Data Mining and Knowledge Discovery

Part of

Jožef Stefan IPS "ICT" Programme and "Statistics" Programme

2010 / 2011

Nada Lavrač

Jožef Stefan Institute Ljubljana, Slovenia

Course Outline

I. Introduction

- Data Mining in a Nutshell Predictive and descriptive DM techniques
- Data Mining and KDD process
- DM standards, tools and visualization (Mladenić et al. Ch. 1 and 11, Kononenko & Kukar Ch. 1)

II. Predictive DM Techniques

- Bayesian classifier (Kononenko Ch. 9.6) Decision Tree learning (Mitchell Ch. 3, Kononenko Ch. 9.1)
- Classification rule learning (Berthold book Ch. 7, Kononenko Ch. 9.2)
- Classifier Evaluation (Bramer Ch. 6)

III. Regression (Kononenko Ch. 9.4)

IV. Descriptive DM

- Predictive vs. descriptive induction
- Subgroup discovery
 Association rule learning (Kononenko Ch. 9.3)
- Hierarchical clustering (Kononenko Ch. 12.3)

V. Relational Data Mining

- RDM and Inductive Logic Programming (Dzeroski & Lavrac Ch. 3, Ch. 4)
- Propositionalization approaches
 Relational subgroup discovery

Introductory seminar lecture

X. JSI & Department of Knowledge Technologies I. Introduction: First generation data mining

- Data Mining in a nutshell
- Predictive and descriptive DM techniques
- Data Mining and KDD process
- DM standards, tools and visualization
- (Mladenić et al. Ch. 1 and 11. Kononenko & Kukar Ch. 1)

XX. Selected data mining techniques: Advanced subgroup discovery techniques and applications

XXX. Recent advances: Cross-context link discovery

Jožef Stefan Institute

 Jožef Stefan Institute (JSI, founded in 1949) - named after a distinguished physicist $i = \sigma T^4$

Jožef Stefan (1835-1893)

leading national research organization in natural sciences and technology (~700 researchers and students)

- JSI research areas
 - information and communication technologies - chemistry, biochemistry & nanotechnology
 - physics, nuclear technology and safety
- Jožef Stefan International Postgraduate School (IPS, founded in 2004)
 - offers MSc and PhD programs (ICT, nanotechnology, ecotechnology)
 - research oriented, basic + management courses
 - in English

Department of Knowledge Technologies

- Head: Nada Lavrač, Staff: 40 researchers, 15 students
- Machine learning & Data mining
 - ML (decision tree and rule learning, subgroup discovery, ...)
 - Text and Web mining
 - Relational data mining inductive logic programming
 - Equation discovery
- Other research areas:
 - Semantic Web and Ontologies
 - Knowledge management
 - Decision support
 - Human language technologies
- Applications:
 - Medicine, Bioinformatics, Public Health
 - Ecology, Finance, ...

Basic Data Mining Task

Data Mining and Machine Learning

- Machine learning techniques
 Data mining applications
 - classification rule learning
 - subgroup discovery
 - relational data mining and ILP
 - equation discovery
 - inductive databases
- Data mining and decision support integration

- medicine, health care
- ecology, agriculture
- knowledge management, virtual organizations

Relational data mining: domain knowledge = relational database

Semantic data mining: domain knowledge = ontologies

Basic DM and DS Tasks

Input: expert knowledge about data and decision alternatives Goal: construct decision support model - to support the evaluation and choice of best decision alternatives

11

DM and DS integration

12

Basic Text and Web Mining Task

13

Input: text documents, Web pages Goal: text categorization, user modeling, data visualization...

Text Mining Tools

14

16

18

Selected Publications

http//:videolectures.net

Introductory seminar lecture

X. JSI & Knowledge Technologies

- I. Introduction: First generation data mining
 - Data Mining in a Nutshell
 - Predictive and descriptive DM techniques
 Data Mining and the KDD process
 - DM standards, tools and visualization
 - (Mladenić et al. Ch. 1 and 11, Kononenko & Kukar Ch. 1)

XX. Selected data mining techniques: Advanced subgroup discovery techniques and applications

XXX. Recent advances: Cross-context link discovery

Part I. Introduction

- Data Mining in a Nutshell
- · Predictive and descriptive DM techniques
- · Data Mining and the KDD process
- · DM standards, tools and visualization

21

19

What is DM

- Extraction of useful information from data: discovering relationships that have not previously been known
- The viewpoint in this course: Data Mining is the application of Machine Learning techniques to solve real-life data analysis problems

