## Data Mining and Knowledge Discovery

Part of
Jožef Stefan IPS "ICT" Programme and "Statistics" Programme

2010 / 2011
Nada Lavrač
Jožef Stefan Institute
Ljubljana, Slovenia

## Course Outline

I. Introduction

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
- Data Mining and KDD process
- DM standards, tools and visualization (Mladenić et al. Ch. 1 and 11, Kononenko \& Kukar Ch. 1)
II. Predictive DM Techniques
- Bayesian classifier (Kononenko Ch.
9.6)
- Decision Tree learning (Mitchell Ch 3, Kononenko Ch. 9.1)
- Classification rule learning (Berthold book Ch. 7, Kononenko Cn. 9.2)
III. Regression
(Kononenko Ch. 9.4)
IV. Descriptive DM
- Predictive vs. descriptive induction
- Subgroup discovery
- Association rule learning
- Kierarchical clustering (Kononenko Ch. 12.3)
- V. Relational Data Mining
- RDM and Inductive Logic Programming (Dzeroski \& Lavrac Programming
Ch. 3, Ch. 4)
- Propositionalization approaches
- Relational subgroup discovery


## Introductory seminar lecture

X. JSI \& Department of Knowledge Technologies
I. Introduction: First generation data mining

- Data Mining in a nutshell
- Predictive and descriptive DM techniques
- Data Mining and KDD process
- DM standards, tools and visualization (Mladenić et al. Ch. 1 and 11, Kononenko \& Kukar Ch. 1)
XX. Selected data mining techniques: Advanced subgroup discovery techniques and applications
XXX. Recent advances: Cross-context link discovery


## Jožef Stefan Institute

- Jožef Stefan Institute (JSI, founded in 1949)
- named after a distinguished physicist $\mathbf{j}=\sigma T^{4}$ Jožef Stefan (1835-1893)
- leading national research organization in natural sciences and technology ( $\sim 700$ researchers and students)
- JSI research areas
- information and communication technologies
- chemistry, biochemistry \& nanotechnology
- physics, nuclear technology and safety
- Jožef Stefan International Postgraduate School (IPS, founded in 2004)
- offers MSc and PhD programs (ICT, nanotechnology, ecotechnology)
- research oriented, basic + management courses
- in English


## Department of Knowledge Technologies

- Head: Nada Lavrač, Staff: 40 researchers, 15 students
- Machine learning \& Data mining
- ML (decision tree and rule learning, subgroup discovery, ...)
- Text and Web mining
- Relational data mining - inductive logic programming
- Equation discovery
- Other research areas:
- Semantic Web and Ontologies
- Knowledge management
- Decision support
- Human language technologies
- Applications:
- Medicine, Bioinformatics, Public Health
- Ecology, Finance, ...


## Basic Data Mining Task


knowledge discovery
from data
Data Mining
nput: transaction data table, relational database, text documents, Web pages Goal: build a classification model, find interesting patterns in data, ...

## Data Mining and Machine Learning

- Machine learning techniques
- classification rule learning
- subgroup discovery
- relational data mining and ILP

Data mining applications

- medicine, health care
- ecology, agriculture
- knowledge management, virtual organizations
- equation discovery
- inductive databases
- Data mining and decision support integration


Semantic data mining: domain knowledge = ontologies


Decision support tools: DEXi


Relational data mining: domain knowledge = relational database


Basic DM and DS Tasks


Input: expert knowledge about data and decision alternatives Goal: construct decision support model - to support the evaluation and choice of best decision alternatives

DM and DS integration


Basic Text and Web Mining Task


Input: text documents, Web pages
Goal: text categorization, user modeling, data visualization.

Text Mining Tools


Selected Publications


> Knowledge Technologies: Main research areas \& IPS lectures


## Introductory seminar lecture

## X. JSI \& Knowledge Technologies

I. Introduction: First generation data mining

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
- Data Mining and the KDD process
- DM standards, tools and visualization
(Mladenić et al. Ch. 1 and 11, Kononenko \& Kukar Ch. 1)
XX. Selected data mining techniques: Advanced subgroup discovery techniques and applications
XXX. Recent advances: Cross-context link discovery


## What is DM

- Extraction of useful information from data: discovering relationships that have not previously been known
- The viewpoint in this course: Data Mining is the application of Machine Learning techniques to solve real-life data analysis problems


## Part I. Introduction

## Data Mining in a Nutshell

- Predictive and descriptive DM techniques
- Data Mining and the KDD process
- DM standards, tools and visualization


Given: transaction data table, relational database, text documents, Web pages
Find: a classification model, a set of interesting patterns

## Data Mining in a Nutshell



Given: transaction data table, relational database, text documents, Web pages
Find: a classification model, a set of interesting patterns
 model from contact lens data

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Person | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
| O1 | 17 | myope | no | reduced | NONE |
| O2 | 23 | myope | no | normal | SOFT |
| O3 | 22 | myope | yes | reduced | NONE |
| O4 | 27 | myope | yes | normal | HARD |
| O5 | 19 | hypermetrope | no | reduced | NONE |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O14 | 35 | hypermetrope | no | normal | SOFT |
| O15 | 43 | hypermetrope | yes | reduced | NONE |
| O16 | 39 | hypermetrope | yes | normal | NONE |
| O17 | 54 | myope | no | reduced | NONE |
| O18 | 62 | myope | no | normal | NONE |
| O19-O23 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O24 | 56 | hypermetrope | yes | normal | NONE |

classification model from contact lens ${ }^{25}$ data


## Learning from Numeric Class Data

| Person | Age | Spect. presc. | Astigm. | Tear prod. | LensPrice |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1 | 17 | myope | no | reduced | 0 |
| O2 | 23 | myope | no | normal | 8 |
| O3 | 22 | myope | yes | reduced | 0 |
| O4 | 27 | myope | yes | normal | 5 |
| O5 | 19 | hypermetrope | no | reduced | 0 |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O14 | 35 | hypermetrope | no | normal | 5 |
| O15 | 43 | hypermetrope | yes | reduced | 0 |
| O16 | 39 | hypermetrope | yes | normal | 0 |
| O17 | 54 | myope | no | reduced | 0 |
| O18 | 62 | myope | no | normal | 0 |
| O19-O23 | $\ldots$ | hy. $\ldots$ | $\ldots$ | $\ldots$. | $\ldots$ |
| O24 | 56 | hypermetrope | yes | normal | 0 |

Numeric class values - regression analysis

Task reformulation: Binary Class Values

| Person | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1 | 17 | myope | no | reduced | NO |
| O2 | 23 | myope | no | normal | YES |
| O3 | 22 | myope | yes | reduced | NO |
| O4 | 27 | myope | yes | nurmal | YES |
| O5 | 19 | hypermetrope | no | reduced | NO |
| O6-013 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O14 | 35 | hypermetrope | no | normal | YES |
| O15 | 43 | hypermetrope | yes | reduced | NO |
| O16 | 39 | hypermetrope | yes | normal | NO |
| O17 | 54 | myope | no | reduced | NO |
| O18 | 62 | myope | no | normal | NO |
| O19-O23 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O24 | 56 | hypermetrope | yes | normal | NO |

Binary classes (positive vs. negative examples of Target class)

- for Concept learning - classification and class description - for Subgroup discovery - exploring patterns characterizing
groups of instances of target class

Learning from Unlabeled Data

| Person | Age | Spect. presc. | Astigm. | Tear prod. | Lenses $/$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 17 | myope | no | reduced | NONE |
| 02 | 23 | myope | no | normal | SOFT |
| 03 | 22 | myope | yes | reduced | NON: |
| 04 | 27 | myope | yes | normal | MARD |
| 05 | 19 | hypermetrope | no | reduced | NONE |
| 06-013 |  |  |  |  |  |
| 014 | 35 | hypermetrope | no | normal | - |
| 015 | 43 | hypermetrope | ye | reduced | Non |
| 016 | 39 | hypermetrope | yes | normal | NON |
| 017 | 54 | myope | no | reduced | NONE |
| 018 | 62 | myope | no | normal | NONE |
| 019-023 |  |  | ... |  |  |
| 024 | 56 | hypermetrope | yes | normal | None |

Unlabeled data - clustering: grouping of similar instances

- association rule learning

Data Mining: Related areas


Related areas

Statistics,
machine learning,
pattern recognition
and soft computing*

- classification techniques and techniques for knowledge extraction from data

* neural networks, fuzzy logic, genetic algorithms, probabilistic reasoning


## Related areas

Text and Web mining

- Web page analysis
- text categorization
- acquisition, filtering and structuring of textual information
- natural language processing



## Point of view in this course



Related areas
Visualization

- visualization of data and discovered knowledge



## Data Mining, ML and Statistics

- All three areas have a long tradition of developing inductive techniques for data analysis.
- reasoning from properties of a data sample to properties of a population
- DM vs. ML - Viewpoint in this course:
- Data Mining is the application of Machine Learning techniques to hard real-life data analysis problems


## Data Mining, ML and Statistics

- All three areas have a long tradition of developing inductive techniques for data analysis.
- reasoning from properties of a data sample to properties of a population
- DM vs. Statistics:
- Statistics
- Hypothesis testing when certain theoretical expectations about the data distribution, independence, random sampling, sample size, etc. are satisfied
- Main approach: best fitting all the available data
- Data mining
- Automated construction of understandable patterns, and structured models
- Main approach: structuring the data space, heuristic search for decision trees, rules, ... covering (parts of) the data space


## Types of DM tasks

- Predictive DM:
- Classification (learning of rules, decision trees, ...)
- Prediction and estimation (regression)
- Predictive relational DM (ILP)


## - Descriptive DM:

- description and summarization
- dependency analysis (association rule learning)
- discovery of properties and constraints
- segmentation (clustering)
- subgroup discovery



## Predictive vs. descriptive DM

## Predictive DM



Descriptive DM


## Predictive DM formulated as a machine learning task:

- Given a set of labeled training examples ( n -tuples of attribute values, labeled by class name)

|  | A1 | A2 | A3 | Class |
| :--- | :--- | :--- | :--- | :--- |
| example1 | $\mathrm{v}_{1,1}$ | $\mathrm{v}_{1,2}$ | $\mathrm{v}_{1,3}$ | $\mathrm{C}_{1}$ |
| example2 | $\mathrm{v}_{2,1}$ | $\mathrm{v}_{2,2}$ | $\mathrm{v}_{2,3}$ | $\mathrm{C}_{2}$ |

- By performing generalization from examples (induction) find a hypothesis (classification rules, decision tree, ...) which explains the training examples, e.g. rules of the form:

$$
\left(A_{i}=v_{i, k}\right) \&\left(A_{j}=v_{j, 1}\right) \& \ldots \Rightarrow \text { Class }=C_{n}
$$

42
Data mining example Input: Contact lens data

| Person | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1 | young | myope | no | reduced | NONE |
| O2 | young | myope | no | normal | SOFT |
| O3 | young | myope | yes | reduced | NONE |
| O4 | young | myope | yes | normal | HARD |
| O5 | young | hypermetrope | no | reduced | NONE |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O14 | ore-presbyc | hypermetrope | no | normal | SOFT |
| O15 | ore-presbyc | hypermetrope | yes | reduced | NONE |
| O16 | ore-presbyc | hypermetrope | yes | normal | NONE |
| O17 | presbyopic | myope | no | reduced | NONE |
| O18 | presbyopic | myope | no | normal | NONE |
| O19-O23 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O24 | presbyopic | hypermetrope | yes | normal | NONE |

## Contact lens data: Decision tree

Type of task: prediction and classification Hypothesis language: decision trees (nodes: attributes, arcs: values of attributes, leaves: classes)


Task reformulation: Concept learning problem (positive vs. negative examples of Target class)

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Person | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
| O1 | young | myope | no | reduced | NO |
| O2 | young | myope | no | normal | YES |
| O3 | young | myope | yes | reduced | NO |
| O4 | young | myope | yes | normal | YES |
| O5 | young | hypermetrope | no | reduced | NO |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O14 | ore-presbyc hypermetrope | no | normal | YES |  |
| O15 | ore-presbyc hypermetrope | yes | reduced | NO |  |
| O16 | pre-presbyc hypermetrope | yes | normal | NO |  |
| O17 | presbyopic | myope | no | reduced | NO |
| O18 | presbyopic | myope | no | normal | NO |
| O19-O23 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O24 | presbyopic | hypermetrope | yes | normal | NO |

## Contact lens data: Classification rules

Type of task: prediction and classification Hypothesis language: rules $X \rightarrow C$, if $X$ then $C$ $X$ conjunction of attribute values, $C$ class
tear production=reduced $\rightarrow$ lenses=NONE tear production=normal \& astigmatism=yes \& spect. pre.=hypermetrope $\rightarrow$ lenses $=$ NONE tear production=normal \& astigmatism=no $\rightarrow$ lenses=SOFT
tear production=normal \& astigmatism=yes \& spect. pre. $=$ myope $\rightarrow$ lenses=HARD
DEFAULT lenses=NONE

## Contact lens data: Classification rules in concept learning

Type of task: prediction and classification Hypothesis language: rules $X \rightarrow C$, if $X$ then $C$ $X$ conjunction of attribute values, $C$ target class

Target class: yes
tear production=normal \& astigmatism=no $\rightarrow$ lenses=YES
tear production=normal \& astigmatism=yes \& spect. pre. $=$ myope $\rightarrow$ lenses=YES else NO

Illustrative example:
Customer data

| Customer | Gender | Age | Income | Spent | BigSpender |
| :---: | :---: | :---: | :---: | :---: | :---: |
| c1 | male | 30 | 214000 | 18800 | yes |
| c2 | female | 19 | 139000 | 15100 | yes |
| c3 | male | 55 | 50000 | 12400 | no |
| c4 | female | 48 | 26000 | 8600 | no |
| c5 | male | 63 | 191000 | 28100 | yes |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| c14 | female | 61 | 95000 | 18100 | yes |
| c15 | male | 56 | 44000 | 12000 | no |
| c16 | male | 36 | 102000 | 13800 | no |
| c17 | female | 57 | 215000 | 29300 | yes |
| c18 | male | 33 | 67000 | 9700 | no |
| c19 | female | 26 | 95000 | 11000 | no |
| c20 | female | 55 | 214000 | 28800 | yes |

Customer data: Decision trees


## Predictive DM - Estimation

- often referred to as regression
- data are objects, characterized with attributes (discrete or continuous), classes of objects are continuous (numeric)
- given objects described with attribute values, induce a model to predict the numeric class value
- regression trees, linear and logistic regression, ANN, kNN, .


