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Department of Knowledge Technologies

e Head: Nada Lavra¢, Staff: 40 researchers, 15 students
¢ Machine learning & Data mining
— ML (decision tree and rule learning, subgroup discovery, ...)
— Text and Web mining
— Relational data mining - inductive logic programming
— Equation discovery
¢ Other research areas:
— Semantic Web and Ontologies
— Knowledge management
— Decision support
— Human language technologies
¢ Applications:
— Medicine, Bioinformatics, Public Health
— Ecology, Finance, ...

¢ Jozef Stefan Institute (JSI, founded in 1949)

Course Outline

I. Introduction

— Data Mining in a Nutshell

— Predictive and descriptive DM
techniques

— Data Mining and KDD process

— DM standards, tools and
visualization
(Mladeni¢et al. Ch. 1 and 11,
Kononenko & Kukar Ch. 1)

Ill. Regression
(Kononenko Ch. 9.4)

IV. Descriptive DM
— Predictive vs. descriptive induction
— Subgroupdiscovery
— Association rulelearning
(Kononenko Ch. 9.3)

— Hierarchical clustering (Kononenko
. 12.3]
Il. Predictive DM Techniques )

— Bayesian classifier (Kononenko Ch. _ V. Relational Data Mining
9.6) .

. . " — RDMand Inductive Logic
Decision Tree learning (Mitchell Ch. H A
3, Kononenko Ch. 9.1% ¢ ELDQSfaghmT)Q (Dzeroski & Lavrac

%Ziﬂgﬁggz&%i {e;r}r(u(;vngon enko — Propositionalization approaches
Ch.9.2) — Relational subgroup discovery
Classifier Evaluation (Bramer Ch. 6)

Jozef Stefan Institute

— named after a distinguished physicist . _ oT4 |
Jozef Stefan (1835-1893) i

— leading national research organization in natural sciences
and technology (~700 researchers and students)

e JSlresearch areas

— information and communication technologies
— chemistry, biochemistry & nanotechnology
— physics, nuclear technology and safety

¢ Jozef Stefan International Postgraduate School (IPS,

founded in 2004)

— offers MSc and PhD programs (ICT, nanotechnology,
ecotechnology)

— research oriented, basic + management courses
— in English

Basic Data Mining Task

from data

Data Mining

ata model, patterns, ...

Input: trahsadtion dataftable, relational database, text documents, Web pages
Goal: build a classification model, find interesting patternsin data, ...



Relational data mining: domain

Data Mining and Machine Learning knowledge = relational database

« Machine learning techniques ¢ Data mining applications
— classification rule learning — medicine, health care m
— subgroup discovery — ecology, agriculture
— relational data mining and - knowledge management, Data Background
ILP virtual organizations knowledg
— equation discovery
— inductive databases

+ Data mining and decision | 5%\
support integration NS

Semantic data mining: domain .
knowledge = ontologies Basic DM and DS Tasks

m ontologies

Data Domain

discovery

from data

Data Mining

ata model, patterns, ...

knowledg Inpu: trahsadtion Hataltable, relational database, text documents, Web pages

Goal: build a classification model, find interesting patternsin data, ...
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ﬁ % mutli-criteria modeling
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@ ?‘/ Decision Support

f
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experts

Input: expert knowledge about data and decision alternatives
Goal: construct decision support model — to support the evaluation and
choice of best decision alternatives

models

DM and DS integration

Decision support tools: DEXi

Data Decision

support

DEXi supports :

if-then analysis
analysis of stability
Time analysis
how explanation
why explanation
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Basic Text and Web Mining Task

knowledge discovery
from text data and Wefy

Text/Web Mining
leb pages model, patterns, ...

Input: text documents, Web pages
Goal: text categorization, user modeling, data visualization...
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Introductory seminar lecture

X. JSI & Knowledge Technologies
I. Introduction: First generation data mining
— Data Mining in a Nutshell
— Predictive and descriptive DM techniques
— Data Mining and the KDD process
— DM standards, tools and visualization
(Mladeni¢ et al. Ch. 1 and 11, Kononenko & Kukar

XX. Selected data mining techniques:
Advanced subgroup discovery techniques

and applications

XXX. Recent advances: Cross-context link
discovery

What is DM

* Extraction of useful information from data:
discovering relationships that have not
previously been known
* The viewpoint in this course: Data Mining is
the application of Machine Learning
techniques to solve real-life data analysis

problems

Data Mining in a Nutshell
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Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns
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Part I. Introduction

) Data Mining in a Nutshell
¢ Predictive and descriptive DM techniques
¢ Data Mining and the KDD process
* DM standards, tools and visualization

Data Mining in a Nutshell
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from data

Data Mining ﬁ.

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns
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Simplified example: Learning a classification “

model from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023
024 56 hypermetrope yes normal NONE



classification model from contact lens
data

Person __Age | Spect. presc. | Astigm._ Tear prod.__Lenses

O1 | young | myope | no | reduced NONE
02 young ‘myope no normal SOFT
03 | yung | myope | yes | reduced NONE
04 young ‘myope yes normal HARD
05 young  hypermetrope no reduced  NONE ini
s Data Mining
014 represby hypemetrope| no | nomal  SOFT
015 ore-presbyc hypermetrope  yes reduced NONE
016 brepresbyc hypemetrope|yes | nomal  NONE
017 presbyopic myope no reduced NONE

presbyopic _myope | no | nomal  NONE
019-02:
024 presbyopic hypemetrope|yes | nomal  NONE

(_ tear prod.
reduced ~-___normal
S

NONE

hypermetrope
NOMNE

i Sam
myope
HARD

Learning from Numeric Class Data

Person Age Spect. presc. _Astigm. Tear prod. | LensPrice

o1 17 myope no | reduced 0
02 23 myope no | nomal 8
03 22 myope yes | reduced 0
04 21 myope yes | normal 5
05 19 hypermetrope, no | reduced 0
06-013
o14 35  hypermetrope. no | normal 5
o15 43 hypermetrope yes | reduced [
o16 39 hypermetrope yes | normal 0
o17 54 myope no | reduced [
o18 62 myope no | normal 0
019-023 ..
024 56 hypermetrope yes | nomal 0

Numeric class values — regression analysis

29

Data Mining: Related areas

Database technology
and data warehouses
» efficient storage,

databases

acce_ss an_d text and Web
manipulation mining
of data

pattern
recognition)

26

Task reformulation: Binary Class Values

Person Age Spect. presc. _Astigm. Tear prod. _Lenses

o1 17 myope no | reduced | NO
02 23 myope no | normal YES
03 22 myope yes  reduced | NO
04 27 myope yes | normal | YES
05 19 hypermetrope. no  reduced | NO
06-013
o14 35  hypemmetrope  no nomal | YES
015 43 hypemmetrope yes  reduced | NO
o16 39 | hypemmetrope yes nomal NO
o017 54 myope no | reduced | NO
o18 62 myope no normal NO
019-023 . . .
024 56 hypemmetrope| yes  nomal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing
groups of instances of target class
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Learning from Unlabeled Data
o1 17 my.ope no reduced
02 23 myope no normal
03 22 myope yes reduced
04 27 myope yes normal
05 19 hypermetrope  no reduced
06-013
014 35  hypermetrope  no normal
015 43 hypermetrope  yes reduced
016 39 hypermetrope  yes normal
017 54 myope no reduced
018 62 myope no normal
019-023
024 56 hypermetrope  yes normal
Unlabeled data - clustering: grouping of similar instances
- association rule learning
30

Related areas

Statistics,

machine learning,

pattern recognition

and soft computing*

* classification
techniques and
techniques for
knowledge extraction
from data

databases

textand Web
mining

machine
learning

computing

pattern
recognition)

*neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning
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Related areas

Text and Web mining
* Web page analysis
* text categorization
¢ acquisition, filtering
and structuring of
textual information

¢ natural language
processing

databases

pattern
recognition)

33

Point of view in this course

Knowledge
discovery using databases
machine
H machine
learning i
methods

pattern
recognitiol
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Data Mining, ML and Statistics

* Allthree areas have a long tradition of developing
inductive techniques for data analysis.
— reasoning from properties of a data sample to
properties of a population
DM vs. Statistics:
— Statistics
* Hypothesis testing when certain theoretical
expectations about the data distribution,
independence, random sampling, sample size, etc.
are satisfied
* Main approach: best fitting all the available data
— Data mining
* Automated construction of understandable
patterns, and structured models
* Main approach: structuring the data space,
heuristic search for decision trees, rules, ...
covering (parts of) the data space

Related areas

Visualization

¢ visualization of data
and discovered
knowledge

databases

pattern
recogpnitiol

Data Mining, ML and Statistics

¢ Allthree areas have a long tradition of developing
inductive techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

e DM vs. ML - Viewpoint in this course:

— Data Mining is the application of Machine Learning
techniques to hard real-life data analysis problems

Part . Introduction

Data Mining in a Nutshell
I:> Predictive and descriptive DM techniques
¢ Data Mining and the KDD process
* DM standards, tools and visualization
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Types of DM tasks

Predictive DM:
— Classification (learning of rules, decision H
trees, ...) v

— Prediction and estimation (regression)
— Predictive relational DM (ILP)

Descriptive DM:
— description and summarization
— dependency analysis (association rule
learning) @ e H

— discovery of properties and constraints
— segmentation (clustering)
— subgroup discovery

39

Predictive vs. descriptive DM

* Predictive DM: Inducing classifiers for solving
classification and prediction tasks,

— Classification rule learning, Decision tree learning, ...

— Bayesian classifier, ANN, SVM, ...

— Data analysis through hypothesis generation and testing
Descriptive DM: Discovering interesting regularities in
the data, uncovering patterns, ... for solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...
— Exploratory data analysis

41

Predictive DM - Classification

* data are objects, characterized with attributes -
they belong to different classes (discrete labels)

* given objects described with attribute values,
induce a model to predict different classes

* decision trees, if-then rules, discriminant
analysis, ...

Predictive vs. descriptive DM

Predictive DM

N

CE G

Descriptive DM

Predictive DM formulated as a
machine learning task:

* Given a set of labeled training examples (n-tuples of

attribute values, labeled by class name)

A1l A2
example1 vy, Vip
example2 v, Voo

¢ By performing generalization from examples

A3
Vig
Va3

Class
c,
G,

(induction) find a hypothesis (classification rules,
decision tree, ...) which explains the training
examples, e.g. rules of the form:

(Ai=V) & (Aj=Vv;) & ... > Class = C,

Data mining example
Input: Contact lens data

Person Age Spect. presc. | Astigm. |Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
o3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young  hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE

019-023
024  presbyopic hypermetrope yes normal NONE

38
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Contact lens data: Decision tree

Type of task: prediction and classification
Hypothesis language: decision trees
(nodes: attributes, arcs: values of attributes,
leaves: classes)

reduced / Nﬁ)rmal

myope hypermetrope
HARD NONE
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Task reformulation: Concept learning problem
(positive vs. negative examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 young myope no reduced NO
02 young myope no normal YES
03 young myope yes reduced NO
04 young myope yes normal YES
05 young  hypermetrope no reduced NO

06-013
014  ore-presbyc hypermetrope no normal YES
015  ore-presbyc hypermetrope yes reduced NO
016  ore-presbyc hypermetrope yes normal NO
017  presbyopic myope no reduced NO
018  |presbyopic myope no normal NO

019-023 .
024  presbyopic hypermetrope yes normal NO

47

lllustrative example:

Customer data

Customer Gender Age Income Spent _ BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes

Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=HARD

DEFAULT lenses=NONE
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Contact lens data:
Classification rules in concept learning

Type of task: prediction and classification
Hypothesis language: rules X = C, if X then C
X conjunction of attribute values, C target class

Target class: yes

tear production=normal & astigmatism=no —
lenses=YES

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=YES

else NO

48

Customer data: Decision trees

<102000 / > 102000
<58 >58
[ no ] [ yes |

= female/ ﬂ =male

[ho |
§49/ >49

[ o | [ yes |




Predictive DM - Estimation

often referred to as regression

data are objects, characterized with attributes (discrete

or continuous), classes of objects are continuous

(numeric)

given objects described with attribute values, induce a

model to predict the numeric class value

regression trees, linear and logistic regression, ANN,

kNN, ...
Customer data:
regression tree
< 108000 / > 108000
[ raomo ]
g424'5/ >425
‘ 16500 ‘ ‘ 26700 ‘

In the nodes one usually has
Predicted value +- st. deviation

Descriptive DM:
Subgroup discovery example -
Customer data

Customer Gender Age Income Spent _ BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes

49

51

53
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Estimation/regression example:
Customer data

Customer _Gender Age Income Spent
c1 male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
cl14 female 61 95000 18100
c15 male 56 44000 12000
c16 male 36 102000 13800
c17 female 57 215000 29300
c18 male 33 67000 9700
c19 female 26 95000 11000
c20 female 55 214000 28800

Predicting algal biomass: regression
tree

Jan.-Ju

[ 2.97:1.09]

[2.08:0.71]

/

9.34

X

uly - Dec.

