Data Mining and Knowledge Discovery Practice notes - 8.11.2011

Data Mining and Knowledge Discovery

Petra Krali Novak Petra.Kralj.Novak@ijs.si 2011/11/08

- Prof. Lavrač:
 - Data mining overview
 - Advanced topics
- Dr. Kralj Novak
 - Data mining basis

- - Attribute, example, target variable, class, train set, test set, attribute-value data, market basket data
- Data mining
 - decision tree induction, entropy, information gain, overfitting, Occam's razor, model pruning, naive Bayes classifier, KNN, association rules, support, confidence, predictive vs. descriptive DM, numeric prediction, regression tree, model tree, heuristics vs. exhaustive search
- Evaluation
 - Accuracy, confusion matrix, cross validation, ROC space, error, leave-one-out

• 2011/11/29: Descriptive data mining

• 2011/11/08: Predictive data mining 1

• 2011/11/22: Predictive data mining 2 Discussion on decision trees

- Association rules

Practice plan

- Descriptive data mining in Weka - Discussion about seminars and exam
- Hands on Weka 3
- 2011/12/20: Written exam, seminar proposal presentations

Evaluating classifiers 1: separate test set, confusion matrix, classification accuracy
Hands on Weka 1: just a taste

CARM

• 2012/1/24 : Data mining seminar presentations

Decision tree induction

Given

· Attribute-value data with nominal target variable

Induce

• A decision tree and estimate its performance on new data

Attribute-value data (nominal) target variable classes normal reduced normal reduced normal reduced normal reduced normal reduced values of (nominal) target normal reduced normal reduced normal myope myope ypermetrop reduced normal reduced normal reduced normal reduced normal myope myope myope hypermetrop

Data Mining and Knowledge Discovery Practice notes - 8.11.2011

Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

- Compute the entropy E(S) of the set S

 IF E(S) = 0

 The current set is "clean" and therefore a leaf in our tree

- The current set is clean and december 1.
 IF E(S) > 0
 Compute the information gain of each attribute Gain(S, A)
 The attribute A with the highest information gain becomes the root
 Divide the set S into subsets S, according to the values of A
 Repeat steps 1-7 on each Si

Test the model on the test set T

Training and test set

	Person	Age	Prescription	Astigmatic	Tear_Rate		
	P1	young	myope	no	normal	YES	Put 30% of
	P2	young	myope	no	reduced	NO	
	P3	young	hypermetrope	no	normal	YES	← examples
	P4	young	hypermetrope	no	reduced	NO	∥ in a
	P5	young	myope	yes	normal	YES	// III a
	P6	young	myope	yes	reduced	NO	/// separate
	P7	young	hypermetrope	yes	normal	YES	/ ///
	P8	young	hypermetrope	yes	reduced	NO	√ test set
	P9	pre-presbyopic	myope	no	normal	YES	.* ////
	P10	pre-presbyopic	myope	no	reduced	NO	. ////
	P11	pre-presbyopic	hypermetrope	no	normal	YES	. ////
	P12	pre-presbyopic	hypermetrope	no	reduced	NO	.4///
	P13	pre-presbyopic	myope	yes	normal	YES	·+// I
	P14	pre-presbyopic	myope	yes	reduced	NO	. // 1
	P15	pre-presbyopic	hypermetrope	yes	normal	NO	71
	P16	pre-presbyopic	hypermetrope	yes	reduced	NO	. +
	P17	presbyopic	myope	no	normal	NO	
	P18	presbyopic	myope	no	reduced	NO	
	P19	presbyopic	hypermetrope	no	normal	YES	
	P20	presbyopic	hypermetrope	no	reduced	NO	
	P21	presbyopic	myope	yes	normal	YES	
	P22	presbyopic	myope	yes	reduced	NO	
	P23	presbyopic	hypermetrope	yes	normal	NO	
	P24	presbyopic	hypermetrope	yes	reduced	NO	LEARNED 8
KNOWLEE	GE						8
TECHNOLOGIE	S						

Test set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	ves	normal	NO

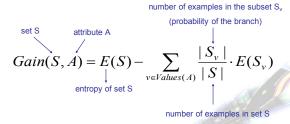
Put these data away and do not look at them in the training phase!

