Data Mining and Knowledge Discovery

Petra Kralj Novak Petra.Kralj.Novak@ijs.si

Practice, 2010/12/2

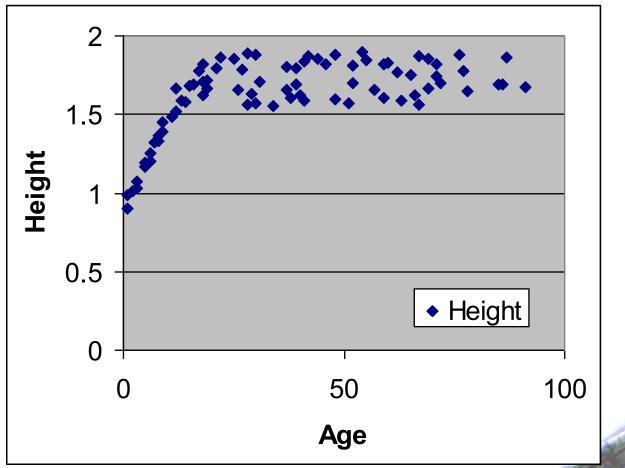
Practice plan

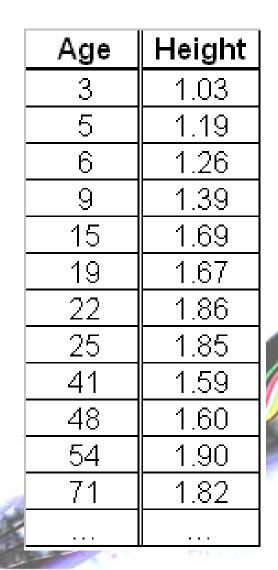
- 2010/11/25: Predictive data mining
 - Decision trees
 - Naïve Bayes classifier
 - Evaluating classifiers (separate test set, cross validation, confusion matrix, classification accuracy)
 - Predictive data mining in Weka
- 2010/12/2: Numeric prediction and descriptive data mining
 - Numeric prediction models
 - Association rules
 - Regression models and evaluation in Weka
 - Descriptive data mining in Weka
 - Discussion about seminars and exam
- 2010/12/16: Written exam, Seminar proposal presentation
- 2011/2/1: Deadline for data mining papers (written seminal
- 2011/2/3: Data mining seminar presentations

Numeric prediction Baseline, Linear Regression, Regression tree, Model Tree, **KNN**

Numeric prediction	Classification
Data: attribute-value desc	cription
Target variable:	Target variable:
Continuous	Categorical (nominal)
Evaluation: cross validati	on, separate test set,
Error:	Error:
MSE, MAE, RMSE,	1-accuracy
Algorithms:	Algorithms:
Linear regression,	Decision trees, Naïve
regression trees, Baseline predictor:	Bayes, Baseline predictor:
Mean of the target variable	Majority class
DUWLEDGE OLOGIES Jožef Stefan Institute	ME