G0

<10.1 / >10.1

<91 )/

£2.13/

>213

[1.1520.21 |

[0.70:0.34 |

Customer data:
Subgroup discovery

>9.1

Type of task: description (pattern discovery)
Hypothesis language: rules X = Y, if X then Y
X is conjunctions of items, Y is target class

Age > 52 & Sex = male =» BigSpender = no

Age > 52 & Sex = male & Income < 73250

=> BigSpender = no
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Customer data:
Association rules

Type of task: description (pattern discovery)
Hypothesis language: rules X 2 Y, if X then Y
X, Y conjunctions of items

1. Age > 52 & BigSpender = no = Sex = male
2. Age > 52 & BigSpender = no =
Sex = male & Income < 73250
3. Sex = male & Age > 52 & Income < 73250 =
BigSpender = no

Relational Data Mining (Inductive Logicﬂ
Programming) in a Nutshell

e
5 [0
3

i

"

b from data
A A

i
g s
fg"”" ‘ﬁ’d ‘m |‘Iz,d¢ y“mu
|3478 ﬂifmﬂ‘ﬂ [regular  fcash
i o vl
e e v
il e ol e

s

- et model, patterns, ...

Relational Data Mining

3179

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns
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Relational Data Mining (ILP)

customer
D [zp [ [So [ [A]CI
#x (3¢ foome |ge b

BES

s 346771 [sifo0-

g arder
stumner [Ords Delivery [Paymt
[ e [
|MTE 2140267/ 12 cash
HTE 44677512 check
|HT8 4728386 1 checx
HTH 3233444 11 credit
7Y 347.5686‘12 credit

§

shore
Stare ID|Size |Type | Location

12 |emall franchise ity
llarge findep ~ |rural

Relational representation of customers, orders and stores.

¢ Complex relational

56

Predictive vs. descriptive DM:
Summary from a rule learning
perspective

* Predictive DM: Induces rulesets acting as classifiers

for solving classification and prediction tasks

* Descriptive DM: Discovers individual rules

describing interesting regularities in the data

* Therefore: Different goals, different heuristics,

different evaluation criteria

58

Relational Data Mining (ILP)

¢ Learning from multiple

tables

problems:

— temporal data: time
series in medicine, trafic
control, ...

structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...

60

Felionn reprsesttin of cstomes, eders and sore.

ID Zip Sex |Soc St |Income | Age Club |Resp

3478 | 34667 |m si 60-70 |32 me nr
3479 | 43666 ma 80-90 |45 nm re

—

Basic table for analysis
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ID Zip Sex |Soc St |Income |Age Club |Resp

3478 34667 |m si 60-70 |32 me nr
3479 43666 |f ma 80-90 |45 nm re

Data table presented as logical facts (Prolog format)
customer(Id,Zip,Sex,50St,In,Age Club Re)

Prolog facts describing data in Table 2:
customer(3478,34667 m,si,60-70,32,me nr).
customer(3479,43666,f ma,80-90,45,nm re).

Expressing a property of a relation:
customer(_._f_._._._.).

63

Part I. Introduction

¢ Data Mining in a Nutshell

¢ Predictive and descriptive DM techniques
I:>Data Mining and the KDD process

DM standards, tools and visualization
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KDD Process

KDD process of discovering useful knowledge from data

Interpretation/

§ i Pre- Trans- Dara
A= Selection 2 processing formation Mining, Evaluation s
i - » v = r, S0

l Target IPreprntessEd IT»-ansro'rmedI Patterns I Knowledge

Data ata Data

Data

* KDD process involves several phases:
e data preparation
e data mining (machine learning, statistics)
e evaluation and use of discovered patterns

* Data mining is the key step, but represents only
15%-25% of the entire KDD process
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Relational Data Mining (ILP)

Data bases: Logic programming:

* Name of relation p * Predicate symbol p

¢ Attribute of p * Argument of predicate p

* n-tuple <vi,...,va>=rowin ¢ Ground fact p(vs, ..., V)
a relational table « Definition of predicate p

* relation p = set of n-tuples =  Set of ground facts

relational table * Prolog clause or a set of Prolog
clauses

Example predicate definition:

good_customer(C) :-
customer(C,_,female,_,_,_,

order(C,_,_,_,creditcard).

Data Mining and KDD

¢ KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

¢ Data Mining (DM) is the key step in the KDD
process, performed by using data mining
techniques for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11
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MEDIANA - analysis of media research data

- Data |nmp.m ot
ﬁ E Mmmg Eu\.mmon i
: L, e

3 E

Data

I Target IPreprncessed ITransfnrmsdI Patterns I Knowledge
Data

* Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, since
1992, about 1200 questions. Yearly publication: frequency
of reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

¢ Data for 1998, about 8000 questionnaires, covering
lifestyle, spare time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
interest for specific topics in media, social status

e good quality, “clean” data

¢ table of n-tuples (rows: individuals, columns: attributes, in
classification tasks selected class)



MEDIANA - media research pilot study )

e _ ( Interpretation/
%~?§ Selection ' pmccssmg . lormwo\ Mmmg E\umum <

—_raee
T:rget Preprucessed Transrurm ed Patterns Knowledge
Data
Data

¢ Patterns uncovering regularities concerning:

— Which other journals/magazines are read by readers of
a particular journal/magazine ?

— What are the properties of individuals that are
consumers of a particular media offer ?

— Which properties are distinctive for readers of different
journals ?

¢ Induced models: description (association rules, clusters)
and classification (decision trees, classification rules)
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Simplified association rules

—

. reads_Sara 332 > reads_Slovenske novice 211 (0.64)
. reads_Ljubezenske zgodbe 283 >
reads_Slovenske novice 174 (0.61)

3. reads_Dolenjskilist 520 >

reads_Slovenske novice 310 (0.6)
4. reads_Omama 154 > reads_Slovenske novice 90 (0.58)
5. reads_Delavska enotnost 177 >

reads_Slovenske novice 102 (0.58)
Most of the readers of Sara, Love stories, Dolenjska
new, Omama in Workers new read also Slovenian
news.

n

7

Decision tree

Finding reader profiles: decision tree for classifying people
into readers and non-readers of a teenage magazine
Antena.

Age
>=25 . <25

Doesn't read Visiting Disco Clubs
~
no - e
A .
- Interest i astro
Interest in music, aslrology. erast In astrology
travel and gcandals VAN
no / ‘-\ yes / N
. Gender Rasde

Doesn’t read Reads 4 \
male,  female

7N
Doesn't read Age
<29~ \:iio
Reads Doesn't read
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Simplified association rules

Finding profiles of readers of the Delo daily
newspaper
1. reads_Marketing_magazine 116 >
reads_Delo 95 (0.82)

2. reads_Financial_News (Finance) 223 3 reads_Delo 180
(0.81)

3. reads_Views (Razgledi) 201 & reads_Delo 157 (0.78)
4. reads_Money (Denar) 197 & reads_Delo 150 (0.76)

5. reads_Vip 181 3 reads_Delo 134 (0.74)
Interpretation: Most readers of Marketing magazine,
Financial News, Views, Money and Vip read also

Delo.
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Simplified association rules

1. reads_Sportske novosti 303 >
reads_Slovenski delnicar 164 (0.54)

2. reads_Sportske novosti 303 >
reads_Salomonov oglasnik 155 (0.51)

3. reads_Sportske novosti 303 >
reads_Lady 152 (0.5)

More than half of readers of Sports news reads
also Slovenian shareholders magazine,
Solomon advertisements and Lady.
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Part l. Introduction

¢ Data Mining in a Nutshell
¢ Predictive and descriptive DM techniques
¢ Data Mining and the KDD process

I:> DM standards, tools and visualization
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CRISP-DM CRISP Data Mining Process

¢ Cross-Industry Standard Process for DM o> (D

¢ A collaborative, 18-months partially EC * Wks
founded project started in July 1997

* NCR, ISL (Clementine), Daimler-Benz, OHRA

(Dutch health insurance companies), and SIG

with more than 80 members .
* DM from art to engineering ==
* Views DM more broadly than Fayyad et al.

(actually DM is treated as KDD process):

Business Data
Understanding Understanding

Modelling

Pl Pre- Trans- Data Interpretation/ B g\*('/’@/
A Selection r; pracessing formation Mining Evaluation 3 = L
o — e = e Esal >
b I Target I Preprocessed ITraﬂsl’r;rde] Patterns I Knowledge i
Data Data Data
Data
75 76
DM tools Public DM tools
3 KDNuggets Directory: Data Mining and Knowledge Discovery - Netscape [T} . .
|5 T W 5 e B ] * WEKA - Waikato Environment for Knowledge
" Bockmarks & Location: e/ /e kdnuggets o/ =] @F7 WhatsRelied I .
L o = Analysis

KDNuggets.com Path: KDNuggets Home = I

¢ Orange, Orange4WS

KDNuggets Tools (Siftware) for Data Mining and Knowledge Discovery

Ll Email new submissions and changes to editor@kdnuggets.com * KNIME - Konstanz Information Miner
Jobs « Suites supporting multiple discovery tasks and data preparation o R - BiOCOﬂdUCtOF, e

+ Classification -- for building a classffication model
Approach: hultiple | Decision tree | Bules | Meural network| Bayesian| Other
- Clustering - for finding clusters or segments

Websites - Statistics, Fstimation and Regression

- Links and iations - for finding limks, dependency networks, and associations
Meetings - Sequential Patterns - tools for finding sequential pattems
Datasets * ¥isualization - scientific and discovery-oriented visualization

- Text and Web Mining
- Deviation and Fraud Detection =
- Reporting and Summarization
- Data Transformation and Cleaning
. oY :

J {»] ~OLAPand Analysi

= =0=] [Document. Done

w L
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Data visualization:

Visualization Scatter plot

e can be used on its own (usually for
description and summarization tasks)

¢ can be used in combination with other DM
techniques, for example
— visualization of decision trees
— cluster visualization
— visualization of association rules
— subgroup visualization




DB Miner: Association rule
visualization
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MineSet: Decision tree visualization

Orange: Visual programming and
subgroup discovery visualization

sps b @
qj thr -

aonl g

ahyp=yes sarhyes - class=emb

D_fibr=>4.20 eeghlv=no > class=emb

D_age=>66.00 fhis=yes > class=erb

Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction: First generation data mining
— Data Mining in a nutshell
— Data Mining and KDD process
— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM
(Mladeni¢ et al. Ch. 1 and 11, Kononenko & Kukar

:> XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

XXX. Recent advances: Cross-context link
discovery

Ee o Soebrs [

o ek
EC T L N

I« bl

#lemololc pamae £

Gleason Score 2

D_chol=c=6.90 D_fbr=> 420 hypo=no > class=emb

D_age=>66.00 D_chol=<=6.90.5 class=emb
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Part I: Summary

* KDD is the overall process of discovering useful

knowledge in data

— many steps including data preparation, cleaning,
transformation, pre-processing

* Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process
— employing techniques from machine learning and statistics

¢ Predictive and descriptive induction have different

goals: classifier vs. pattern discovery

* Many application areas
* Many powerful tools available

XX. Talk outline

=) Subgroup discovery in a nutshell
* Relational data mining and

propositionalization in a nutshell

* Semantic data mining: Using ontologies in

SD
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Task reformulation: Binary Class Values

Person Age Spect. presc. _Astigm. Tear prod. | _Lenses

o1 17 myope no | reduced | NO
02 23 myope no | nomal YES
03 22 myope yes | reduced | NO
04 21 myope yes | normal | YES
05 19 hypermetrope, no | reduced | NO
06-013 . ..
o4 35  hypermetrope| no | nomal | YES
o15 43 hypermetrope| yes  reduced | NO
o16 39 hypermetrope yes | normal NO
o17 54 myope no | reduced | NO
o18 62 myope no | normal NO
019-023 .. ..
024 56 hypermetrope yes | nomal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing
groups of instances of target class

Classification versus Subgroup Discovery

* Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent

¢ Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules
— aimed at finding interesting patterns in target class

examples

* large subgroups (high target class coverage)

« with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge
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Subgroup discovery task

Task definition (Kloesgen, Wrobel 1997)

— Given: a population of individuals and a property
of interest (target class, e.g. CHD)

— Find: “most interesting’ descriptions of population
subgroups
e are as large as possible
(high target class coverage)
* have most unusual distribution of the target
property
(high TP/FP ratio, high significance)
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Subgroup Discovery

Person Age _ Spect. presc. Astigm. _Tear prod. | Lenses
01 17 | myope | no | redced | NO -
02 2 | moe | no | noma | YES Subgroup Discovery
05 | 2 | myope | yes | reduced | NO
o | yope | yes | nomal [OYES

myoy
05 19 hypermetope  no | reduced | NO

06-013 Class YES, Class NO
o4 35 hypermetrope o | nomal | YES:

o1 43 hypermetrope yes | reduced | NO
ot 39 hypermetrope yes | nomal | NO
o17 54 myope no | reduced | NO
o18 62 myope no | nomal | NO

019-023
024 56 hypemetrope yes | nomal | NO

¢ Atask in which individual interpretable patterns in the
form of rules are induced from data, labeled by a
predefined property of interest.

