Data Mining and Knowledge Discovery Practice notes - 29.11.2011

Data Mining and Knowledge Discovery

Petra Kralj Novak
Petra.Kralj.Novak@ijs.si 2011/11/29

Practice plan

- 2011/11/08: Predictive data mining 1
- Decision trees
- Evaluating classifiers 1: separate test set, confusion matrix, classification accuracy
- A taste of Weka
- 2011/11/22: Predictive data mining 2
- Evaluating classifiers 2: Cross validation
- Naïve Bayes classifier
- Numeric prediction
- 2011/11/29: Descriptive data mining
- Association and classification rules
- Descriptive data mining in Weka
- Discussion about seminars and exam
- 2011/12/20: Written exam, Seminar proposal presentations
- 2012/1/24 : Data mining seminar presentations

Categorical or numeric?

- Variable with five possible values:
1.non sufficient
2.sufficient
3.good
4.very good
5.excellent
- Attribute, example, target variable, class, train set, test set, attribute-value data, market basket data
- Data mining
- decision tree induction, entropy, information gain, overfitting, Occam's razor, model pruning, naïve Bayes classifier, KNN, association rules, support, confidence, predictive vs. descriptive DM, numeric prediction, regression tree, model tree, heuristics vs. exhaustive
search
- Evaluation
- Accuracy, confusion matrix, cross validation, ROC space, error, leave-one-out

Classification or a numeric prediction problem?

- Target variable with five possible values:
1.non sufficient
2.sufficient
3.good
4.very good
5.excellent
- Classification: the misclassification cost is the same if "non sufficient" is classified as "sufficient" or if it is classified as "very good"
- Numeric prediction: The error of predicting " 2 " when it should be " 1 " is 1 , while the error of predicting " 5 " instead of " 1 " is 4.
- If we have a variable with ordered values, it is better to treat it as numeric.

Categorical or numeric attribute?

- A variable with five possible values:
1.non sufficient
2.sufficient
$3 . g o o d$
4.very good
5.excellent

Nominal: Numeric:

- If we have a variable with ordered values,
it is better to treat it as numeric.

Data Mining and Knowledge Discovery Practice notes - 29.11.2011

Information gain of a numeric attribute

	Age	Lenses
	67	YES
	52	YES
	63	NO
	26	YES
	65	NO
	23	YES
	65	NO
	25	YES
	26	YES
	57	NO
	49	NO
	23	YES
	39	NO
	55	NO
	53	NO
	38	NO
	67	YES
	54	NO
	29	YES
	46	NO
	44	YES
	32	NO
सCCM	39	NO
	45	YES

Information gain of a numeric attribute

Information gain of a numeric attribute

	Age	Lenses	Sort by Age	Age	Lenses	Define possible splitting points	Age	Lenses
	67	YES		23	YES		23	YES
	52	YES		23	YES		23	YES
	63	NO		25	YES		25	YES
	26	YES		26	YES		26	YES
	65	NO		26	YES		26	YES
	23	YES		29	YES		29	YES
	65	NO		32	NO		32	NO
	25	YES		38	NO		38	NO
	26	YES		39	NO		39	NO
	57	NO		39	NO		39	NO
	49	NO		44	YES		44	YES
	23	YES		45	YES		45	YES
	39	NO		46	NO		46	NO
	55	NO		49	NO		49	NO
	53	NO		52	YES		52	YES
	38	NO		53	NO		53	NO
	67	YES		54	NO		54	NO
	54	NO		55	NO		55	NO
	29	YES		57	NO		57	NO
	46	NO		63	NO		63	NO
	44	YES		65	NO		65	NO
	32	NO		65	NO		65	NO
TECHM	39	NO		67	YES		67	YES
	45	YES		67	YES		67	YES

Information gain of a numeric attribute

Information gain of a numeric attribute

Age	Lenses	
23	YES	
23	YES	
25	YES	
26	YES	
26	YES	
29	YES	
32	NO	30.5
38	NO	
39	NO	
39	NO	41.5
44	YES	
45	YES	45.5
46	NO	
49	NO	50.5
52	YES	52.5
53	NO	
54	NO	
55	NO	
57	NO	
63	NO	
65	NO	
65	NO	66
67	YES	
67	YES	

$E(S)=E(11 / 24,13 / 24)=0.99$

$\operatorname{InfoGain}\left(\mathrm{S}, \mathrm{Age}_{30.5}\right)=$
$=\mathrm{E}(\mathrm{S})-\sum \mathrm{p}_{\mathrm{v}} \mathrm{E}\left(\mathrm{p}_{\mathrm{v}}\right)$
$=0.99-\left(6 / 24^{*} 0+18 / 24^{*} 0.85\right)$
$=0.35$

Information gain of a numeric attribute

Data Mining and Knowledge Discovery Practice notes - 29.11.2011

Information gain of a numeric attribute

<66 $\overbrace{\gg=66}$

Classification rules

Covering algorithm (e.g. Ripper by Cohen, 1995):

- We have an empty rule base
- Add "the best" rule to the rule base
- Remove the positive examples that are covered by "the best" rule from the training dataset
- Until there are no more positive examples in the training dataset

Find the best rule:

- Start with an empty rule condition
- add one condition at a time to the current rule and evaluate the rule (information gain, Laplace estimate)
 The MIT Press (V1.0)

ROC ... Reciever Operator Charachteristics

Decision tree induced on the train set

Data Mining and Knowledge Discovery Practice notes - 29.11.2011

ROC space

	Predicted YES	Predicted NO
Actual YES	1	1
Actual NO	1	2

- True positive rate $=$ = \# true positives / \# all positives = $=\operatorname{TPr}=1 / 2$
- False positive rate =
= \# false positives / \# all negatives = $=\operatorname{FPr}=1 / 3$