 data about 80 people: Age and Height



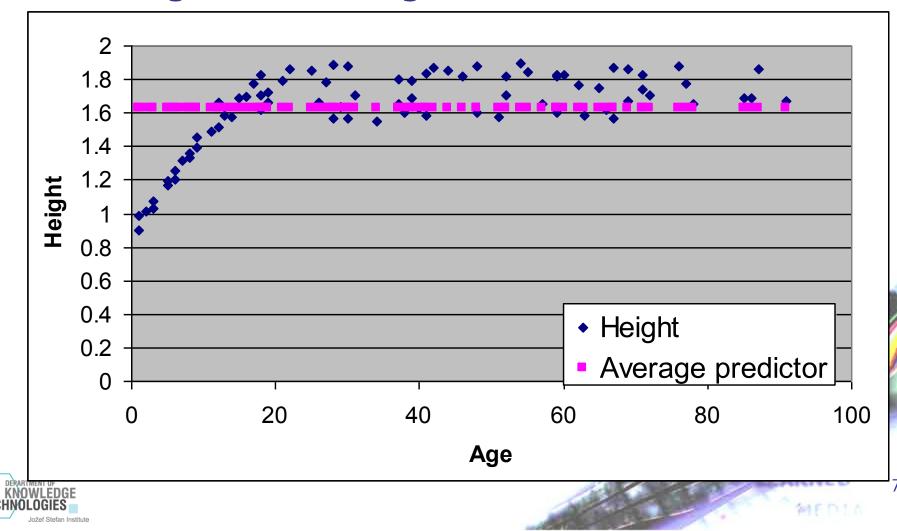


Test set

Age	Height
2	0.85
10	1.4
35	1.7
70	1.6

Baseline numeric predictor

Average of the target variable



Baseline predictor: prediction

Average of the target variable is 1.63

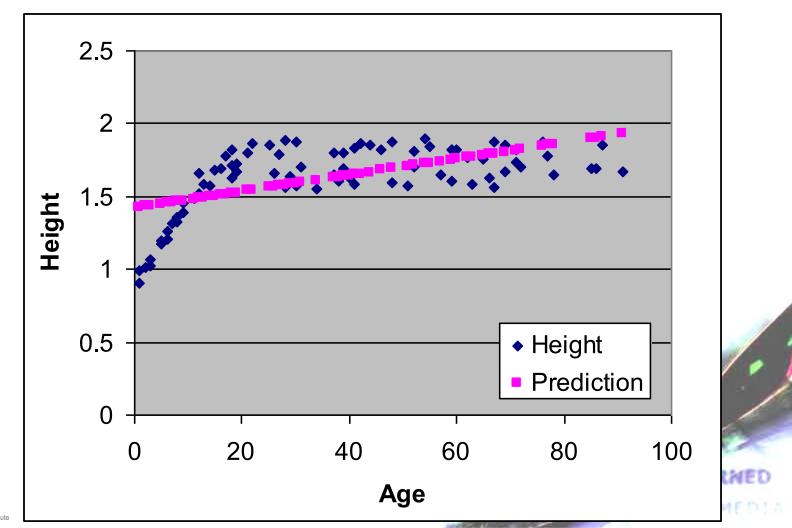
Age	Height	Baseline
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Linear Regression Model