* SD algorithms learn several independent rules that
describe groups of target class examples
— subgroups must be large and significant
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Classification versus Subgroup discovery

A N
4 PN +
b \
4 + V.
I \
n 1
1
| + .
‘\ + 1
1
v . +
\ ’
Y
N + 7
N I

Subgroup discovery example: °
CHD Risk Group Detection

Input: Patient records described by stage A (anamnestic),
stage B (an. & lab.), and stage C (an., lab. & ECG)
attributes

Task: Find and characterize population subgroups with high
CHD risk (large enough, distributionally unusual)

From best induced descriptions, five were selected by the
expert as most actionable for CHD risk screening (by GPs):

CHD-risk <— male & pos. fam. history & age > 46
CHD-risk < female & bodymassindex > 25 & age > 63
CHD-risk « ...

CHD-risk « ...

CHD-risk « ...
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Characteristics of SD Algorithms

¢ SD algorithms do not look for  |class YES Class NO
a single complex rule to 2
describe all examples of
target class YES (all CHD-
risk patients), but several
rules that describe parts
(subgroups) of YES.

¢ Standard rule learning
approach: Using the
covering algorithm for rule
set construction

93

Covering algorithm

Rulel: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples
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Covering algorithm

" Rule1: Cl=+ « Cond2 AND Cond3
Positive examples | Negative examples

Rule2: Cl=+ « Cond8 AND Cond6

92

Covering algorithm

Positive examples Negative examples

Covering algorithm

Rulel: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples
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Characteristics of SD Algorithms

¢ SD algorithms do not look for | Class YES, Class NO
a single complex rule to 2
describe all examples of
target class YES (all CHD-
risk patients), but several
rules that describe parts
(subgroups) of YES.

¢ Advanced rule learning
approach: using example
weights in the weighted
covering algorithm for
repetitive subgroup
construction and in the rule
quality evaluation heuristics.




Weighted covering algorithm for
rule set construction

CHD patients other patients

10 10

10 10 10

1010 44 10
Lo 1.0

« For learning a set of subgroup describing rules, SD
implements an iterative weigthed covering algorithm.

* Quality of a rule is measured by trading off coverage
and precision.
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Weighted covering algorithm for
rule set construction

CHD patients other patients

10

1.
10 14
10 1.0

1.0

In contrast with classification rule learning algorithms (e.g. CN2),
the covered positive examples are not deleted from the training
set in the next rule learning iteration; they are re-weighted, and a
next ‘best’ rule is learned.

Induced subgroups and their statistical
characterization

Subgroup A2 for femle patients:

High-CHD-risk IF
body mass index over 25 kg/m?2 (typically 29)
AND
age over 63 years

Supporting characteristics (computed using X2
statistical significance test) are: positive family
history and hypertension. Women in this risk group
typically have slightly increased LDL cholesterol
values and normal but decreased HDL cholesterol
values.

Weighted covering algorithm for
rule set construction

f2 and f3

CHD patients 1 other patients

010 4,

10 10 4o

1010 44 10

0 10
10 2
10
10

1.
10 10

10
10

Rule quality measure in SD: q(Cl « Cond) = TP/(FP+g)

Rule quality measure in CN2-SD: WRAcc(Cl «-Cond) = p(Cond) x
[p(Cl | Cond) — p(Cl)] = coverage x (precision — default precision)

*Coverage = sum of the covered weights, *Precision = purity of the covered examples
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Subgroup visualization

dd

| o The CHD task: Find,
characterize and visualize

l_ population subgroups with high

= CHD risk (large enough,

distributionally unusual, most

actionable)
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SD algorithms in the Orange DM

Platform
* SD Algorithms in
Orange
— SD (Gamberger & Lavrag,
JAIR 2002
— APRIORI-SD (Kavsek &
Lavra¢, AAI 2006
— CN2-SD (Lavrac et al.,
JMLR 2004): Adapting CN2
classification rule learner to
Subgroup Discovery
* Weighted covering algorithm
* Weighted relative accuracy
(WRAcc) search heuristics,

with added  example
weights




SD algorithms in Orange and ”
Orange4WsS

¢ Orange

e Orange4WS (Podpecan
— classification and subgroup 2010)

discovery algorithms
— data mining workflows
— visualization

— developed at FRI, Ljubljana

— Web service oriented
— supports workflows and
other Orange functionality
— includes also
* WEKA algorithms
* relational data mining

¢ semantic data mining with
ontologies

— Web-based platform is
under construction

Relational Data Mining (Inductive
Logic Programming) in a nutshell

from data

Relational Data Mining

model, patterns, ...

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...

Find: a classification model, a set of interesting patterns
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Sample ILP problem:
East-West trains

XX. Talk outline

e Subgroup discovery in a nutshell
mE==)Relational data mining and
propositionalization in a nutshell

* Semantic data mining: Using ontologies in
SD
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Relational Data Mining (ILP)
Learning from multiple
tables
— patient records
connected with other
patient and
demographic
information
Complex relational
problems:
— temporal data: time
series in medicine, ...
— structured data:
representation of
molecules and their
properties in protein
engineering,
biochemistry, ...
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epresentation
IﬁAINﬁjl\BLE

sE
—

CAR TRAIN = SHAPE  LENGTH

ROOF  WHEELS
. u

rectangle  short  none 2

€2 11 rectangle long

none 3
pesked 2
none 2

3 u

rectangle _short
4t

rectangle __long




109

epresentation

TRAIN_TABLE

= = uND

i

CAR TRAN _SHAPE LENGTH ROOF WHEELS
€l t1  rectange short _ none
€2 t1__ rectangle long __none

3t rectangle short peaked
c4  t1 rectangle long none

N N

Propositionalization in a nutshell ™

Main propositionalization step: .y . e wea TRAIN_TABLE
first-order feature construction | o o | e

. =
f1(T):-hasCar(T,C),clength(C,short). === —

f2(T):-hasCar(T,C), hasLoad(C,L),

CAR TRAN _SHAPE LENGTH ROOF WHEELS

. ¢l tl_ rectangle  short _ none 2
loadShape(L,circle) 2 t1__rectangle _long___none
f3(T) L 3 t1  rectangle short peaked

¢4 t1  rectangle long none

N N

Propositional learning:

YT) < FL(T), F4(T) PROPOSITIONAL TRAIN_TABLE

train(T) | f1(T) | f2T) | f3(T) | faT) | f5(T)

[t [t f t ] t

Relational interpretation: Bl N [

3 | f [ t f ] f

eastbound(T) « Wl ot ]t ol f
hasShortCar(T),hasClosedCar(T). e ] !
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Relational Data Mining through
Propositionalization

Step 1

Propositionalization

Step 2

Data Mining

model, patterns, ...

TRAIN_TABLE
= = ounp
IE
IE

I"“‘

Transform a multi-relational CAR TRAN _SHAPE LENGTH _ROOF WHEELS

_ ¢l tl  rectangle short _ none 2
(multiple-table) € | _rectangle long _none 3

N 3t rectangle short  peaked 2
representation to a 4t rectange long  none 2
propositional representation
(single table)

Proposed in ILP systems
LINUS (Lavrac et al. 1991, 1994),
1BC (Flach and Lachiche 1999), ...

12

Relational Data Mining through
Propositionalization

Step 1

Propositionalization
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RSD Lessons learned
Efficient propositionalization can be applied to
individual-centered, multi-instance learning problems:
— one free global variable (denoting an individual, e.g. molecule M)

— one or more structural predicates: (e.g. has_atom(M,A)), each
introducing a new existential local variable (e.g. atom A), using either the
global variable (M) or a local variable introduced by other structural
predicates (A)

— one or more utility predicates defining properties of individuals or their
parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)
feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)
mutagenic(M):- feature121(M), feature235(M)
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Relational Data Mining in Orange4WS

« service for propositionalization through efficient
first-order feature construction (Zelezny and Lavrag,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
* subgroup discovery using CN2-SD
mutaaenic(M) « featun;m (M), feature235(M)

View table

Loud da g Lg:

@ APIO.SD View ndes

Seriskze EamploTablpa  ON2 50

Lt 115

Semantic Data Mining in Orange4WS

¢ Exploiting semantics in data mining
— Using domain ontologies as background knowledge for
data mining
e Semantic data mining technology: a two-step
approach

— Using propositionalization through first-order feature
construction

— Using subgroup discovery for rule learning
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

First-order features, describing

gene properties and relations

between genes, can be viewed
as generalisations of individual z ! ! !
genes

16

Talk outline

e Subgroup discovery in a nutshell

¢ Relational data mining and
propositionalization in a nutshell

mm) Semantic data mining: Using ontologies in
SD

18

Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

Gene Ontology (=2

12093 biological process B i
1812 cellular components e
7459 molecular functions s s o e

Joint work with
Igor Trajkovski
and Filip Zelezny
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First order feature construction

First order features with support > min_support

-function(A,'G0O:0046872").

-function(A,'G0O:0004871").
):-process(A,'G0O:0007165").
):-process(A,'G0:0044267").

15,A):-process(A,'G0O:0050874").
):
):

f(7,A):

f(8,A):

(

f(

f(

f(20,A):-function(A,'G0:0004871"), process(A,'GO:0050874").
f(

f(

(

(

1,A
4,A
26,A):-component(A,'GO:0016021").
29,A):- function(A,'G0:0046872'), component(A,'GO:0016020').
122,A):-interaction(A,B),function(B,'G0:0004872').
" f(223,A):-interaction(A,B),function(B,'GO:0004871"),
existential T process(B,'GO:0009613').
(

224,A):-interaction(A,B),function(B,'G0:0016787"),
component(B,'G0O:0043231").
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Propositionalization
diffexp g1 (gene64499) random g1 (gene7443)
diffexp g2 (gene2534) random g2 (gene9221)
diffexp g3 (gene5199) random g3 (gene2339)
diffexp g4 (gene1052) random g4 (gene9657)
diffexp g5 (gene6036) random g5 (gene19679)

£1 | £2 | £3 | £4 | £5 | £6 | .. . | £n
git| 1 ]ofo| 1] ]o]ofr]ofz1]2
g2l o |11 |o| 1|1 |ofo|lol|1]|1]o0
glo 11| 1]oflofxr]r]o]o]o]z
g4 1 1 1 0 1 1 0 0 1 1 1 0
gs| 1 | 1|1 |ofof1|o]| 1|1 |o]1]|o0
gt oo 1| 1]oflofo]s]olofo]:z
g2 | 1 | 1o o1 |1|o]|1]|o|1]|1]|21
g3|loflofo|lo]r]lofo] |2 ]z2]o]o
ga | 1 o1 | 1|1 fof|1]ofo|1]o0o]|1
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

10 10

10 10 10 40

1010 ;4 10

10

1.0

1.0

10
1.0 Lo

10
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1010 44 10

o
.
o 1.0

1.
10 10

10

1.0

RSD naturally uses gene weights in its procedure for repetitive
subgroup generation, via its heuristic rule evaluation: weighted
relative accuracy
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Propositional learning: subgroup

discovery
f1||£2 | £3| £4 | £5| £6 | .. .« | fn
gl|1 0 0 1 1 1 0 0 1 0 1 1 f2 and f3
g2| 0 1 1 0 1 1 0 0 0 1 1 0 [4I0]

g3| o0 1 1 1 0 0 1 1 0 0 0 1

g4| 1 1 1 0 1 1 0 0 1 1 1 0

g5| 1 1 1 0 0 1 0 1 1 0 1 0

gl| o0 0 1 1 0 0 0 1 0 0 0 1

g2| 1 1 0 0 1 1 0 1 () 1 1 1

g3| o0 0 0 0 1 0 0 1 1 1 0 0

g4 | 1 0 1 1 1 0 1 0 0 1 0 1

124

Subgroup Discovery

f2 and f3

diff. exp. genes 1 Not diff. exp. genes

1010 54 10 1010 ;4 10
10

- 10
10
10 10

In RSD (using propositional learner CN2-SD):
Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights
*Precision = purity of the covered genes
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Semantic Data Mining in two steps

e Step1: of genes such

interaction(g, G) & function(G, protein_binding)

(g interacts with another gene whose functions include protein binding)
and with features as
attributes

e Step 2: Using these features to
that are differentially expressed (e.g.,
belong to class DIFF.EXP. of top 300 most differentially
expressed genes) in contrast with RANDOM genes (randomly
selected genes with low differential expression).
¢ Sample subgroup description:
diffexp(A) :- interaction(A,B) AND
function(B,'G0:0004871') AND
process(B,'G0:0009613')



Summary: SEGS, usingthe RSD
approach

The SEGS approach enables to discover new
medical knowledge from the combination of gene
expression data with public gene annotation
databases

In past 2-3 years, the SEGS approach proved
effective in several biomedical applications (JBI
2008, ...)

* The work on semantic data mining - using ontologies as
background knowledge for subgroup discovery with SEGS - was
done in collaboration with |.Trajkovski, F. Zelezny and J. Tolar
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The BISON project

¢ EU project: Bisociation networks for creative
information discovery (www.bisonet.eu), 2008-
2010

» Exploring the idea of bisociation (Arthur
Koestler, The act of creation, 1964):

— The mixture - in one human mind — of two different contexts or
different categories of objects, that are normally considered
separate categories by the processes of the mind.