Data Mining in a Nutshell

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	knowledge discovery
01	17	myope	no	reduced	NONE	Ritowicage algoarery
02	23	myope	no	normal	SOFT	from data
03	22	myope	yes	reduced	NONE	
04	27	myope	yes	normal	HARD	
O5	19	hypermetrope	no	reduced	NONE	
06-013						Data Mining
014	35	hypermetrope	no	normal	SOFT	Data winning /
O15	43	hypermetrope	ves	reduced	NONE	
016	39	hypermetrope	yes	normal	NONE	
017	54	myope	no	reduced	NONE	
O18	62	myope	no	normal	NONE	
O19-O23						model, patterns,
O24	56	hypermetrope	yes	normal	NONE	
c	lata					

Given: transaction data table, relational database, text documents, Web pages Find: a classification model, a set of interesting patterns

23

Data Mining in a Nutshell

Given: transaction data table, relational database, text documents, Web pages

Find: a classification model, a set of interesting patterns

Simplified example: Learning a classification model from contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
04	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
O17	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
O19-O23					
O24	56	hypermetrope	yes	normal	NONE

Task reformulation: Binary Class Values

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
03	22	myope	yes	reduced	NO
04	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
014	35	hypermetrope	no	normal	YES
015	43	hypermetrope	yes	reduced	NO
016	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

Binary classes (positive vs. negative examples of Target class) - for Concept learning – classification and class description - for Subgroup discovery – exploring patterns characterizing

groups of instances of target class

28

30

Learning from Numeric Class Data

27

29

Person	Age	Spect. presc.	Astigm.	Tear prod.	LensPric
01	17	myope	no	reduced	0
02	23	myope	no	normal	8
O3	22	myope	yes	reduced	0
04	27	myope	yes	normal	5
O5	19	hypermetrope	no	reduced	0
06-013					
014	35	hypermetrope	no	normal	5
015	43	hypermetrope	yes	reduced	0
O16	39	hypermetrope	yes	normal	0
017	54	myope	no	reduced	0
O18	62	myope	no	normal	0
019-023					
024	56	hypermetrope	VAS	normal	0

Numeric class values - regression analysis

Learning from Unlabeled Data

	1					
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	l
01	17	myope	no	reduced	NONE	Ī
02	23	myope	no	normal	SOFT	
O3	22	myope	yes	reduced	NON	
O4	27	myope	yes	normal	MARD	
O5	19	hypermetrope	no	reduced	NONE	
06-013					¥.	
O14	35	hypermetrope	no	normal	SOFT	
015	43	hypermetrope	yes	reduced	NONE	
O16	39	hypermetrope	yes	normal	NONE	
017	54	myope	no	reduced	NONE	
O18	62	myope	no	normal	NONE	
019-023					/ \	١
024	56	hypermetrope	VAC	normal	NONE	1

Unlabeled data - clustering: grouping of similar instances - association rule learning

Related areas

algorithms, probabilistic reasoning

Related areas

Text and Web mining

- Web page analysis
- text categorization
- acquisition, filtering and structuring of textual information
- natural language processing

Related areas

Visualization · visualization of data statistics databases and discovered knowledge text and Web machine minina learning DM soft sualizatio computing pattern ecognition

33

31

Point of view in this course

Data Mining, ML and Statistics

- All three areas have a long tradition of developing inductive techniques for data analysis.
 reasoning from properties of a data sample to
- DM vs. ML Viewpoint in this course:
 Data Mining is the application of Machine Learning techniques to hard real-life data analysis problems

35

Part I. Introduction

All three areas have a long tradition of developing inductive techniques for data analysis. – reasoning from properties of a data sample to properties of a population

Data Mining, ML and Statistics

- properties of a population DM vs. Statistics:
- Statistics

•

- Hypothesis testing when certain theoretical expectations about the data distribution, independence, random sampling, sample size, etc. are satisfied
- Main approach: best fitting all the available data
 Data mining
 - Automated construction of understandable patterns, and structured models
 - Main approach: structuring the data space, heuristic search for decision trees, rules, ... covering (parts of) the data space

Data Mining in a Nutshell

Predictive and descriptive DM techniques

- Data Mining and the KDD process
- DM standards, tools and visualization

Types of DM tasks

Predictive DM:

- Classification (learning of rules, decision trees, ...)
- Prediction and estimation (regression)
- Predictive relational DM (ILP)
 Descriptive DM:
- description and summarization
- dependency analysis (association rule
- learning) discovery of properties and constraints
- segmentation (clustering)
- subgroup discovery