Height = 0.0056 * Age + 1.4181

RTMENT OF

KNOWI FDGF

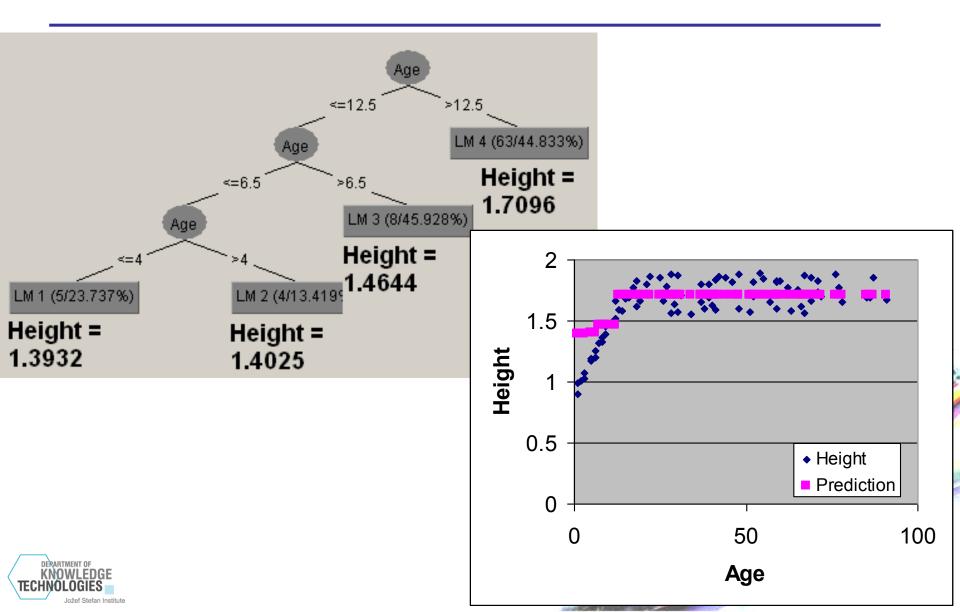


Linear Regression: prediction

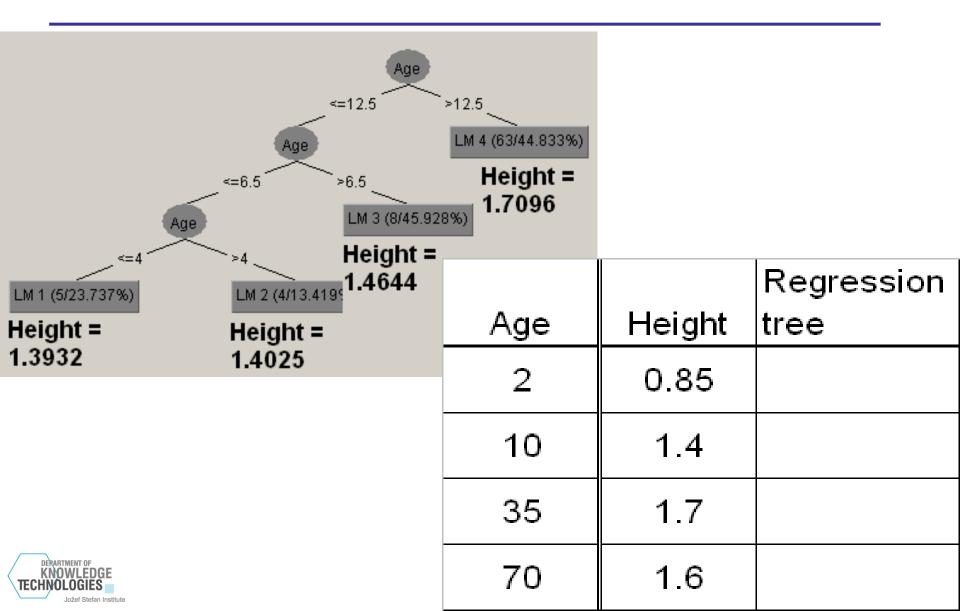
Height = 0.0056 * Age + 1.4181

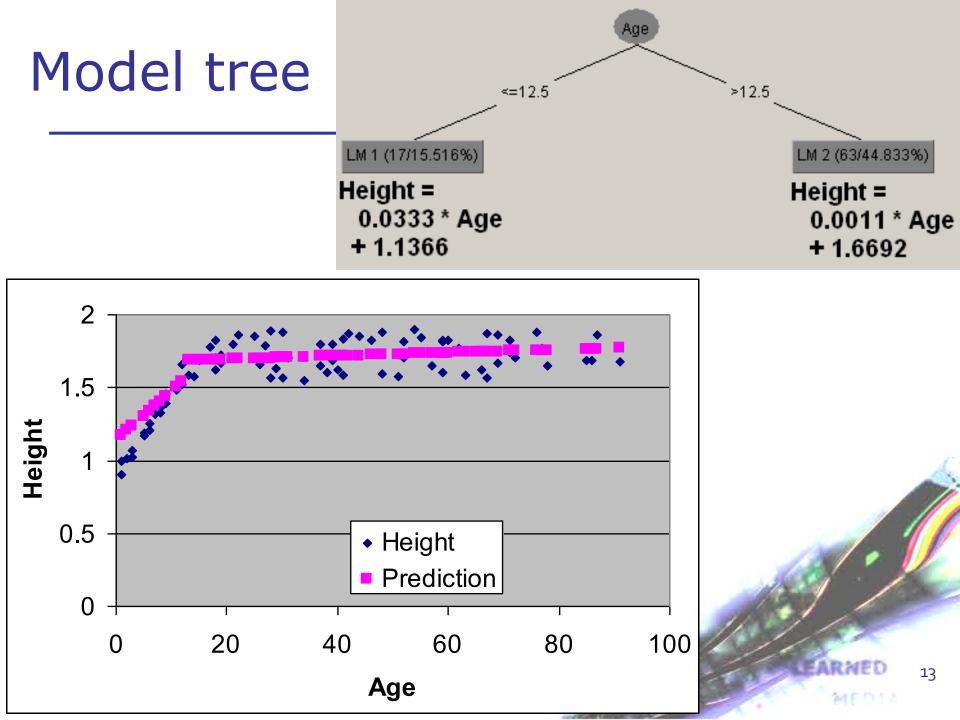
		Linear
Age	Height	regression
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Regression tree

