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Graphs
● node, vertex: actor / unit

● line, edge, arc: tie / link

● arc: directed line (j, h)

● edge: undirected (h : f)

● simple graph:

– no loops

– no parallel connections

● ego-centered networks:

– impossible to measure 
the complete network

– only selected nodes 
and their neighbours



  

Formal notation

● network

– graph
● V = set of vertices
● L = set of lines

– P: vertex value functions

– W: line value functions

N=V , L ,P ,W 

N=V , L

L= Arcs ∪ Edges



  

Size of network

● n = |V|, m= |L|

● for simple graphs:

● density:

● sparse networks:

– typically:
● examples:

– ODLIS dictionary:  n =        2909,   m =       18.419

– IMDB:                    n = 1.324.748,  m =   3.792.390

– US patents:           n = 3.774.768,  m = 16.522.438

– SI internet:            n = 5.547.916,  m = 62.259.968

m ≤
n∗n−1

2
 =

m
mmax

m≪ n2

m= O n or m =O n∗logn



  

Types of networks

● k-mode:

– between k disjoint sets of vertices

● multi-relational:

– WordNet: semantic relations between words 
(synonymy, antonymy, hyponymy, ...)

● temporal:

– dynamic, change over time (nodes, lines)

– N(t),   t = time point



  

Example: Terror news

● Reuters news for 66 days about September 11th

● temporal network of word coappearance



  

Degrees

● degree of vertex v: deg(v) = number of 
lines with v as end-vertex

● indegree: indeg(v) = number of 
incomming lines

● outdegree: outdeg(v) = number of 
outgoing lines

● initial vertex: indeg(v) = 0

● terminal vertex: outdeg(v) = 0

Example:

deg(e) = ?,  indeg(e) = ?, outdeg(e) = ?
isolated vertex: ?
initial: ?, terminal: ?



  

Degrees

● degree of vertex v: deg(v) = number of 
lines with v as end-vertex

● indegree: indeg(v) = number of 
incomming lines

● outdegree: outdeg(v) = number of 
outgoing lines

● initial vertex: indeg(v) = 0

● terminal vertex: outdeg(v) = 0

Example:

deg(e) = 6,  indeg(e) = 3, outdeg(e) = 5
isolated vertex: i
initial: j, terminal: k



  

Walks

● walk: s = (j,h,l,g,e,f,h,l,e,c,b,a)

● length of walk: |s| = 11

● closed walk: start = end

● semiwalk: ignore line direction

● trail: all lines different

● path: all vertices different

● cycle: closed path

● acyclic graph: no cycles



  

Subgraphs

● H(U, K) is a subgraph of G(V, L) if:

–

–

● spanning subgraph: U = V

● spanning tree:

– spanning subgraph

– no cycles (tree)

U⊆V

K⊆L



  

Some special graphs

Path P
5

Circle C
7

Star S
8

Complete graph K
7
 

Bipartite B
2,3



  

Distances
● distance between node u and v

– the length of the shortest path (geodesic distance)

● shortest path:

– sum of the weights on the path is minimal

● eccentricity of vertex v:

– greatest distance between v and any other vertex

● diameter: distance between the most distant vertices

– also: maximal eccentricity

● radius of a graph:

– minimal eccentricity of any vertex



  

Example

● distance (v6, v10) = 

● shortest path (v5, v8) = 

● diameter = 

● radius = 

1
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Eccentricity

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10



  

Example

● distance (v6, v10) = 3

● shortest path (v5, v8) = 4

● diameter: 4

● radius: 2

● star-like graph (+ 3 cycles)
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Eccentricity

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

2 3 3 4 4 3 3 3 3 4



  

Isomorphism

● G1 and G2 are isomorphic iff:

– exists one-to-one correspondence

– regarding the structure, G1 and G2 are the same 

f : G1G2

Interesting problem: polynomial time or NP-complete ?



  

Homomorphism

● weaker that isomorphism:

– each line in G1 has a „picture“ in G2

– the structure can now be different



  

Connectivity

● weak component:

– connected subgraph

– ignore line directions

● strong component:

– connected subgraph

– all vertices must be mutually 
reachable

● components can be reduced



  

Example:
reduction of strong components

reduction



  

Cuts

● interesting groups:

– remove all vertices/lines with value less than p

– vertex-cut

– line-cut

● important elements:

– articulation vertex (also cut vertex)

– bridge

– deletion increases the number of weak 
components



  

Example: Cuts

- remove all lines with value less than 6
- remove all isolated vertices



  

Important vertices

● directed network: importance measure

– influence: outgoing arcs

– support: incomming arcs

● undirected network: centrality

● importance depends on the relation!