Kchioloicios

Confusion matrix

ROC space 2

- Classifier "always YES"

	Predicted YES	Predicted NO
Actual YES	2	0
Actual NO	3	0

- $\operatorname{TPr}=1$
- $\operatorname{FPr}=1$

Confusion matrix 2:
A mushroom is edible if the model is at least 90% sure of this

numbibe

Confusion matrix 2:
A mushroom is edible if the model is at least 90% sure of this

Fmander

Data Mining and Knowledge Discovery Practice notes - 29.11.2011

ROC space

	Predicted YES	Predicted NO
Actual YES	1	1
Actual NO	0	3

- True positive rate $\operatorname{TPr}=1 / 2$
- False positive rate $\mathrm{FPr}=0$

Confusion matrix 3:
A mushroom is edible if the model is at least 20% sure of this

ROC convex hull

cap-color	ring-number	population	EDIBLE	DT1 (50\%)	DT2 (90\%)\|DT3 (20\%)	YES	NO	
brown	1	single	NO	YES	NO	YES	YES	NO
green	0	group	NO	NO	NO	NO	YES	NO
red	1	single	YES	NO	NO	YES	YES	NO
red	0	group	NO	NO	NO	NO	NO	YES
red	1	group	YES	YES	YES	YES	YES	NO

Confusion matrix 3:
A mushroom is edible if the model is at least 20% sure of this

ROC space

	Predicted YES	Predicted NO
Actual YES	2	0
Actual NO	1	2

- True positive rate $\operatorname{TPr}=1$
- False positive rate $\mathrm{FPr}=1 / 3$

AUC - Area Under Curve

AUC =
$=(0.5+1) / 2 * 1 / 3+2 / 3$
$=0.917$

Data Mining and Knowledge Discovery Practice notes - 29.11.2011

Association Rules

Association rules

- Rules $\mathbf{X} \rightarrow \mathbf{Y}, \mathrm{X}, \mathrm{Y}$ conjunction of items
- Task: Find all association rules that satisfy minimum support and minimum confidence constraints
- Support:
$\operatorname{Sup}(X \rightarrow Y)=\# X Y / \# D \cong p(X Y)$
- Confidence:
$\operatorname{Conf}(X \rightarrow Y)=\# X Y / \# X \cong p(X Y) / p(X)=p(Y \mid X)$

Association rules - algorithm

1. generate frequent itemsets with a minimum support constraint
2. generate rules from frequent itemsets with a minimum confidence constraint

* Data are in a transaction database

Frequent itemsets

- Generate frequent itemsets with support at least 2/6

A	B	C	D
1	1	1	1
	1	1	
	1		1
1		1	
1	1		1
1	1	1	

Frequent itemsets algorithm

Items in an itemset should be sorted alphabetically.

- Generate all 1-itemsets with the given minimum support.
- Use 1-itemsets to generate 2 -itemsets with the given minimum support.
- From 2-itemsets generate 3-itemsets with the given minimum support as unions of 2 -itemsets with the same item at the beginning.
- .
- From n-itemsets generate $(n+1)$-itemsets as unions of n itemsets with the same ($n-1$) items at the beginning.

Data Mining and Knowledge Discovery Practice notes - 29.11.2011

Frequent itemsets lattice

Frequent itemsets:

- $A \& B, A \& C, A \& D, B \& C, B \& D$
- A\&B\&C, A\&B\&D

Quality of association rules

$$
\begin{aligned}
& \text { Support(X) = \#X / \#D } \\
& \text { Support }(X \rightarrow Y)=\text { Support } \\
& \text {... } P(X Y) \\
& \text { Confidence }(X \rightarrow Y)=\# X Y / \# X \\
& P(Y \mid X)
\end{aligned}
$$

Leverage $(X \rightarrow Y)=\operatorname{Support}(X \rightarrow Y)$ - Support $(X) * S u p p o r t(Y)$

Conviction $(X \rightarrow Y)=$ 1-Support $(Y) /(1-C o n f i d e n c e(X \rightarrow Y))$

Rules from itemsets

- A\&B is a frequent itemset with support 3/6
- Two possible rules
$-A \rightarrow B$ confidence $=\#(A \& B) / \# A=3 / 4$
$-B \rightarrow A$ confidence $=\#(A \& B) / \# B=3 / 5$
- All the counts are in the itemset lattice! -

Quality of association rules

$$
\begin{array}{lr}
\text { Support }(X)=\# X / \text { \#D } & \text {............................... } P(X) \\
\text { Support }(X \rightarrow Y)=\text { Support }(X Y)=\text { \#XY / \#D .. } \mathrm{P}(\mathrm{Y} \mid \mathrm{X})
\end{array}
$$

Lift $(X \rightarrow Y)=$ Support $(X \rightarrow Y) /($ Support (X)*Support(Y)) How many more times the items in X and Y occur together then it would be expected if the itemsets were statistically independent.
Leverage $(X \rightarrow Y)=$ Support $(X \rightarrow Y)$ - Support(X)*Support((Y) Similar to lift, difference instead of ratio.
Conviction $(X \rightarrow Y)=$ 1-Support $(Y) /(1-C o n f i d e n c e(X \rightarrow Y))$
Degree of implication of a rule.
Sensitive to rule direction.

Discussion

- Transformation of an attribute-value dataset to a transaction dataset.
- What would be the association rules for a dataset with two items A and B, each of them with support 80% and appearing in the same transactions as rarely as possible? - minSupport $=50 \%$, min conf $=70 \%$ - minSupport $=20 \%$, min conf $=70 \%$
- What if we had 4 items: $A, \neg A, B, \neg B$
- Compare decision trees and association rules regarding handling an attribute like "PersonID". What about attributes that have many values (eg. Month of year)

