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Practice plan

• 2010/11/25: Predictive data mining
– Decision trees
– Naïve Bayes classifier
– Evaluating classifiers (separate test set, cross validation, confusion 

matrix, classification accuracy)
– Predictive data mining in Weka

• 2010/12/2: Numeric prediction and descriptive data mining
– Numeric prediction models
– Association rules
– Regression models and evaluation in Weka
– Descriptive data mining in Weka
– Discussion about seminars and exam

• 2010/12/16: Written exam, Seminar proposal presentations

• 2011/2/1: Deadline for data mining papers (written seminar)
• 2011/2/3: Data mining seminar presentations
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Numeric prediction

Baseline, 

Linear Regression, 

Regression tree, 

Model Tree, 

KNN
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Numeric prediction Classification

Data: attribute-value description

Target variable:

Continuous

Target variable:

Categorical (nominal)

Evaluation: cross validation, separate test set, …

Error:

MSE, MAE, RMSE, …

Error:

1-accuracy

Algorithms:

Linear regression, 
regression trees,…

Algorithms:

Decision trees, Naïve 
Bayes, …

Baseline predictor:

Mean of the target 
variable

Baseline predictor:

Majority class
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Example

• data about 80 people: 
Age and Height
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Test set
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Baseline numeric predictor

• Average of the target variable
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Baseline predictor: prediction

Average of the target variable is 1.63
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Linear Regression Model

Height =    0.0056 * Age + 1.4181
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Linear Regression: prediction

Height =    0.0056 * Age + 1.4181
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Regression tree
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Regression tree: prediction
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Model tree
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Model tree: prediction
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KNN – K nearest neighbors

• Looks at K closest examples (by non-target attributes) 
and predicts the average of their target variable

• In this example, K=3
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KNN prediction

Age Height

1 0.90

1 0.99

2 1.01

3 1.03

3 1.07

5 1.19

5 1.17
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KNN prediction

Age Height

8 1.36

8 1.33

9 1.45

9 1.39

11 1.49

12 1.66

12 1.52

13 1.59

14 1.58



18

KNN prediction

Age Height

30 1.57

30 1.88

31 1.71

34 1.55

37 1.65

37 1.80

38 1.60

39 1.69

39 1.80
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KNN prediction

Age Height

67 1.56

67 1.87

69 1.67

69 1.86

71 1.74

71 1.82

72 1.70

76 1.88
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Which predictor is the best?

Age Height Baseline
Linear 

regression

Regressi

on tree

Model 

tree
kNN

2 0.85 1.63 1.43 1.39 1.20 1.00

10 1.4 1.63 1.47 1.46 1.47 1.44

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.77
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Evaluating numeric prediction
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Numeric prediction discussion

• Consider a dataset with a target variable with five 
possible values:

1. non sufficient

2. sufficient

3. good

4. very good

5. excellent

– Is this a classification or a numeric prediction problem?

– What if such a variable is an attribute, is it nominal or 
numeric?

• Can KNN be used for classification tasks?

• Similarities between KNN and Naïve Bayes.

• Similarities and differences between 

decision trees and regression trees.
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Classification or a numeric 
prediction problem?
• Target variable with five possible values:

1.non sufficient

2.sufficient

3.good

4.very good

5.excellent

• Classification: the misclassification cost is the 
same if “non sufficient” is classified as “sufficient” 
or if it is classified as “very good”

• Numeric prediction: The error of predicting “2” 
when it should be “1” is 1, while the error of 
predicting “5” instead of “1” is 4.

• If we have a variable with ordered values, 

it should be considered numeric.
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Nominal or numeric attribute?

• A variable with five possible values:
1.non sufficient

2.sufficient

3.good

4.very good

5.excellent

Nominal: Numeric:

• If we have a variable with ordered values, 

it should be considered numeric.
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Numeric prediction discussion

• Consider a dataset with a target variable with five 
possible values:

1. non sufficient

2. sufficient

3. good

4. very good

5. excellent

– Is this a classification or a numeric prediction problem?

– What if such a variable is an attribute, is it nominal or 
numeric?

• Can KNN be used for classification tasks?

• Similarities between KNN and Naïve Bayes.

• Similarities and differences between 

decision trees and regression trees.
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Can KNN be used for classification 
tasks?

• YES.

• In numeric prediction tasks, the average 
of the neighborhood is computed

• In classification tasks, the distribution of 
the classes in the neighborhood is 
computed
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Numeric prediction discussion

• Consider a dataset with a target variable with five 
possible values:

1. non sufficient

2. sufficient

3. good

4. very good

5. excellent

– Is this a classification or a numeric prediction problem?

– What if such a variable is an attribute, is it nominal or 
numeric?

• Can KNN be used for classification tasks?

