — 1.

Level functions

Every hierarchy / level function determines an ultrametric dissimilarity on i/
0(X,Y) = h(Cr({X,Y}))

The converse is also true (see Dieudonne (1960)): Let d be an ultrametric on /.
Denote B(X,r) = {Y € U : d(X,Y) < r}. Then for any given set A C R the
set

C(A)={BX,r): Xel,re A}u{{U}} U{{X}: X e U}

is a complete hierarchy, and hA(C') = diam(C') is a level function.

The pair (7, h) is called a dendrogram or a clustering tree because it can be

kvisualized as a tree. /
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Reducibility

The dissimilarity D has the reducibility property (Bruynooghe, 1977) ift
D(C,,C,) <min(D(C,,Cs), D(C,,Cs)) =

min(D(C,, Cy),d(C,, Cs)) < D(C, U Cy, Cs)

or equivalently
D(C,,C,) <t, D(C,,Cs) >t, D(C,,Cs) >t = D(C,UCy,Cs) >t

Theorem 2 If a dissimilarity D has the reducibility property then hp is a

level function.

N /
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Nearest neighbors graphs

For a given dissimilarity d on the set of units {/ and relational constraint R
we define the k nearest neighbors graph Gy = (U, A)

(X,Y) € A< Y is selected among the nearest neighbors of X and XRY
By setting for (X,Y) € A its value to w((X,Y)) = d(X,Y) we obtain a
network Nyny = (U, A, w).

In the case of equidistant pairs of units we have to decide — or to include
them all in the graph, or specify an additional selection rule. We shall
denote by G’y »; the graph with included all equidistant pairs, and by G v
a graph where a single nearest neighbor 1s always selected.

N /
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4 N

Let Ny = (U, A, w) be a nearest neighbor network. A pair of units X, Y € U are
reciprocal nearest neighbors or RNNs iff (X,Y) € A and (Y, X) € A,

Structure and properties of the nearest neighbor graphs

Suppose card(()U4) > 1 and R has no isolated units. Then in N
e ecvery unit/vertex X € U has the outdeg(X) > 1 — there is no isolated unit;
e along every walk the values of w are not increasing.

using these two observations we can show that in N3

e all the values of w on a closed walk are the same and all its arcs are reciprocal
— all arcs between units in a nontrivial (at least 2 units) strong component are

reciprocal;

e cvery maximal (can not be extended) elementary (no arc is repeated) walk ends

in a RNNs pair;

e there exists at least one RNNs pair — corresponding to minx v ey, x2y d(X, Y).

N
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Fast agglomerative clustering algorithms

Any network Ny v is a subnetwork of A3 . Its connected components are directed
(acyclic) trees with a single RNNs pair in the root.

Based on the nearest neighbor network very efficient algorithms for agglomerative
clustering for methods with the reducibility property can be built.

chain = []; W = U,
while card(()W) > 1 do begin
if chain = [ ] then select an arbitrary unit X € W else X := last(chain);
grow a NN-chain from X until a pair (Y, Z) of RNNs are obtained,;
agglomerate Y and Z:
T:=YUZ,W:=WN\A{Y,Z} U{T}; compute D(T, W), W € W
end;

It can be shown that if the clustering method has the reducibility property then the

NN-chain remains a NN-chain also after the agglomeration of the RNNs pair.

N /
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/

constraints
stack := [];
for 1 := 1 to 2*n-1 do w[i] := false;
np := 0; nt := n; nw := 1;

while np < nt do begin

if empty (stack) then begin
while wnw] do nw := nw + 1;
X = nw;,

end else begin
X := top(stack); pop(stack);

end;

1f empty (AllNeighbors (X
w[X] := true; np :=

end else begin

)) then begin
np + 1;

N

Fast agglomerative algorithm for clustering with relational

~
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dmin
end;

end;
until found;

N

... Fast agglomerative algorithm

{determine the RNN pair
if empty (stack) then begin

Y := 0; dmin dmax;
end else begin

Y := top(stack); dmin := weight (Y, X);
end;
U := X; push(stack,X); found := false;
repeat

if empty (AllNeighbors (U)) then begin

Z := U; found := true;

end else begin
for V in AllNeighbors (U) do
if weight (U,V) < dmin then begin
weight (U,V),; T :=V;

if T=U then T
1f T=Y then begin
found := true;

=Y,

Zz = U;
end else begin
Y := U; U
end;

(Y, 2)}

T; push(stack,T); T :=Y;
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/ ... Fast agglomerative algorithm

{join the RNN pair T=(Y,Z)}
if not (Z2 in OutNeighbors(Y)) then begin

Uu =42, 2 :=Y,;, Y := U,
end;
nt (= nt + 1; T := nt;
father[Y] := T; father[Z2] := T;
h[T] := weight (Y, 2Z);
w[(Y] := true; w[Z] := true; np := np + 2;

AddtoGraph (Y, Z, T, strateqgy) ;
for V in AllNeighbors (T) do

weight (T,V) := D(Y,2,T,V,method);
RemovefromGraph (Y); RemovefromGraph (Z) ;
pop (stack); pop(stack); push(stack,T);
end;
end;

removed from the stack. To remove it pop(stack) i1s used.

\(Y, X)and (X,Y).

AddGraph adds a vertex T’ to the network using selected strategy. The vertices
X and Y are not deleted yet because they are needed for computing the corrected
dissimilarities ). top(stack) returns the top value from stack; the value 1s not

In the statement dmin := weight (Y, X); we have to check both directions —

~

/
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Example: US counties ¢ = 1400
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