37

39

Predictive vs. descriptive DM

Predictive vs. descriptive DM

- **Predictive DM:** Inducing classifiers for solving classification and prediction tasks,
 - Classification rule learning, Decision tree learning, ...
 - Bayesian classifier, ANN, SVM, ...
 - Data analysis through hypothesis generation and testing
- Descriptive DM: Discovering interesting regularities in the data, uncovering patterns, ... for solving KDD tasks
 - Symbolic clustering, Association rule learning, Subgroup discovery, ...
 - Exploratory data analysis

Predictive DM formulated as a machine learning task:

 Given a set of labeled training examples (n-tuples of attribute values, labeled by class name)

				· ·
	A1	A2	A3	Class
example1	V _{1,1}	V _{1,2}	V _{1,3}	C ₁
example2	V _{2,1}	V _{2,2}	V _{2,3}	C ₂

 By performing generalization from examples (induction) find a hypothesis (classification rules, decision tree, ...) which explains the training examples, e.g. rules of the form:

 $(A_i = v_{i,k}) \& (A_i = v_{i,l}) \& \dots \Rightarrow Class = C_n$

41

Predictive DM - Classification

- data are objects, characterized with attributes they belong to different classes (discrete labels)
- given objects described with attribute values, induce a model to predict different classes
- decision trees, if-then rules, discriminant analysis, ...

Data mining example Input: Contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
02	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
04	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
O6-O13					
O14	pre-presbyc	hypermetrope	no	normal	SOFT
O15	pre-presbyc	hypermetrope	yes	reduced	NONE
O16	pre-presbyc	hypermetrope	yes	normal	NONE
017	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
024	presbyopic	hypermetrope	ves	normal	NONE

40

Contact lens data: Decision tree

Type of task: prediction and classification Hypothesis language: decision trees

(nodes: attributes, arcs: values of attributes, leaves: classes)

Contact lens data: Classification rules

44

46

48

Type of task: prediction and classification Hypothesis language: rules X → C, if X then C X conjunction of attribute values, C class

tear production=reduced → lenses=NONE tear production=normal & astigmatism=yes & spect. pre.=hypermetrope → lenses=NONE tear production=normal & astigmatism=no → lenses=SOFT tear production=normal & astigmatism=yes &

spect. pre.=myope → lenses=HARD DEFAULT lenses=NONE

45

Task reformulation: Concept learning problem (positive vs. negative examples of Target class)

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NO
O2	young	myope	no	normal	YES
O3	young	myope	yes	reduced	NO
O4	young	myope	yes	normal	YES
O5	young	hypermetrope	no	reduced	NO
06-013					
O14	ore-presbyc	hypermetrope	no	normal	YES
O15	ore-presbyc	hypermetrope	yes	reduced	NO
O16	ore-presbyc	hypermetrope	yes	normal	NO
017	presbyopic	myope	no	reduced	NO
O18	presbyopic	myope	no	normal	NO
019-023					
O24	presbyopic	hypermetrope	yes	normal	NO

Contact lens data: Classification rules in concept learning

Type of task: prediction and classification Hypothesis language: rules X → C, if X then C X conjunction of attribute values, C target class

Target class: yes

tear production=normal & astigmatism=no → lenses=YES tear production=normal & astigmatism=yes & spect. pre.=myope → lenses=YES else NO

47

Customer data: Decision trees

Illustrative example: Customer data

Customer	Gender	Age	Income	Spent	BigSpender
c1	male	30	214000	18800	yes
c2	female	19	139000	15100	yes
c3	male	55	50000	12400	no
c4	female	48	26000	8600	no
c5	male	63	191000	28100	yes
06-013					
c14	female	61	95000	18100	yes
c15	male	56	44000	12000	no
c16	male	36	102000	13800	no
c17	female	57	215000	29300	yes
c18	male	33	67000	9700	no
c19	female	26	95000	11000	no
c20	female	55	214000	28800	yes

Predictive DM - Estimation

- · often referred to as regression
- data are objects, characterized with attributes (discrete or continuous), classes of objects are continuous (numeric)
- given objects described with attribute values, induce a model to predict the numeric class value
- regression trees, linear and logistic regression, ANN, kNN, ...