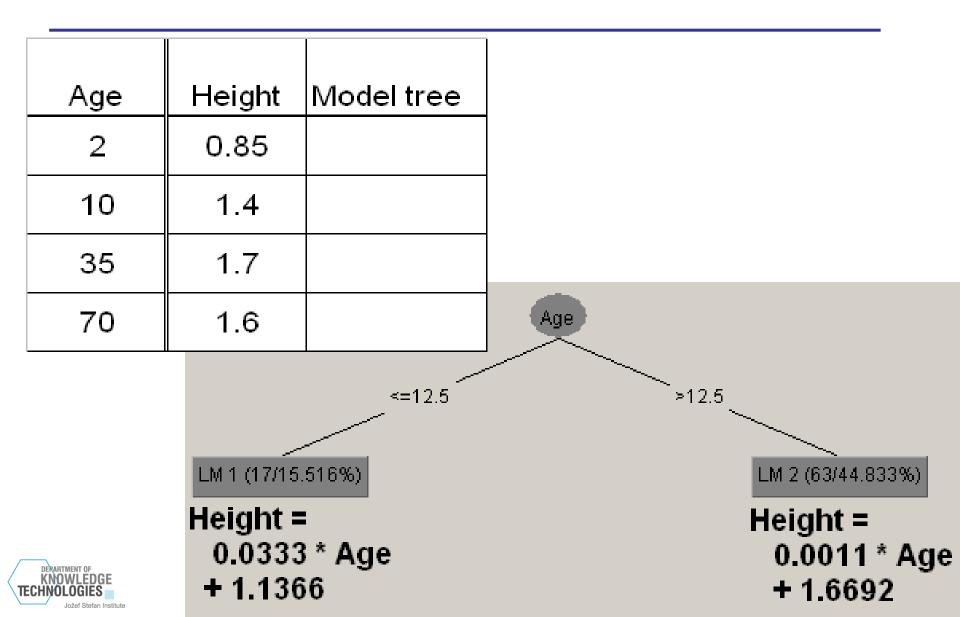


Regression tree: prediction



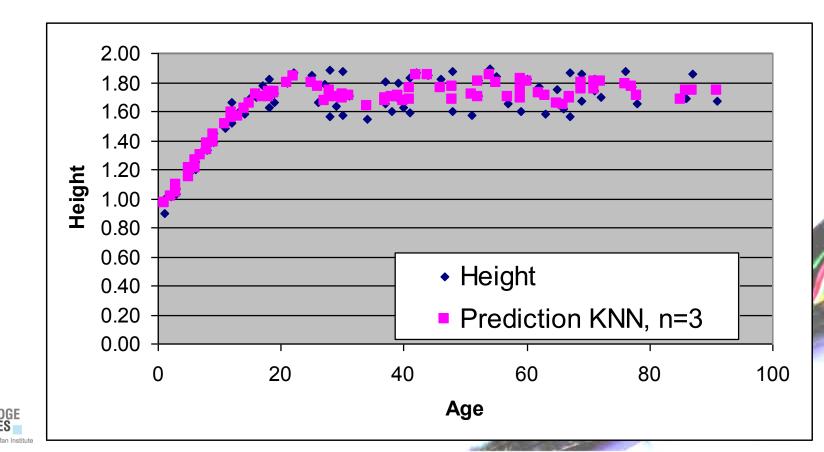


Model tree: prediction



KNN – K nearest neighbors

- Looks at K closest examples (by non-target attributes) and predicts the average of their target variable
- In this example, K=3



Age	Height
1	0.90
1	0.99
2	1.01
3	1.03
3	1.07
5	1.19
5	1.17

•		
Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
8	1.36
8	1.33
9	1.45
9	1.39
11	1.49
12	1.66
12	1.52
13	1.59
14	1.58

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
30	1.57
30	1.88
31	1.71
34	1.55
37	1.65
37	1.80
38	1.60
39	1.69
39	1.80

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Age	Height
67	1.56
67	1.87
69	1.67
69	1.86
71	1.74
71	1.82
72	1.70
76	1.88

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

EARNED

Which predictor is the best?

Age	Height	Baseline	Linear regression	Regressi on tree	Model tree	kNN
2	0.85	1.63	1.43	1.39	1.20	1.00
10	1.4	1.63	1.47	1.46	1.47	1.44
35	1.7	1.63	1.61	1.71	1.71	1.67
70	1.6	1.63	1.81	1.71	1.75	1.77

Evaluating numeric prediction

mean-squared error

Performance measure

root mean-squared error

mean absolute error

relative squared error

root relative squared error

relative absolute error

correlation coefficient

Formula $(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2$ n $\sqrt{\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{n}}$ $|p_1 - a_1| + \ldots + |p_n - a_n|$ $\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{(a_1-\overline{a})^2+\ldots+(a_n-\overline{a})^2}, \text{ where } \overline{a}=\frac{1}{n}\sum_{i}a_i$ $\sqrt{\frac{(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2}{(a_1 - \overline{a})^2 + \ldots + (a_n - \overline{a})^2}}$ $|p_1 - a_1| + \ldots + |p_n - a_n|$ $|a_1 - \overline{a}| + \ldots + |a_n - \overline{a}|$ $\frac{S_{PA}}{\sqrt{S_PS_A}}$, where $S_{PA} = \frac{\sum_i (p_i - \overline{p})(a_i - \overline{a})}{n-1}$, $S_p = \frac{\sum_i (p_i - \overline{p})^2}{p_i - 1}$, and $S_A = \frac{\sum_i (a_i - \overline{a})^2}{p_i - 1}$

Numeric prediction discussion

- Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good
 - 4. very good
 - 5. excellent
- Is this a classification or a numeric prediction problem?
 - What if such a variable is an attribute, is it nominal or numeric?

