

A short introduction to
graph theory for SNA

Jožef Stefan International Postgraduate school

Vid Podpečan, Jure Ferlež
{vid.podpecan, jure.ferlez} @ ijs.si

Graphs
● node, vertex: actor / unit

● line, edge, arc: tie / link

● arc: directed line (j, h)

● edge: undirected (h : f)

● simple graph:

– no loops

– no parallel connections

● ego-centered networks:

– impossible to measure
the complete network

– only selected nodes
and their neighbours

Formal notation

● network

– graph
● V = set of vertices
● L = set of lines

– P: vertex value functions

– W: line value functions

N=V , L ,P ,W

N=V , L

L= Arcs ∪ Edges

Size of network

● n = |V|, m= |L|

● for simple graphs:

● density:

● sparse networks:

– typically:
● examples:

– ODLIS dictionary: n = 2909, m = 18.419

– IMDB: n = 1.324.748, m = 3.792.390

– US patents: n = 3.774.768, m = 16.522.438

– SI internet: n = 5.547.916, m = 62.259.968

m ≤
n∗n−1

2
 =

m
mmax

m≪ n2

m= O n or m =O n∗logn

Types of networks

● k-mode:

– between k disjoint sets of vertices

● multi-relational:

– WordNet: semantic relations between words
(synonymy, antonymy, hyponymy, ...)

● temporal:

– dynamic, change over time (nodes, lines)

– N(t), t = time point

Example: Terror news

● Reuters news for 66 days about September 11th

● temporal network of word coappearance

Degrees

● degree of vertex v: deg(v) = number of
lines with v as end-vertex

● indegree: indeg(v) = number of
incomming lines

● outdegree: outdeg(v) = number of
outgoing lines

● initial vertex: indeg(v) = 0

● terminal vertex: outdeg(v) = 0

Example:

deg(e) = ?, indeg(e) = ?, outdeg(e) = ?
isolated vertex: ?
initial: ?, terminal: ?

Degrees

● degree of vertex v: deg(v) = number of
lines with v as end-vertex

● indegree: indeg(v) = number of
incomming lines

● outdegree: outdeg(v) = number of
outgoing lines

● initial vertex: indeg(v) = 0

● terminal vertex: outdeg(v) = 0

Example:

deg(e) = 6, indeg(e) = 3, outdeg(e) = 5
isolated vertex: i
initial: j, terminal: k

Walks

● walk: s = (j,h,l,g,e,f,h,l,e,c,b,a)

● length of walk: |s| = 11

● closed walk: start = end

● semiwalk: ignore line direction

● trail: all lines different

● path: all vertices different

● cycle: closed path

● acyclic graph: no cycles

Subgraphs

● H(U, K) is a subgraph of G(V, L) if:

–

–

● spanning subgraph: U = V

● spanning tree:

– spanning subgraph

– no cycles (tree)

U⊆V

K⊆L

Some special graphs

Path P
5

Circle C
7

Star S
8

Complete graph K
7

Bipartite B
2,3

Distances
● distance between node u and v

– the length of the shortest path (geodesic distance)

● shortest path:

– sum of the weights on the path is minimal

● eccentricity of vertex v:

– greatest distance between v and any other vertex

● diameter: distance between the most distant vertices

– also: maximal eccentricity

● radius of a graph:

– minimal eccentricity of any vertex

Example

● distance (v6, v10) =

● shortest path (v5, v8) =

● diameter =

● radius =

1

2

3

5

4

8

6

9

10

7

Eccentricity

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Example

● distance (v6, v10) = 3

● shortest path (v5, v8) = 4

● diameter: 4

● radius: 2

● star-like graph (+ 3 cycles)

1

2

3

5

4

8

6

9

10

7

Eccentricity

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

2 3 3 4 4 3 3 3 3 4

Isomorphism

● G1 and G2 are isomorphic iff:

– exists one-to-one correspondence

– regarding the structure, G1 and G2 are the same

f : G1G2

Interesting problem: polynomial time or NP-complete ?

Homomorphism

● weaker that isomorphism:

– each line in G1 has a „picture“ in G2

– the structure can now be different

Connectivity

● weak component:

– connected subgraph

– ignore line directions

● strong component:

– connected subgraph

– all vertices must be mutually
reachable

● components can be reduced

Example:
reduction of strong components

reduction

Cuts

● interesting groups:

– remove all vertices/lines with value less than p

– vertex-cut

– line-cut

● important elements:

– articulation vertex (also cut vertex)

– bridge

– deletion increases the number of weak
components

Example: Cuts

- remove all lines with value less than 6
- remove all isolated vertices

Important vertices

● directed network: importance measure

– influence: outgoing arcs

– support: incomming arcs

● undirected network: centrality

● importance depends on the relation!