Estimation/regression example: Customer data

Customer	Gender	Age	Income	Spent	
c1	male	30	214000	18800	
c2	female	19	139000	15100	
c3	male	55	50000	12400	
c4	female	48	26000	8600	
c5	male	63	191000	28100	
O6-O13					
c14	female	61	95000	18100	
c15	male	56	44000	12000	
c16	male	36	102000	13800	
c17	female	57	215000	29300	
c18	male	33	67000	9700	
c19	female	26	95000	11000	
c20	female	55	214000	28800	

51

Customer data:

regression tree

In the nodes one usually has Predicted value +- st. deviation Predicting algal biomass: regression tree

53

Descriptive DM: Subgroup discovery example -Customer data

Customer	Gender	Age	Income	Spent	BigSpender
c1	male	30	214000	18800	yes
c2	female	19	139000	15100	yes
c3	male	55	50000	12400	no
c4	female	48	26000	8600	no
c5	male	63	191000	28100	yes
O6-O13					
c14	female	61	95000	18100	yes
c15	male	56	44000	12000	no
c16	male	36	102000	13800	no
c17	female	57	215000	29300	yes
c18	male	33	67000	9700	no
c19	female	26	95000	11000	no
c20	female	55	214000	28800	yes

Customer data: Subgroup discovery

Type of task: description (pattern discovery)
Hypothesis language: rules X → Y, if X then Y
X is conjunctions of items, Y is target class

Age > 52 & Sex = male → BigSpender = no

Age > 52 & Sex = male & Income ≤ 73250 → BigSpender = no

Customer data: Association rules

Type of task: description (pattern discovery)
Hypothesis language: rules X → Y, if X then Y
X, Y conjunctions of items

 Age > 52 & BigSpender = no → Sex = male
 Age > 52 & BigSpender = no → Sex = male & Income ≤ 73250
 Sex = male & Age > 52 & Income ≤ 73250 → BigSpender = no

Predictive vs. descriptive DM: Summary from a rule learning perspective

- **Predictive DM:** Induces **rulesets** acting as classifiers for solving classification and prediction tasks
- Descriptive DM: Discovers individual rules describing interesting regularities in the data
- **Therefore:** Different goals, different heuristics, different evaluation criteria

Relational Data Mining (Inductive Logic⁵⁷ Programming) in a Nutshell

 $\mbox{Given:}$ a relational database, a set of tables. sets of logical facts, a graph, \ldots

Find: a classification model, a set of interesting patterns

Relational Data Mining (ILP)

 Learning from multiple tables

 Complex relational problems:

- temporal data: time series in medicine, trafic control, ...
- structured data: representation of molecules and their properties in protein engineering, biochemistry, ...

60

56

ID	Zip	Sex	Soc St	Income	Age	Club	Resp
3478	34667	m	si	60-70	32	me	nr
3479	43666	f	ma	80-90	45	nm	re

Basic table for analysis

59

ID	Zip	Sex	Soc St	Income	Age	Club	Resp
3478	34667	m	si	60-70	32	me	nr
3479	43666	f	ma	80-90	45	nm	re

Data table presented as logical facts (Prolog format) customer(Id,Zip,Sex,SoSt,In,Age,Club,Re)

Prolog facts describing data in Table 2: customer(3478,34667,m,si,60-70,32,me,nr). customer(3479,43666,f,ma,80-90,45,nm,re).

Expressing a property of a relation: customer(___,f,__,__,_).

Part I. Introduction

· Predictive and descriptive DM techniques

Data Mining and the KDD process

· DM standards, tools and visualization

• Data Mining in a Nutshell

Relational Data Mining (ILP)

Data bases:

- Name of relation p
- Attribute of p
- n-tuple < v₁, ..., v_n > = row in a relational table
- relation p = set of n-tuples = relational table

_/		9 000	n d ox	78 220 78 450		
(farm	" (B ^{ar}	87	Thirsey Mode	Den.		
in the	11408	<u>ن</u> ة 1	in a	in the		
806	364077	612	(ergreen	sheele		
HB	472505	¢л –	mein	sheet		
3415	220314	<u>er</u> –	(constant)	(mdit		
pen	34598	φ υ	mean .	predat.		
C			7	r		
			iner.	Distant	TYNT	
			1.00	1.0		
			12	100.00		
			12	in the	indep	1

Logic programming:

- Predicate symbol p
- Argument of predicate p
- n-tuple $\langle v_1, ..., v_n \rangle = row in$ Ground fact $p(v_1, ..., v_n)$
 - Definition of predicate p
 - Set of ground facts
 - Prolog clause or a set of Prolog clauses

Example predicate definition:

good_customer(C) :customer(C,_,female,_,_,_,_), order(C,_,_,creditcard).