22

- Can KNN be used for classification tasks?
- Similarities between KNN and Naïve Bayes.
- Similarities and differences between

decision trees and regression trees.

Classification or a numeric prediction problem?

- Target variable with five possible values:
 - 1.non sufficient
 - 2.sufficient
 - 3.good
 - 4.very good
 - 5.excellent
- Classification: the misclassification cost is the same if "non sufficient" is classified as "sufficient" or if it is classified as "very good"
- Numeric prediction: The error of predicting "2" when it should be "1" is 1, while the error of predicting "5" instead of "1" is 4.
- If we have a variable with ordered values, it should be considered numeric.

Nominal or numeric attribute?

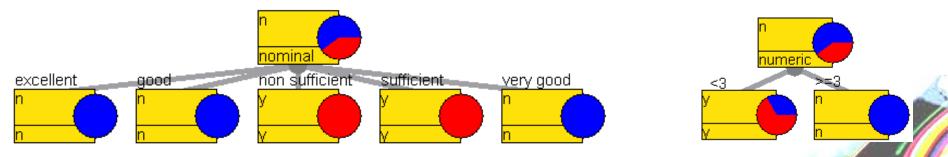
• A variable with five possible values:

- non sufficient
 sufficient
 good
 very good
- 5.excellent

Nominal:

Numeric:

24



• If we have a variable with **ordered** values, it should be considered numeric.

Numeric prediction discussion

- Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good
 - 4. very good
 - 5. excellent
 - Is this a classification or a numeric prediction problem?
 - What if such a variable is an attribute, is it nominal or numeric?

25

- Can KNN be used for classification tasks?
 - Similarities between KNN and Naïve Bayes.
 - Similarities and differences between

decision trees and regression trees.

Can KNN be used for classification tasks?

• YES.

- In numeric prediction tasks, the average of the neighborhood is computed
- In classification tasks, the distribution of the classes in the neighborhood is computed

Numeric prediction discussion

- Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good
 - 4. very good
 - 5. excellent
 - Is this a classification or a numeric prediction problem?
 - What if such a variable is an attribute, is it nominal or numeric?
- Can KNN be used for classification tasks?
- Similarities between KNN and Naïve Bayes.
 - Similarities and differences between

decision trees and regression trees.

Similarities between KNN and Naïve Bayes.

- Both are "black box" models, which do not give the insight into the data.
- Both are "lazy classifiers": they do not build a model in the training phase and use it for predicting, but they need the data when predicting the value for a new example (partially true for Naïve Bayes)

Numeric prediction discussion

- Consider a dataset with a target variable with five possible values:
 - 1. non sufficient
 - 2. sufficient
 - 3. good
 - 4. very good
 - 5. excellent
 - Is this a classification or a numeric prediction problem?
 - What if such a variable is an attribute, is it nominal or numeric?

29

- Can KNN be used for classification tasks?
- Similarities between KNN and Naïve Bayes.
- Similarities and differences between

decision trees and regression trees.

Regression trees	Decision trees			
Data: attribute-value description	I			
Target variable:	Target variable:			
Continuous	Categorical (nominal)			
Evaluation: cross validation, sepa	arate test set,			
Error:	Error:			
MSE, MAE, RMSE,	1-accuracy			
Algorithm: Top down induction, shortsighted	method			
Heuristic:	Heuristic :			
Standard deviation	Information gain			
Stopping criterion:	Stopping criterion:			
Standard deviation< threshold	Pure leafs (entropy=0)			
	LARNED			

Jožef Stefan Institute

Association Rules

Association rules

- Rules $X \rightarrow Y$, X, Y conjunction of items
- Task: Find all association rules that satisfy minimum support and minimum confidence constraints
- Support:

 $Sup(X \rightarrow Y) = \#XY/\#D \cong p(XY)$

- Confidence:

 $Conf(X \rightarrow Y) = \#XY/\#X \cong p(XY)/p(X) = p(Y|X)$

Association rules - algorithm

- 1. generate frequent itemsets with a minimum support constraint
- 2. generate rules from frequent itemsets with a minimum confidence constraint
- * Data are in a transaction database