Training set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P1	young	myope	no	normal	YES
P2	young	myope	no	reduced	NO
P4	young	hypermetrope	no	reduced	NO
P5	young	myope	yes	normal	YES
P6	young	myope	yes	reduced	NO
P7	young	hypermetrope	yes	normal	YES
P8	young	hypermetrope	yes	reduced	NO
P10	pre-presbyopic	myope	no	reduced	NO
P11	pre-presbyopic	hypermetrope	no	normal	YES
P14	pre-presbyopic	myope	yes	reduced	NO
P17	presbyopic	myope	no	normal	NO
P18	presbyopic	myope	no	reduced	NO
P19	presbyopic	hypermetrope	no	normal	YES
P20	presbyopic	hypermetrope	no	reduced	NO
P21	presbyopic	myope	yes	normal	YES
P22	presbyopic	myope	yes	reduced	NO
P24	presbyopic	hypermetrope	yes	reduced	NO

Information gain

How much information do we gain by splitting the set S according to attribute A?



Entropy

$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

Calculate the following entropies:

$$E(0,1) =$$

$$E(1/2, 1/2) =$$

$$E(1/4, 3/4) =$$

$$E(1/7, 6/7) =$$

$$E(6/7, 1/7) =$$

$$E(0.1, 0.9) =$$

 $E(0.001, 0.999) =$

Data Mining and Knowledge Discovery Practice notes – 8.11.2011

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

• Calculate the following entropies:

E
$$(0,1) = 0$$

E $(1/2, 1/2) = 1$
E $(1/4, 3/4) = 0.81$
E $(1/7, 6/7) = 0.59$
E $(6/7, 1/7) = 0.59$
E $(0.1, 0.9) = 0.47$
E $(0.001, 0.999) = 0.01$

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c \cdot \log_2 p_c$$

• Calculate the following entropies:

E
$$(0,1) = 0$$

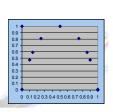
E $(1/2, 1/2) = 1$
E $(1/4, 3/4) = 0.81$
E $(1/7, 6/7) = 0.59$
E $(6/7, 1/7) = 0.59$
E $(0.1, 0.9) = 0.47$
E $(0.001, 0.999) = 0.01$

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

• Calculate the following entropies:

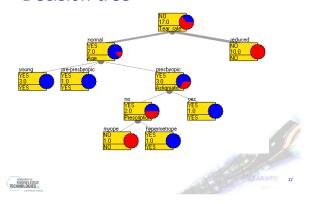
E (0,1) = 0E (1/2, 1/2) = 1E (1/4, 3/4) = 0.81E (1/7, 6/7) = 0.59E (6/7, 1/7) = 0.59E (0.1, 0.9) = 0.47E (0.001, 0.999) = 0.01



Entropy and information gain

	probability of		
probability of class 1	class 2	entropy E(p ₁ , p ₂) =	1.00
			0.90
p ₁	p ₂ = 1-p ₁	-p ₁ *log ₂ (p ₁) - p ₂ *log ₂ (p ₂)	- 0.80
0	1	0.00	0.70
0.05	0.95	0.29	
0.10	0.90	0.47	\$ 0.60 \$ 0.50 \$ 0.40
0.15	0.85	0.61	5 0.40 F
0.20	0.80	0.72	0.30
0.25	0.75	0.81	0.20
0.30	0.70	0.88	0.10
0.35	0.65	0.93	0.00
0.40	0.60	0.97	0 0.2 0.4 0.6 0.8 1
0.45	0.55	0.99	distribution of probabilities
0.50	0.50	1.00	distribution of probabilities
0.55	0.45	0.99	
0.60	0.40	0.97	number of examples in the subse
0.65	0.35	0.93	probability of the "branch
0.70	0.30	0.88	attribut A
0.75	0.25	0.81	5
0.80	0.20	0.72 G_{ℓ}	$ain(S,A) = E(S) - \sum_{v \in S_v} \left(\frac{ S_v }{ S_v }\right) E(S_v)$
0.85	0.15	0.61	veValues (A \ S \)
0.90	0.10	0.47	. \ /
0.95	0.05	0.29	set S
1	0	0.00	number of examples in set

Decision tree



Confusion matrix

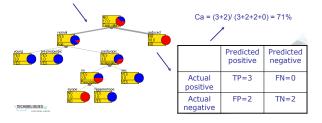
	predicted					
		Predicted positive	Predicted negative			
actual	Actual positive	TP	FN			
act	Actual negative	FP	TN			

- Confusion matrix is a matrix showing actual and predicted classifications
- Classification measures can be calculated from it, like classification accuracy
 - = #(correctly classified examples) / #(all examples) = (TP+TN) / (TP+TN+FP+FN)

Data Mining and Knowledge Discovery Practice notes - 8.11.2011

Evaluating decision tree accuracy

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	preshyonic	hypermetrone	Ves	normal	NO



Discussion

- How much is the information gain for the "attribute" Person? How would it perform on the test set? How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13} What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- What are the possible stopping criteria for building decision trees?
- In what circumstances is it impossible to achieve pure leaves in a decision tree?

