Data Mining and Knowledge Discovery: Practice Notes

Petra Kralj Novak

Petra.Kralj.Novak@ijs.si 6.12.2018

Discussion 1

- 1. Can KNN be used for classification tasks?
- 2. Compare KNN and Naïve Bayes.
- 3. Compare decision trees and regression trees.
- 4. Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good
 - very good
 - excellent
 - 1. Is this a classification or a numeric prediction problem?
 - 2. What if such a variable is an attribute, is it nominal or numeric?

KNN for classification?

- Yes.
- A case is classified by a majority vote of its neighbors, with the case being assigned to the class most common amongst its K nearest neighbors measured by a distance function. If K = 1, then the case is simply assigned to the class of its nearest neighbor.

Discussion

- 1. Can KNN be used for classification tasks?
- 2. Compare KNN and Naïve Bayes.
 - 3. Compare decision trees and regression trees.
 - 4. Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good
 - 4. very good
 - 5. excellent
 - 1. Is this a classification or a numeric prediction problem?
 - 2. What if such a variable is an attribute, is it nominal or numeric?

Comparison of KNN and naïve Bayes

	Naïve Bayes	KNN	
Used for			
Handle categorical data			
Handle numeric data			
Model interpretability			
Lazy classification			
Evaluation			
Parameter tuning			

Comparison of KNN and naïve Bayes

	Naïve Bayes	KNN		
		Classification and numeric		
Used for	Classification	prediction		
Handle categorical data	Yes	Proper distance function needed		
Handle numeric data	Discretization needed	Yes		
Model interpretability	Limited	No		
Lazy classification	Partial	Yes		
Evaluation	Cross validation,	Cross validation,		
Parameter tuning	No	No		

Discussion

- 1. Can KNN be used for classification tasks?
- 2. Compare KNN and Naïve Bayes.
- 3. Compare decision trees and regression trees.
- 4. Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good
 - 4. very good
 - 5. excellent
 - 1. Is this a classification or a numeric prediction problem?
 - 2. What if such a variable is an attribute, is it nominal or numeric?

Comparison of regression and decision trees

- 1. Data
- 2. Target variable
- 3. Evaluation
- 4. Error
- 5. Algorithm
- 6. Heuristic
- 7. Stopping criterion

Comparison of regression and decision trees

Regression trees	Decision trees		
Data: attribute-value description			
Target variable: Continuous	Target variable: Categorical (nominal)		
Evaluation: cross validation, sepa	arate test set,		
Error: MSE, MAE, RMSE,	Error: 1-accuracy		
Algorithm: Top down induction, shortsighted method			
Heuristic: Standard deviation	Heuristic : Information gain		
Stopping criterion: Standard deviation< threshold	Stopping criterion: Pure leafs (entropy=0)		

Discussion

- 1. Can KNN be used for classification tasks?
- 2. Compare KNN and Naïve Bayes.
- 3. Compare decision trees and regression trees.
- 4. Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good
 - 4. very good
 - 5. excellent
 - 1. Is this a classification or a numeric prediction problem?
 - 2. What if such a variable is an attribute, is it nominal or numeric?

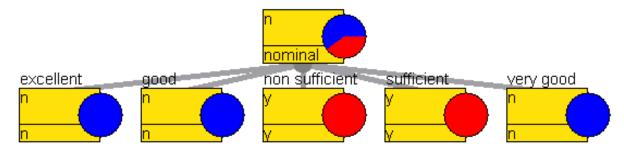
Classification or a numeric prediction problem?

- Target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3.good
 - 4. very good
 - 5. excellent
- Classification: the misclassification cost is the same if "non sufficient" is classified as "sufficient" or if it is classified as "very good"
- Numeric prediction: The error of predicting "2" when it should be "1" is 1, while the error of predicting "5" instead of "1" is 4.
- If we have a variable with ordered values, it should be considered numeric.

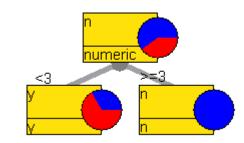
Nominal or numeric attribute?