— The thinking process that is the functional basis of analogical
or metaphoric thinking as compared to logical or associative
thinking.

e Main challenge: Support humans to find new
interesting associations accross domains
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The BISON project

e BISON challenge: Support humans to find new,

interesting links accross domains, named

bisociations

— across different contexts

— across different types of data and knowledge sources

¢ Open problems:

— Fusion of heterogeneous data’knowledge sources
into a joint representation format - a large information

network named BisoNet (consisting of nodes and
relatioships between nodes)
— Finding unexpected, previously unknown links

between BisoNet nodes belonging to different
contexts
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Introductory seminar lecture

X. JSI & Knowledge Technologies
I. Introduction

— Data Mining and KDD process

— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM

(Mladeni¢ et al. Ch. 1 and 11, Kononenko & Kukar
Ch. 1)

XX. Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

XXX. Recent advances: Cross-context link
discovery
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Bisociation (A. Koestler 1964)
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Heterogeneous data sources
(BISON, M. Berthold, 2008)

-
Text

Gene Repository
JData®

Other
| Sources


http://www.bisonet.eu/
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Bridging concepts
(BISON, M. Berthold, 2008)

Semantic Data Mining for DNA
Microarray Data Analysis

» Semantic data mining integrates public gene
annotation data through relational features

* Itis implemented in the SEGS algorithm
(Trajkovski, Zelezny, Lavra¢ and Tolar, JBI
2008), available in Orange4WS

* |t can be combined with additional biomedical
resources (BioMine), providing additional means
for creative knowledge discovery from publicly
available data sources
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The SEGS + BioMine Methodology

Exploratory

Microarray Gene sets
link discovery

genel: + +
gene2: +
goned: + SEGS Biomine ji-j
e.g. slow-vs-fast
cell growth Work by
Lavrag et al. 2009, 2010
Podpecan et al. 2010

Chains of associations across domains
(BISON, M. Berthold, 2008)

— =
<> T
X\‘\ : . -Gene) ™ 7
ij\\ - : O
e g
Experimental Data:
Co-Occures

co-expressed

o~
GF-Network. | (_FToen
_..encodes...
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Biomine graph exploration
(Toivonnen et al., Uni. Helsinki)

¢ BioMine graph contains information from public
databases, including annotated sequences, proteins,
orthology groups, genes and gene expressions, gene
and protein interactions, PubMed articles, and different
ontologies.

— nodes (~1 mio) correspond to different concepts
(such as gene, protein, domain, phenotype, biological
process, tissue)

— semantically labeled edges (~7 mio) connect
related concepts

* BioMine query engine answers queries to potentially
discover new links between entities by sophisticated
graph exploration algorithms

8

Semantic Data Mining in Orange4WsS:
SEGS + BioMine workflow
implementation
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SEGS output:

BioMine query:
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Introductory seminar lecture:
Summary

¢ JSI & Knowledge Technologies

¢ Introduction to Data mining and KDD
— Data Mining and KDD process
— DM standards, tools and visualization

— Classification of Data Mining techniques: Predictive
and descriptive DM

¢ Selected data mining techniques:
Advanced subgroup discovery techniques
and applications

¢ Recent advances: Cross-context link
discovery
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Bayesian methods

¢ Bayesian methods — simple but powerful
classification methods
— Based on Bayesian formula

p(D|H)

H|D)=
p(H|D) (D)

P(H)

¢ Main methods:
— Naive Bayesian classifier
— Semi-naive Bayesian classifier
— Bayesian networks *

* Out of scope of this course
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Summary of SEGS + BioMine

¢ Semantic Data Mining algorithm SEGS discovers

interesting gene group descriptions as conjunctions of
concepts from three ontologies: GO, KEGG and Entrez

¢ Biomine finds cross-context links (paths) between

concepts discovered by SEGS, using other ontologies,
PubMed and other biomedical resources

Initial results in stem cell microarray data analysis (EMBC
2009) indicate that the SEGS+Biomine methodology may
lead to new insights — in vitro experiments are in progress
at NIB to verify and validate the preliminary insights

A general purpose Semantic Data Mining algorithm g-
SEGS is also available in Orange4WS
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Part Il. Predictive DM techniques

=)« Naive Bayesian classifier

* Decision tree learning
* Classification rule learning
* Classifier evaluation

Naive Bayesian classifier

¢ Probability of class, for given attribute values

POy, |€)

ple; |v..v,) = p(c,)- p(v,..v,)

* For all G; compute probability p(C;), given values v; of all

attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when
estimating p(C;) and p(C; Iv}))
ple; 1v)
pe; vy = ple) | [ ———
s ’ H plc))

* Output Cyax with maximal posterior probability of class:

Chux =arg max c; p(cj [vi-v,)



Naive Bayesian classifier

plc; v..v,) _ P, l¢))- plc,)

Ple; Iveb) == o)
_ Hp(vi |C‘,‘)AP(C,’) _ p(C,) Hp(cf | vf)'p(vi) _
PV, Py ) pley)

[T 200 pie; 1v) pc; 1v,)
el pey 7 )11 p(c))

Probability estimation

¢ Relative frequency:

p(q)=%,p(c’,|%)=

nle,.v)

n(v,)
¢ Prior probability: Laplace law

n(c,;)+1

) =—3Tx%

¢ m-estimate:

n(c;)+m- pa(c,)

Cc.)=
pee) N+m

Explanation of Bayesian
classifier

¢ Based on information theory

— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is
p (")

Explanation based of the sum of information gains of

individual attribute values v; (Kononenko and Bratko 1991,

Kononenko 1993)

—log(p(c; |v-.v,)) =

——log( ple,))~ Y. (~log p(c,) +logl p(c, | 7))
=

* log p denotes binary logarithm
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j= 1.k, fork classes
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Semi-naive Bayesian classifier

» Naive Bayesian estimation of probabilities

(rellable) P(Cj ‘ vl,) ) p(Cj | Vk)

plc;)  plc)

* Semi-naive Bayesian estimation of
probabilities (less reliable)

p(c/. [vi.vi)
p(c;)
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Probability estimation: intuition

* Experiment with N trials, n successful
* Estimate probability of success of next trial
* Relative frequency: n/N
— reliable estimate when number of trials is large
- U/nreliable when number of trials is small, e.g.,
1/1=1
¢ Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes
— Assumes uniform distribution of classes
* m-estimate: (n+m.pa)/(N+m)
— Prior probability of success p., parameter m

(weight of prior probability, i.e., number of ‘virtual’
examples)
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Example of explanation of semi-naive

Bayesian classifier

Hip surgery prognosis
Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision| Against
(bit) (bit)

Age = 70-80 0.07

Sex = Female 019

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall 0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Frac ion acc. To Garden = Garden IIl 0.3

Fract acc. To Pauwels = Pauwels IIl 014

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes 0.32

Hospital rehabilitation = Yes 0.05

General ications = None 0

Combinati 0.21

Time between injury and examination < 6 hours
AND 1 time between 4 and 5 weeks
C i 0.63
Therapy = Artroplastic AND anticoagulant therapy = Yes
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Visualization of information
gains for/against C,
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Improved classification accuracy due
to using m-estimate

Primary Breast thyroid | Rheumatology
tumor cancer
#instan 339 288 884 355
#class 22 2 4 6
#attrib 17 10 15 32
#values 2 2.7 9.1 9.1
majority 25% 80% 56% 66%
entropy 3.64 0.72 1.59 1.7
Relative freq. [ m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%
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lllustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod.  Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
o3 young myope yes reduced NONE
04 young myope yes normal HARD
05 young  hypermetrope no reduced NONE

06-013 .
014  ore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE

019-023

024  presbyopic hypermetrope yes normal NONE
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Naive Bayesian classifier

* Naive Bayesian classifier can be used

— when we have sufficient number of training examples
for reliable probability estimation

* |t achieves good classification accuracy
— can be used as ‘gold standard’ for comparison with
other classifiers
¢ Resistant to noise (errors)
— Reliable probability estimation
— Uses all available information
Successful in many application domains
— Web page and document classification

— Medical diagnosis and prognosis, ...

Part Il. Predictive DM techniques

* Naive Bayesian classifier
) « Decision tree learning

* Classification rule learning

* Classifier evaluation
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Decision tree for
contact lenses recommendation

tear prod.

reduced / N?rmal

myope hypermetrope
HARD NONE
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Decision tree for
contact lenses recommendation

tear prod.

reduced Nﬁ)rmal
no yes
[N=12,S+H=0]

[S=5,H+N=1] myope hypermetrope
HARD NONE

[H=3,5+N=2] [N=2, S+H=1]
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Decision tree representation
for PlayTennis

Outlook
Sunn/ \ Overcast Rain
Humidity Yes Wind
High /\Ncr‘mul SfronAWeuk
No Yes No Yes

- each internal node is a test of an attribute
- each branch corresponds to an attribute value
- each path is a conjunction of attribute values

- each leaf node assigns a classification

PlayTennis:
Other representations

¢ Logical expression for PlayTennis=Yes:

— (Outlook=Sunny A Humidity=Normal) v (Outlook=Overcast) v
(Outlook=Rain A Wind=Weak)

¢ Converting a tree to if-then rules
— IF Outlook=Sunny A Humidity=Normal THEN PlayTennis=Yes
— IF Outlook=Overcast THEN PlayTennis=Yes
— IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes
— IF Outlook=Sunny A Humidity=High THEN PlayTennis=No
— IF Outlook=Rain A Wind=Strong THEN PlayTennis=No
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PlayTennis: Training examples

Day Outlook  Temperature  Humidity  Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Ovwercast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Owercast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Decision tree representation
for PlayTennis

Outlook
Sunn)/ \ Overcast Rain
Humidity Yes Wind
High /\Normq! S‘rray%\\ﬂ/euk
No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints
on the attribute values of instances
( Outlook=Sunny A Humidity=Normal )
v ( Outlook=Overcast )
v ( Outlook=Rain A Wind=Weak )
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PlayTennis: Using a decision tree for

classification
Outlook
Sunrv/ ‘ Overcast Rain
Humidity Yes Wind
High /\Narma! sran/\quk

No Yes No Yes

Is Saturday morning OK for playing tennis?
Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong
PlayTennis = No, because Outlook=Sunny A Humidity=High
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Appropriate problems for
decision tree learning

* Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

* Characteristics:

— instances described by attribute-value pairs
(discrete or real-valued attributes)
— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)
— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values
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Search heuristics in ID3

 Central choice in ID3: Which attribute to test at
each node in the tree ? The attribute that is most
useful for classifying examples.

* Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

* First define a measure commonly used in
information theory, called entropy, to characterize
the (im)purity of an arbitrary collection of examples.
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Entropy

* E(S)=-p.log,p, - p.logzp.

¢ The entropy function relative to a Boolean
classification, as the proportion p, of positive
examples varies between 0 and 1

Learning of decision trees

¢ |ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
WEKA, ...

— create the root node of the tree
— if all examples from S belong to the same class Cj
« then label the root with Cj

— else
* select the ‘most informative’ attribute A with values
vi,v2,...vn

« divide training set S into §1,..., Sn according to
values v1,...,vn

« recursively build sub-trees v'/W

T1,...,Tnfor $1,...,Sn @ @
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Entropy

¢ S - training set, Cy,...,Cy, - Classes

¢ Entropy E(S) — measure of the impurity of
training set S

N
E(S):— lo . P, - prior probability of class C,
;p( 82Pc (relative frequency of C, in S)

* Entropy in binary classification problems

E(S) =- p, log,p, - p.log,p.
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Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

e Why ?
¢ Information theory: optimal length code assigns

- log,p bits to a message having probability p

¢ So, in binary classification problems, the expected

number of bits to encode + or — of a random
member of S is:

p. (-log,p,) + p_(-log,p.) =- p,log,p, - p.log,p.
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PlayTennis: Entropy

Training set S: 14 examples (9 pos., 5 neg.)
Notation: S = [9+, 5-]

E(S) =- p. log;p. - p.log,p.
Computing entropy, if probability is estimated by
relative frequency

1S 1S (1S, IS
E(S)=— il jog2e | | 12-1 455121
© (\S| °g|swj [IS\ °g\swj

E([9+,5-]) = - (9/14) l0g,(9/14) - (5/14) log,(5/14)
=0.940

Information gain
search heuristic

* Information gain measure is aimed to minimize the
number of tests needed for the classification of a new
object

* Gain(S,A) — expected reduction in entropy of S due to

sorting on A
Gain(S,4)=E(S)- Y. M-E(SV)

veValues(A) |S‘

* Most informative attribute: max Gain(S,A)
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PlayTennis: Information gain

Gain(S,A)=ES)- Y, @-E(SV)

veValues(A) |S|

¢ Values(Wind) = {Weak, Strong}
W [6+,2-] E=0.811
Wind? 421!; [3+,3-] E=100
S =[9+,5-], E(S) =0.940
— Syeak = [6+,2-], E(Syeax) = 0.811
— Strong= [3+,3-], E(Sgong) = 1.0

— Gain(S,Wind) = E(S) - (8/14)E(S,yeai) - (6/14)E(S¢yong) = 0.940 -
(8/14)x0.811 - (6/14)x1.0=0.048

PlayTennis: Entropy
* E(S)=-p,log,p,-p.log.p.