## Customer data:

 regression tree

In the nodes one usually has Predicted value +- st. deviation

Descriptive DM:
Subgroup discovery example Customer data

| Customer | Gender | Age | Income | Spent | BigSpender |
| :---: | :---: | :---: | :---: | :---: | :---: |
| c1 | male | 30 | 214000 | 18800 | yes |
| c2 | female | 19 | 139000 | 15100 | yes |
| c3 | male | 55 | 50000 | 12400 | no |
| c4 | female | 48 | 26000 | 8600 | no |
| c5 | male | 63 | 191000 | 28100 | yes |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| c14 | female | 61 | 95000 | 18100 | yes |
| c15 | male | 56 | 44000 | 12000 | no |
| c16 | male | 36 | 102000 | 13800 | no |
| c17 | female | 57 | 215000 | 29300 | yes |
| c18 | male | 33 | 67000 | 9700 | no |
| c19 | female | 26 | 95000 | 11000 | no |
| c20 | female | 55 | 214000 | 28800 | yes |

Estimation/regression example: Customer data

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Customer | Gender | Age | Income | Spent |  |
| c1 | male | 30 | 214000 | 18800 |  |
| c2 | female | 19 | 139000 | 15100 |  |
| c3 | male | 55 | 50000 | 12400 |  |
| c4 | female | 48 | 26000 | 8600 |  |
| c5 | male | 63 | 191000 | 28100 |  |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |
| c14 | female | 61 | 95000 | 18100 |  |
| c15 | male | 56 | 44000 | 12000 |  |
| c16 | male | 36 | 102000 | 13800 |  |
| c17 | female | 57 | 215000 | 29300 |  |
| c18 | male | 33 | 67000 | 9700 |  |
| c19 | female | 26 | 95000 | 11000 |  |
| c20 | female | 55 | 214000 | 28800 |  |

52
Predicting algal biomass: regression tree


Customer data:
Subgroup discovery
Type of task: description (pattern discovery)
Hypothesis language: rules $X \rightarrow Y$, if $X$ then $Y$
X is conjunctions of items, Y is target class
Age $>52$ \& Sex $=$ male $\rightarrow$ BigSpender $=$ no
Age $>52$ \& Sex $=$ male \& Income $\leq 73250$
$\rightarrow$ BigSpender $=$ no

## Customer data: <br> Association rules

Type of task: description (pattern discovery) Hypothesis language: rules $X \rightarrow Y$, if $X$ then $Y$ $X, Y$ conjunctions of items

1. Age $>52$ \& BigSpender $=$ no $\rightarrow$ Sex $=$ male
2. Age $>52$ \& BigSpender $=$ no $\rightarrow$

Sex = male \& Income $\leq 73250$
3. Sex $=$ male \& Age $>52$ \& Income $\leq 73250 \rightarrow$ BigSpender $=$ no

## Relational Data Mining (Inductive Logic ${ }^{57}$ Programming) in a Nutshell



Given: a relational database, a set of tables. sets of logical facts, a graph,
Find: a classification model, a set of interesting patterns

Predictive vs. descriptive DM: Summary from a rule learning perspective

- Predictive DM: Induces rulesets acting as classifiers for solving classification and prediction tasks
- Descriptive DM: Discovers individual rules describing interesting regularities in the data
- Therefore: Different goals, different heuristics, different evaluation criteria


## Relational Data Mining (ILP)

- Learning from multiple tables
Complex relational problems:
- temporal data: time series in medicine, trafic control,
- structured data. representation of molecules and their properties in protein engineering, biochemistry, ..



Relational representation of customers, orders and stores.


| ID | Zip | Sex | Soc St | Income | Age | Club | Resp |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\ldots$ |
| 3478 | 34667 | m | si | $60-70$ | 32 | me | nr |
| 3479 | 43666 | f | ma | $80-90$ | 45 | nm | re |
| $\ldots$ |
| Basic table for analysis |  |  |  |  |  |  |  |

61

| ID | Zip | Sex | Soc St | Income | Age | Club | Resp |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\ldots$ |
| 3478 | 34667 | m | si | $60-70$ | 32 | me | nr |
| 3479 | 43666 | f | ma | $80-90$ | 45 | nm | re |
| $\ldots$ |

Data table presented as logical facts (Prolog format) customer(Id,Zip,Sex,SoSt,In,Age, Club,Re)

Prolog facts describing data in Table 2:
customer( 3478,34667 ,m,si,60-70,32,me,nr).
customer(3479,43666,f,ma,80-90,45,nm,re).

Expressing a property of a relation:
customer(_,_,f,


## Relational Data Mining (ILP)

## Data bases:

- Name of relation $p$

Logic programming:

- Attribute of $p$
- $n$-tuple $\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\rangle=$ row in a relational table
- relation $\mathrm{p}=$ set of n -tuples $=$ relational table

- Argument of predicate $p$
- Ground fact $p\left(v_{1}, \ldots, v_{n}\right)$
- Definition of predicate $p$
- Set of ground facts
- Prolog clause or a set of Prolog clauses


## Example predicate definition:

good_customer(C) :customer(C,_,female,_,_,_,,_) order(C,_,_,_,creditcarád).

## Part I. Introduction

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
$\Rightarrow$ Data Mining and the KDD process
- DM standards, tools and visualization

KDD process of discovering useful knowledge from data


- KDD process involves several phases:
- data preparation
- data mining (machine learning, statistics)
- evaluation and use of discovered patterns
- Data mining is the key step, but represents only $15 \%-25 \%$ of the entire KDD process

- Patterns uncovering regularities concerning:
- Which other journals/magazines are read by readers of a particular journal/magazine ?
- What are the properties of individuals that are consumers of a particular media offer?
- Which properties are distinctive for readers of different journals?
- Induced models: description (association rules, clusters) and classification (decision trees, classification rules)


## Simplified association rules

## Finding profiles of readers of the Delo daily

 newspaper1. reads_Marketing_magazine $116 \rightarrow$
reads_Delo 95 (0.82)
2. reads_Financial_News (Finance) $223 \rightarrow$ reads_Delo 180 (0.81)
3. reads_Views (Razgledi) $201 \rightarrow$ reads_Delo 157 (0.78)
4. reads_Money (Denar) $197 \rightarrow$ reads_Delo 150 (0.76)
5. reads_Vip $181 \rightarrow$ reads_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine, Financial News, Views, Money and Vip read also Delo.

## Simplified association rules

1. reads_Sportske novosti $303 \rightarrow$ reads_Slovenski delnicar 164 (0.54)
2. reads_Sportske novosti $303 \rightarrow$ reads_Salomonov oglasnik 155 (0.51)
3. reads_Sportske novosti $303 \rightarrow$ reads_Lady 152 (0.5)

More than half of readers of Sports news reads also Slovenian shareholders magazine, Solomon advertisements and Lady.

## Decision tree

Finding reader profiles: decision tree for classifying people into readers and non-readers of a teenage magazine Antena.


Part I. Introduction

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
- Data Mining and the KDD process

DM standards, tools and visualization

## CRISP-DM

- Cross-Industry Standard Process for DM
- A collaborative, 18-months partially EC founded project started in July 1997
- NCR, ISL (Clementine), Daimler-Benz, OHRA (Dutch health insurance companies), and SIG with more than 80 members
- DM from art to engineering
- Views DM more broadly than Fayyad et al. (actually DM is treated as KDD process):


DM tools


## Public DM tools

- WEKA - Waikato Environment for Knowledge Analysis
- Orange, Orange4WS
- KNIME - Konstanz Information Miner
- R - Bioconductor, ...


CRISP Data Mining Process


都

## Visualization

- can be used on its own (usually for description and summarization tasks)
- can be used in combination with other DM techniques, for example
- visualization of decision trees
- cluster visualization
- visualization of association rules
- subgroup visualization

76

DB Miner: Association rule visualization


Orange: Visual programming and subgroup discovery visualization


## Introductory seminar lecture

X. JSI \& Knowledge Technologies
I. Introduction: First generation data mining

- Data Mining in a nutshell
- Data Mining and KDD process
- DM standards, tools and visualization
- Classification of Data Mining techniques: Predictive and descriptive DM
(Mladenić et al. Ch. 1 and 11, Kononenko \& Kukar Ch. 1)
XX. Selected data mining techniques: Advanced subgroup discovery techniques and applications
XXX. Recent advances: Cross-context link discovery

MineSet: Decision tree visualization


## Part I: Summary

- KDD is the overall process of discovering useful knowledge in data
- many steps including data preparation, cleaning, transformation, pre-processing
- Data Mining is the data analysis phase in KDD
- DM takes only $15 \%-25 \%$ of the effort of the overall KDD process
- employing techniques from machine learning and statistics
- Predictive and descriptive induction have different goals: classifier vs. pattern discovery
- Many application areas
- Many powerful tools available


## XX. Talk outline

Subgroup discovery in a nutshell

- Relational data mining and propositionalization in a nutshell
- Semantic data mining: Using ontologies in SD


## Task reformulation: Binary Class Values

| Person | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 17 | myope | no | reduced | NO |
| 02 | 23 | myope | no | normal | YES |
| 03 | 22 | myope | yes | reduced | NO |
| 04 | 27 | myope | yes | normal | YES |
| 05 | 19 | hypermetrope | no | reduced | NO |
| 06-013 |  |  |  |  |  |
| 014 | 35 | hypermetrope | no | normal | YES |
| 015 | 43 | hypermetrope | yes | reduced | NO |
| 016 | 39 | hypermetrope | yes | normal | NO |
| 017 | 54 | myope | no | reduced | NO |
| 018 | 62 | myope | no | normal | NO |
| 019-023 |  |  | ... |  |  |
| O24 | 56 | hypermetrope | yes | normal | NO |

Binary classes (positive vs. negative examples of Target class) - for Concept learning - classification and class description - for Subgroup discovery - exploring patterns characterizing
groups of instances of target class

## Classification versus Subgroup Discovery

- Classification (predictive induction) constructing sets of classification rules
- aimed at learning a model for classification or prediction
- rules are dependent
- Subgroup discovery (descriptive induction) constructing individual subgroup describing rules
- aimed at finding interesting patterns in target class examples
- large subgroups (high target class coverage)
- with significantly different distribution of target class examples (high TP/FP ratio, high significance, high WRAcc
- each rule (pattern) is an independent chunk of knowledge


## Subgroup discovery task

Task definition (Kloesgen, Wrobel 1997)

- Given: a population of individuals and a property of interest (target class, e.g. CHD)
- Find: `most interesting' descriptions of population subgroups
- are as large as possible
(high target class coverage)
- have most unusual distribution of the target property
(high TP/FP ratio, high significance)


## Subgroup Discovery



- A task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.
- SD algorithms learn several independent rules that describe groups of target class examples - subgroups must be large and significant

Classification versus Subgroup discovery


Subgroup discovery example: CHD Risk Group Detection

Input: Patient records described by stage A (anamnestic), stage B (an. \& lab.), and stage C (an., lab. \& ECG) attributes
Task: Find and characterize population subgroups with high CHD risk (large enough, distributionally unusual)

From best induced descriptions, five were selected by the expert as most actionable for CHD risk screening (by GPs):
CHD-risk $\leftarrow$ male \& pos. fam. history \& age $>46$
CHD-risk $\leftarrow$ female \& bodymassIndex $>25$ \& age $>63$
CHD-risk $\leftarrow \ldots$
CHD-risk $\leftarrow \ldots$
CHD-risk $\leftarrow \ldots$

## Characteristics of SD Algorithms

- SD algorithms do not look for a single complex rule to describe all examples of target class YES (all CHDrisk patients), but several rules that describe parts (subgroups) of YES.
- Standard rule learning approach: Using the covering algorithm for rule set construction


## Covering algorithm

## Positive examples

Negative examples


## Covering algorithm



## Covering algorithm



## Characteristics of SD Algorithms

- SD algorithms do not look for a single complex rule to describe all examples of target class YES (all CHDrisk patients), but several rules that describe parts
 (subgroups) of YES.
- Advanced rule learning approach: using example weights in the weighted covering algorithm for repetitive subgroup construction and in the rule quality evaluation heuristics.