- A variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3.good
 - 4. very good
 - 5. Excellent

Nominal:



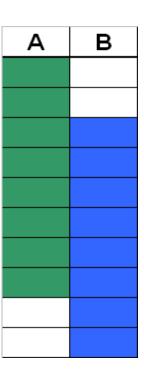
Numeric:



 If we have a variable with ordered values, it should be considered numeric.

Discussion 2

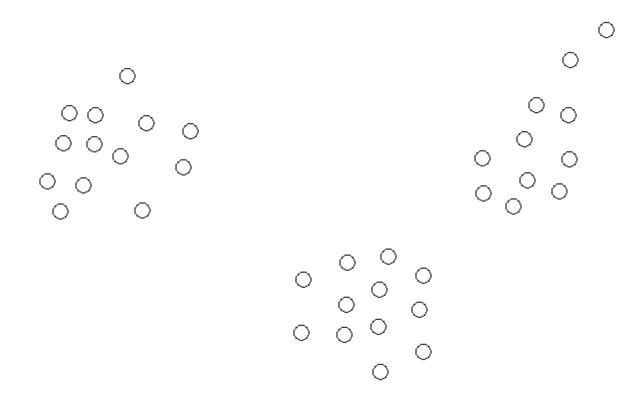
- Transformation of an attribute-value dataset to a transaction dataset.
- What are the benefits of a transaction dataset?
- What would be the association rules for a dataset with two items A and B, each of them with support 80% and appearing in the same transactions as rarely as possible?
 - minSupport = 50%, min conf = 70%
 - minSupport = 20%, min conf = 70%
- What if we had 4 items: A, ¬A, B, ¬ B
- Compare decision trees and association rules regarding handling an attribute like "PersonID". What about attributes that have many values (eg. Month of year)

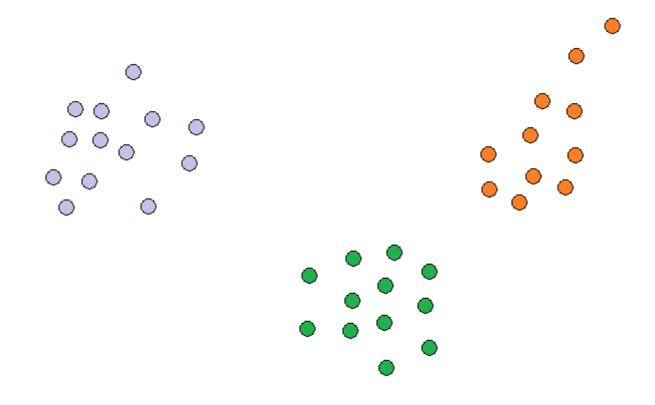


• ... is the process of grouping the data instances into clusters so that objects within a cluster have high similarity but are very dissimilar to objects in other clusters.

Wish list:

- Identity clusters irrespective of their shapes
- Scalability,
- Ability to deal with noisy data,
- Insensitivity to the order of input records.

