Data Mining and Knowledge Discovery

Petra Kralj Novak Petra.Kralj.Novak@ijs.si

Practice, 2010/12/2

1

EDIA

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

List of evaluation methods

- Separate train and test set
- K-fold cross validation
- Leave one out
 - used with very small datasets (few 10 examples)
 - For each example e:
 - use *e* as test example and the rest for training

4

÷.

70%

Number of folds: 10

Relative training set size:

Test on train data Test on test data

Leave-one-out Random sampling Repeat train/test: 10

- Count the correctly classified examples
- Optimistic estimate: test on training set
 Gross-validation
- Random sampling

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Information gain of the "attribute" Person

On training set

- As many values as there are examples
- Each leaf has exactly one example
- E(1/1, 0/1) = 0 (entropy of each leaf is zero)
- The weighted sum of entropies is zero
- The information gain is maximum (as much as the entropy of the entire training set)

On testing set

• The values from the testing set do not appear in the tree

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Entropy{hard=4, soft=5, none=13}=

- = E(4/22, 5/22, 13/22)
- $= -\sum p_i * \log_2 p_i$
- $= -4/22 * \log_2 4/22 5/22 * \log_2 5/22 13/22 * \log_2 13/22$
- = 1.38

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Decision tree

These two trees are equivalent

Classification accuracy of the pruned tree

Person	Age	Prescription	Astigmatic	Tear_rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Ca = (3+2)/ (3+2+2+0) = 71%

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?

17

- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
39	NO
7] 45	∥ YES

14

	Age	Lenses		Age	Lenses
	67	YES		23	YES
	52	YES		23	YES
	63	NO		25	YES
	26	YES	Sort	26	YES
	65	NO	by	26	YES
	23	YES	enΔ	29	YES
	65	NO	Age	32	NO
	25	YES		38	NO
	26	YES		39	NO
	57	NO		39	NO
	49	NO		44	YES
	23	YES		45	YES
	39	NO		46	NO
	55	NO		49	NO
	53	NO		52	YES
	38	NO		53	NO
	67	YES		54	NO
	54	NO		55	NO
	29	YES		57	NO
	46	NO		63	NO
	44	YES		65	NO
DEPA	32	NO		65	NO
	39	NO		67	YES
	45	YES		67	l yes

TE(

	Aae	Lenses		Age	Lenses		Age	Lenses
	67	YES		23	YES	Define possible	23	YES
	52	YES		23	YES		23	YES
	63	NO		25	YES		25	YES
	26	YES	Sort	26	YES		26	YES
	65	NO	by	26	YES		26	YES
	23	YES	Ano	29	YES	splitting	29	YES
	65	NO	Age	32	NO	noints	32	NO
	25	YES		38	NO	points	38	NO
	26	YES		39	NO		39	NO
	57	NO		39	NO		39	NO
	49	NO		44	YES		44	YES
	23	YES		45	YES		45	YES
	39	NO		46	NO		46	NO
	55	NO		49	NO		49	NO
	53	NO		52	YES		52	YES
	38	NO		53	NO		53	NO
	67	YES		54	NO		54	NO
	54	NO		55	NO		55	NO
	29	YES		57	NO		57	NO
	46	NO		63	NO		63	NO
	44	YES		65	NO	2 //	65	NO
DEPA	32	NO		65	NO	121	65	NO
KN	39	NO		67	YES		67	YES
	45	YES		67	YES	and a start	67	YES

TEC

16

DIA

Age	Lenses	
23	YES	
23	YES	
25	YES	
26	YES	
26	YES	
29	YES	20 E
32	NO	
38	NO	
39	NO	
39	NO	41.5
44	YES	
45	YES	
46	NO	
49	NO	50.5
52	YES	
53	NO	52.5
54	NO	
55	NO	
57	NO	
63	NO	
65	NO	
 65	NO	66
67	YES	
 67	YES	

TECI

Age	Lenses	
23	YES	
23	YES	
25	YES	
26	YES	
26	YES	
29	YES	20 E
32	NO	30.5
38	NO	
39	NO	
39	NO	41.5
44	YES	
45	YES	15 5
46	NO	43.3
49	NO	50.5
52	YES	50 F
53	NO	52.5
54	NO	
55	NO	
57	NO	
63	NO	
65	NO	
 65	NO	66
67	YES	
 67	YES	

TE(

E(S) = E(11/24, 13/24) = 0.99

Age <30.5 6/24 E(6/6, 0/6) = 0 E(5/18, 13/18) = 0.85

18

InfoGain (S, Age_{30.5})= = $E(S) - \sum p_v E(p_v)$ = 0.99 - (6/24*0 + 18/24*0.85)

= 0.35

	Aaa	Loncoc	
	Aye	Lenses	
	23	YES	
	23	YES	
	25	YES	
	26	YES	
	26	YES	
	29	YES	20 E
	32	NO	30.5
	38	NO	
	39	NO	
	39	NO	41.5
	44	YES	
	45	YES	45 5
	46	NO	43.3
	49	NO	 50.5
	52	YES	50 F
	53	NO	52.5
	54	NO	
	55	NO	
	57	NO	
	63	NO	
	65	NO	
_	65	NO	66
dera KN	67	YES	00
	67	YES	

<30.5 Age >=30.5

InfoGain (S, $Age_{30.5}$) = 0.35

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?

20

- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Handling missing values: Naïve Bayes

Will the spider catch these two ants?

- Color = black, Size = large, Time = day

$$p(Caught = YES|Color = white, Time = night) = p(Caught = YES) * \frac{p(Caught = YES|Color = white)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \frac{1}{2} * \frac{\frac{1}{2}}{\frac{1}{2}} * \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{4}$$

Naïve Bayes uses all the available information!

Handling missing values: Decision trees - 1

Handling missing values: Decision trees - 2

Algorithm **ID3**: does not handle missing values Algorithm **C4.5** (J48) deals with two problems:

- Missing values in **train** data:
 - Missing values are not used in gain and entropy calculations
- Missing values in **test** data:
 - A missing continuous value is replaced with the median of the training set
 - A missing categorical values is replaced with the most frequent value

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?

24

- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Continuous attributes: decision trees & naïve bayes

- Decision trees **ID3** algorithm: does not handle continuous attributes → data need to be discretized
- Decision trees C4.5 (J48 in Weka) algorithm: deals with continuous attributes as shown earlier
- Naïve Bayes: does not handle continuous attributes →

data need to be discretized

(some implementations do handle)

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?

26

- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

Interpretability of decision tree and naïve bayes models

- Decision trees are easy to understand and interpret (if they are of a reasonable size)
- Naïve bayes models are of the "black box type". Naïve bayes models have been visualized by nomograms.
 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