Covering algorithm


## Weighted covering algorithm for rule set construction

CHD patients


- For learning a set of subgroup describing rules, SD implements an iterative weigthed covering algorithm.
- Quality of a rule is measured by trading off coverage and precision.

Weighted covering algorithm for rule set construction

CHD patients


In contrast with classification rule learning algorithms (e.g. CN2), the covered positive examples are not deleted from the training set in the next rule learning iteration; they are re-weighted, and a next 'best' rule is learned.

Subgroup visualization



The CHD task: Find, characterize and visualize population subgroups with high CHD risk (large enough, distributionally unusual, most actionable)

## SD algorithms in the Orange DM Platform

- SD Algorithms in Orange
- SD (Gamberger \& Lavrač, JAIR 2002
- APRIORI-SD (Kavšek \&

Lavrač, AAI 2006

- CN2-SD (Lavrač et al.,


JMLR 2004): Adapting CN2
classification rule learner to
Subgroup Discovery

- Weighted covering algorithm
- Weighted relative accuracy (WRAcc) search heuristics, with added example weights


## SD algorithms in Orange and Orange4WS

- Orange
- Orange4WS (Podpečan
- classification and subgroup
discovery algorithms
- data mining workflows
- visualization
- developed at FRI, Ljubljana 2010)
- Web service oriented
- supports workflows and other Orange functionality
- includes also
- WEKA algorithms

- relational data mining
- semantic data mining with ontologies
- Web-based platform is under construction


## Relational Data Mining (Inductive Logic Programming) in a nutshell



Given: a relational database, a set of tables. sets of logical facts, a graph,
Find: a classification model, a set of interesting patterns

## XX. Talk outline

## Relational Data Mining (ILP)

- Learning from multiple
tables
- patient records connected with other patient and demographic information
- Complex relational problems:
- temporal data: time series in medicine,
- structured data:
representation of
molecules and their properties in protein engineering,
biochemistry, ..




Propositionalization in a nutshell

f1(T):-hasCar(T,C),clength(C,short). f2(T):-hasCar(T,C), hasLoad(C,L), loadShape(L,circle)
f3(T) :- ....

Propositional learning:
$\mathrm{t}(\mathrm{T}) \leftarrow \mathrm{f} 1(\mathrm{~T}), \mathrm{f} 4(\mathrm{~T})$
Relational interpretation:
eastbound $(T) \leftarrow$ hasShortCar( T$)$,hasClosedCar( T ).


PROPOSITIONAL TRAIN_TABLE



Transform a multi-relational (multiple-table)
representation to a propositional representation (single table)

Proposed in ILP systems
LINUS (Lavrac et al. 1991, 1994), 1BC (Flach and Lachiche 1999),

## Relational Data Mining through Propositionalization



Step 1
Propositionalization


112回

## Relational Data Mining through Propositionalization



- service for propositionalization through efficient first-order feature construction (Železny and Lavrač, MLJ 2006)
f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
- subgroup discovery using CN2-SD
mutaqenic $(M) \leftarrow$ feature121 $(M)$, feature235(M)


115

## Semantic Data Mining in Orange4WS

- Exploiting semantics in data mining
- Using domain ontologies as background knowledge for data mining
- Semantic data mining technology: a two-step approach
- Using propositionalization through first-order feature construction
- Using subgroup discovery for rule learning


## Talk outline

- Subgroup discovery in a nutshell
- Relational data mining and propositionalization in a nutshell
Semantic data mining: Using ontologies in SD

Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining


## First order feature construction

First order features with support > min_support


## Propositionalization

diffexp g1 (gene64499) diffexp g2 (gene2534) diffexp g3 (gene5199) diffexp g4 (gene1052) diffexp g5 (gene6036) random g5 (gene19679)

|  | $\mathbf{f 1}$ | $\mathbf{f 2}$ | $\mathbf{f 3}$ | $\mathbf{f 4}$ | $\mathbf{f 5}$ | $\mathbf{f 6}$ | $\ldots$ |  |  |  | $\ldots$ | $\mathbf{f n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{g} \mathbf{1}$ | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| $\mathbf{g} 2$ | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| $\mathbf{g} 3$ | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| $\mathbf{g} 4$ | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |
| $\mathbf{g} 5$ | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| $\mathbf{g} \mathbf{1}$ | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| $\mathbf{g} \mathbf{2}$ | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |
| $\mathbf{g} \mathbf{3}$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| $\mathbf{g 4}$ | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Subgroup Discovery <br> Subgroup Discovery

diff. exp. genes

dif. exp. genes Not diff. exp. genes

Propositional learning: subgroup discovery

|  | $\mathrm{fl}^{1}$ | f2 | f3 | £4 | f5 | f6 | ... |  |  |  | ... | fn | $\begin{gathered} \text { f2 and f3 } \\ {[4,0]} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| g1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |  |
| g2 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |  |
| 93 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |  |
| 94 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 |  |
| g5 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |  |
| $\mathrm{g}^{1}$ | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |  |
| g2 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 |  |
| $\mathrm{g}^{3}$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |  |
| 94 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |  |

Subgroup Discovery
diff. exp. genes Not diff. exp. genes


RSD naturally uses gene weights in its procedure for repetitive subgroup generation, via its heuristic rule evaluation: weighted relative accuracy

## Subgroup Discovery



In RSD (using propositional learner CN2-SD):
Quality of the rules $=$ Coverage $\times$ Precision
*Coverage $=$ sum of the covered weights
*Precision $=$ purity of the covered genes

## Semantic Data Mining in two steps

- Step 1: Construct relational logic features of genes such as interaction( $\mathbf{g}, \mathbf{G}$ ) \& function( $\mathbf{G}$, protein_binding)
( $g$ interacts with another gene whose functions include protein binding) and propositional table construction with features as attributes
- Step 2: Using these features to discover and describe subgroups of genes that are differentially expressed (e.g., belong to class DIFF.EXP. of top 300 most differentially expressed genes) in contrast with RANDOM genes (randomly selected genes with low differential expression).
- Sample subgroup description:
diffexp(A) :- interaction(A,B) AND
function(B,'GO:0004871') AND process(B,'GO:0009613')


## Summary: SEGS, using the RSD approach

- The SEGS approach enables to discover new medical knowledge from the combination of gene expression data with public gene annotation databases
- In past 2-3 years, the SEGS approach proved effective in several biomedical applications (JBI 2008, ...)
- The work on semantic data mining - using ontologies as background knowledge for subgroup discovery with SEGS - was done in collaboration with I.Trajkovski, F. Železny and J. Tolar


## Introductory seminar lecture

## The BISON project

- EU project: Bisociation networks for creative information discovery (www.bisonet.eu), 20082010
- Exploring the idea of bisociation (Arthur Koestler, The act of creation, 1964):
- The mixture - in one human mind - of two different contexts or different categories of objects, that are normally considered separate categories by the processes of the mind.
- The thinking process that is the functional basis of analogical or metaphoric thinking as compared to logical or associative thinking.
- Main challenge: Support humans to find new interesting associations accross domains


## The BISON project

- BISON challenge: Support humans to find new, interesting links accross domains, named bisociations
- across different contexts
- across different types of data and knowledge sources
- Open problems:
- Fusion of heterogeneous data/knowledge sources into a joint representation format - a large information network named BisoNet (consisting of nodes and relatioships between nodes)
- Finding unexpected, previously unknown links between BisoNet nodes belonging to different contexts


## X. JSI \& Knowledge Technologies

## I. Introduction

- Data Mining and KDD process
- DM standards, tools and visualization
- Classification of Data Mining techniques: Predictive
and descriptive DM
(Mladenić et al. Ch. 1 and 11, Kononenko \& Kukar
and descriptive DM
(Mladenić et al. Ch. 1 and 11, Kononenko \& Kukar Ch. 1)
XX. Selected data mining techniques:

Advanced subgroup discovery techniques and applications
XXX. Recent advances: Cross-context link


## discovery

Bisociation (A. Koestler 1964)


> Bridging concepts (BISON, M. Berthold, 2008)


## Semantic Data Mining for DNA Microarray Data Analysis

- Semantic data mining integrates public gene annotation data through relational features
- It is implemented in the SEGS algorithm (Trajkovski, Železny, Lavrač and Tolar, JBI 2008), available in Orange4WS
- It can be combined with additional biomedical resources (BioMine), providing additional means for creative knowledge discovery from publicly available data sources

Chains of associations across domains (BISON, M. Berthold, 2008)


## Biomine graph exploration (Toivonnen et al., Uni. Helsinki)

- BioMine graph contains information from public databases, including annotated sequences, proteins, orthology groups, genes and gene expressions, gene and protein interactions, PubMed articles, and different ontologies.
- nodes (~1 mio) correspond to different concepts (such as gene, protein, domain, phenotype, biologica process, tissue)
- semantically labeled edges (~7 mio) connect related concepts
- BioMine query engine answers queries to potentially discover new links between entities by sophisticated graph exploration algorithms

e.g. slow-vs-fast
cell growth

Work by
Lavrač et al. 2009, 2010 Podpečan et al. 2010

Semantic Data Mining in Orange4WS: SEGS + BioMine workflow implementation


## SEGS output: BioMine query:



## Introductory seminar lecture:

## Summary

- JSI \& Knowledge Technologies
- Introduction to Data mining and KDD
- Data Mining and KDD process
- DM standards, tools and visualization
- Classification of Data Mining techniques: Predictive and descriptive DM
- Selected data mining techniques: Advanced subgroup discovery techniques and applications
- Recent advances: Cross-context link discovery


## Part II. Predictive DM techniques

- Naive Bayesian classifier
- Decision tree learning
- Classification rule learning
- Classifier evaluation


## Bayesian methods

- Bayesian methods - simple but powerful classification methods
- Based on Bayesian formula

$$
p(H \mid D)=\frac{p(D \mid H)}{p(D)} p(H)
$$

- Main methods:
- Naive Bayesian classifier
- Semi-naïve Bayesian classifier
- Bayesian networks *


## Summary of SEGS + BioMine

- Semantic Data Mining algorithm SEGS discovers interesting gene group descriptions as conjunctions of concepts from three ontologies: GO, KEGG and Entrez
- Biomine finds cross-context links (paths) between concepts discovered by SEGS, using other ontologies, PubMed and other biomedical resources
- Initial results in stem cell microarray data analysis (EMBC 2009) indicate that the SEGS+Biomine methodology may lead to new insights - in vitro experiments are in progress at NIB to verify and validate the preliminary insights
- A general purpose Semantic Data Mining algorithm gSEGS is also available in Orange4WS


## Naïve Bayesian classifier

- Probability of class, for given attribute values

$$
p\left(c_{j} \mid v_{1} \ldots v_{n}\right)=p\left(c_{j}\right) \cdot \frac{p\left(v_{1} \ldots v_{n} \mid c_{j}\right)}{p\left(v_{1} \ldots v_{n}\right)}
$$

- For all $\mathrm{C}_{\mathrm{j}}$ compute probability $\mathrm{p}\left(\mathrm{C}_{\mathrm{j}}\right)$, given values $\mathrm{v}_{\mathrm{i}}$ of all attributes describing the example which we want to classify (assumption: conditional independence of attributes, when estimating $p\left(C_{j}\right)$ and $p\left(C_{j} \mid v_{i}\right)$ )

$$
p\left(c_{j} \mid v_{1} \ldots v_{n}\right) \approx p\left(c_{j}\right) \cdot \prod_{i} \frac{p\left(c_{j} \mid v_{i}\right)}{p\left(c_{j}\right)}
$$