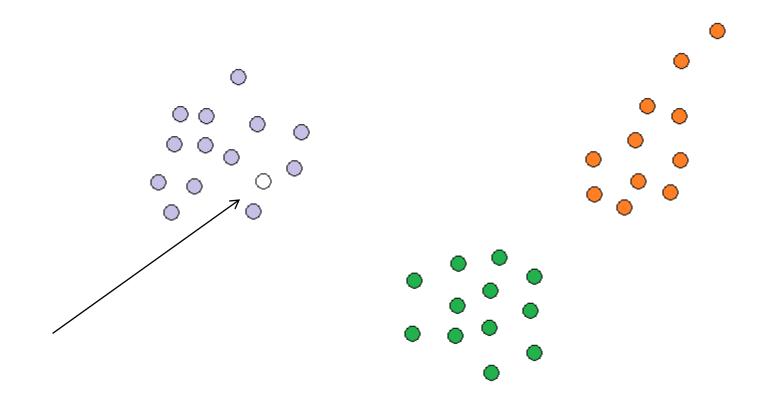




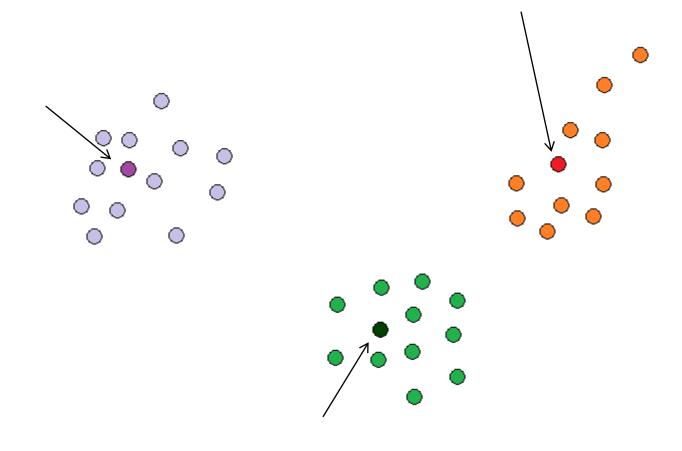
Applications

- Data mining
 - Unsupervised classification
 - Data summarization
 - Outlier analysis
 - •
- Custumer segmentation and collaborative filtering
- Text applications
- Social network analysis

