Data Mining and Knowledge Discovery

Petra Kralj Novak

 Petra.Kralj.Novak@ijs.siPractice, 2010/12/2

Discussion

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses $=$ \{hard=4, soft=5, none=13\}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding
- the handling of missing values
- numeric attributes
- interpretability of the model

List of evaluation methods

- Separate train and test set
- K-fold cross validation
- Leave one out
- used with very small datasets (few 10 examples)
- For each example e:
- use e as test example and the rest for training
- Count the correctly classified examples
- Optimistic estimate: test on training set
- Random sampling
(- Cross-validation Number of folds: 10 는
C Leave-one-out
Random sampling
Repeat train/test: 10 考
Relative training set size:

Discussion

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = \{hard=4, soft=5, none=13\}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding
- the handling of missing values
- numeric attributes
- interpretability of the model

Information gain of the "attribute" Person

On training set

- As many values as there are examples
- Each leaf has exactly one example
- $E(1 / 1,0 / 1)=0$ (entropy of each leaf is zero)
- The weighted sum of entropies is zero
- The information gain is maximum (as much as the entropy of the entire training set)
On testing set
- The values from the testing set do not appear in the tree

Discussion

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = \{hard=4, soft=5, none=13\}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding
- the handling of missing values
- numeric attributes
- interpretability of the model

Entropy $\{$ hard $=4$, soft=5, none $=13\}=$

$$
\begin{aligned}
& =\mathrm{E}(4 / 22,5 / 22,13 / 22) \\
& =-\Sigma \mathrm{p}_{\mathrm{i}} * \log _{2} \mathrm{p}_{\mathrm{i}} \\
& =-4 / 22 * \log _{2} 4 / 22-5 / 22 * \log _{2} 5 / 22-13 / 22 * \log _{2} 13 / 22 \\
& =1.38
\end{aligned}
$$

Discussion

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = \{hard=4, soft=5, none=13\}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding
- the handling of missing values
- numeric attributes
- interpretability of the model

Decision tree

These two trees are equivalent

Classification accuracy of the pruned tree

Person	Age	Prescription	Astigmatic	Tear rate	Lenses
F3	young	hypermetrope	no	normal	YES
F9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	nomal	YES
P15	pre-presbyopic	hypermetrope	yes	nomal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

$$
\mathrm{Ca}=(3+2) /(3+2+2+0)=71 \%
$$

YES

	Predicted positive	Predicted negative
Actual positive	$\mathrm{TP}=3$	$\mathrm{FN}=0$
Actual negative	$\mathrm{FP}=2$	$\mathrm{TN}=2$

Discussion

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses $=\{$ hard=4, soft=5, none=13\}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding
- the handling of missing values
- numeric attributes
- interpretability of the model

Information gain of a numeric attribute

	Age	Lenses
	67	YES
	62	YES
	63	NO
	26	YES
	65	NO
	23	YES
	65	NO
	25	YES
	26	YES
	57	NO
	49	NO
	23	YES
	39	NO
	55	NO
	53	NO
	38	NO
	67	YES
	54	NO
	29	YES
	46	NO
	44	YES
	32	NO
ITMN	39	NO
\%	45	YES

Information gain of a numeric attribute

Information gain of a numeric attribute

Information gain of a numeric attribute

	Age	Lenses	
	23	YES	
	23	YES	
	25	YES	
	26	YES	
	26	YES	
	29	YES	30.5
	32	NO	30.5
	38	NO	
	39	NO	
	39	NO	41.5
	44	YES	
	45	YES	45.5
	46	NO	
	49	NO	50.5
	52	YES	525
	63	NO	52.5
	54	NO	
	55	NO	
	57	NO	
	63	NO	
	65	NO	
	65	NO	66
$\begin{gathered} \text { pegn } \\ \text { TECN } \end{gathered}$	67	YES	
	67	YES	