* E(9+,5-) = -(9/14) 10g,(9/14) - (5/14) log,(5/14) = 0.940

un {D1,D2,08,09, D11}  [2+,3-] E=0.970
Outlook? ﬁ (D3.D7.D12,D13)  [4+,0-] E=0
: {D4,D5,06,010,014}  [3+,2-] E=0.970
e [3+,4-] E=0985
Humidify?% [6+,1-] E=0592
Wed [6+,2-] E=0.811
Wind? 4 [3+,3-] E=1.00

Information gain
search heuristic

¢ Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94
[6+.2-]  [3+.3-] [9+,0-]  [0+,5-]
E=0.811 E=1.00 E=0.0 E=0.0

 Gain(S,A1) = 0.94 — (8/14 x 0.811 + 6/14 x 1.00) = 0.048

* Gain(S,A2)=0.94-0=0.94 A2 has max Gain

PlayTennis: Information gain

* Which attribute is the best?
— Gain(S,Outlook)=0.246 MAX !

— Gain(S,Humidity)=0.151

— Gain(S,Wind)=0.048

— Gain(S,Temperature)=0.029
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PlayTennis: Information gain

Rain {D4,b5,06,D10,D14} [3+,2-] E>07???

Outlook?
Overcast
s {D3,b7,Db12,D13} [4+,0-] E=0 OK - assign class Yes
unny
{D1,D2,08,D9,D11} [2+,3-] E>0 ??? 1>

¢ Which attribute should be tested here?
~ Gain(Sgynny, Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970  MAX !
— Gain(Sgnny, Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570
~ Gain(Synn,,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019
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Heuristic search in ID3

e Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

¢ Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

* Stopping criteria: A node becomes a leaf

— if all examples belong to same class C;, label the
leaf with C

— if all attributes were used, label the leaf with the
most common value C, of examples in the node

» Extension to ID3: handling noise - tree pruning
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Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
* erroneous attribute values
* erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)
4. Missing attribute values in training examples
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Probability estimates

* Relative frequency :

p(Class | Cond) =
— problems with small samples

_ n(Class.Cond)
B n(Cond)
[6+,1-1(7) =6/7

[2+,0-]1(2)=2/2=1

_ m(Class.Cond)+1 ;. _»
n(Cond)+k

¢ Laplace estimate :

— assumes uniform prior
distribution of k classes

[6+,1-] (7) = 6+1/ 742 =7/9
[2+,0-] (2) = 2+1/2+2 = 3/4
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Pruning of decision trees

* Avoid overfitting the data by tree pruning

* Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data
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Handling noise — Tree pruning

¢ Handling imperfect data
— handling imperfections of type 1-3
 pre-pruning (stopping criteria)
¢ post-pruning / rule truncation
— handling missing values

¢ Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3
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Prediction of breast cancer
recurrence: Tree pruning

Degree_of_malig

<3 >3
Tumor_size Involved_nodes
<15 >15 <3 >3
Age no_recur 125 no_recur 30 no_recur 27

recurrence 39 recurrence 10

recurrence 18

<4 >40 v < Y "y ¥ y
no_recur 4

recurrence 1 no_recur 4

v y
no_rec4 recl
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Overfitting and accuracy

¢ Typical relation between tree size and accuracy

—o
o7 / n training datl
ﬂ n test data

¢ Question: how to prune optimally?
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How to select the “best” tree

¢ Measure performance over training data (e.g.,
pessimistic post-pruning, Quinlan 1993)

¢ Measure performance over separate validation data
set (e.g., reduced error pruning, Quinlan 1987)
— until further pruning is harmful DO:

« for each node evaluate the impact of replacing a subtree by a
leaf, assigning the majority class of examples in the leaf, if the
pruned tree performs no worse than the original over the
validation set

« greedily select the node whose removal most improves tree
accuracy over the validation set

¢ MDL: minimize
size(tree)+size(misclassifications(tree))
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Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— on unseen instances
How accurate is a decision tree when classifying unseen
instances
— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
« split the example set into training set (e.g. 70%) and test set (e.g. 30%)
* induce a decision tree from training set, compute its accuracy on test
set

Error =1 - Accuracy
High error may indicate data overfitting

Avoiding overfitting
¢ How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning

\ Post-pruning

« forward pruning considered inferior (myopic)
* post pruning makes use of sub trees
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Selected decision/regression
tree learners

¢ Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (See5, Quinlan)
— J48 (available in WEKA)

* Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)
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Features of C4.5

* Implemented as part of the WEKA data mining
workbench

¢ Handling noisy data: post-pruning
* Handling incompletely specified training
instances: ‘unknown’ values (?)

— in learning assign conditional probability of value v:
p(vIC) = p(vC) / p(C)

— in classification: follow all branches, weighted by
prior prob. of missing attribute values
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Part Il. Predictive DM techniques

* Naive Bayesian classifier
* Decision tree learning

m==) ¢ Classification rule learning
* Classifier evaluation

Rule set representation

* Rule base is a disjunctive set of conjunctive rules
¢ Standard form of rules:
IF Condition THEN Class

Class IF Conditions
Class « Conditions

IF Outlook=Sunny A Humidity=Normal THEN
PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain A Wind=Weak THEN PlayTennis=Yes

* Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

¢ Rule base: {R1,R2, RS, ..., DefaultRule}

Other features of C4.5

¢ Binarization of attribute values

— for continuous values select a boundary value

maximally increasing the informativity of the

attribute: sort the values and try every possible

split (done automaticaly)

— for discrete values try grouping the values until
two groups remain *

* ‘Majority’ classification in NULL leaf (with no
corresponding training example)

— if an example ‘falls’ into a NULL leaf during

classification, the class assigned to this example
is the majority class of the parent of the NULL leaf

* the basic C455 doesn't support binarisation of discrete attributes, it supports grouping

Rule Learning in a Nutshell

Given: transaction data table, relational database (a set of
objects, described by attribute values)

from data

Rule learning

Model: a set of rules

Patterns: individual rules

Find: a classification model in the form of a set of rules;

or a set of interesting patterns in the form of individual

rules

Input: Contact lens data

Data mining example

Person Age Spect. presc. | Astigm. |Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
o3 young myope yes reduced NONE
O4 young myope yes normal HARD
05 young  hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE

019-023 .
024  presbyopic hypermetrope yes normal NONE
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Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE

tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE

tear production=normal & astigmatism=no —

lenses=SOFT

tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=HARD

DEFAULT lenses=NONE
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Contact lenses: convert decision tree to
an unordered rule set

tear prod.

reduced / N«:rmal

[N=12,S+H=0]

no yes

[S=5,H+N=1] myope hypermetrope
HARD NONE

[H=3,5+N=2] [N=2, S+H=1]

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[$=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)

Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

* Very frequently used method, e.g., in C4.5
and J48
* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use

Rule learning

¢ Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
e Learning an unordered set of rules
e Learning an ordered list of rules
¢ Heuristics, overfitting, pruning
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Contact lenses: convert decision tree to
warproa. > decision list

reduced / N‘ormal

[N=12,S+H=0]

no yes

SOFT

[S=5,H+N=1]  MYOPe hypermetrope
HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE

Ordered (order dependent) rule list
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Concept learning: Task reformulation for rule
learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. | Tear prod. Lenses
o1 young myope no reduced NO
02 young myope no normal YES
03 young myope yes reduced NO
04 young myope yes normal YES
o5 young | hypermetrope no reduced NO

06-013 .
014  ore-presbyc hypermetrope no normal YES
015  ore-presbyc hypermetrope yes reduced NO
016  ore-presbyc hypermetrope yes normal NO
017  presbyopic myope no reduced NO
018  |presbyopic myope no normal NO

019-023 ..

024  presbyopic hypermetrope yes normal NO



Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes C,, ..., Cx
for each class Ci do + o+ B
— Ei:=Pi U Ni (Pi pos., Ni neg.) + +

— RuleBase(Ci) := empty
— repeat {learn-set-of-rules}

* learn-one-rule R covering some positive
examples and no negatives

* add R to RuleBase(Ci)
* delete from Pi all pos. ex. covered by R
— until Pi = empty
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Covering algorithm

Rulel: Cl=+ « Cond2 AND Cond3

Positive examples Negative examples
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Covering algorithm

Rule1: Cl=+ <~ Cond2 AND Cond3

Positive examples | Negative examples

Rule2: Cl=+ « Cond8 AND Cond6

Covering algorithm

Positive examples Negative examples

Covering algorithm

" Rulel: CI=+ « Cond2 AND Cond3
Positive examples 1 Negative examples

PlayTennis: Training examples

Day Outlook | Temperature | Humidity  Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Owercast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Owercast Mild High Weak Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Heuristics for learn-one-rule:
PlayTennis example

PlayTennis = yes [9+,5-] (14)

PlayTennis = yes < Wind=weak [6+,2-] (8)
<« Wind=strong [3+,3-] (6)
<« Humidity=normal [6+,1-] (7)
..

<« Humidity=normal

PlayTennis = yes
Outlook=sunny [2+,0-] (2)

Estimating rule accuracy (rule precision) with the probability
that a covered example is positive
A(Class « Cond) = p(Class| Cond)

Estimating the probability with the relative frequency of covered
pos. ex. / all covered ex.

[6+,1-](7) =6/7, [2+,0-] (2) =2/2 =1
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Learn-one-rule:
search heuristics

* Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).
¢ Search for specializations R’ of a rule R = Cl <~ Cond
from the RuleBase.
Specializarion R’ of rule R = Cl <~ Cond

has the form R’ = Cl « Cond & Cond’
Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(ClICond)
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Learn-one-rule as search:
PlayTennis example

Play tennis = yes IF

Play tennis = yes

. Play tennis = yes
IF Wind=weak

. IF Humidity=high
Play tennis = yes Play tennis = yes
IF Wind=strong  LF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
. . IF Humidity=normal,
Play tennis = yes Play fennis = yes Outlook=rain
IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny
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Probability estimates

* Relative frequency :

p(Class | Cond) =
— problems with small samples

_ n(Class.Cond)
B n(Cond)
[6+,1-1(7) =6/7

[2+,0-]1(2)=2/2=1

¢ Laplace estimate :

— assumes uniform prior
distribution of k classes

_ m(Class.Cond)+1 ;. _»
n(Cond)+k

[6+,1-] (7) = 6+1/ 742 =7/9
[2+,0-] (2) = 2+1/2+2 = 3/4
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Learn-one-rule:
Greedy vs. beam search

¢ learn-one-rule by greedy general-to-specific
search, at each step selecting the “best’
descendant, no backtracking
— e.g., the best descendant of the initial rule

PlayTennis = yes «

— is rule PlayTennis = yes < Humidity=normal

¢ beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates

210

Learn-one-rule as heuristic search:
PlayTennis example

Play tennis=yes IF  [9+,5-](14)

Play tennis = yes
IF Wind=weak
[6+,2-](8)

Play fennis = yes
IF Humidity=high
Play tennis = yes Play tennis = yes [3+4-1(7)
IF Wind=strong  IF Humidity=normal

[3+3-1(6) [6+1-1(7)

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
. h IF Humidity=normal,
Play tennis = yes Play tennis = yes Outlook=rain
IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny

[2+,0-](2)
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What is “high” rule accuracy
(rule precision) ?

* Rule evaluation measures:
— aimed at maximizing classification accuracy
— minimizing Error = 1 - Accuracy
— avoiding overfitting
¢ BUT: Rule accuracy/precision should be traded
off against the “default” accuracy/precision of the
rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

* Relative accuracy
—RAcc(Cl «<—Cond) = p(CI | Cond) — p(Cl)
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Learn-one-rule:
search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl «- Cond from RuleBase.
Expected classification accuracy: A(R) = p(ClICond)

Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(ClICond)

Accuracy gain (increase in expected accuracy):
AG(R',R) = p(CliCond’) - p(ClICond)
Information gain (decrease in the information needed):
IG(R’,R) = log,p(ClICond’) - log,p(ClICond)
Weighted measures favoring more general rules: WAG, WIG
WAG(R’,R) =
p(Cond’)/p(Cond) . (p(CliCond’) - p(CliCond))

Weighted relative accuracy trades off coverage and relative
accuracy WRAcc(R) = p(Cond).(p(ClICond) - p(Cl))

Sequential covering algorithm
(similar as in Mitchell’s book)

* RuleBase := empty
e E
* repeat

cur= E
— learn-one-rule R
— RuleBase := RuleBase U R

— E.r i= Egy, - {€xamples covered and correctly
classified by R} (DELETE ONLY POS. EX.!)