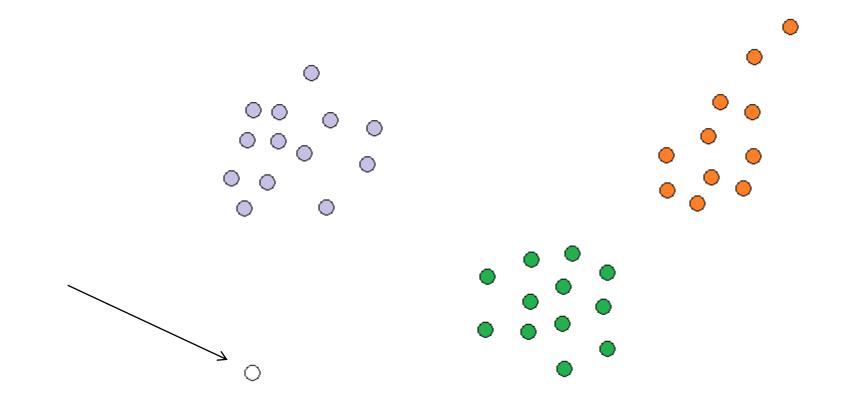
Unsupervised classification



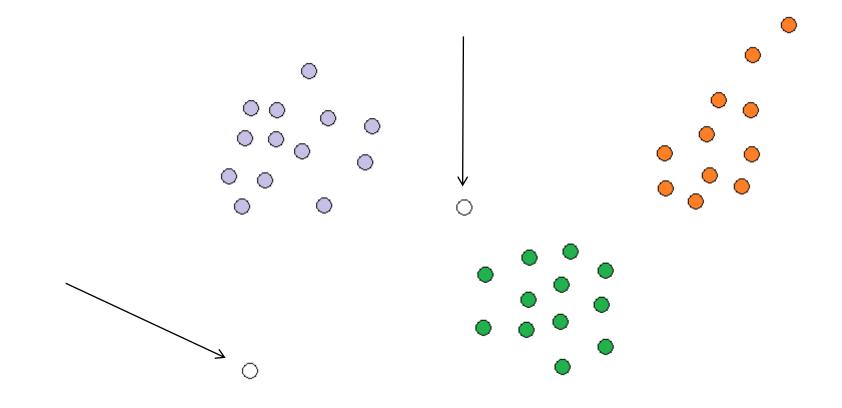
Data summarization



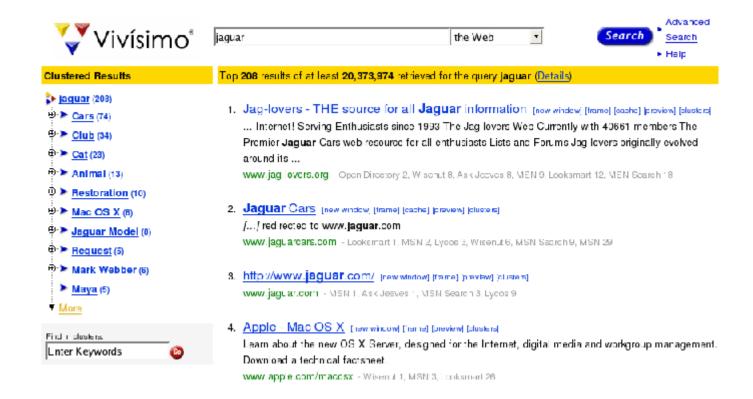
Outlier detection



Outlier detection



Text applications



Clustering types

- Partitioning
 - k-means, k-medoids, k-modes
- Hierarchical
 - Agglomerative
- Grid-based
 - Multi-resolution grid structure
 - Efficient and scalable
- Density-based
 - A cluster is a dense region of points, which is separated by low density regions, from other regions of high density
 - Algorithms: DBSCAN, OPTICS, DenClue

K-means

- 1. Choose **k** random instances as cluster centers
- 2. Assign each instance to its closest cluster center
- Recompute cluster centers by computing the average (aka centroid) of the instances pertaining to each cluster
- 4. If cluster centers have moved, go back to Step 2

(Equivalent termination criterion: stop when assignment of instances to cluster centers has not changed)

Alternatives: K-medoids, K-modes

- Might get stuck in local minia
- Silhuette for finding the optimal K

Agglomerative clustering

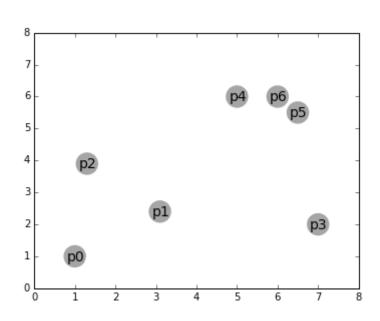
- 1. Start with a collection **C** of **n** singleton clusters
 - Each cluster contains one data point c_i ={x_i}
- 2. Repeat until only one cluster is left:
 - 1. Find a pair of clusters that is closest: min $D(c_i, c_i)$
 - 2. Merge the clusters $\mathbf{c_i}$ and $\mathbf{c_j}$ into $\mathbf{c_{i+j}}$

Some new index, not a sum

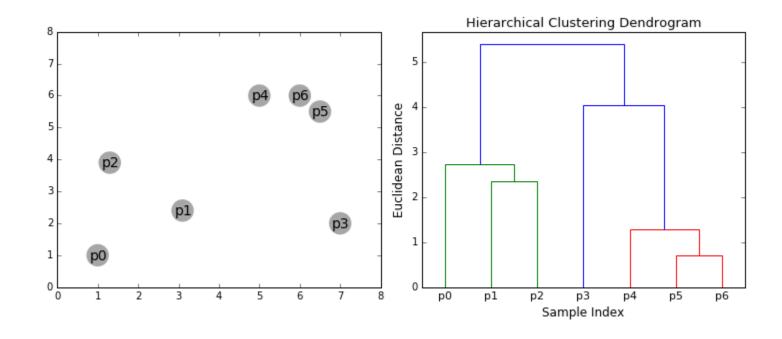
3. Remove c_i and c_j from the collection C_i , add c_{i+j}