Information gain of a numeric attribute

	Age	Lenses	
	23	YES	
	23	YES	
	25	YES	
	26	YES	
	26	YES	
	29	YES	
	32	NO	5
	38	NO	
	39	NO	
	39	NO	41.5
	44	YES	
	45	YES	45.5
	46	NO	
	49	NO	50.5
	52	YES	525
	53	NO	52.5
	54	NO	
	55	NO	
	57	NO	
	63	NO	
	65	NO	
	65	NO	66
	67	YES	
	67	YES	

$E(6 / 6,0 / 6)=0 \quad E(5 / 18,13 / 18)=0.85$

Information gain of a numeric attribute

InfoGain (S, Age $_{30.5}$)=
$=E(S)-\sum p_{v} E(p v)$
$=0.99-\left(6 / 24^{*} 0+18 / 24^{*} 0.85\right)$
$=0.35$

Information gain of a numeric attribute

	Age	Lenses	
	23	YES	
	23	YES	
	25	YES	
	26	YES	
	26	YES	
	29	YES	
	32	NO	5
	36	NO	
	39	NO	
	39	NO	41.5
	44	YES	
	45	YES	45.5
	46	NO	
	49	NO	50.5
	52	YES	525
	53	NO	52.5
	54	NO	
	55	NO	
	57	NO	
	63	NO	
	65	NO	
	65	NO	66
Tichiv	67	YES	
	67	YES	

Age
InfoGain $\left(\mathrm{S}\right.$, Age $\left._{30.5}\right)=0.35$
$<41.5 \mathrm{Age}_{>=41.5}<45.5 \mathrm{Age}_{>=45.5}$
$<50.5 \mathrm{Age}_{>=50.5}<52.5 \mathrm{Age}_{>=52.5}$

$$
<66 \lambda_{>=66}
$$

Discussion

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = \{hard=4, soft=5, none=13\}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding
- the handling of missing values
- numeric attributes
- interpretability of the model

Handling missing values: Naïve Bayes

Will the spider catch these two ants?

- Color $=$ white, Time $=$ night \leftarrow missing value Size
- Color $=$ black, Size $=$ large, Time $=$ day

$$
\begin{array}{r}
p\left(c_{1} \mid v_{1}, v_{2}\right)= \\
p(\text { Caught }=Y E S) * \frac{p(\text { Caught }=Y E S \mid \text { Color }=\text { white })}{p(\text { Caught }=Y E S)} * \frac{p(\text { Caught }=Y E S \mid \text { Time }=\text { night })}{p(\text { Caught }=Y E S)}= \\
\frac{1}{2} * \frac{\frac{1}{2}}{\frac{1}{2}} * \frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{4}
\end{array}
$$

Naïve Bayes uses all the available information!

Handling missing values: Decision trees - 1

Age	Prescription	Astigmatic	Tear_Rate
$?$	hypermetrope	no	normal
pre-presbyopic	myope	$?$	normal

Handling missing values: Decision trees - 2

Algorithm ID3: does not handle missing values Algorithm C4.5 (J48) deals with two problems:

- Missing values in train data:
- Missing values are not used in gain and entropy calculations
- Missing values in test data:
- A missing continuous value is replaced with the median of the training set
- A missing categorical values is replace,
with the most frequent value

Discussion

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = \{hard=4, soft=5, none=13\}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding
- the handling of missing values
- numeric attributes
- interpretability of the model

Continuous attributes:

 decision trees \& naïve bayes- Decision trees ID3 algorithm: does not handle continuous attributes \rightarrow data need to be discretized
- Decision trees C4.5 (J48 in Weka) algorithm: deals with continuous attributes as shown earlier
- Naïve Bayes: does not handle continuous attributes \rightarrow
data need to be discretized
(some implementations do handle)

Discussion

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses $=$ \{hard=4, soft=5, none=13\}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding
- the handling of missing values
- numeric attributes
- interpretability of the model

Interpretability of decision tree and naïve bayes models

- Decision trees are easy to understand and interpret (if they are of a reasonable size)
- Naïve bayes models are of the "black box type". Naïve bayes models have been visualized by nomograms.