— until performance(R, E.,) < ThresholdR

* RuleBase := sort RuleBase by performance(R,E)
¢ return RuleBase
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Weighted relative accuracy

* [f a rule covers a single example, its accuracy/precision
is either 0% or 100%
— maximising relative accuracy tends to produce many overly
specific rules

* Weighted relative accuracy
WRAcc(Cl«—Cond) = p(Cond) . [p(Cl | Cond) - p(Cl)]

* WRACcc is a fundamental rule evaluation measure:
— WRAcc can be used if you want to assess both accuracy and
significance
— WRAcc can be used if you want to compare rules with different
heads and bodies
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Ordered set of rules:
if-then-else rules
rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
instance: rules are sequentially tried and the first
rule that “fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class in
E

cur)
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Learn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty

Ecur:= E

repeat

—learn-one-rule R

— RuleBase := RuleBase U R

— Eeur = Eg, - {all examples covered by R}
(NOT ONLY POS. EX.!)

until performance(R, E,,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E,,,)
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Learn-one-rule:
Beam search in CN2

* Beam search in CN2 learn-one-rule algo.:

— construct BeamSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R := Head « BestBody by
adding majority class of examples covered by
BestBody in rule Head

* performance (R, E.,) : - Entropy(E.,,)
— performance(R, E.,) < ThresholdR (neg. num.)
— Why? Ent. > tis bad, Perf. = -Ent < -t is bad
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Probabilistic classification

* Inthe ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

* Inthe unordered case all rules are tried and all rules which fire are
cloller::ted. If a clash occurs, a probabilistic method is used to resolve the
clash.

* A simplified example:

1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.

Classifier evaluation

e Accuracy and Error

¢ n-fold cross-validation
¢ Confusion matrix

¢ ROC

Variations

* Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

* Learning rules vs. learning decision trees and
converting them to rules

* Pre-pruning vs. post-pruning of rules

* What statistical evaluation functions to use

* Probabilistic classification

Part Il. Predictive DM techniques

* Naive Bayesian classifier

* Decision tree learning

* Classification rule learning
=) « Classifier evaluation

Evaluating hypotheses

* Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

* Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

* split the example set into training set (e.g. 70%) to
induce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— information contents (information score), significance

218
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n-fold cross validation

* A method for accuracy estimation of classifiers

* Partition set D into n disjoint, almost equally-sized
folds T;where U; T,= D

e for i=1,...,ndo
— form a training set out of n-1 folds: Di = D\T;
— induce classifier H; from examples in Di
— use fold T, for testing the accuracy of H;

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,
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ePartition D

ePartition

*Partition
*Train . :

*Partition @

Confusion matrix and
rule (in)accuracy

Accuracy of a classifier is measured as TP+TN / N.
Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?

— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out

of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on a test set which has more negatives than positives, Rule 2 is
preferable;

— on a test set which has more positives than negatives, Rule 1 is
preferable; unless...

— ...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!

Conclusion: classification accuracy is not always an

appropriate rule quality measure
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Confusion matrix

 also called contingency table

Classifier 1

229

Predicted positive | Predicted negative
Positive examples 40 10 50
Rogaiive examples 10 20 50 Classifier 2
50 50 100
Predicted positive | Predicted negative
Positive examples 30 20 50
Negative examples 0 50 50
30 70 100
231
.
2
e .
H
2
@
2 0
s
2 .
"« Confrmaton ules |
o £ o e o 9
false positive rate
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¢ 10-fold cross-validation is a standard classifier

Summary of evaluation

evaluation method used in machine learning

¢ ROC analysis is very natural for rule learning
and subgroup discovery

— can take costs into account

— here used for evaluation
— also possible to use as search heuristic
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ROC space

* True positive rate = Classifier 1
#true pos. / #pos. s et |
— TPr, =40/50 = 80% } 2 } : }f; Classifier 2

— TPr,=30/50 = 60%
* False positive rate
= #false pos. / #neg.

— FPr;=10/50 = 20%
- FPr,=0/50=0%
* ROC space has o
£ aox
— FPron X axis 1 _
- TPronY axis H
20%
o 2on ao0% oo w0 100
lsa positvsrats
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The ROC convex hull

100%
—

80% ]
®
H /
.g 60%
7 /
g
S 40%
3
E /

20%

0%

% 20% 40% 60% 80% 100%
false positive rate
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Part Ill. Numeric prediction

:> ¢ Baseline

* Linear Regression
* Regression tree
* Model Tree

* kNN
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Regression

Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:

Linear regression, regression
trees,...

Decision trees, Naive Bayes, ...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class

Test set
Age Height
2 0.85
10 1.4
35 1.7
70 1.6

Baseline predictor: prediction

Average of the target variable is 1.63

Age Height |Baseline
2 0.85

10 1.4

35 1.7

70 1.6
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Example
* data about 80 people: Age and Height

Age | Height

2 3 1.03

4.“" D A SN 5 119

15 R O R B 1.26

. 3 1.39

5, 15 169

s 4 19 167

22 186

0.5 25 1.85

41| 159

0 ‘ 48 1.60

0 50 100 54 1.90

Age 71 182

Baseline numeric predictor

Average of the target variable
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2
18 o o:’. 2N :°o P 'o':. 0. .
16 —_ﬂﬂ-ww“#-—‘—‘—'—" +
14 &
£ 12 &
R
9 *
T o8
06
3‘2‘ « Height I
'0 ‘ ‘ = Average predictor |
0 20 40 60 80 100
Age
Linear Regression Model
Height=_0.0056 * Ace + 1.4181
25
2 o PINCIR 3 oy tm 3"
o o
o"’ pr l:"':-o. .'.:0‘ Y.
2 15 #
2
z
1 .
0.5 * Height
= Prediction
0 T T T T
0 20 40 60 80 100
Age
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Linear Regression: prediction

Height = 0.0056 * Age + 1.4181
Linear
Age Height |regression
2 0.85
10 1.4
35 1.7
70 1.6
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Regression tree: prediction

Regression tree

242

<=125 =125
agsn
P 65 Height =
e s 17098
- - Height = 2
o \
o - - | A
Height = Height = 15
1.3932 1.4025 £ é
3 17
==
05 + Height
= Prediction
0 T
0 50 100
Age
Model tree /‘\
Height = Height =
0.0333 * Age 0.0011 * Age
+1.1366 +1.6692
2 @ . -
P PRI S 2
- A rravrokdik
L
=
[ o
I
0.5 1 « Height
= Prediction
0 T T T T
0 20 40 60 80 100
Age

—
CEEEEE
s Height =
"
= " Height =
_/ _1.4644 _ Regression
Height = Height = Age Height |tree
1.3932 :
1.4025 2 0.85
10 1.4
35 1.7
70 1.6
245
Model tree: prediction
Age Height |Model tree
2 0.85
10 1.4
35 1.7
70 1.6
==12.5 =128

—

Height =

0.0333 * Age
+1.1366

Height =

0.0011* Age
+1.6692

kNN - K nearest neighbors

* Looks at K closest examples (by age) and predicts the

average of their target variable
e K=3

Height
=
o

+ Height
= Prediction KNN, n=3

60 80 100
Age
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kNN prediction

247

Age || Height
1 0.90
1 0.99 Age | Height | KNN
2 1.01 2 0.85
3 1.03 10 1.4
3 1.07 35 1.7
5 1.19 70 1.6
5 1.17
kNN prediction
Age || Height
30 1.57
g? :]] 3? Age Height kNN
34 |[ 1.55 120 01'845
37 1.65 i
37 || 1.80 ®
38 1.60 70 16
39 1.69
39 1.80

Which predictor is the best?

Linear |Regression
Age | Height | Baseline | regression Model tree kNN
2 1085163 | 143 | 1.39 1.20 | 1.01
10 | 1.4 [ 1.63 | 1.47 1.46 147 | 1.51
35 | 1.7 163 | 1.61 1.71 1.71 | 1.67
70 | 16| 163 | 1.81 1.71 1.75 | 1.81

kNN prediction

Age [ Height
8 1.36
8 1.33

Age Height kNN
9 1.45 5 085
9 1.39
11_|| 1.49 0 | 14
12 ][ 1.66 35 7
12 1.52 70 1.6
13 1.59
14 1.58
kNN prediction

Age [[Height
67 1.56
67 1.87 Age | Height | kNN
69 1.67 2 0.85
69 1.86 10 1.4
71 1.74 35 1.7
71 1.82 70 1.6
72 1.70
76 1.88

Evaluating numeric prediction 2

Performance measure

mean-squared error

root mean-squared error

mean absolute error

relative squared error

root relative squared error

relative absolute error

correlation coefficient

Formula

—a)+...+(p,

n

&y

Gar s Gal

\ n

=& ;..JUL —7(')‘7?2
\ @-9'+...+a,-3)
i —al+...+1p.—al

lay—al+...+18,—a|

Sea_

——, where Sy, ==L

Vopos

- —
Y (p-p)
g =Pl
¥ n-1

and 5, ==

b3 ;-

i —pNa;—a)
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Predictive vs. descriptive

Part IV. Descriptive DM techniques induction
* Predictive induction: Inducing classifiers for solving
=)« Predictive vs. descriptive induction classification and prediction tasks,
. — Classification rule learning, Decision tree learning, ...
* Subgroup discovery — Bayesian classifier, ANN, SVM, ...
¢ Association rule learning — Data analysis through hypothesis generation and testing
; ; : * Descriptive induction: Discovering interesting
* Hierarchical clustering regularities in the data, uncovering patterns, ... for

solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis

255 256

Descriptive DM Descriptive DM

¢ Description
¢ Often used for preliminary explanatory data — Data description and summarization: describe elementary and
analysis aggregated data characteristics (statistics, ...)
v i — Dependency analysis:
* User gets feel for the data and its structure « describe associations, dependencies, ...
¢ Aims at deriving descriptions of characteristics * discovery of properties and constraints
of the data » Segmentation
. . . . s — Clustering: separate objects into subsets according to distance and/or
¢ Visualization and descriptive statistical similarity (clustering, SOM, visualization, ...
techniques can be used — Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)

. . . . 257 . . 258
Predictive vs. descriptive Supervised vs. unsupervised
induction: A rule learning learning: A rule learning

perspective perspective
* Predictive induction: Induces rulesets acting as * Supervised learning: Rules are induced from
classifiers for solving classification and prediction labeled instances (training examples with class
tasks assignment) - usually used in predictive induction
* Descriptive induction: Discovers individual rules * Unsupervised learning: Rules are induced from
describing interesting regularities in the data unlabeled instances (training examples with no
class assignment) - usually used in descriptive
induction

* Therefore: Different goals, different heuristics,

different evaluation criteria * Exception: Subgroup discovery

Discovers individual rules describing interesting
regularities in the data from labeled examples
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Part IV. Descriptive DM techniques

* Predictive vs. descriptive induction

I:>- Subgroup discovery
* Association rule learning
* Hierarchical clustering

261

Subgroup interestingness

Interestingness criteria:

— As large as possible

— Class distribution as different as possible from
the distribution in the entire data set

— Significant

— Surprising to the user
— Non-redundant

— Simple

— Useful - actionable
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Subgroup visualization

Subgroups of
patients with
CHD risk

[Gamberger, Lavrag
& Wettschereck,
IDAMAP2002]
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Subgroup Discovery

Given: a population of individuals and a target
class label (the property of individuals we are
interested in)

Find: population subgroups that are statistically
most “interesting’, e.g., are as large as
possible and have most unusual statistical
(distributional) characteristics w.r.t. the target
class (property of interest)

Subgroup Discovery:
Medical Case Study

Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrac,
Krstagic)
A1 for males: principal risk factors

CHD <« pos. fam. history & age > 46
A2 for females: principal risk factors

CHD « bodyMassIndex > 25 & age >63
A1, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECG)
A1: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight
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Subgroups vs. classifiers

¢ Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model
¢ Subgroups:
— Rules describing subgroups aim at significantly higher proportion of
positives
— Eachrule is an independent chunk of knowledge
e Link
— SD can be viewed as
cost-sensitive
classification
— Instead of FNcost we
aim at increased TPprofit

positives

true
positives
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

¢ Only first few rules induced by the covering
algorithm have sufficient support (coverage)

¢ Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

¢ ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list
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CN2-SD: CN2 Adaptations

¢ General-to-specific search (beam search) for best rules
¢ Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =
=p(ClassICond) = (n_+1) / (n, ;.+k)
— CN2-SD: Weighted Relative Accuracy
WRAcc(Class « Cond) =
p(Cond) (p(ClasslCond) - p(Class))
* Weighted covering approach (example weights)
* Significance testing (likelihood ratio statistics)
¢ Output: Unordered rule sets (probabilistic classification)
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Subgroup Discovery

Positive examples Negative examples

10 10

10 10 10

1010 44 10
10

1.0

10
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

* Weighted covering algorithm

* Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

¢ Probabilistic classification

* Evaluation with different interestingness
measures
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CN2-SD: Weighted Covering

¢ Standard covering approach:
covered examples are deleted from current training set
¢ Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
in all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
* Additive weights: w(e,i) = 1/ (i+1)
w(e,i) — pos. example e being covered i times
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Subgroup Discovery

Positive examples 1 Negative examples

1010 40 10

10 1.0
10 2
14
° 10

10 1.0
10 10

1010 44 10

LY
o 1.0

1.
10 10

10 10

10 10
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Subgroup Discovery

Positive examples Negative examples

Rule2: Cl=+ « Cond3 AND Cond4

CN2-SD: Weighted WRAcc Search
Heuristic

¢ Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRAcc(Cl «<— Cond) = p(Cond) (p(CliICond) - p(Cl))

increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* In WRAcc computation, probabilities are estimated
with relative frequencies, adapt:
WRACcc(Cl « Cond) = p(Cond) (p(ClICond) - p(Cl)) =