63

Data Mining and KDD

- KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models/patterns in data." *
- Data Mining (DM) is the key step in the KDD process, performed by using data mining techniques for extracting models or interesting patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

65

KDD Process

KDD process of discovering useful knowledge from data

Selection	processing	mation		ation/
Data Tar	get Preprocessed ta Data	Transformed Data	Patterns	Knowledge

- KDD process involves several phases:
 - data preparation
 - data mining (machine learning, statistics)
 - · evaluation and use of discovered patterns
- Data mining is the key step, but represents only
 15%-25% of the entire KDD process

MEDIANA – analysis of media research data

	Data	Selection Target Data	Preprocessed Data	Transformed Data	a Interpr Patterns	ation/ Knowledge
--	------	-----------------------------	----------------------	---------------------	-----------------------	---------------------

- Questionnaires about journal/magazine reading, watching of TV programs and listening of radio programs, since 1992, about 1200 questions. Yearly publication: frequency of reading/listening/watching, distribution w.r.t. Sex, Age, Education, Buying power,..
- Data for 1998, about 8000 questionnaires, covering lifestyle, spare time activities, personal viewpoints, reading/listening/watching of media (yes/no/how much), interest for specific topics in media, social status
- good quality, "clean" data
- table of n-tuples (rows: individuals, columns: attributes, in classification tasks selected class)

MEDIANA – media research pilot study

Se	lection	Pre- processing	Trans- ormation	Data Mining	Interpr Evalu	ation/
Data	Target Data	Preprocesse Data	Transform Data	ied 1	Patterns	Knowledge

- · Patterns uncovering regularities concerning:
 - Which other journals/magazines are read by readers of a particular journal/magazine ?
 - What are the properties of individuals that are
 - consumers of a particular media offer ?
 - Which properties are distinctive for readers of different journals ?
- Induced models: description (association rules, clusters) and classification (decision trees, classification rules)

Simplified association rules

Finding profiles of readers of the Delo daily newspaper

- 1. reads_Marketing_magazine 116 → reads_Delo 95 (0.82)
- 2. reads_Financial_News (Finance) 223 → reads_Delo 180 (0.81)
- 3. reads_Views (Razgledi) 201 → reads_Delo 157 (0.78)
- 4. reads_Money (Denar) 197 → reads_Delo 150 (0.76)
- 5. reads_Vip 181 → reads_Delo 134 (0.74)
- Interpretation: Most readers of Marketing magazine, Financial News, Views, Money and Vip read also Delo.

69

71

Simplified association rules

- 1. reads_Sara 332 → reads_Slovenske novice 211 (0.64)
- 2. reads_Ljubezenske zgodbe 283 →
- reads_Slovenske novice 174 (0.61)
- 3. reads_Dolenjski list 520 →
- reads_Slovenske novice 310 (0.6)
- 4. reads_Omama 154 → reads_Slovenske novice 90 (0.58)
- 5. reads_Delavska enotnost 177 → reads_Slovenske novice 102 (0.58)
- Most of the readers of Sara, Love stories, Dolenjska new, Omama in Workers new read also Slovenian news.

Simplified association rules

- 1. reads_Sportske novosti 303 →
 - reads_Slovenski delnicar 164 (0.54)
- 2. reads_Sportske novosti 303 →
 - reads_Salomonov oglasnik 155 (0.51)
- 3. reads_Sportske novosti 303 → reads_Lady 152 (0.5)

More than half of readers of Sports news reads also Slovenian shareholders magazine, Solomon advertisements and Lady.

Decision tree

Finding reader profiles: decision tree for classifying people into readers and non-readers of a teenage magazine Antena.

Part I. Introduction

- · Data Mining in a Nutshell
- · Predictive and descriptive DM techniques
- · Data Mining and the KDD process
- DM standards, tools and visualization

70

CRISP-DM

- Cross-Industry Standard Process for DM
- A collaborative, 18-months partially EC founded project started in July 1997
- NCR, ISL (Clementine), Daimler-Benz, OHRA (Dutch health insurance companies), and SIG with more than 80 members
- DM from art to engineering
- Views DM more broadly than Fayyad et al. (actually DM is treated as KDD process):

	Selection	processing	Trans- rmation Mini	ng Eval	retation/
Data	Target Data	Preprocessee Data	Transformed Data	Patterns	Knowledge