- Output $\mathrm{C}_{\text {MAX }}$ with maximal posterior probability of class:

$$
C_{M A X}=\arg \max _{C j} p\left(c_{j} \mid v_{1} \ldots v_{n}\right)
$$

## Naïve Bayesian classifier

$p\left(c_{j} \mid v_{1} \ldots v_{n}\right)=\frac{p\left(c_{j} \cdot v_{1} \ldots v_{n}\right)}{p\left(v_{1} \ldots v_{n}\right)}=\frac{p\left(v_{1} \ldots v_{n} \mid c_{j}\right) \cdot p\left(c_{j}\right)}{p\left(v_{1} \ldots v_{n}\right)}=$
$=\frac{\prod_{i} p\left(v_{i} \mid c_{j}\right) \cdot p\left(c_{i}\right)}{p\left(v_{1} \ldots v_{n}\right)}=\frac{p\left(c_{j}\right)}{p\left(v_{1} \ldots v_{n}\right)} \prod_{i} \frac{p\left(c_{j} \mid v_{i}\right) \cdot p\left(v_{i}\right)}{p\left(c_{j}\right)}=$
$=p\left(c_{j}\right) \cdot \frac{\prod p\left(v_{i}\right)}{p\left(v_{1} \ldots v_{n}\right)} \prod_{i} \frac{p\left(c_{j} \mid v_{i}\right)}{p\left(c_{j}\right)} \approx p\left(c_{j}\right) \cdot \prod_{i} \frac{p\left(c_{j} \mid v_{i}\right)}{p\left(c_{j}\right)}$

## Probability estimation

- Relative frequency:
$p\left(c_{j}\right)=\frac{n\left(c_{j}\right)}{N}, p\left(c_{j} \mid v_{i}\right)=\frac{n\left(c_{j}, v_{i}\right)}{n\left(v_{i}\right)}$
$j=1 . . k$, for $k$ classes
- Prior probability: Laplace law

$$
p\left(c_{j}\right)=\frac{n\left(c_{j}\right)+1}{N+k}
$$

- m-estimate:

$$
p\left(c_{j}\right)=\frac{n\left(c_{j}\right)+m \cdot p_{a}\left(c_{j}\right)}{N+m}
$$

## Explanation of Bayesian classifier

- Based on information theory
- Expected number of bits needed to encode a message = optimal code length $-\log p$ for a message, whose probability is $p\left({ }^{*}\right)$
- Explanation based of the sum of information gains of individual attribute values $\mathrm{v}_{\mathrm{i}}$ (Kononenko and Bratko 1991, Kononenko 1993)

$$
\begin{aligned}
& -\log \left(p\left(c_{j} \mid v_{1} \ldots v_{n}\right)\right)= \\
& =-\log \left(p\left(c_{j}\right)\right)-\sum_{i=1}^{n}\left(-\log p\left(c_{j}\right)+\log \left(p\left(c_{j} \mid v_{i}\right)\right)\right.
\end{aligned}
$$

* $\log \mathrm{p}$ denotes binary logarithm


## Semi-naïve Bayesian classifier

- Naive Bayesian estimation of probabilities (reliable)

$$
\frac{p\left(c_{j} \mid v_{i}\right)}{p\left(c_{j}\right)} \cdot \frac{p\left(c_{j} \mid v_{k}\right)}{p\left(c_{j}\right)}
$$

- Semi-naïve Bayesian estimation of probabilities (less reliable)

$$
\frac{p\left(c_{j} \mid v_{i}, v_{k}\right)}{p\left(c_{j}\right)}
$$

## Probability estimation: intuition

- Experiment with N trials, n successful
- Estimate probability of success of next trial
- Relative frequency: $\mathrm{n} / \mathrm{N}$
- reliable estimate when number of trials is large
- Unreliable when number of trials is small, e.g., 1/1=1
- Laplace: $(\mathrm{n}+1) /(\mathrm{N}+2),(\mathrm{n}+1) /(\mathrm{N}+\mathrm{k}), \mathrm{k}$ classes
- Assumes uniform distribution of classes
- m-estimate: $\left(\mathbf{n}+\mathrm{m} . \mathrm{pa}_{\mathrm{a}}\right) /(\mathrm{N}+\mathrm{m})$
- Prior probability of success $p_{a}$, parameter $m$ (weight of prior probability, i.e., number of 'virtual' examples )


## Example of explanation of semi-naïve Bayesian classifier

Hip surgery prognosis
Class = no ("no complications", most probable class, 2 class problem)

| Attribute value | $\begin{array}{\|c\|} \hline \text { For decision } \\ \text { (bit) } \\ \hline \end{array}$ | Against (bit) |
| :---: | :---: | :---: |
| Age $=70-80$ | 0.07 |  |
| Sex = Female |  | -0.19 |
| Mobility before injury = Fully mobile | 0.04 |  |
| State of health before injury $=$ Other | 0.52 |  |
| Mechanism of injury $=$ Simple fall |  | -0.08 |
| Additional injuries $=$ None | 0 |  |
| Time between injury and operation>10 days | 0.42 |  |
| Fracture classification acc. . To Garden = Garden III |  | -0.3 |
| Fracture classification acc. . To Pauwels $=$ Pauwels III |  | -0.14 |
| Transfusion $=$ Yes | 0.07 |  |
| Antibiotic profilaxies $=$ Yes |  | -0.32 |
| Hospital rehabilitation $=\mathrm{Yes}$ | 0.05 |  |
| General complications $=$ None |  | 0 |
| Combination: | 0.21 |  |
| Time between injury and examination $<6$ hours |  |  |
| AND Hospitalization time between 4 and 5 weeks |  |  |
| Combination: | 0.63 |  |
| Therapy $=$ Artroplastic AND anticoagulant therapy $=$ Yes |  |  |

Visualization of information gains for/against $\mathrm{C}_{\mathrm{i}}$


## Naïve Bayesian classifier

- Naïve Bayesian classifier can be used
- when we have sufficient number of training examples for reliable probability estimation
- It achieves good classification accuracy
- can be used as 'gold standard' for comparison with other classifiers
- Resistant to noise (errors)
- Reliable probability estimation
- Uses all available information
- Successful in many application domains
- Web page and document classification
- Medical diagnosis and prognosis, ...

Improved classification accuracy due ${ }^{153}$ to using m-estimate

|  | Primary <br> tumor | Breast <br> cancer | thyroid | Rheumatology |
| :---: | :---: | :---: | :---: | :---: |
| \#instan | 339 | 288 | 884 | 355 |
| \#class | 22 | 2 | 4 | 6 |
| \#atrib | 17 | 10 | 15 | 32 |
| \#values | 2 | 2.7 | 9.1 | 9.1 |
| majority | $25 \%$ | $80 \%$ | $56 \%$ | $66 \%$ |
| entropy | 3.64 | 0.72 | 1.59 | 1.7 |


|  | Relative freq. | m-estimate |
| :--- | :---: | :---: |
| Primary tumor | $48.20 \%$ | $52.50 \%$ |
| Breast cancer | $77.40 \%$ | $79.70 \%$ |
| hepatitis | $58.40 \%$ | $90.00 \%$ |
| lymphography | $79.70 \%$ | $87.70 \%$ |

Illustrative example: Contact lenses data

| Person | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1 | young | myope | no | reduced | NONE |
| O2 | young | myope | no | normal | SOFT |
| O3 | young | myope | yes | reduced | NONE |
| O4 | young | myope | yes | normal | HARD |
| O5 | young | hypermetrope | no | reduced | NONE |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O14 | jre-presbyc hypermetrope | no | normal | SOFT |  |
| O15 | ore-presbyc hypermetrope | yes | reduced | NONE |  |
| O16 | jre-presbyc hypermetrope | yes | normal | NONE |  |
| O17 | presbyopic | myope | no | reduced | NONE |
| O18 | presbyopic | myope | no | normal | NONE |
| O19-O23 | ... | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O24 | presbyopic | hypermetrope | yes | normal | NONE |

## Part II. Predictive DM techniques

- Naïve Bayesian classifier
- Decision tree learning
- Classification rule learning
- Classifier evaluation

Classitier evaluation

## Decision tree for contact lenses recommendation



PlayTennis: Training examples

| Day | Outlook | Temperature | Humidity | Wind | PlayTennis |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | Sunny | Hot | High | Weak | No |
| D2 | Sunny | Hot | High | Strong | No |
| D3 | Overcast | Hot | High | Weak | Yes |
| D4 | Rain | Mild | High | Weak | Yes |
| D5 | Rain | Cool | Normal | Weak | Yes |
| D6 | Rain | Cool | Normal | Strong | No |
| D7 | Overcast | Cool | Normal | Strong | Yes |
| D8 | Sunny | Mild | High | Weak | No |
| D9 | Sunny | Cool | Normal | Weak | Yes |
| D10 | Rain | Mild | Normal | Weak | Yes |
| D11 | Sunny | Mild | Normal | Strong | Yes |
| D12 | Overcast | Mild | High | Weak | Yes |
| D13 | Overcast | Hot | Normal | Weak | Yes |
| D14 | Rain | Mild | High | Strong | No |

Decision tree representation for PlayTennis


Decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances
(Outlook=Sunny $\wedge$ Humidity=Normal)
$V$ (Outlook=Overcast)
V (Outlook=Rain $\wedge$ Wind=Weak) classification


Is Saturday morning OK for playing tennis?
Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayTennis $=$ No, because Outlook $=$ Sunny $\wedge$ Humidity $=$ High

## Appropriate problems for decision tree learning

- Classification problems: classify an instance into one of a discrete set of possible categories (medical diagnosis, classifying loan applicants, ...)
- Characteristics:
- instances described by attribute-value pairs (discrete or real-valued attributes)
- target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)
- disjunctive hypothesis may be required
- training data may be noisy
(classification errors and/or errors in attribute values)
- training data may contain missing attribute values


## Search heuristics in ID3

- Central choice in ID3: Which attribute to test at each node in the tree ? The attribute that is most useful for classifying examples.
- Define a statistical property, called information gain, measuring how well a given attribute separates the training examples w.r.t their target classification.
- First define a measure commonly used in information theory, called entropy, to characterize the (im)purity of an arbitrary collection of examples.


## Entropy

- $E(S)=-p_{+} \log _{2} p_{+}-p_{-} \log _{2} p_{-}$
- The entropy function relative to a Boolean classification, as the proportion $\mathbf{p}_{+}$of positive examples varies between 0 and 1



## Learning of decision trees

- ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5, WEKA, ...
- create the root node of the tree
- if all examples from $S$ belong to the same class $C j$
- then label the root with Cj
- else
- select the 'most informative' attribute A with values v1, v2, ... vn
- divide training set $\mathbf{S}$ into $\mathbf{S} 1, \ldots, \mathbf{S n}$ according to values v1,...,vn
- recursively build sub-trees T1,..., Tn for $\mathbf{S 1 , \ldots , S n}$



## Entropy

- $\mathbf{S}$ - training set, $\mathbf{C}_{1}, \ldots, \mathbf{C}_{\mathbf{N}}$ - classes
- Entropy $\mathbf{E}(\mathbf{S})$ - measure of the impurity of training set S

$$
E(S)=-\sum_{c=1}^{N} p_{c} \cdot \log _{2} p_{c} \quad \begin{aligned}
& \mathbf{p}_{c} \text { - prior probability of class } \mathbf{c}_{\mathrm{c}} \\
& \text { (relative frequency of } \mathbf{C}_{\mathrm{c}} \text { in } \mathbf{S} \text { ) }
\end{aligned}
$$

- Entropy in binary classification problems

$$
\mathbf{E}(\mathbf{S})=-\mathbf{p}_{+} \log _{2} \mathbf{p}_{+}-\mathbf{p}_{-} \log _{2} \mathbf{p}_{-}
$$

- Entropy E(S) = expected amount of information (in bits) needed to assign a class to a randomly drawn object in S (under the optimal, shortest-length code)
- Why ?
- Information theory: optimal length code assigns $-\log _{2} p$ bits to a message having probability $p$
- So, in binary classification problems, the expected number of bits to encode + or - of a random member of $S$ is:

$$
\mathbf{p}_{+}\left(-\log _{2} \mathbf{p}_{+}\right)+\mathbf{p}_{-}\left(-\log _{2} \mathbf{p}_{-}\right)=-\mathbf{p}_{+} \log _{2} \mathbf{p}_{+}-\mathbf{p}_{-} \log _{2} \mathbf{p}_{-}
$$

## PlayTennis: Entropy

- Training set S: 14 examples (9 pos., 5 neg.)
- Notation: S = [9+, 5-]
- $E(S)=-p_{+} \log _{2} p_{+}-p_{-} \log _{2} p$.
- Computing entropy, if probability is estimated by relative frequency

$$
E(S)=-\left(\frac{\left|S_{+}\right|}{|S|} \cdot \log \frac{\left|S_{+}\right|}{|S|}\right)-\left(\frac{\left|S_{-}\right|}{|S|} \cdot \log \frac{\left|S_{-}\right|}{|S|}\right)
$$

- $E([9+, 5-])=-(9 / 14) \log _{2}(9 / 14)-(5 / 14) \log _{2}(5 / 14)$ $=0.940$


## Information gain search heuristic

- Information gain measure is aimed to minimize the number of tests needed for the classification of a new object
- Gain(S,A) - expected reduction in entropy of $S$ due to sorting on $A$

$$
\operatorname{Gain}(S, A)=E(S)-\sum_{v \in \text { blauecer }(A)} \left\lvert\, \frac{\left|S_{v}\right|}{|S|} \cdot E\left(S_{v}\right)\right.
$$

- Most informative attribute: $\max \operatorname{Gain}(S, A)$


## PlayTennis: Entropy



Information gain search heuristic

- Which attribute is more informative, A1 or A2 ?