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(CI)/N’)

— N’: sum of weights of examples
— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples
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Association Rule Learning
Rules: X =>Y, if Xthen Y

X and Y are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)
Given: Transactions

12 s i50
itemsets (records) o1 0
1 0

Find: A set of association rules in the form X =>Y
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)
e Support: Sup(X,Y) = #XYH#D = p(XY)
¢ Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(YIX)
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Subgroup Discovery

Positive examples Negative examples
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Part IV. Descriptive DM techniques

¢ Predictive vs. descriptive induction
e Subgroup discovery

|:>- Association rule learning
* Hierarchical clustering

276

Association Rule Learning:
Examples

* Market basket analysis
— beer & coke = peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
— Support 5%: 5% of all customers buy all four items

— Confidence 65%: 65% of customers that buy beer and coke
also buy peanuts and chips

¢ Insurance
— mortgage & loans & savings = insurance (2%, 62%)
— Support 2%: 2% of all customers have all four

— Confidence 62%: 62% of all customers that have mortgage,
loan and savings also have insurance



Association rule learning

X=Y ...IFXTHENY, where X and Y are itemsets
intuitive meaning: transactions that contain X tend to contain Y
Items - binary attributes (features) m,f,headache, muscle pain,

arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour

Searching for the associations

i1 2 i50
t 1 0 0
2 0 1 0

Association rules

Example transactions — itemsets formed of patient records

spondylitic = arthritic & stiff_gt_1_hour [5%, 70%]
arthrotic & spondylotic = stiff_less_1_hour [20%, 90%)]

Find all large itemsets

Use the large itemsets to generate

association rules

If XY is a large itemset, compute
r =support(XY) / support(X)

If r > MinConf, then X = Y holds
(support > MinSup, as XY is large)

Association vs. Classification

rules

Exploration of
dependencies
Different combinations
of dependent and
independent attributes
Complete search (all
rules found)

rules

Focused prediction
Predict one attribute
(class) from the others
Heuristic search (subset
of rules found)
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and
— user defined minimum confidence, i.e., confidence > MinConf

Itis a form of exploratory data analysis, rather than hypothesis
verification

Large itemsets

* Large itemsets are itemsets that appear in at
least MinSup transaction

* All subsets of a large itemset are large
itemsets (e.g., if A,B appears in at least
MinSup transactions, so do A and B)

* This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)

Part IV. Descriptive DM techniques

 Predictive vs. descriptive induction
e Subgroup discovery
* Association rule learning

:>- Hierarchical clustering

280
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Hierarchical clustering

i Algorlthm (agglomerative

hierarchical clustering):

* Dendogram:

Each instance is a cluster;

repeat
find nearest pair Ciin Cj;
fuse Ciin C; in a new cluster
C=CiUuC;
determine dissimilarities between
Crand other clusters;

cluster level

until one cluster left;
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Hierarchical clustering: example

X Yy zZ W v xy) z w v

x[0(@1 5 s x| 0 14 5 s
™ ¥ 0141424 5 z 04n 5
z 044 5 w o @)
e i w o v 0
b - I v o
O
2] sampie peoblem b) Gsimilanty mat wsing
o) 2w xyz) ) o
| 0 G ese vz} | o G cut %
3
z o s () 0 3
(w.v) o = e =1
T i
Xy z w v
3 as 1 Gendrogram

Part V:
Relational Data Mining

:> Learning as search
* What is RDM?

¢ Propositionalization techniques
¢ Inductive Logic Programming
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Hierarchical clustering

* Fusing the nearest pair of clusters

e Minimizing intra-cluster
similarity

* Maximizing inter-cluster
similarity

e Computing the dissimilaritiesj]
from the “new” cluster
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Results of clustering

A dendogram of
resistance vectors

=| File Analyses Graph _Opti

2] ] [@] =] [=]i] (1]

Antibiatics: (BETALKAMLCHLCC,CFP.CIP,CIX.CPM,CT GMMET NET R
Bacterium: 110 STAPHYLOCOCCLS AUREUS

[Bohanec et al., “PTAH:
. ma A system for supporting

Ziﬁ_ﬁilﬁ;z }—‘

nosocomial infection
therapy”, IDAMAP

book, 1997]

[ERpy PR

From: 1-1-84 To 3-395 Samples 73 Andbiolics 13 Bacteria 1
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Learning as search

¢ Structuring the state space: Representing a partial
order of hypotheses (e.g. rules) as a graph
— nodes: concept descriptions (hypotheses/rules)
— arcs defined by specialization/generalization
operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific
generalization of child
¢ Specialization operators: e.g., adding conditions:
s(A=a2 & B=b1) = {A=a2 & B=b1 & D=d1, A=a2 & B=b1 & D=d2}
¢ Generalization operators: e.g., dropping
conditions: g(A=a2 & B=b1) = {A=a2, B=b1}
* Partial order of hypotheses defines a lattice
(called a refinement graph)
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Learn-one-rule as search - Structuring the
hypothesis space: PlayTennis example

Play tennis = yes IF

Play tennis = yes
IF Humidity=high

Play tennis = yes

IF Wind=weak
Play tennis = yes Play tennis = yes
IF Wind=strong ~ IF Humidity=normal

Play tennis = yes
IF Humidity=normal,
Wind=weak Play tennis = yes
IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal, ~ IF Humidity=normal,
Wind=strong Outlook=sunny

291

Learning as search
(Mitchell’s version space model)

i

more
. l

* Hypothesis language Ly
defines the state space

* How to structure the
hypothesis space L,?

* How to move from one
hypothesis to another?

more
general

complete and consis

* The version space: region
between S (maximally
specific) and G (maximally
general) complete and
consistent concept
descriptions

Q o
S & specific
too specific
o}
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Learning as search:
Learner’s ingredients

— structure of the search space (specialization and
generalization operators)

— search strategy

* depth-first

* breath-first

* heuristic search (best first, hill-climbing, beam search)
— search heuristics

* measure of attribute ‘informativity’

* measure of ‘expected classification accuracy’ (relative

frequency, Laplace estimate, m-estimate), ...

— stopping criteria (consistency, completeness, statistical
significance, ...)
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Learn-one-rule as heuristic search:
PlayTennis example

[9+,5-](14)

Play tennis = yes IF

Play tennis = yes
IF Humidity=high
Play tennis = yes Play tennis = yes [3+,4-1(7)
IF Wind=strong IF Humidity=normal

[34.3-1(6) [6+,1-1(7)

Play tennis = yes
IF Wind=weak
[6+.2-1(8)

Play tennis = yes
IF Humidity=normal,

Wind=weak Play tennis = yes

IF Humidity=normal,

Play tennis = yes Play tennis = yes Outlook=rain

IF Humidity=normal,  IF Humidity=normal,
Wind=strong Outlook=sunny
[2+,0-](2)

292

Learning as search

* Search/move by applying
generalization and

specialization )
generalize

* Prune generalizations:
— if H covers example e then
all generalizations of H will
also cover e (prune using
neg. ex.)

* Prune specializations:

— if H does not cover
example e, no
specialization will cover e
(prune using if H pos. ex.)

e}
O %4
e 9 specialize
too specific
O
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Learn-one-rule:
search heuristics

* Assume a two-class problem

e Two classes (+,-), learn rules for + class (Cl).

e Search for specializations R’ of a rule R = Cl <~ Cond
from the RuleBase.

¢ Specializarion R’ of rule R = Cl «- Cond

has the form R’ = Cl <~ Cond & Cond’

» Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(ClICond)
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Learn-one-rule — Search strategy:
Greedy vs. beam search

* learn-one-rule by greedy general-to-specific
search, at each step selecting the “best’
descendant, no backtracking

— e.g., the best descendant of the initial rule
PlayTennis = yes «
— is rule PlayTennis = yes «<— Humidity=normal

* beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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Predictive relational DM

* Data stored in relational databases
* Single relation - propositional DM
— example is a tuple of values of a fixed number of
attributes (one attribute is a class)
— example set is a table (simple field values)
* Multiple relations - relational DM (ILP)
— example is a tuple or a set of tuples
(logical fact or set of logical facts)

— example set is a set of tables (simple or complex
structured objects as field values)
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Multi-relational data made
propositional

T BB TG [ Detvery [Pt [Siore [Gtore [eome |
* Sample Rl 2 3 e e Sl e
relation st (70 fmeloe rguiee i ot [fsnchiselr

3478|34677|m [si {60~ lexpress [check fsmall i
table 3478]34677[m [ 60- regular [check Jlange findep  [rural

80 lexpress fcredit [large [indep  [rural
regular fcredit femall |fr

Customer table with multiple orders,

* Making data
using summary

AT E-f:f [No. of Orders|No. of Stores|

347834677 m. |si |60 3 2
3479 43666{f 50-90|45 2 2

Customer table using summary attrivutes.
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Part V:
Relational Data Mining

¢ Learning as search

=) What is RDM?

* Propositionalization techniques
¢ Inductive Logic Programming

Data for propositional DM

Sample single relation data table

D [Name |Fu Froat
[Neaue

Win JAse [Clb e
Lisfcome SLakis|ponss

D |7y [Sa [In EE
w A

B
[ St

i 2
7ok

aslS it [Ton [38,
| e
v

ATBI34677|m |6 |60-70| 3
3479(43666(f |mals0-

479\ Don (Tase |5, [ 43666 |faual iEn- fan
Sea [tion lriad  [p0k

Customer table for analysis.

RAowic cuslomer (bl
D |Zi S |So (In  |A |C] [Re|DeliverfPaymt |Sta tore tar
T8 [Bmefaeln B et e Tine [

3478|34677|m |si |60-70[32\meur [regular|cash |small |franchise|city
3470|43666(f |ma|80-90(4

v dit large [indep [rural

Customer table including order and store information.
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Relational Data Mining (ILP)

¢ Learning from multiple [ costomer |
tables 7 1™ [0 el
¢ Complex relational e pypes i jog e a
problems: o
— temporal data: time
series in medicine, %{ B —
. stomer [0 - £
trafic control, ... “ I% “ ‘?ﬁ“’{ |M<.€g” Mode
- structured data: s |saseriz o
1 T checl
representation of ) et check
molecules and their 7 credic
properties in protein M redie
engineering,
biochemistry, ... stae
Store ID|Size | Type  |[Location
12 smaall|franchise ‘cliq‘

17 large [indep  rural

Relational representation of customers, orders and stores.
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Basic Relational Data Mining tasks

Predictive RDM

Descriptive RDM

303

Predictive ILP

¢ Given:
— A set of observations
* positive examples E *
* negative examples E -
— background knowledge B
— hypothesis language L,
— covers relation
quality criterion

¢ Find:
A hypothesis H e L, such that (given B) His
optimal w.r.t. some quality criterion, e.g., max.
predictive accuracy A(H)

(instead of finding a hypothesis H < L, such
that (given B) H covers all positive and no
negative examples)
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Sample problem
Knowledge discovery

E*= {daughter (mary, ann),daughter (eve, tom) }
E "= {daughter (tom, ann) ,daughter (eve, ann) }

B= {mother (ann,mary), mother (ann,tom),
father (tom,eve), father(tom,ian), female(ann),
female (mary), female(eve), male(pat),male(tom),

(
parent (X,Y) <« mother (X,Y), parent(X,Y) <«
father (X,Y)}
ann
mary /tom\
eve ian
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Predictive ILP

Given:
— A set of observations
* positive examples E *
* negative examples E -
— background knowledge B
— hypothesis language L
— covers relation

Find:
A hypothesis H e L, such that (given B) H
covers all positive and no negative examples

In logic, find H such that
— Vee E*:B A Hl= e (His complete)
— Vee E":B A Hl=/=e (His consistent)

InILP, E are ground facts, Band H are
(sets of) definite clauses

304

Descriptive ILP

Given:
— A set of observations
(positive examples E *)
— background knowledge B
— hypothesis language Ly
— covers relation

Find:
Maximally specific hypothesis H e L, such
that (given B) H covers all positive examples

In logic, find H such that Vc € H, cis true in
some preferred model of BUE (e.g., least
Herbrand model M (B UE))

In ILP, E are ground facts, B are (sets of)
general clauses
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Sample problem
Knowledge discovery

. E *= {daughter (mary, ann) ,daughter (eve, tom) }

"= {daughter (tom, ann) ,daughter (eve,ann) }

e B= {mother(gnn,mary) ,mother (ann, tom) , father (tom, eve),

father (tom, ian), female (ann), female (mary) , female (eve),
male (pat),male (tom),parent (X,Y)<«mother (X,Y),
parent (X, Y) «<father (X, Y) }

* Predictive ILP - Induce a definite clause

daughter (X,Y) <« female(X), parent(Y,X).
or a set of definite clauses

daughter (X,Y) <« female(X), mother(Y,X).

daughter (X,Y) <« female(X), father(Y,X).

* Descriptive ILP - Induce a set of (general) clauses
< daughter(X,Y), mother (X,Y).
female (X) <~ daughter (X,Y) .
mother (X,Y); father(X,Y) <« parent(X,Y).