CRISP Data Mining Process

75

73

DM tools

💥 KDNuggets Direc	tory: Data Mining and Knowledge Discovery - Netscape	
<u>Eile Edit View Go</u>	Communicator Help	
🔰 🦋 Bookmarks	🎄 Location: http://www.kdnuggets.com/	d N
A		
KDNuggets.com	Path: <u>KDNuggets Home</u> :	-
<u>KDNuggets</u> Newsletter	Tools (Siftware) for Data Mining and Knowledge Discover	у
<u>Tools</u> Companies	Email new submissions and changes to editor@kdnuggets.com	
Jobs	• Suites supporting multiple discovery tasks and data preparation	
K00-99	Classification for building a classification model Annroach: Multiple Decision tree Rules I Neural network Bayesian Other	
Solutions	Clustering - for finding clusters or segments	
Websites	 Statistics, Estimation and Regression 	
References	 Links and Associations - for finding links, dependency networks, and associations 	
Meetings	 Sequential Patterns - tools for finding sequential patterns 	
Datasets	 Visualization - scientific and discovery-oriented visualization 	
	<u>Text and Web Mining</u>	
	Deviation and Fraud Detection	
	<u>Reporting and Summarization</u>	
	Data Transformation and Cleaning	
R P	OLAP and Dimensional Analysis	-
a ->-	Document: Done 📃 🥸 😼 🚳 🔞	5 //

Public DM tools

- WEKA Waikato Environment for Knowledge Analysis
- Orange, Orange4WS
- KNIME Konstanz Information Miner
- R Bioconductor, ...

77

Visualization

- can be used on its own (usually for description and summarization tasks)
- can be used in combination with other DM techniques, for example
 - visualization of decision trees
 - cluster visualization
 - visualization of association rules
 - subgroup visualization

Data visualization: Scatter plot

76

DB Miner: Association rule visualization

MineSet: Decision tree visualization

Orange: Visual programming and subgroup discovery visualization

Part I: Summary

- KDD is the overall process of discovering useful knowledge in data
 - many steps including data preparation, cleaning, transformation, pre-processing
- Data Mining is the data analysis phase in KDD

 DM takes only 15%-25% of the effort of the overall KDD
 process
- employing techniques from machine learning and statistics
 Predictive and descriptive induction have different
 - goals: classifier vs. pattern discovery
- Many application areas

83

· Many powerful tools available

Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction: First generation data mining

- Data Mining in a nutshell
- Data Mining and KDD process
- DM standards, tools and visualization
- Classification of Data Mining techniques: Predictive and descriptive DM (Mladenić et al. Ch. 1 and 11, Kononenko & Kukar
- Ch. 1) XX. Selected data mining techniques: Advanced subgroup discovery techniques and applications
- XXX. Recent advances: Cross-context link discovery

XX. Talk outline

- Subgroup discovery in a nutshell
 - Relational data mining and propositionalization in a nutshell
 - Semantic data mining: Using ontologies in SD

82

Task reformulation: Binary Class Values

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lense
01	17	myope	no	reduced	NO
02	23	myope	no	normal	YES
03	22	myope	yes	reduced	NO
04	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
014	35	hypermetrope	no	normal	YES
015	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
024	56	hypermetrope	Ves	normal	NO

Binary classes (positive vs. negative examples of Target class) - for Concept learning – classification and class description - for Subgroup discovery – exploring patterns characterizing

groups of instances of target class

87

89

Subgroup Discovery

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
02	23	myope	no	normal	YES
03	22	myope	yes	reduced	NO
04	27	myope	yes	normal	YES
05	19	hypermetrope	no	reduced	NO
O6-O13					
014	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
016	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
018	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

- A task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.
- SD algorithms learn several independent rules that describe groups of target class examples

 subgroups must be large and significant

Classification versus Subgroup Discovery

Classification (predictive induction) constructing sets of classification rules

aimed at learning a model for classification or prediction
 rules are dependent

- Subgroup discovery (descriptive induction) constructing individual subgroup describing rules
 - aimed at finding interesting patterns in target class examples
 - large subgroups (high target class coverage)
 - with significantly different distribution of target class examples (high TP/FP ratio, high significance, high WRAcc
 - each rule (pattern) is an independent chunk of knowledge

Subgroup discovery task

Task definition (Kloesgen, Wrobel 1997)

- Given: a population of individuals and a property of interest (target class, e.g. CHD)
- Find: `most interesting' descriptions of population subgroups
 - are as large as possible (high target class coverage)
 - have most unusual distribution of the target property

(high TP/FP ratio, high significance)

Classification versus Subgroup discovery

Subgroup discovery example: CHD Risk Group Detection

- Input: Patient records described by stage A (anamnestic), stage B (an. & lab.), and stage C (an., lab. & ECG) attributes
- Task: Find and characterize population subgroups with high CHD risk (large enough, distributionally unusual)
- From **best induced descriptions**, five were selected by the expert as **most actionable** for CHD risk screening (by GPs): CHD-risk ← male & pos. fam. history & age > 46 CHD-risk ← female & bodymassIndex > 25 & age > 63 CHD-risk ← ... CHD-risk ← ...