[9+,5-], $\mathrm{E}=0.94$

- Gain $(\mathrm{S}, \mathrm{A} 1)=0.94-(8 / 14 \times 0.811+6 / 14 \times 1.00)=0.048$
- Gain(S,A2) $=0.94-0=0.94 \quad$ A2 has max Gain


## PlayTennis: Information gain

$\operatorname{Gain}(S, A)=E(S)-\sum_{v \in \operatorname{Values}(A)} \frac{\left|S_{v}\right|}{|S|} \cdot E\left(S_{v}\right)$

- Values $($ Wind $)=\{$ Weak, Strong $\}$

$-S=[9+, 5-], E(S)=0.940$
- $\mathrm{S}_{\text {weak }}=[6+, 2-], \mathrm{E}\left(\mathrm{S}_{\text {weak }}\right)=0.811$
$-S_{\text {strong }}=[3+3-3], E\left(S_{\text {strong }}\right)=1.0$
$-\operatorname{Gain}(S$, Wind $)=E(S)-(8 / 14) E\left(S_{\text {weak }}\right)-(6 / 14) E\left(S_{\text {strong }}\right)=0.940-$ (8/14) $\times 0.811-(6 / 14) \times 1.0=0.048$

PlayTennis: Information gain

- Which attribute is the best?
- Gain(S,Outlook)=0.246 MAX!
- Gain(S,Humidity)=0.151
- Gain(S,Wind)=0.048
- Gain(S,Temperature)=0.029

$$
29
$$

## PlayTennis: Information gain



- Which attribute should be tested here?
- Gain( $\mathrm{S}_{\text {sunny }}$, Humidity) $=0.97-(3 / 5) 0-(2 / 5) 0=0.970$ MAX!
- Gain( $\mathrm{S}_{\text {sunny }}$, Temperature $)=0.97-(2 / 5) 0-(2 / 5) 1-(1 / 5) 0=0.570$
- Gain $\left(\mathrm{S}_{\text {sunny }}\right.$, Wind $)=0.97-(2 / 5) 1-(3 / 5) 0.918=0.019$

Probability estimates

- Relative frequency :
- problems with small samples
$p($ Class $\mid$ Cond $)=$
$=\frac{n(\text { Class.Cond })}{n(\text { Cond })}$
$[6+, 1-](7)=6 / 7$
$[2+, 0-](2)=2 / 2=1$
- Laplace estimate :
- assumes uniform prior distribution of k classes
$[6+, 1-](7)=6+1 / 7+2=7 / 9$
$[2+, 0-](2)=2+1 / 2+2=3 / 4$

$$
=\frac{n(\text { Class.Cond })+1}{n(\text { Cond })+k} \quad k=2
$$

## Pruning of decision trees

- Avoid overfitting the data by tree pruning
- Pruned trees are
- less accurate on training data
- more accurate when classifying unseen data


180

## Handling noise - Tree pruning

- Handling imperfect data
- handling imperfections of type 1-3
- pre-pruning (stopping criteria)
- post-pruning / rule truncation
- handling missing values
- Pruning avoids perfectly fitting noisy data: relaxing the completeness (fitting all +) and consistency (fitting all -) criteria in ID3



## Overfitting and accuracy

- Typical relation between tree size and accuracy

- Question: how to prune optimally?


## Accuracy and error

- Accuracy: percentage of correct classifications
- on the training set
- on unseen instances
- How accurate is a decision tree when classifying unseen instances
- An estimate of accuracy on unseen instances can be computed, e.g., by averaging over 4 runs.
- split the example set into training set (e.g. 70\%) and test set (e.g. 30\%)
- induce a decision tree from training set, compute its accuracy on test set
- Error = 1 - Accuracy
- High error may indicate data overfitting

184

## Avoiding overfitting

- How can we avoid overfitting?
- Pre-pruning (forward pruning): stop growing the tree e.g., when data split not statistically significant or too few examples are in a split
- Post-pruning: grow full tree, then post-prune

- forward pruning considered inferior (myopic)
- post pruning makes use of sub trees


## How to select the "best" tree

- Measure performance over training data (e.g., pessimistic post-pruning, Quinlan 1993)
- Measure performance over separate validation data set (e.g., reduced error pruning, Quinlan 1987)
- until further pruning is harmful DO:
- for each node evaluate the impact of replacing a subtree by a leaf, assigning the majority class of examples in the leaf, if the pruned tree performs no worse than the original over the validation set
- greedily select the node whose removal most improves tree accuracy over the validation set
- MDL: minimize
size(tree)+size(misclassifications(tree))

Selected decision/regression tree learners

- Decision tree learners
- ID3 (Quinlan 1979)
- CART (Breiman et al. 1984)
- Assistant (Cestnik et al. 1987)
- C4.5 (Quinlan 1993), C5 (See5, Quinlan)
- J48 (available in WEKA)
- Regression tree learners, model tree learners
- M5, M5P (implemented in WEKA)


## Features of C4.5

- Implemented as part of the WEKA data mining workbench
- Handling noisy data: post-pruning
- Handling incompletely specified training instances: ‘unknown’ values (?)
- in learning assign conditional probability of value v : $p(v \mid C)=p(v C) / p(C)$
- in classification: follow all branches, weighted by prior prob. of missing attribute values


## Other features of C4.5

- Binarization of attribute values
- for continuous values select a boundary value maximally increasing the informativity of the attribute: sort the values and try every possible split (done automaticaly)
- for discrete values try grouping the values until two groups remain *
- 'Majority' classification in NULL leaf (with no corresponding training example)
- if an example 'falls' into a NULL leaf during classification, the class assigned to this example is the majority class of the parent of the NULL leaf


## Rule Learning in a Nutshell



Given: transaction data table, relational database (a set of objects, described by attribute values)
Find: a classification model in the form of a set of rules; or a set of interesting patterns in the form of individual rules

## Rule set representation

- Rule base is a disjunctive set of conjunctive rules
- Standard form of rules:

IF Condition THEN Class
Class IF Conditions
Class $\leftarrow$ Conditions

IF Outlook=Sunny ^ Humidity=Normal THEN
PlayTennis=Yes
IF Outlook=Overcast THEN PlayTennis=Yes
IF Outlook=Rain $\wedge$ Wind=Weak THEN PlayTennis=Yes

- Form of CN2 rules:

IF Conditions THEN MajClass [ClassDistr]

- Rule base: \{R1, R2, R3, ..., DefaultRule\}

Data mining example Input: Contact lens data

| Person | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1 | young | myope | no | reduced | NONE |
| O2 | young | myope | no | normal | SOFT |
| O3 | young | myope | yes | reduced | NONE |
| O4 | young | myope | yes | normal | HARD |
| O5 | young | hypermetrope | no | reduced | NONE |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O14 | re-presbyc hypermetrope | no | normal | SOFT |  |
| O15 | re-presbyc hypermetrope | yes | reduced | NONE |  |
| O16 | ore-presbyc | hypermetrope | yes | normal | NONE |
| O17 | presbyopic | myope | no | reduced | NONE |
| O18 | presbyopic | myope | no | normal | NONE |
| O19-O23 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O24 | presbyopic | hypermetrope | yes | normal | NONE |

## Contact lens data: Classification rules

Type of task: prediction and classification Hypothesis language: rules $X \rightarrow C$, if $X$ then $C$ $X$ conjunction of attribute values, $C$ class
tear production=reduced $\rightarrow$ lenses=NONE tear production=normal \& astigmatism=yes \& spect. pre.=hypermetrope $\rightarrow$ lenses=NONE tear production=normal \& astigmatism=no $\rightarrow$ lenses=SOFT
tear production=normal \& astigmatism=yes \& spect. pre.=myope $\rightarrow$ lenses=HARD
DEFAULT lenses=NONE

Contact lenses: convert decision tree to ${ }^{195}$
tear production=reduced $=>$ lenses $=$ NONE $[S=0, H=0, N=12]$
tear production=normal \& astigmatism=yes \& spect. pre.=hypermetrope => lenses=NONE [ $\mathrm{S}=0, \mathrm{H}=1, \mathrm{~N}=2$ ]
tear production=normal \& astigmatism $=n o=>$ lenses $=S O F T \quad[S=5, H=0, N=1]$
tear production=normal \& astigmatism=yes \& spect. pre.=myope $=>$ lenses=HARD
[ $\mathrm{S}=0, \mathrm{H}=3, \mathrm{~N}=2$ ]
DEFAULT lenses=NONE


## Rule learning

- Two rule learning approaches:
- Learn decision tree, convert to rules
- Learn set/list of rules
- Learning an unordered set of rules
- Learning an ordered list of rules
- Heuristics, overfitting, pruning

Contact lenses: convert decision tree to


IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism $=$ yes ${ }^{*} /$
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE Ordered (order dependent) rule list

Concept learning: Task reformulation for rule learning: (pos. vs. neg. examples of Target class)

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Person | Age | Spect. presc. | Astigm. | Tear prod. | Lenses |
| O1 | young | myope | no | reduced | NO |
| O2 | young | myope | no | normal | YES |
| O3 | young | myope | yes | reduced | NO |
| O4 | young | myope | yes | normal | YES |
| O5 | young | hypermetrope | no | reduced | NO |
| O6-O13 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O14 | ore-presbyc | hypermetrope | no | normal | YES |
| O15 | ore-presbyc hypermetrope | yes | reduced | NO |  |
| O16 | ore-presbyc hypermetrope | yes | normal | NO |  |
| O17 | presbyopic | myope | no | reduced | NO |
| O18 | presbyopic | myope | no | normal | NO |
| O19-O23 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| O24 | presbyopic | hypermetrope | yes | normal | NO |

## Original covering algorithm (AQ, Michalski 1969,86)

Given examples of N classes $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{N}}$ for each class Ci do

- Ei := Pi U Ni (Pi pos., Ni neg.)
- RuleBase(Ci) := empty
- repeat \{learn-set-of-rules\}

- learn-one-rule R covering some positive examples and no negatives
- add R to RuleBase(Ci)
- delete from Pi all pos. ex. covered by R
- until $\mathrm{Pi}=$ empty


## Covering algorithm

## Positive examples

Negative examples


## Covering algorithm



203

## Covering algorithm



Covering algorithm


| Day | Outlook | Temperature | Humidity | Wind | PlayTennis |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | Sunny | Hot | High | Weak | No |
| D2 | Sunny | Hot | High | Strong | No |
| D3 | Overcast | Hot | High | Weak | Yes |
| D4 | Rain | Mild | High | Weak | Yes |
| D5 | Rain | Cool | Normal | Weak | Yes |
| D6 | Rain | Cool | Normal | Strong | No |
| D7 | Overcast | Cool | Normal | Strong | Yes |
| D8 | Sunny | Mild | High | Weak | No |
| D9 | Sunny | Cool | Normal | Weak | Yes |
| D10 | Rain | Mild | Normal | Weak | Yes |
| D11 | Sunny | Mild | Normal | Strong | Yes |
| D12 | Overcast | Mild | High | Weak | Yes |
| D13 | Overcast | Hot | Normal | Weak | Yes |
| D14 | Rain | Mild | High | Strong | No |

Heuristics for learn-one-rule: PlayTennis example

PlayTennis = yes [9+,5-] (14)
PlayTennis $=$ yes $\quad \leftarrow$ Wind=weak $[6+, 2-]$ (8)
$\leftarrow$ Wind=strong $[3+, 3-](6)$
$\leftarrow$ Humidity=normal [6+,1-] (7)
$\leftarrow \ldots$
$\leftarrow$ Humidity $=$ normal
Outlook=sunny [2+,0-] (2)
Estimating rule accuracy (rule precision) with the probability
that a covered example is positive
A(Class $\leftarrow$ Cond $)=$ p(Classl Cond)