307

Sample problem
Logic programming

E*={sort([2,1,3],11,2,3])}
E = {sort([2,1],[1]),sort([3,1,2],(2,1,31)}

B : definitions of permutation/2 and sorted/1
* Predictive ILP

sort (X,Y) <« permutation(X,Y), sorted(Y).

* Descriptive ILP

sorted(Y) 4= sort(X,Y).
permutation (X,Y) <= sort(X,Y)
sorted(X) < sort(X,X)

9

RDM knowledge representation”
LOAD_TABLE (d ata base) TRAIN_TABLE

[LOAD  CAR | OBJECT | NUMBER | —
n cl circle 1
12 c2  hexagon
13 3 triangle
14 c4  rectangle

\BAQ}AB).E
"CAR™TRAN | SHAPE " LENGTH ROOF | WHEELS |

cl t rectangle  short none 2
c2 t1 rectangle long none

1
1
3

c4 t1 rectangle  long none

3
& t1 rectangle  short  peaked 2
2

ILP representation:
Da

e Example:
eastbound(t1).

Background theory:

car(t1,c1). [¢

rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).

two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,I1). load(c2,12). load(c3,13). load(c4,14).
circle(11). hexagon(l2).  triangle(I3). rectangle(14).
one_load(I1). one_load(l2). one_load(I3). three_loads(l4).

¢ Hypothesis (predictive ILP):
eastbound(T) :- car(T,C),short(C),not none(C).

308

Sample problem:
East-West trains

310

ER diagram for East-West trains

© = @

1 1
Car Load
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ILP representation:
Datalo

Example:
eastbound(t1):-
car(t1,c1),rectangl n n n
load(c1,I1),circle(l1),one_load(I1),
car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,12),hexagon(I2),one_load(12),
car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,I3),triangle(I3),0ne_load(I3),
car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,14),rectangle(14),three_load(14).

* Background theory: empty

¢ Hypothesis:
eastbound(T):-car(T,C),short(C),not none(C).
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ILP represe First-order representations

representations:

e Example: — datacase is
eastbound([c(rectangle| — features are those given in the dataset
c(rectangle,long,none,3,I(hexagon, 1)), o Fi g . .
c(rectangle,short,peaked,2,|(triangle, 1)), First-order representatlons.
c(rectangle,long,none,2, (rectangle,3))])- — datacase is flexible-size, structured object
» Background theory: member/2, arg/3

* sequence, set, graph
« hierarchical: e.g. set of sequences
— features need to be selected from potentially infinite set

* Hypothesis:
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).
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. Part V:
Complexity of RDM problems Relational Data Mining

* Simplest case: single table with primary key ¢ Learm.ng as search
— example corresponds to tuple of constants * What is RDM?
— attribute-value or propositional learning :> Propositionalization techniques

Next: single table without primary key

— example corresponds to set of tuples of constants

- problem

Complexity resides in many-to-one foreign keys
— lists, sets, multisets

— non-determinate variables

* Inductive Logic Programming
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Rule learning: Rule | . isited
The standard view ule learning revisite
* Hypothesis construction: find a set of n rules » Hypothesis construction: find a set of n rules

— usually simplified by n separate rule constructions ¢ Rule construction: find a pair (Head, Body)
* exception: HYPER ¢ Body construction: find a set of m features

* Rule construction: find a pair (Head, Body) — Features can be either defined by background knowledge or
' ’ constructed through constructive induction
- e.g. select head (class) and construct body by — In propositional learning features may increase expressiveness
searching the VersionSpace

through negation
— Every ILP system does constructive induction
* Body construction: find a set of m literals + Feature construction: find a set of k literals .
o ) ) . — finding interesting features is discovery task rather than classification
— usually simplified by adding one literal at a time task e.g. interesting subgroups, frequent itemsets
* problem (ILP): literals introducing new variables

— excellent results achieved also by feature construction through
predictive propositional learning and ILP (Srinivasan)

* exceptions: CN2, APRIORI
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First-order feature construction

* All the expressiveness of ILP is in the features

¢ Given a way to construct (or choose) first-order
features, body construction in ILP becomes
propositional
— idea: learn non-determinate clauses with LINUS by
saturating background knowledge (performing
systematic feature construction in a given language bias)
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Representation issues (1)

* In the database and Datalog ground fact
representations individual examples are not
easily separable

e Term and Datalog ground clause
representations enable the separation of
individuals

¢ Term representation collects all information
about an individual in one structured term
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Declarative bias for first-order
feature construction

In ILP, features involve interactions of local variables

Features should define properties of individuals (e.g. trains,

molecules) or their parts (e.g., cars, atoms)

Feature construction in LINUS, using the following language

bias:

— one free global variable (denoting an individual, e.g. train)

— one or more structural predicates: (e.g., has_car(T,C)) ,each
introducing a new existential local variable (e.g. car, atom), using either
the global variable (train, molecule) or a local variable introduced by
other structural predicates (car, load)

— one or more utility predicates defining properties of individuals or their

parts: no new variables, just using variables

all variables should be used
parameter: max. number of predicates forming a feature

Standard LINUS

* Example: learning family relationships

Training examples Background knowledge

daughter(sue,eve). (+) _|parent(eve,sue). female(ann).
daughter(ann,pat). (+) _[parent(ann,tom). female(sue).
daughter(tom,ann).  (-) _|parent(pat,ann). female(eve).

daughter(eve,ann). (-)__|parent(tom,sue).
* Transformation to propositional form:

Class | Variables Propositional features
X Y | f(X) | f(Y) | p(X.X) | p(X,Y) | p(Y.X) | p(Y.Y) X=Y
@ |sue|eve| true | true | false | false | true | false false
@ ann | pat | true | false | false | false | true false false
© |tom |ann | false | true | false | false | true | false false
© |eve|ann| true | true | false | false | false | false false

* Result of propositional rule learning:
Class = @ if (female(X) = true) A (parent(Y,X) = true
* Transformation to program clause form:
daughter(X,Y) « female(X),parent(Y,X)

Representation issues (2)

* Term representation provides strong
language bias
* Term representation can be flattened to be
described by ground facts, using
— structural predicates (e.g. car(t1,c1),
load(c1,I1)) to introduce substructures
— utility predicates, to define properties of
invididuals (e.g. long(t1)) or their parts
(e.g., long(c1), circle(I1)).
* This observation can be used as a language
bias to construct new features

Sample first-order features
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* The following rule has two features ‘has a short car’ and ‘has a

closed car’:

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

* The following rule has one feature ‘has a short closed car’:

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

¢ Equivalent representation:
eastbound(T):-hasShortCar(T),hasClosedCar(T).
hasShortCar(T):-hasCar(T,C),clength(C,short).
hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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jon in a nutshell

TRAIN_TABLE

= = uND

i

CAR TRAN _SHAPE LENGTH ROOF WHEELS

E|
. . et rectangle short none 2
Transform a multi-relational 2 1 rectange long _none 3
. ©3 1 rectangle short peaked 2
(multiple-table) e o [cwge] g [roed >
representation to a =
propositional representation
(single table) PROPOSITIONAL TRAIN_TABLE
train(T) | f1(T) | f2(T) | 3(T) fam | f5(T)
G t Lot f o] t
©2 t | t | t t | t
Proposed in ILP systems 2 : } : } : : } !
LINUS (1991), 1BC (1999), ... 1 I T
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LINUS revisited

Standard LINUS:

— transforming an ILP problem to a propositional problem
— apply background knowledge predicates

Revisited LINUS:

— Systematic first-order feature construction in a given
language bias
Too many features?
— use a relevancy filter (Gamberger and Lavrac)

Part V:
Relational Data Mining

e Learning as search
* What is RDM?
¢ Propositionalization techniques

:> Inductive Logic Programming

Propositionalization in a nutshell

Main propositionalization step: . o e e I,F‘A'N:"l‘ﬁ,';f

first-order feature construction | o o | 8
_wange 1 i
e 3 1

f1(T):-hasCar(T,C),clength(C,short). —

f2(T):-hasCar(T,C), hasLoad(C,L),

CAR TRAIN _SHAPE _ LENSTH ROOF _WHI

HS

4 u

{EE

. €l t1  rectangle short _ nome 2

loadShape(L,circle) 2t rectange long _none 3

3 tl rectangle  short. eaked 2

f3(T) :- ... . E 5

rectangle  long _none

Propositional learning:

H(T) < fL(T), f4(T) PROPOSITIONAL TRAIN_TABLE

train(m)  f1(T) | f2(T) B3I | @M fs5m

1 t t f t t
Relational interpretation: g ; : : ; ;
eastbound(T) «— % t f t f f
hasShortCar(T),hasClosedCar(T).

LINUS revisited:
Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two

utility predicates:

eastbound(T):- westbound(T):-
hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),
not hasCarlLongJagged(T), not hasCarShortFlat(T),

not hasCarLongHasLoadCircle(T).
Meaning:
eastbound(T):-

hasCar(T,C1),hasLoad(C1,L1),Ishape(L1,tria),Inumber(L1,1),

not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),

not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),Ishape(L3,circ)).
westbound(T):-

not (hasCar(T,C1),cshape(C1,ellipse)),

not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),

not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).

not hasCarPeakedTwo(T).

ILP as search of program clauses

¢ An ILP learner can be described by
— the structure of the space of clauses

* based on the generality relation

e Let C and D be two clauses.
C is more general than D (C |= D) iff

covers(D) c covers(C)
* Example: p(X,Y) « r(Y,X) is more general than
P(X,Y) « (Y. X), q(X)

— its search strategy

¢ uninformed search (depth-first, breadth-first, iterative

deepening)

* heuristic search (best-first, hill-climbing, beam search)
— its heuristics

o for directing search

o for stopping search (quality criterion)
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ILP as search of program clauses The role of subsumption in ILP

* Semantic generality
Hypothesis H, is semantically more general than H, w.r.t. . .
background theory Bif and only if BU H, I= H,  Generality ordering for hypotheses
¢ Syntactic generality or 6-subsumption * Pruning of the search space:
(most popular in ILP) — generalization
- _Clause G Q'SUbsumes c(c124c) « if C covers a neg. example then its generalizations need
ifand only if 30: ¢,0 c ¢, not be considered
— Hypothesis H; > 0H,

. . . — specialization
ifand only if V¢, € H, exists ¢; € H, suchthatc; > 6 ¢,

« if C doesn’t cover a pos. example then its specializations

e Example need not be considered

c1 = daughter(X,Y) « parent(Y,X) ~ :

62 = daughter(mary,ann) < female(mary), * Top-down search of refinement graphs
parent(ann,mary), * Bottom-up search of the hypo. space by
parent(ann,tom). . -

c1 6-subsumes ¢, under 6= {X/mary,Y/ann} — building least general generalizations, and

— inverting resolutions
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r ring th i i
Structuring the Two strategies for learning

hypothesis space

¢ General-to-specific

'y

flies() — if ®-subsumption is used then refinement
S
RN more operators
flies(X) « birdX) / & ‘0 general

* Specific-to-general search
Flies(X) « bird(X), [ & &

normal(X) ? 9 — if ®-subsumption is used then Igg-operator or

] o0 more generalization operator

O o & specific

v
too specific
@)
335 336
More general

ILP as search of program clauses o seners B

* Two strategies for learning
— Top-down search of refinement graphs
— Bottom-up search
* building least general generalizations
¢ inverting resolution (CIGOL)
¢ inverting entailment (PROGOL)

More .
specific
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Generality ordering of clauses

Training examples Background knowledge
daughter(mary,ann). @ | parent(ann,mary). female(ann.).
daughter(eve,tom). @ | parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). © | parent(tom,ian).

daughter(X,Y) «

daughter(X,Y) «

daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
parent(Y,X) parent(X,Z)

daughter(X,Y) « female(X)

daughter(X,Y) « Part of the refinement

female (X) female(X) graph for the family
female(Y) parent(Y,X) relations problem.
339

Language: function-free normal programs
recursion, negation, new variables in the body, no
functors, no constants (original)

Algorithm: covering

Search heuristics: weighted info gain

Search strategy: hill climbing

Stopping criterion: encoding length restriction

Search space reduction: types, infout modes
determinate literals

Ground background knowledge, extensional
coverage

Implemented in C
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Greedy search of the best clause

Training examples Background knowledge
daughter(mary,ann). @ | parent(ann,mary). female(ann.).
daughter(eve,tom). @ | parent(ann,tom). female(mary).
daughter(tom,ann). © | parent(tom,eve). female(eve).
daughter(eve,ann). © | parent(tom,ian).

daughter(X,Y) «

daughter(X,Y) «  2/4

daughter(X,Y) « X=Y daughter(X,Y) « daughter(X,Y) «
0/0 parent(Y,X) parent(X,Z)
2/3

daughter(X,Y) « female(X)
2/3

daughter(X,Y) «
female (X) 1/ female(X) 272
female(Y) parent(Y,X)
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Part V: Summary

* RDM extends DM by allowing multiple tables
describing structured data

* Complexity of representation and therefore of
learning is determined by one-to-many links

* Many RDM problems are individual-centred
and therefore allow strong declarative bias