– if relation = “doesn't like“ then

– most important = “least popular“



  

Measures of importance:
Degree based

centrality =
degv
n−1

support =
indeg v 

n

influence =
outdegv 

n

(all measures 
are normalized)



  

Measures of importance:
Distance based

total closeness v  = ∑
u∈V

dist v ,u

normalized closenessv  = n−1

∑
u∈V

dist v ,u

radius v = maximal eccentricity of v

betweeness of a vertex:
number of all shortest paths that go through this vertex



  

Network centralization

● is the variation of the measure of centrality for 
vertices

– divided by maximum possible variation for such 
network

● degree, closeness, betweeness centralization

● if a network is centralized:

– clear boundary between center and periphery



  

Example: degree centralization

v5

v1 v2

v4 v3

vertex v1 v2 v3 v4 v5
degree

v5

v1 v2

v4 v3

vertex v1 v2 v3 v4 v5
degree

degreee centralization =

∑
v∈V

maxDegV−degv

max. variation on these vertices



  

Example: degree centralization

v5

v1 v2

v4 v3

vertex v1 v2 v3 v4 v5
degree 1 1 1 1 4

v5

v1 v2

v4 v3

vertex v1 v2 v3 v4 v5
degree 1 1 2 2 2

degreee centralization =

∑
v∈V

maxDegV−degv

max. variation on these vertices

4−14−14−14−14−4
12

= 1.0
2−12−12−22−22−2

12
= 0.17

v5

v1 v2

v4 v3



  

Hubs and authorities

● to each vertex v assign two values:

– quality of its contents: authority a
v

– quality of its references: hub h
v
    

● good hub points to good authorities

● good authority is selected by good hubs

v

v1

v2

vk
good 
authority

v

v1

v2

vk
good
hub

av = ∑
u :u ,v∈L

hu

hv = ∑
u:v ,u∈L

au



  

Example: Google PageRank

● based on citation analysis

● the probability to reach a page after many clicks

● favors older pages

● recalculated after each index rebuild

● can be fooled (e.g. „link farms“)

● recursive formula:

PRp = ∑
v∈Sp

PRv 
∣Links v ∣



  

Important subnetworks:
Islands

● we need:

– numerical property of vertices/lines

– min and max size

● result:
– locally important subnetworks on different levels

● efficient algorithms for island discovery



  

Dense groups:  cliques

● clique of order k:

– complete subgraph (all posible lines)
● all actors are in relation with all other actors

● hard to compute (NP-complete problem)

● examples:

– very good friends in a friend network

– group of tighty connected scientists who published 
papers together with all others



  

Dense groups: cores

● k-core on n vertices:

– minimal degree is k

– generally: set of subgraphs

● cores are nested: core hierarchy

● efficient algorithms exist



  

Two-mode networks

● two disjoint sets of vertices

● how to analyze:

– convert to one-mode or

– use specialized algorithms

● analysis:

– two-mode cores

– clustering

– blockmodelling

– after conversion to one-mode: all std. algs.



  

Example: two-mode network

T. Maitland A.Whitton

alliance trust scottish
american
investment

scottish
american
mortgage

PW. Campbell W. Sanderson JS. Tait

edinburgh
investment
trust

union
bank
of scotland

natinal guarantee
&suretyship
association

● directors and stock companies in Scotland 
(one small part of the whole network)



  

Two-mode cores

● (p,q) core:

– minDegree >= p in the first set

– minDegree >= q in the second set

– maximal subset with these conditions
● not always connected



  

Example:
Two-mode cores of IMDB

● network: actors and films



  

Wrestling movies

(247,2) (27,22)



  

(2,516) core: Hard core
(core of films for adults...)



  

Clusters, partitions, hierarchies

● cluster: nonempty subset of V: 

● clustering: nonempty set of clusters:

● clustering               is a partition iff:

–

● clustering               is a hierarchy iff:

–

● why clustering:

– group similar vertices

– gain insight into the structure

C⊆ V

C = {Ci}

C = {Ci}

∪
i
Ci = V and Ci∩ C j =∅

C = {Ci}

Ci ∩C j = {∅ , Ci , C j}



  

Blockmodelling

● reduce a large network

● identify clusters of units:

– those who have 
smilar structural 
characteristic

● within cluster:

– the same or similar 
connection patterns 
to other units           
(equivalency)



  

Equivalence
● two types:

– structural: the same connection pattern to the 
same neighbours

– regular: the same or similar pattern to 
(possibly) different neighbours

● finding partitions in terms of equivalence is a 
special case of clustering

– indirect approach
● compute dissimilarities

– direct approach
● construct fit function and do local optimization



  

Indirect approach

● compute dissimilarity 
(e.g. corrected 
Euclidean)

● use hierarchical 
clustering to obtain 
partitioning

● now we can manually 
select suitable 
number of clusters



  

Graph visualization

● first step in any SNA task:

– general overview of the network

– get some ideas what analysis to perform

– find some patterns manually

– inspect individuals

● many algorithms:

– exact: simulation of springs and electrical charges

– approximate: identify and draw groups

● Pajek: up to ~5000 vertices



  

Visualization of a citation network:
Literature on graph drawing



  

Springer ILP citation network
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