Association rules – transaction database

Items: **A**=apple, **B**=banana, **C**=coca-cola, **D**=doughnut

- Client 1 bought: A, B, C, D
- Client 2 bought: B, C
- Client 3 bought: B, D
- Client 4 bought: A, C
- Client 5 bought: A, B, D
- Client 6 bought: A, B, C

Frequent itemsets

• Generate frequent itemsets with support at least 2/6

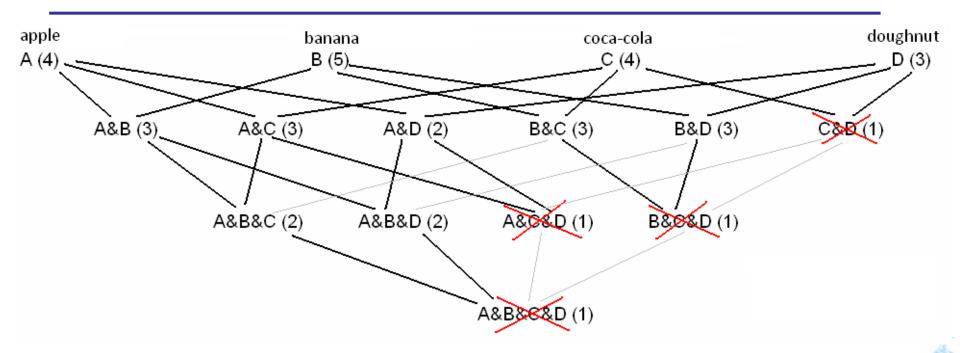
Α	В	С	D
1	1	1	1
	1	1	
	1		1
1		1	
1	1		1
1	1	1	

Frequent itemsets algorithm

Items in an itemset should be sorted alphabetically.

- Generate all 1-itemsets with the given minimum support.
- Use 1-itemsets to generate 2-itemsets with the given minimum support.
- From 2-itemsets generate 3-itemsets with the given minimum support as unions of 2-itemsets with the same item at the beginning.
- From n-itemsets generate (n+1)-itemsets as unions of nitemsets with the same (n-1) items at the beginning.

Frequent itemsets lattice



37

MEDIA

Frequent itemsets:

- A&B, A&C, A&D, B&C, B&D
- A&B&C, A&B&D

Rules from itemsets

- A&B is a frequent itemset with support 3/6
- Two possible rules
 - $-A \rightarrow B$ confidence = $\#(A \otimes B)/\#A = 3/4$
 - $-B \rightarrow A \text{ confidence} = \#(A\&B)/\#B = 3/5$
- All the counts are in the itemset lattice!

Conviction($X \rightarrow Y$) = 1-Support(Y)/(1-Confidence($X \rightarrow Y$)

Leverage($X \rightarrow Y$) = Support($X \rightarrow Y$) – Support(X)*Support(Y)

Lift($X \rightarrow Y$) = Support($X \rightarrow Y$) / (Support (X)*Support(Y))

Support(X) = #X / #D..... P(X) Support($X \rightarrow Y$) = Support (XY) = #XY / #D P(XY) Confidence($X \rightarrow Y$) = #XY / #X P(Y|X)

Quality of association rules

Quality of association rules

Support(X) = #X / #D P(X) Support(X \rightarrow Y) = Support (XY) = #XY / #D P(XY) Confidence(X \rightarrow Y) = #XY / #X P(Y|X)

Lift(X→Y) = Support(X→Y) / (Support (X)*Support(Y))

How many more times the items in X and Y occur together then it would be expected if the itemsets were statistically independent.

40

Leverage(X→Y) = Support(X→Y) – Support(X)*Support(Y)

Similar to lift, difference instead of ratio.

Conviction($X \rightarrow Y$) = 1-Support(Y)/(1-Confidence($X \rightarrow Y$)

Degree of implication of a rule.

Sensitive to rule direction.

Discussion

- Transformation of an attribute-value dataset to a transaction dataset.
- What would be the association rules for a dataset with two items A and B, each of them with support 80% and appearing in the same transactions as rarely as possible?

Α

в

- minSupport = 50%, min conf = 70%
- minSupport = 20%, min conf = 70%
- What if we had 4 items: A, ¬A, B, ¬ B
- Compare decision trees and association rules regarding handling an attribute like "PersonID". What about attributes that have many values (eg. Month of year)