- Time and space complexity
- Sensitive to noisy data

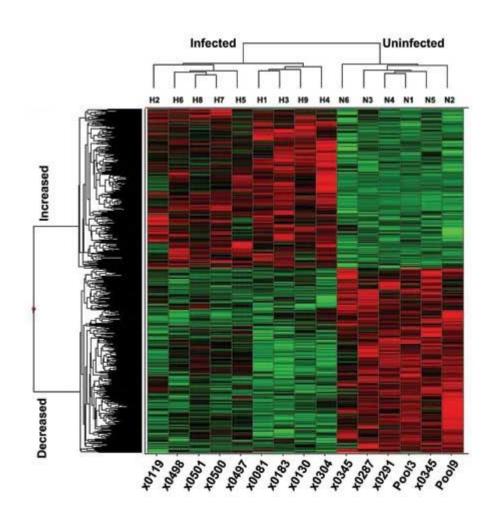
Agglomerative clustering - example



Agglomerative clustering - dendrogram



Example: Hierarchical clustering of genes

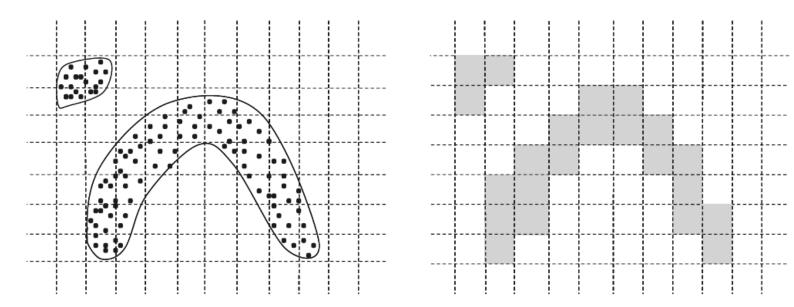


Grid-based (parameters \mathbf{p} and $\mathbf{\tau}$)

- 1. Discretize each dimension of **D** into **p** ranges
- 2. Determine dense grid cells at level τ
- 3. Create graph where dense grid cells are connected if they are adjacent
- 4. Determine connected components of graph
- 5. Return: points in each connected component as a cluster

Grid-based (parameters \mathbf{p} and $\mathbf{\tau}$)

- 1. Discretize each dimension of **D** into **p** ranges
- 2. Determine dense grid cells at level τ
- 3. Create graph where dense grid cells are connected if they are adjacent
- 4. Determine connected components of graph
- 5. Return: points in each connected component as a cluster



Density based clustering DBSCAN(Data: D, Radius: Eps, Density: τ)

- Core point: A data point is defined as a core point, if it contains at least τ data points within a radius Eps within a radius Eps.
- Border point: A data point is defined as a border point, if it contains less than τ points, but it also contains at least one core point within a radius Eps.
- Noise point: A data point that is neither a core point nor a border point is defined as a noise point.

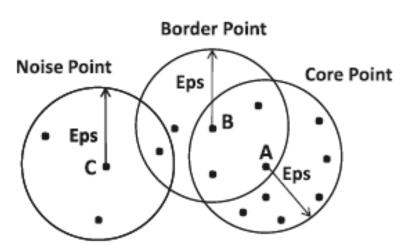
 Border Point

Noise Point

Core Point

Density based clustering DBSCAN(Data: D, Radius: Eps, Density: τ)

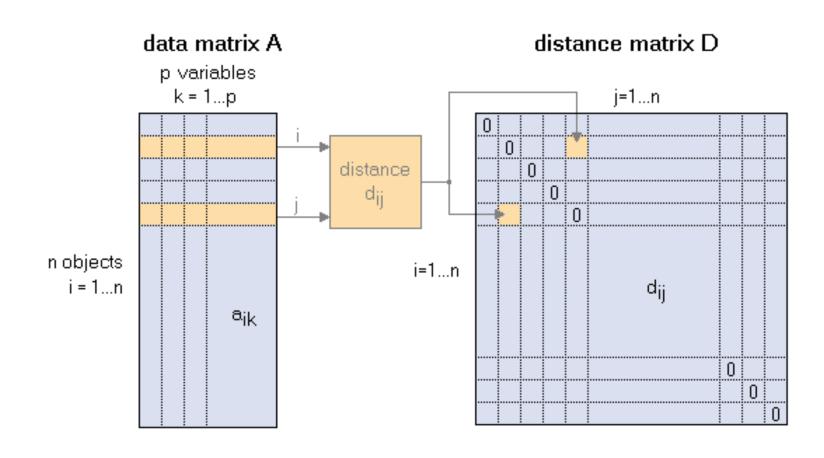
- 1. Determine core, border and noise points of D at level (Eps, τ);
- 2. Create graph in which core points are connected if they are within *Eps* of one another;
- 3. Determine connected components in graph;
- 4. Assign each border point to connected component with which it is best connected;
- **5. Return** points in each connected component as a cluster;