Estimating the probability with the relative frequency of covered pos. ex. / all covered ex
$[6+, 1-](7)=6 / 7$,
$[2+, 0-](2)=2 / 2=1$

- Relative frequency :
- problems with small samples
$p($ Class $\mid$ Cond $)=$
$=\frac{n(\text { Class.Cond })}{n(\text { Cond })}$
$[6+, 1-](7)=6 / 7$
$[2+, 0-](2)=2 / 2=1$
- Laplace estimate :
- assumes uniform prior distribution of $k$ classes
$[6+, 1-](7)=6+1 / 7+2=7 / 9$
$[2+, 0-](2)=2+1 / 2+2=3 / 4$


## Learn-one-rule: search heuristics

- Assume a two-class problem
- Two classes (+,-), learn rules for + class (CI).
- Search for specializations R ' of a rule $\mathrm{R}=\mathrm{Cl} \leftarrow$ Cond from the RuleBase.
- Specializarion $\mathrm{R}^{\prime}$ of rule $\mathrm{R}=\mathrm{Cl} \leftarrow$ Cond
has the form $\quad \mathrm{R}^{\prime}=\mathrm{Cl} \leftarrow$ Cond \& Cond'
- Heuristic search for rules: find the 'best' Cond' to be added to the current rule $R$, such that rule accuracy is improved, e.g., such that $\operatorname{Acc}\left(R^{\prime}\right)>\operatorname{Acc}(R)$
- where the expected classification accuracy can be estimated as $A(R)=p(C l l C o n d)$
$\qquad$


## What is "high" rule accuracy (rule precision) ?

- Rule evaluation measures:
- aimed at maximizing classification accuracy
- minimizing Error = 1 - Accuracy
- avoiding overfitting
- BUT: Rule accuracy/precision should be traded off against the "default" accuracy/precision of the rule $\mathrm{Cl} \leftarrow$ true
- $68 \%$ accuracy is OK if there are $20 \%$ examples of that class in the training set, but bad if there are $80 \%$
- Relative accuracy
$-\operatorname{RAcc}(\mathrm{Cl} \leftarrow$ Cond $)=p(\mathrm{Cl} \mid$ Cond $)-\mathrm{p}(\mathrm{Cl})$


## Learn-one-rule: search heuristics

- Assume two classes (+,-), learn rules for + class (CI). Search for specializations of one rule $\mathrm{R}=\mathrm{Cl} \leftarrow$ Cond from RuleBase.
- Expected classification accuracy: $A(R)=p(C \| C o n d)$
- Informativity (info needed to specify that example covered by Cond belongs to Cl$): \mathrm{I}(\mathrm{R})=-\log _{2} \mathrm{p}(\mathrm{ClICond})$
- Accuracy gain (increase in expected accuracy): $A G\left(R^{\prime}, R\right)=p(C \|$ Cond' $)-p(C \|$ Cond $)$
- Information gain (decrease in the information needed): $I G\left(R^{\prime}, R\right)=\log _{2} p(C I I C o n d ')-\log _{2} p(C I I C o n d)$
- Weighted measures favoring more general rules: WAG, WIG $W A G\left(R^{\prime}, R\right)=$ $p($ Cond' $) / p($ Cond $)$. ( $p($ CllCond') $-p(C l l$ Cond $))$
- Weighted relative accuracy trades off coverage and relative accuracy WRAcc $(R)=p($ Cond $) .(p(C I C o n d)-p(C I))$


## Sequential covering algorithm (similar as in Mitchell's book)

- RuleBase := empty
- $\mathrm{E}_{\text {cur }}=\mathrm{E}$
- repeat
- learn-one-rule R
- RuleBase := RuleBase U R
- $\mathrm{E}_{\text {cur }}:=\mathrm{E}_{\text {cur }}-$ \{examples covered and correctly classified by R\} (DELETE ONLY POS. EX.!)
- until performance $\left(\mathrm{R}, \mathrm{E}_{\text {cur }}\right)$ < ThresholdR
- RuleBase := sort RuleBase by performance(R,E)
- return RuleBase


## Weighted relative accuracy

- If a rule covers a single example, its accuracy/precision is either $0 \%$ or $100 \%$
- maximising relative accuracy tends to produce many overly specific rules
- Weighted relative accuracy

WRAcc $(\mathrm{Cl} \leftarrow$ Cond $)=p($ Cond $) \cdot[p(\mathrm{Cl}$ I Cond $)-\mathrm{p}(\mathrm{Cl})]$

- WRAcc is a fundamental rule evaluation measure:
- WRAcc can be used if you want to assess both accuracy and significance
- WRAcc can be used if you want to compare rules with different heads and bodies


## Ordered set of rules: <br> if-then-else rules

- rule Class IF Conditions is learned by first determining Conditions and then Class
- Notice: mixed sequence of classes $\mathrm{C} 1, \ldots, \mathrm{Cn}$ in RuleBase
- But: ordered execution when classifying a new instance: rules are sequentially tried and the first rule that 'fires' (covers the example) is used for classification
- Decision list \{R1, R2, R3, ..., D\}: rules Ri are interpreted as if-then-else rules
- If no rule fires, then DefaultClass (majority class in $\mathrm{E}_{\mathrm{cur}}$ )


## Learn ordered set of rules (CN2, Clark and Niblett 1989)

- RuleBase := empty
- $\mathrm{E}_{\text {cur }}:=\mathrm{E}$
- repeat
- learn-one-rule R
- RuleBase := RuleBase U R
$-\mathrm{E}_{\text {cur }}:=\mathrm{E}_{\text {cur }}$ - \{all examples covered by R$\}$
(NOT ONLY POS. EX.!)
- until performance $\left(R, E_{\text {cur }}\right)$ < ThresholdR
- RuleBase := sort RuleBase by performance(R,E)
- RuleBase := RuleBase U DefaultRule( $\mathrm{E}_{\mathrm{cur}}$ )


## Learn-one-rule: Beam search in CN2

- Beam search in CN2 learn-one-rule algo.:
- construct BeamSize of best rule bodies (conjunctive conditions) that are statistically significant
- BestBody - min. entropy of examples covered by Body
- construct best rule R := Head $\leftarrow$ BestBody by adding majority class of examples covered by BestBody in rule Head
- performance ( $\mathrm{R}, \mathrm{E}_{\text {cur }}$ ) : - Entropy $\left(\mathrm{E}_{\text {cur }}\right)$
- performance(R, $\mathrm{E}_{\text {cur }}$ < ThresholdR (neg. num.)
- Why? Ent. > t is bad, Perf. = -Ent < -t is bad


## Variations

- Sequential vs. simultaneous covering of data (as in TDIDT): choosing between attribute-values vs. choosing attributes
- Learning rules vs. learning decision trees and converting them to rules
- Pre-pruning vs. post-pruning of rules
- What statistical evaluation functions to use
- Probabilistic classification


# Part II. Predictive DM techniques 

- Naïve Bayesian classifier
- Decision tree learning
- Classification rule learning
- Classifier evaluation


## Classifier evaluation

- Accuracy and Error
- n-fold cross-validation
- Confusion matrix
- ROC


## Evaluating hypotheses

- Use of induced hypotheses
- discovery of new patterns, new knowledge
- classification of new objects
- Evaluating the quality of induced hypotheses
- Accuracy, Error = 1 - Accuracy
- classification accuracy on testing examples = percentage of correctly classified instances
- split the example set into training set (e.g. 70\%) to induce a concept, and test set (e.g. 30\%) to test its accuracy
- more elaborate strategies: 10 -fold cross validation, leave-one-out, ...
- comprehensibility (compactness)
- information contents (information score), significance


## n-fold cross validation

- A method for accuracy estimation of classifiers
- Partition set D into n disjoint, almost equally-sized folds $T_{i}$ where $U_{i} T_{i}=D$
- for $\mathrm{i}=1, \ldots, \mathrm{n}$ do
- form a training set out of $n-1$ folds: $\mathrm{Di}=\mathrm{D} \backslash \mathrm{T}_{\mathrm{i}}$
- induce classifier $\mathrm{H}_{\mathrm{i}}$ from examples in Di
- use fold $T_{i}$ for testing the accuracy of $H_{i}$
- Estimate the accuracy of the classifier by averaging accuracies over 10 folds $\mathrm{T}_{\mathrm{i}}$




## Confusion matrix and rule (in)accuracy

- Accuracy of a classifier is measured as TP+TN / N.
- Suppose two rules are both $80 \%$ accurate on an evaluation dataset, are they always equally good?
- e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out of 50 negatives; Rule 2 correctly classifies 30 out of 50 positives and 50 out of 50 negatives
- on a test set which has more negatives than positives, Rule 2 is preterable;
- on a test set which has more positives than negatives, Rule 1 is preferable; unless..
-..the proportion of positives becomes so high that the 'always positive' predictor becomes superior!
- Conclusion: classification accuracy is not always an appropriate rule quality measure


## Confusion matrix

- also called contingency table


231
The ROC space


## ROC space

- True positive rate = \#true pos. / \#pos.
- $\operatorname{TPr}_{1}=40 / 50=80 \%$ $-\operatorname{TPr}_{2}=30 / 50=60 \%$
False positive rate = \#false pos. / \#neg. $-\mathrm{FPr}_{1}=10 / 50=20 \%$ - $\mathrm{FPr}_{2}=0 / 50=0 \%$
- ROC space has
- FPron $X$ axis
- TPron Y axis



The ROC convex hull


## Summary of evaluation

- 10 -fold cross-validation is a standard classifier evaluation method used in machine learning
- ROC analysis is very natural for rule learning and subgroup discovery
- can take costs into account
- here used for evaluation
- also possible to use as search heuristic


## Part III. Numeric prediction

- Baseline
- Linear Regression
- Regression tree
- Model Tree
- kNN

| Regression | Classification |
| :--- | :--- |
| Data: attribute-value description | Target variable: <br> Categorical (nominal) |
| Target variable: <br> Continuous | Error: <br> 1 -accuracy |
| Evaluation: cross validation, separate test set, ... |  |
| Error: <br> MSE, MAE, RMSE, $\ldots$ | Algorithms: <br> Decision trees, Naïve Bayes, $\ldots$ |
| Algorithms: <br> Linear regression, regression <br> trees,... | Baseline predictor: <br> Majority class |
| Baseline predictor: <br> Mean of the target variable |  |

## Example

- data about 80 people: Age and Height


| Age | Height |
| :---: | :---: |
| 3 | 1.03 |
| 5 | 1.19 |
| 6 | 1.26 |
| 9 | 1.39 |
| 15 | 1.69 |
| 19 | 1.67 |
| 22 | 1.86 |
| 25 | 1.85 |
| 41 | 1.59 |
| 48 | 1.60 |
| 54 | 1.90 |
| 71 | 1.82 |
| $\ldots$ | $\ldots$ |

Test set

| Age | Height |
| :---: | :---: |
| 2 | 0.85 |
| 10 | 1.4 |
| 35 | 1.7 |
| 70 | 1.6 |

Baseline numeric predictor

- Average of the target variable



## Baseline predictor: prediction

Linear Regression Model

Average of the target variable is 1.63

| Age | Height | Baseline |
| :---: | :---: | :--- |
| 2 | 0.85 |  |
| 10 | 1.4 |  |
| 35 | 1.7 |  |
| 70 | 1.6 |  |

Linear Regression: prediction
Height $=0.0056$ * Age +1.4181

| Age | Height | Linear <br> regression |
| :---: | :---: | :--- |
| 2 | 0.85 |  |
| 10 | 1.4 |  |
| 35 | 1.7 |  |
| 70 | 1.6 |  |

## Regression tree: prediction



Regression tree

kNN prediction

| Age | Height |
| :---: | :---: |
| 1 | 0.90 |
| 1 | 0.99 |
| 2 | 1.01 |
| 3 | 1.03 |
| 3 | 1.07 |
| 5 | 1.19 |
| 5 | 1.17 |


| Age | Height | kNN |
| :---: | :---: | :---: |
| 2 | 0.85 |  |
| 10 | 1.4 |  |
| 35 | 1.7 |  |
| 70 | 1.6 |  |

kNN prediction

| Age | Height |
| :---: | :---: |
| 8 | 1.36 |
| 8 | 1.33 |
| 9 | 1.45 |
| 9 | 1.39 |
| 11 | 1.49 |
| 12 | 1.66 |
| 12 | 1.52 |
| 13 | 1.59 |
| 14 | 1.58 |


| Age | Height | kNN |
| :---: | :---: | :---: |
| 2 | 0.85 |  |
| 10 | 1.4 |  |
| 35 | 1.7 |  |
| 70 | 1.6 |  |

kNN prediction

| Age | Height |
| :---: | :---: |
| 30 | 1.57 |
| 30 | 1.88 |
| 31 | 1.71 |
| 34 | 1.55 |
| 37 | 1.65 |
| 37 | 1.80 |
| 38 | 1.60 |
| 39 | 1.69 |
| 39 | 1.80 |


| Age | Height | kNN |
| :---: | :---: | :---: |
| 2 | 0.85 |  |
| 10 | 1.4 |  |
| 35 | 1.7 |  |
| 70 | 1.6 |  |