• Similarities between KNN and Naïve Bayes.

• Similarities and differences between 

decision trees and regression trees.
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Similarities between KNN and 
Naïve Bayes.

• Both are “black box” models, which do 
not give the insight into the data.

• Both are “lazy classifiers”: they do not 
build a model in the training phase and 
use it for predicting, but they need the 
data when predicting the value for a new 
example (partially true for Naïve Bayes)
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Numeric prediction discussion

• Consider a dataset with a target variable with five 
possible values:

1. non sufficient

2. sufficient

3. good

4. very good

5. excellent

– Is this a classification or a numeric prediction problem?

– What if such a variable is an attribute, is it nominal or 
numeric?

• Can KNN be used for classification tasks?

• Similarities between KNN and Naïve Bayes.

• Similarities and differences between 

decision trees and regression trees.
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Regression trees Decision trees

Data: attribute-value description

Target variable:

Continuous

Target variable:

Categorical (nominal)

Evaluation: cross validation, separate test set, …

Error:

MSE, MAE, RMSE, …

Error:

1-accuracy

Algorithm:

Top down induction, shortsighted method

Heuristic:

Standard deviation

Heuristic :

Information gain

Stopping criterion:

Standard deviation< threshold

Stopping criterion:

Pure leafs (entropy=0)
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Association Rules
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Association rules

• Rules X  Y,  X, Y conjunction of items

• Task: Find all association rules that satisfy 
minimum support and minimum confidence 
constraints

- Support:  

Sup(X  Y) = #XY/#D  p(XY)

- Confidence: 

Conf(X  Y) = #XY/#X  p(XY)/p(X) = p(Y|X)
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Association rules - algorithm

1. generate frequent itemsets with a 
minimum support constraint

2. generate rules from frequent itemsets 
with a minimum confidence constraint

* Data are in a transaction database
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Association rules –
transaction database

Items: A=apple, B=banana, 

C=coca-cola, D=doughnut

• Client 1 bought: A, B, C, D

• Client 2 bought: B, C

• Client 3 bought: B, D

• Client 4 bought: A, C

• Client 5 bought: A, B, D

• Client 6 bought: A, B, C
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Frequent itemsets

• Generate frequent itemsets with support 
at least 2/6
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Frequent itemsets algorithm

Items in an itemset should be sorted alphabetically.
• Generate all 1-itemsets with the given minimum support.
• Use 1-itemsets to generate 2-itemsets with the given 

minimum support. 
• From 2-itemsets generate 3-itemsets with the given 

minimum support as unions of 2-itemsets with the same 
item at the beginning.

• …
• From n-itemsets generate (n+1)-itemsets as unions of n-

itemsets with the same (n-1) items at the beginning.
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Frequent itemsets lattice

Frequent itemsets:

• A&B, A&C, A&D, B&C, B&D

• A&B&C, A&B&D
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Rules from itemsets

• A&B is a frequent itemset with support 3/6

• Two possible rules

– AB confidence = #(A&B)/#A = 3/4

– BA confidence = #(A&B)/#B = 3/5

• All the counts are in the itemset lattice!
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Quality of association rules

Support(X) = #X / #D                   …………….…………… P(X)

Support(XY) = Support (XY) = #XY / #D  …………… P(XY)

Confidence(XY) = #XY / #X         ………………………… P(Y|X)

_______________________________________

Lift(XY) = Support(XY) / (Support (X)*Support(Y))

Leverage(XY) = Support(XY) – Support(X)*Support(Y)

Conviction(X  Y) = 1-Support(Y)/(1-Confidence(XY))
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Quality of association rules

Support(X) = #X / #D                   …………….…………… P(X)

Support(XY) = Support (XY) = #XY / #D  …………… P(XY)

Confidence(XY) = #XY / #X         ………………………… P(Y|X)

___________________________________________________

Lift(XY) = Support(XY) / (Support (X)*Support(Y))

How many more times the items in X and Y occur together then 
it would be expected if the itemsets were statistically 
independent.

Leverage(XY) = Support(XY) – Support(X)*Support(Y)

Similar to lift, difference instead of ratio.

Conviction(X  Y) = 1-Support(Y)/(1-Confidence(XY))

Degree of implication of a rule.

Sensitive to rule direction.
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Discussion

• Transformation of an attribute-value dataset 
to a transaction dataset.

• What would be the association rules for a 
dataset with two items A and B, each of 
them with support 80% and appearing in 
the same transactions as rarely as possible?
– minSupport = 50%, min conf = 70%

– minSupport = 20%, min conf = 70%

• What if we had 4 items: A, ¬A, B, ¬ B

• Compare decision trees and association 
rules regarding handling an attribute like 
“PersonID”. What about attributes that have 
many values (eg. Month of year)