Similarity / distance measures

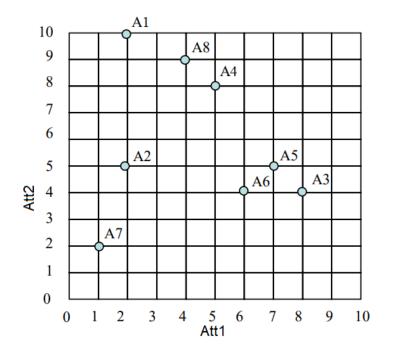
- The similarity measure depends on characteristics of the input data:
 - Attribute type: binary, categorical, continuous
 - Sparseness
 - Dimensionality
 - Type of proximity

Distance matrix



Distance matrix example

	Att1	Att2
A1	2	10
A2	2	5
А3	8	4
A4	5	8
A5	7	5
A6	6	4
A7	1	2
A8	4	9



	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	$\sqrt{58}$
A8								0

Euclidian $Dist(A,B) = \sqrt[2]{(Att1(A) - Att1(B))^2 + (Att2(A) - Att2(B))^2}$

Distance measures

$d(x,y) = \sqrt{\sum_i (x_i - y_i)^2}$]
$d(x,y) = \sum_{i} (x_i - y_i)^2$	
$d(x, y) = \sum_{i} (x_i - y_i)$]
$d(x,y) = \sum \frac{ x_i - y_i }{ x_i + y_i }$]
$d(x, y) = \max(x_i - y_i)$	1
$d(x,y) = \frac{\sum x_i - y_i }{\sum x_i + y_i}$	
$d(x,y) = \frac{\sum_{i} (x_{i}y_{i})}{\sqrt{\sum_{i} (x_{i})^{2} \sum_{i} (y_{i})^{2}}}$	
$d(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (y_i - \overline{y})^2} \sqrt{\sum (y_i - \overline{y})^2}}$	
$d(x,y) = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} (y_{i} - \overline{y})^{2}} \sqrt{\sum_{i} (y_{i} - \overline{y})^{2}}}$	
Same as Euclidean, but only the indexes where both x and y have a	1
of values calculated. Nulls must be replaced by the missing value	
	$d(x,y) = \sum (x_i - y_i)^2$ $d(x,y) = \sum x_i - y_i $ $d(x,y) = \max(x_i - y_i)$ $d(x,y) = \max(x_i - y_i)$ $d(x,y) = \frac{\sum x_i - y_i }{\sum x_i + y_i}$ $d(x,y) = \frac{\sum (x_i y_i)}{\sqrt{\sum (x_i)^2 \sum (y_i)^2}}$ $d(x,y) = \frac{\sum (x_i - \overline{y})(y_i - \overline{y})}{\sqrt{\sum (y_i - \overline{y})^2} \sqrt{\sum (y_i - \overline{y})^2}}$ $d(x,y) = \frac{\sum x_i y_i}{\sqrt{\sum (y_i - \overline{y})^2} \sqrt{\sum (y_i - \overline{y})^2}}$ Same as Euclidean, but only the indexes where both x and y have a value (not NULL) are used, and the result is weighted by the number

Minkowski distance

$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{1/p}$$

Aggarwal, C. C. (2015). *Data mining: the textbook*. Springer. (Chapter 3)

Evaluation of clustering

- Objective functions in clustering formalize the goal of attaining high intra-cluster similarity and low inter-cluster similarity.
- Internal evaluation:
 - Sum of square distances to centroid
 - Intracluster to intercluster distance ratio
 - Silhuette coefficient
 - -biased towards algorithms
- External evaluation: we can use a set of classes in an evaluation benchmark (gold standard, ground truth)

Discussion

- Similarity vs. distance
- List algorithms that are based on distance/similarity

..... 19.12.2018

- Written exam
 - 60 minutes of time
 - 4 tasks:
 - 2 computational (60%),
 - 2 theoretical (40%)
 - Literature is not allowed
 - Each student can bring
 - one hand-written A4 sheet of paper,
 - and a hand calculator
- Data mining seminar proposal
 - One page seminar proposal on paper