## Which predictor is the best?

| Age | Height | Baseline | Linear <br> regression | Regression <br> tree | Model tree | kNN |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.85 | 1.63 | 1.43 | 1.39 | 1.20 | 1.01 |
| 10 | 1.4 | 1.63 | 1.47 | 1.46 | 1.47 | 1.51 |
| 35 | 1.7 | 1.63 | 1.61 | 1.71 | 1.71 | 1.67 |
| 70 | 1.6 | 1.63 | 1.81 | 1.71 | 1.75 | 1.81 |

## Part IV. Descriptive DM techniques

- Predictive vs. descriptive induction
- Subgroup discovery
- Association rule learning
- Hierarchical clustering


## Predictive vs. descriptive induction

- Predictive induction: Inducing classifiers for solving classification and prediction tasks,
- Classification rule learning, Decision tree learning, ...
- Bayesian classifier, ANN, SVM, ...
- Data analysis through hypothesis generation and testing
- Descriptive induction: Discovering interesting regularities in the data, uncovering patterns, ... for solving KDD tasks
- Symbolic clustering, Association rule learning, Subgroup discovery, ...
- Exploratory data analysis


## Descriptive DM

- Often used for preliminary explanatory data analysis
- User gets feel for the data and its structure
- Aims at deriving descriptions of characteristics of the data
- Visualization and descriptive statistical techniques can be used


## Descriptive DM

## - Description

- Data description and summarization: describe elementary and aggregated data characteristics (statistics, ...)
- Dependency analysis:
- describe associations, dependencies, ...
- discovery of properties and constraints
- Segmentation
- Clustering: separate objects into subsets according to distance and/or similarity (clustering, SOM, visualization, ...)
- Subgroup discovery: find unusual subgroups that are significantly different from the majority (deviation detection w.r.t. overall class distribution)


## Predictive vs. descriptive induction: A rule learning perspective

- Predictive induction: Induces rulesets acting as classifiers for solving classification and prediction tasks
- Descriptive induction: Discovers individual rules describing interesting regularities in the data
- Therefore: Different goals, different heuristics, different evaluation criteria

Supervised vs. unsupervised learning: A rule learning perspective

- Supervised learning: Rules are induced from labeled instances (training examples with class assignment) - usually used in predictive induction
- Unsupervised learning: Rules are induced from unlabeled instances (training examples with no class assignment) - usually used in descriptive induction
- Exception: Subgroup discovery Discovers individual rules describing interesting regularities in the data from labeled examples


## Part IV. Descriptive DM techniques

- Predictive vs. descriptive induction
- Subgroup discovery
- Association rule learning
- Hierarchical clustering


## Subgroup Discovery

Given: a population of individuals and a target class label (the property of individuals we are interested in)
Find: population subgroups that are statistically most 'interesting', e.g., are as large as possible and have most unusual statistical (distributional) characteristics w.r.t. the target class (property of interest)

## Subgroup interestingness

Interestingness criteria:

- As large as possible
- Class distribution as different as possible from the distribution in the entire data set
- Significant
- Surprising to the user
- Non-redundant
- Simple
- Useful - actionable


## Subgroup Discovery: Medical Case Study

- Find and characterize population subgroups with high risk for coronary heart disease (CHD) (Gamberger, Lavrač, Krstačić)
- A1 for males: principal risk factors $\mathrm{CHD} \leftarrow$ pos. fam. history \& age $>46$
- A2 for females: principal risk factors $\mathrm{CHD} \leftarrow$ bodyMassIndex $>25$ \& age $>63$
- A1, A2 (anamnestic info only), B1, B2 (an. and physical examination), C1 (an., phy. and ECG)
- A1: supporting factors (found by statistical analysis): psychosocial stress, as well as cigarette smoking, hypertension and overweight

Subgroup visualization


Subgroups of patients with CHD risk
[Gamberger, Lavrač $\&$ Wettschereck
IDAMAP2002] IDAMAP2002]

## Subgroups vs. classifiers

- Classifiers:
- Classification rules aim at pure subgroups
- A set of rules forms a domain model
- Subgroups:
- Rules describing subgroups aim at significantly higher proportion of positives
- Each rule is an independent chunk of knowledge
- Link
- SD can be viewed as cost-sensitive
classification
- Instead of FNcost we aim at increased TPprofit



## Classification Rule Learning for Subgroup Discovery: Deficiencies

- Only first few rules induced by the covering algorithm have sufficient support (coverage)
- Subsequent rules are induced from smaller and strongly biased example subsets (pos. examples not covered by previously induced rules), which hinders their ability to detect population subgroups
- 'Ordered' rules are induced and interpreted sequentially as a if-then-else decision list


## CN2-SD: Adapting CN2 Rule Learning to Subgroup Discovery

- Weighted covering algorithm
- Weighted relative accuracy (WRAcc) search heuristics, with added example weights
- Probabilistic classification
- Evaluation with different interestingness measures


## CN2-SD: CN2 Adaptations

- General-to-specific search (beam search) for best rules
- Rule quality measure:
- CN2: Laplace: Acc (Class $\leftarrow$ Cond $)=$ $=p($ Class Cond $)=\left(n_{c}+1\right) /\left(n_{\text {rule }}+\mathrm{k}\right)$
- CN2-SD: Weighted Relative Accuracy WRAcc(Class $\leftarrow$ Cond) $=$
p(Cond) (p(ClassICond) - p(Class))
- Weighted covering approach (example weights)
- Significance testing (likelihood ratio statistics)
- Output: Unordered rule sets (probabilistic classification)


CN2-SD: Weighted Covering

- Standard covering approach: covered examples are deleted from current training set
- Weighted covering approach:
- weights assigned to examples
- covered pos. examples are re-weighted: in all covering loop iterations, store count i how many times (with how many rules induced so far) a pos. example has been covered: $\mathrm{w}(\mathrm{e}, \mathrm{i})$, $\mathrm{w}(\mathrm{e}, 0)=1$
- Additive weights: $\mathrm{w}(\mathrm{e}, \mathrm{i})=1 /(\mathrm{i}+1)$ $w(e, i)$ - pos. example e being covered $i$ times



## Subgroup Discovery



CN2-SD: Weighted WRAcc Search ${ }^{23}$ Heuristic

- Weighted relative accuracy (WRAcc) search heuristics, with added example weights WRAcc $(\mathrm{Cl} \leftarrow$ Cond $)=p($ Cond $)(p(C l l C o n d)-p(C l))$ increased coverage, decreased \# of rules, approx. equal accuracy (PKDD-2000)
- In WRAcc computation, probabilities are estimated with relative frequencies, adapt:
WRAcc $(C I \leftarrow$ Cond $)=p($ Cond $)(p(C I I C o n d)-p(C I))=$ $n^{\prime}($ Cond $) / N^{\prime}\left(n^{\prime}(\mathrm{Cl.Cond}) / \mathrm{n}^{\prime}(\right.$ Cond $\left.) ~-~ \mathrm{n}^{\prime}(\mathrm{Cl}) / \mathrm{N}^{\prime}\right)$
- $N^{\prime}$ : sum of weights of examples
- n'(Cond) : sum of weights of all covered examples
- n'(Cl.Cond) : sum of weights of all correctly covered examples


## Association Rule Learning

## Rules: $\mathbf{X}=>\mathbf{Y}$, if $\mathbf{X}$ then $\mathbf{Y}$

$X$ and $Y$ are itemsets (records, conjunction of items), where items/features are binary-valued attributes)

| Given: Transactions | i1 i2 ..................i50 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| itemsets (records) |  | 1 | 1 |  |
|  |  | 0 | 1 |  |

Find: A set of association rules in the form $\mathrm{X}=>\mathrm{Y}$
Example: Market basket analysis
beer \& coke $=>$ peanuts \& chips $(0.05,0.65)$

- Support: $\operatorname{Sup}(X, Y)=\# X Y / \# D=p(X Y)$
- Confidence: $\operatorname{Conf}(X, Y)=\# X Y / \# X=\operatorname{Sup}(X, Y) / \operatorname{Sup}(X)=$

$$
=p(X Y) / p(X)=p(Y \mid X)
$$

Positive examples


## Part IV. Descriptive DM techniques

- Predictive vs. descriptive induction
- Subgroup discovery
- Association rule learning
- Hierarchical clustering


## Association Rule Learning: Examples

- Market basket analysis
- beer \& coke $\Rightarrow$ peanuts \& chips ( $5 \%, 65 \%$ )
(IF beer AND coke THEN peanuts AND chips)
- Support 5\%: 5\% of all customers buy all four items
- Confidence $65 \%$ : $65 \%$ of customers that buy beer and coke also buy peanuts and chips
- Insurance
- mortgage \& loans \& savings $\Rightarrow$ insurance ( $2 \%, 62 \%$ )
- Support $2 \%$ : $2 \%$ of all customers have all four
- Confidence 62\%: 62\% of all customers that have mortgage, loan and savings also have insurance


## Association rule learning

- $\mathbf{X} \Rightarrow \mathbf{Y} \ldots$ IF $X$ then $Y$, where $X$ and $Y$ are itemsets
- intuitive meaning: transactions that contain $X$ tend to contain $Y$
- Items - binary attributes (features) m,f,headache, muscle pain, arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour
- Example transactions - itemsets formed of patient records

- Association rules spondylitic $\Rightarrow$ arthritic \& stiff_gt_1_hour $\quad[5 \%, 70 \%]$ arthrotic \& spondylotic $\Rightarrow$ stiff_less_1_hour $\quad[20 \%, 90 \%]$


## Association Rule Learning

## Given: a set of transactions D

Find: all association rules that hold on the set of transactions that have

- user defined minimum support, i.e., support > MinSup, and
- user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis verification

## Searching for the associations

- Find all large itemsets
- Use the large itemsets to generate association rules
- If $X Y$ is a large itemset, compute $r=\operatorname{support}(X Y) /$ support(X)
- If $r>$ MinConf, then $X \Rightarrow Y$ holds (support > MinSup, as XY is large)


## Association vs. Classification

- Exploration of dependencies
- Different combinations of dependent and independent attributes
- Complete search (all
- Focused prediction
- Predict one attribute (class) from the others
- Heuristic search (subset of rules found)
rules found)


## Large itemsets

- Large itemsets are itemsets that appear in at least MinSup transaction
- All subsets of a large itemset are large itemsets (e.g., if $A, B$ appears in at least MinSup transactions, so do $A$ and $B$ )
- This observation is the basis for very efficient algorithms for association rules discovery (linear in the number of transactions)


## Part IV. Descriptive DM techniques

- Predictive vs. descriptive induction
- Subgroup discovery
- Association rule learning
$\longrightarrow$ - Hierarchical clustering


## Hierarchical clustering

- Algorithm (agglomerative hierarchical clustering):

- Dendogram:


Hierarchical clustering: example


## Learning as search

- Structuring the state space: Representing a partial order of hypotheses (e.g. rules) as a graph
- nodes: concept descriptions (hypotheses/rules)
- arcs defined by specialization/generalization operators : an arc from parent to child exists if-and-only-if parent is a proper most specific generalization of child
- Specialization operators: e.g., adding conditions: $s(A=a 2$ \& $B=b 1)=\{A=a 2 \& B=b 1 \& D=d 1, A=a 2$ \& $B=b 1 \& D=d 2\}$
- Generalization operators: e.g., dropping conditions: $g(A=a 2$ \& $B=b 1)=\{A=a 2, B=b 1\}$
- Partial order of hypotheses defines a lattice (called a refinement graph)



## Learning as search (Mitchell's version space model)

- Hypothesis language $L_{H}$ defines the state space
- How to structure the hypothesis space $L_{H}$ ?
- How to move from one hypothesis to another?
- The version space: region between $S$ (maximally specific) and G (maximally general) complete and
 consistent concept descriptions

Learn-one-rule as heuristic search: PlayTennis example


## Learning as search

- Search/move by applying generalization and specialization
- Prune generalizations:
- if H covers example e then all generalizations of H will also cover e (prune using neg. ex.)
- Prune specializations:
- if H does not cover example e, no
 specialization will cover e (prune using if H pos. ex.)