– if relation = “doesn't like“ then

– most important = “least popular“

Measures of importance:
Degree based

centrality =
degv
n−1

support =
indeg v

n

influence =
outdegv

n

(all measures
are normalized)

Measures of importance:
Distance based

total closeness v = ∑
u∈V

dist v ,u

normalized closenessv = n−1

∑
u∈V

dist v ,u

radius v = maximal eccentricity of v

betweeness of a vertex:
number of all shortest paths that go through this vertex

Network centralization

● is the variation of the measure of centrality for
vertices

– divided by maximum possible variation for such
network

● degree, closeness, betweeness centralization

● if a network is centralized:

– clear boundary between center and periphery

Example: degree centralization

v5

v1 v2

v4 v3

vertex v1 v2 v3 v4 v5
degree

v5

v1 v2

v4 v3

vertex v1 v2 v3 v4 v5
degree

degreee centralization =

∑
v∈V

maxDegV−degv

max. variation on these vertices

Example: degree centralization

v5

v1 v2

v4 v3

vertex v1 v2 v3 v4 v5
degree 1 1 1 1 4

v5

v1 v2

v4 v3

vertex v1 v2 v3 v4 v5
degree 1 1 2 2 2

degreee centralization =

∑
v∈V

maxDegV−degv

max. variation on these vertices

4−14−14−14−14−4
12

= 1.0
2−12−12−22−22−2

12
= 0.17

v5

v1 v2

v4 v3

Hubs and authorities

● to each vertex v assign two values:

– quality of its contents: authority a
v

– quality of its references: hub h
v

● good hub points to good authorities

● good authority is selected by good hubs

v

v1

v2

vk
good
authority

v

v1

v2

vk
good
hub

av = ∑
u :u ,v∈L

hu

hv = ∑
u:v ,u∈L

au

Example: Google PageRank

● based on citation analysis

● the probability to reach a page after many clicks

● favors older pages

● recalculated after each index rebuild

● can be fooled (e.g. „link farms“)

● recursive formula:

PRp = ∑
v∈Sp

PRv
∣Links v ∣

Important subnetworks:
Islands

● we need:

– numerical property of vertices/lines

– min and max size

● result:
– locally important subnetworks on different levels

● efficient algorithms for island discovery

Dense groups: cliques

● clique of order k:

– complete subgraph (all posible lines)
● all actors are in relation with all other actors

● hard to compute (NP-complete problem)

● examples:

– very good friends in a friend network

– group of tighty connected scientists who published
papers together with all others

Dense groups: cores

● k-core on n vertices:

– minimal degree is k

– generally: set of subgraphs

● cores are nested: core hierarchy

● efficient algorithms exist

Two-mode networks

● two disjoint sets of vertices

● how to analyze:

– convert to one-mode or

– use specialized algorithms

● analysis:

– two-mode cores

– clustering

– blockmodelling

– after conversion to one-mode: all std. algs.

Example: two-mode network

T. Maitland A.Whitton

alliance trust scottish
american
investment

scottish
american
mortgage

PW. Campbell W. Sanderson JS. Tait

edinburgh
investment
trust

union
bank
of scotland

natinal guarantee
&suretyship
association

● directors and stock companies in Scotland
(one small part of the whole network)

Two-mode cores

● (p,q) core:

– minDegree >= p in the first set

– minDegree >= q in the second set

– maximal subset with these conditions
● not always connected

Example:
Two-mode cores of IMDB

● network: actors and films

Wrestling movies

(247,2) (27,22)

(2,516) core: Hard core
(core of films for adults...)

Clusters, partitions, hierarchies

● cluster: nonempty subset of V:

● clustering: nonempty set of clusters:

● clustering is a partition iff:

–

● clustering is a hierarchy iff:

–

● why clustering:

– group similar vertices

– gain insight into the structure

C⊆ V

C = {Ci}

C = {Ci}

∪
i
Ci = V and Ci∩ C j =∅

C = {Ci}

Ci ∩C j = {∅ , Ci , C j}

Blockmodelling

● reduce a large network

● identify clusters of units:

– those who have
smilar structural
characteristic

● within cluster:

– the same or similar
connection patterns
to other units
(equivalency)

Equivalence
● two types:

– structural: the same connection pattern to the
same neighbours

– regular: the same or similar pattern to
(possibly) different neighbours

● finding partitions in terms of equivalence is a
special case of clustering

– indirect approach
● compute dissimilarities

– direct approach
● construct fit function and do local optimization

Indirect approach

● compute dissimilarity
(e.g. corrected
Euclidean)

● use hierarchical
clustering to obtain
partitioning

● now we can manually
select suitable
number of clusters

Graph visualization

● first step in any SNA task:

– general overview of the network

– get some ideas what analysis to perform

– find some patterns manually

– inspect individuals

● many algorithms:

– exact: simulation of springs and electrical charges

– approximate: identify and draw groups

● Pajek: up to ~5000 vertices

Visualization of a citation network:
Literature on graph drawing

Springer ILP citation network

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