## Learn-one-rule: search heuristics

- Assume a two-class problem
- Two classes (+,-), learn rules for + class (CI).
- Search for specializations R ' of a rule $\mathrm{R}=\mathrm{Cl} \leftarrow$ Cond from the RuleBase.
- Specializarion R ' of rule $\mathrm{R}=\mathrm{Cl} \leftarrow$ Cond has the form $\quad \mathrm{R}^{\prime}=\mathrm{Cl} \leftarrow$ Cond \& Cond'
- Heuristic search for rules: find the 'best' Cond' to be added to the current rule $R$, such that rule accuracy is improved, e.g., such that $\operatorname{Acc}\left(R^{\prime}\right)>\operatorname{Acc}(R)$
- where the expected classification accuracy can be estimated as $A(R)=p(C \| C o n d)$


## Learn-one-rule - Search strategy: Greedy vs. beam search

- learn-one-rule by greedy general-to-specific search, at each step selecting the 'best' descendant, no backtracking
- e.g., the best descendant of the initial rule PlayTennis = yes $\leftarrow$
- is rule PlayTennis $=$ yes $\leftarrow$ Humidity=normal
- beam search: maintain a list of $k$ best candidates at each step; descendants (specializations) of each of these $k$ candidates are generated, and the resulting set is again reduced to k best candidates


# Relational Data Mining 

- Learning as search

What is RDM?

- Propositionalization techniques
- Inductive Logic Programming


## Predictive relational DM

- Data stored in relational databases
- Single relation - propositional DM
- example is a tuple of values of a fixed number of attributes (one attribute is a class)
- example set is a table (simple field values)
- Multiple relations - relational DM (ILP)
- example is a tuple or a set of tuples
(logical fact or set of logical facts)
- example set is a set of tables (simple or complex structured objects as field values)

Data for propositional DM
Sample single relation data table


Customer table including order and store information

## Multi-relational data made propositional

- Sample relation table

- Making data using summary

- Learning from multiple tables
- Complex relational problems:
- temporal data: time series in medicine, trafic control, .
- structured data: representation of molecules and their properties in protein engineering, biochemistry, .

- Given:
- A set of observations
- positive examples $E^{+}$
- negative examples $E$
- background knowledge $B$
- hypothesis language $L_{H}$
- covers relation
- Find:

A hypothesis $H \in L_{H}$, such that (given $B$ ) $H$ covers all positive and no negative examples

- In logic, find $H$ such that
$-\forall e \in E^{+}: \mathrm{B} \wedge \mathrm{HI}=e(H$ is complete $)$
- $\forall e \in E^{*}: \mathrm{B} \wedge \mathrm{HI}=/=e$ ( $H$ is consistent)
- In ILP, $E$ are ground facts, $B$ and $H$ are (sets of) definite clauses


## Predictive ILP

- Given:
- A set of observations
- positive examples $E^{+}$
- negative examples $E^{-}$
- background knowledge $B$
- hypothesis language $L_{H}$
- covers relation
- quality criterion
- Find:

A hypothesis $H \in L_{H}$, such that (given $B$ ) $H$ is optimal w.r.t. some quality criterion, e.g., max. predictive accuracy $A(H)$
(instead of finding a hypothesis $H \in L_{H}$, such that (given $B$ ) $H$ covers all positive and no negative examples)


## Sample problem Logic programming

$E^{+}=\{\operatorname{sort}([2,1,3],[1,2,3])\}$
$E^{-}=\{\operatorname{sort}([2,1],[1]), \operatorname{sort}([3,1,2],[2,1,3])\}$
$B$ : definitions of permutation/2 and sorted/1

- Predictive ILP
sort $(\mathrm{X}, \mathrm{Y}) \leftarrow$ permutation $(\mathrm{X}, \mathrm{Y})$, sorted $(\mathrm{Y})$
- Descriptive ILP
sorted (Y) $\leftarrow \operatorname{sort}(\mathrm{X}, \mathrm{Y})$.
permutation $(\mathrm{X}, \mathrm{Y}) \leftarrow \operatorname{sort}(\mathrm{X}, \mathrm{Y})$
sorted (X) $\leftarrow \operatorname{sort}(\mathrm{X}, \mathrm{X})$

RDM knowledge representation ${ }^{3 \infty}$ (database)

TRAIN_TABLE



- Hypothesis (predictive ILP)
eastbound(T) :- $\operatorname{car}(T, C)$, short(C), not none(C).


ER diagram for East-West trains


ILP representation: Datalos

- Example: eastbound(t1):-

car(t1, c2), rectangle(c2),long(c2), none(c2), three_wheels(c2), load(c2,|2), hexagon(12),one_load(12),
car(t1,c3), rectangle(c3), short(c3), peaked(c3),two_wheels(c3), load(c3,l3),triangle(13),one_load(13),
car(t1,c4),rectangle(c4),long(c4), none(c4),two_wheels(c4), load(c4,14),rectangle(14),three_load(14).
- Background theory: empty
- Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C)


## ILP represer

- Example: eastbound([c(rectangle
c(rectangle,long,none,3,l(hexagon,1)),
c(rectangle,short,peaked,2,(triangle,1)),
c(rectangle,long,none,2,((rectangle,3))]).
- Background theory: member/2, arg/3
- Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).


## First-order representations

- Propositional representations:
- datacase is fixed-size vector of values
- features are those given in the dataset
- First-order representations:
- datacase is flexible-size, structured object
- sequence, set, graph
- hierarchical: e.g. set of sequences
- features need to be selected from potentially infinite set


## Part V: <br> Relational Data Mining

- Learning as search
- What is RDM?
$\Rightarrow$ Propositionalization techniques
- Inductive Logic Programming
- Next: single table without primary key
- example corresponds to set of tuples of constants
- multiple-instance problem
- Complexity resides in many-to-one foreign keys
- lists, sets, multisets
- non-determinate variables


## Complexity of RDM problems

- Simplest case: single table with primary key
- example corresponds to tuple of constants
- attribute-value or propositional learning


## Rule learning revisited

- Hypothesis construction: find a set of $n$ rules
- Rule construction: find a pair (Head, Body)
- Body construction: find a set of $m$ features
- Features can be either defined by background knowledge or constructed through constructive induction
- In propositional learning features may increase expressiveness through negation
- Every ILP system does constructive induction
- Feature construction: find a set of $k$ literals
- finding interesting features is discovery task rather than classification task e.g. interesting subgroups, frequent itemsets
- excellent results achieved also by feature construction through predictive propositional learning and ILP (Srinivasan)


## First-order feature construction

- All the expressiveness of ILP is in the features
- Given a way to construct (or choose) first-order features, body construction in ILP becomes propositional
- idea: learn non-determinate clauses with LINUS by saturating background knowledge (performing systematic feature construction in a given language bias)

Standard LINUS

- Example: learning family relationships

| Training examples |  | Background knowledge |  |
| :--- | :--- | :--- | :--- |
| daughter(sue,eve). | $(+)$ | parent(eve,sue). | female(ann). |
| daughter(ann,pat). | $(+)$ | parent(ann,tom). | female(sue). |
| daughter(tom,ann). | $(-)$ | parent(pat,ann). | female(eve). |
| daughter(eve,ann). | $(-)$ | parent(tom,sue). |  |

- Transformation to propositional form:

| Class | Variables |  | Propositional features |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | $Y$ | $f(X)$ | $f(Y)$ | $p(X, X)$ | $p(X, Y)$ | $p(Y, X)$ | $p(Y, Y)$ | $X=Y$ |  |
| $\oplus$ | sue | eve | true | true | false | false | true | false | false |  |
| $\oplus$ | ann | pat | true | false | false | false | true | false | false |  |
| $\ominus$ | tom | ann | false | true | false | false | true | false | false |  |
| $\ominus$ | eve | ann | true | true | false | false | false | false | false |  |

- Result of propositional rule learning:

Class $=\oplus$ if (female $(\mathrm{X})=$ true $) \wedge($ parent $(\mathrm{Y}, \mathrm{X})=$ true

- Transformation to program clause form:
daughter $(X, Y) \leftarrow$ female $(X)$, parent $(Y, X)$


## Representation issues (2)

- Term representation provides strong language bias
- Term representation can be flattened to be described by ground facts, using
- structural predicates (e.g. car(t1,c1), load(c1,11)) to introduce substructures - utility predicates, to define properties of invididuals (e.g. long(t1)) or their parts (e.g., long(c1), circle(11)).
- This observation can be used as a language bias to construct new features


## Sample first-order features

- The following rule has two features 'has a short car' and 'has a closed car':
eastbound(T):-hasCar(T,C1),clength(C1,short), hasCar( $\mathrm{T}, \mathrm{C} 2$ ), not croof( C 2, none).
- The following rule has one feature 'has a short closed car': eastbound(T):-hasCar(T,C),clength(C,short), not croof(C,none).
- Equivalent representation:
eastbound( T$)$ :-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).



## LINUS revisited

- Standard LINUS:
- transforming an ILP problem to a propositional problem
- apply background knowledge predicates
- Revisited LINUS:
- Systematic first-order feature construction in a given language bias
- Too many features?
- use a relevancy filter (Gamberger and Lavrac)

Propositionalization in a nutshell


Propositional learning:
$\mathrm{t}(\mathrm{T}) \leftarrow \mathrm{f} 1(\mathrm{~T}), \mathrm{f4}(\mathrm{~T})$
Relational interpretation:
eastbound $(\mathrm{T}) \leftarrow$
hasShortCar( T ),hasClosedCar( T ).

## ILP as search of program clauses

- Semantic generality

Hypothesis $H_{1}$ is semantically more general than $H_{2}$ w.r.t. background theory $B$ if and only if $B \cup H_{1} \mid=H_{2}$

- Syntactic generality or $\theta$-subsumption (most popular in ILP)
- Clause $c_{1} \theta$-subsumes $c_{2}\left(c_{1} \geq_{\theta} c_{2}\right)$
if and only if $\exists \theta: c_{1} \theta \subseteq c_{2}$
- Hypothesis $H_{1} \geq \theta \mathrm{H}_{2}$
if and only if $\forall c_{2} \in H_{2}$ exists $c_{1} \in H_{1}$ such that $c_{1} \geq \theta c_{2}$
- Example
$c 1=$ daughter $(X, Y) \leftarrow \operatorname{parent}(Y, X)$
$\mathrm{c} 2=$ daughter $($ mary, ann $) \leftarrow$ female (mary $),$ parent(ann,mary) c1 $\theta$-subsumes $c_{2}$ under $\theta=\{\mathrm{X} /$ mary, $\mathrm{Y} / \mathrm{ann}\}$


## Structuring the hypothesis space



## Two strategies for learning

- General-to-specific
- if $\Theta$-subsumption is used then refinement operators
- Specific-to-general search
- if $\Theta$-subsumption is used then Igg-operator or generalization operator
er

Speciic-to-general search

## The role of subsumption in ILP

- Generality ordering for hypotheses
- Pruning of the search space:
- generalization
- if $C$ covers a neg. example then its generalizations need not be considered
- specialization
- if $C$ doesn't cover a pos. example then its specializations need not be considered
- Top-down search of refinement graphs
- Bottom-up search of the hypo. space by
- building least general generalizations, and
- inverting resolutions


## ILP as search of program clauses

- Two strategies for learning
- Top-down search of refinement graphs
- Bottom-up search
- building least general generalizations
- inverting resolution (CIGOL)
- inverting entailment (PROGOL)


Generality ordering of clauses

| Training examples |  | Background knowledge |  |
| :--- | :--- | :--- | :--- |
| daughter(mary,ann). | $\oplus$ | parent(ann,mary). | female(ann.). |
| daughter(eve,tom). | $\oplus$ | parent(ann,tom). | female(mary). |
| daughter(tom,ann). | $\ominus$ | parent(tom,eve). | female(eve). |
| daughter(eve,ann). | $\ominus$ | parent(tom,ian). |  |


female $(X)$
female( $(Y)$

> daughter $(X, Y)$ female $(X)$ parent $(Y, X)$

Part of the refinement
graph for the family relations problem.

Greedy search of the best clause

| Training examples | Background knowledge |  |  |
| :--- | :---: | :--- | :--- |
| daughter(mary,ann). | $\oplus$ | parent(ann,mary). | female(ann.). |
| daughter(eve,tom). | $\oplus$ | parent(ann,tom). | female(mary). |
| daughter(tom,ann). | $\ominus$ | parent(tom,eve). | female(eve). |
| daughter(eve,ann). | $\ominus$ | parent(tom,ian). |  |



## FOIL

- Language: function-free normal programs recursion, negation, new variables in the body, no functors, no constants (original)
- Algorithm: covering
- Search heuristics: weighted info gain
- Search strategy: hill climbing
- Stopping criterion: encoding length restriction
- Search space reduction: types, in/out modes determinate literals
- Ground background knowledge, extensional coverage
- Implemented in C