CHD-risk ← ...

Characteristics of SD Algorithms

- SD algorithms do not look for a single complex rule to describe all examples of target class YES (all CHDrisk patients), but several rules that describe parts (subgroups) of YES.
- Standard rule learning approach: Using the covering algorithm for rule set construction

91

93

Covering algorithm

Covering algorithm

Characteristics of SD Algorithms

- SD algorithms do not look for a single complex rule to describe all examples of target class YES (all CHDrisk patients), but several rules that describe parts (subgroups) of YES.
- Advanced rule learning approach: using example weights in the weighted covering algorithm for repetitive subgroup construction and in the rule quality evaluation heuristics.

94

Weighted covering algorithm for rule set construction

• Quality of a rule is measured by trading off coverage and precision.

Weighted covering algorithm for rule set construction

Rule quality measure in CN2-SD: WRAcc(Cl \leftarrow Cond) = p(Cond) x [p(Cl | Cond) - p(Cl)] = coverage x (precision – default precision) "coverage sum of the covered weights. "Precision = burity of the covered examples

Weighted covering algorithm for rule set construction

In contrast with classification rule learning algorithms (e.g. CN2), the covered positive examples are not deleted from the training set in the next rule learning iteration; they are re-weighted, and a next 'best' rule is learned. Subgroup visualization

all A2 C1 B1 B2 B2 A1

The CHD tas characterize a population su CHD risk (larg distributionally actionable)

The CHD task: Find, characterize and visualize population subgroups with high CHD risk (large enough, distributionally unusual, most actionable)

10

97

Induced subgroups and their statistical characterization

Subgroup A2 for femle patients:

High-CHD-risk IF

body mass index over 25 kg/m² (typically 29) AND age over 63 years

age over 05 years

Supporting characteristics (computed using №2 statistical significance test) are: positive family history and hypertension. Women in this risk group typically have slightly increased LDL cholesterol values and normal but decreased HDL cholesterol values.

SD algorithms in the Orange DM Platform

SD Algorithms in Orange

- SD (Gamberger & Lavrač, JAIR 2002
- APRIORI-SD (Kavšek & Lavrač, AAI 2006
- CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2 classification rule learner to Subgroup Discovery
 - Weighted covering algorithm
 Weighted relative accuracy
 - (WRAcc) search heuristics, with added example weights

102

SD algorithms in Orange and Orange4WS

Orange

- classification and subgroup 2010) discovery algorithms
- data mining workflows
- visualization
- developed at FRI, Ljubljana

• Orange4WS (Podpečan

103

105

model patterns....

- Web service oriented
- supports workflows and other Orange functionality
- includes also
 - WEKA algorithms
 - relational data mining
 - semantic data mining with
 - ontologies
 - Web-based platform is under construction

XX. Talk outline

- Subgroup discovery in a nutshell
- Relational data mining and propositionalization in a nutshell
 - Semantic data mining: Using ontologies in SD

Relational Data Mining (Inductive Logic Programming) in a nutshell

 $\mbox{Given:}$ a relational database, a set of tables. sets of logical facts, a graph, \ldots

Find: a classification model, a set of interesting patterns

Relational Data Mining (ILP)

Learning from multiple tables

- patient records
 connected with other
 patient and
 demographic
 information
- Complex relational problems:
- temporal data: time series in medicine, ...
 structured data:
- representation of molecules and their properties in protein engineering, biochemistry, ...

- ╘╺┼╻╸┾╗┾╍╍╄╬╬ ╔╇╦┽╻╷╊╬ ┎┰╌╔┾╻╷┶╓╱╠╬ ╘╍┼╔╤┼╻╷┠╠
 - 2
 - 3.

 - · └┏╺╻⊢┎╻╧

Deletional data representation

109

Transform a multi-relational (**multiple-table**) representation to a propositional representation

Proposed in ILP systems LINUS (Lavrac et al. 1991, 1994), 1BC (Flach and Lachiche 1999), ...

(single table)

Propositionalization in a nutshell

11

Main propositionalization step: first-order feature construction

f1(T):-hasCar(T,C),clength(C,short). f2(T):-hasCar(T,C), hasLoad(C,L), loadShape(L,circle) f3(T) :-

Propositional learning: $t(T) \leftarrow f1(T), f4(T)$

Relational interpretation: eastbound(T) \leftarrow hasShortCar(T),hasClosedCar(T).

Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl C	COJECT NUMBER circle 1 hexaqon 1 triangle 1 rectangle 3 			T	RAIN_	TABLE JUND E E	
	\$		TRAIN	SHAPE	LENGTH	ROOF	WHEELS
	- 1	c1	t1	rectangle	short	none	2
	- 1	c2	t1	rectangle	long	none	3
	- 1	c3	t1	rectangle	short	peaked	2
	c4 t1		rectangle	le long ni		2	

ROPOSITIONAL TRAIN_TABLE										
train(T)	f1(T)	f2(T)	f3(T)	f4(T)	f5(T)					
t1	t	t	f	t	t					
t2	t	t	t	t	t					
t3	f	f	t	f	f					
t4	t	f	t	f	f					

113

Relational Data Mining through Propositionalization

114

Relational Data Mining through Propositionalization

RSD Lessons learned

Efficient propositionalization can be applied to individual-centered, multi-instance learning problems:

- one free global variable (denoting an individual, e.g. molecule M)
- one or more structural predicates: (e.g. has_atom(M,A)), each introducing a new existential local variable (e.g. atom A), using either the global variable (M) or a local variable introduced by other structural predicates (A)
- one or more utility predicates defining properties of individuals or their parts, assigning values to variables feature121(M):- hasAtom(M,A), atomType(A,21)

feature235(M):- feature121(M), feature235(M) mutagenic(M):- feature121(M), feature235(M) 110

Relational Data Mining in Orange4WS

115

115

117

 service for propositionalization through efficient first-order feature construction (Železny and Lavrač, MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21) f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

 subgroup discovery using CN2-SD mutagenic(M) ← feature121(M), feature235(M)

Talk outline

- Subgroup discovery in a nutshell
- Relational data mining and propositionalization in a nutshell
- Semantic data mining: Using ontologies in SD

Semantic Data Mining in Orange4WS

- · Exploiting semantics in data mining
 - Using domain ontologies as background knowledge for data mining
- Semantic data mining technology: a two-step approach
 - Using propositionalization through first-order feature construction
 - Using subgroup discovery for rule learning

Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining

Using domain ontologies (e.g. Gene ¹¹⁹ Ontology) as background knowledge for Data Mining

First order feature construction

First order features with support > *min_support*

f(7,A):-function(A,'GO:0046872'). f(8,A):-function(A,'GO:0004877'). f(11,A):-process(A,'GO:0007165'). f(14,A):-process(A,'GO:0044267'). f(15,A):-process(A,'GO:0050874'). f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874'). f(26,A):-component(A,'GO:0016021'). f(29,A):-function(A,'GO:0046872'), component(A,'GO:0016020'). f(122,A):-interaction(A,B),function(B,'GO:0004872'). f(223,A):-interaction(A,B),function(B,'GO:0004871'), process(B,'GO:0009613'). f(224,A):-interaction(A,B),function(B,'GO:0016787'), component(B,'GO:0043231').

118

121

123

Propositionalization diffexp g1 (gene64499) random a1 (gene

diffexp g2 (gene2534) diffexp g3 (gene5199) diffexp g4 (gene1052) diffexp g5 (gene6036) random g1 (gene7443) random g2 (gene9221) random g3 (gene2339) random g6 (gene26667) random g5 (gene19679)

	f1	f2	£3	f4	f5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1	0	0	1	1	1	0
g5	1	1	1	0	0	1	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Propositional learning: subgroup discovery

	f1	f2	£3	f4	f5	f6						fn
g 1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1	0	0	1	1	1	0
g5	1	1	1	0	0	1	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

f2 and f3 [4,0]

122

124

126

Subgroup Discovery

Subgroup Discovery

125

Subgroup Discovery

RSD naturally uses gene weights in its procedure for repetitive subgroup generation, via its heuristic rule evaluation: weighted relative accuracy

Semantic Data Mining in two steps

· Step 1: Construct relational logic features of genes such as

interaction(g, G) & function(G, protein_binding)

(g interacts with another gene whose functions include protein binding) and propositional table construction with features as attributes

- Step 2: Using these features to discover and describe subgroups of genes that are differentially expressed (e.g., belong to class DIFF.EXP. of top 300 most differentially expressed genes) in contrast with RANDOM genes (randomly selected genes with low differential expression).
- Sample subgroup description: diffexp(A) :- interaction(A,B) AND function(B,'GO:0004871') AND process(B,'GO:0009613')

Summary: SEGS, using the RSD approach

- The SEGS approach enables to discover new medical knowledge from the combination of gene expression data with public gene annotation databases
- In past 2-3 years, the SEGS approach proved effective in several biomedical applications (JBI 2008, ...)
 - The work on semantic data mining using ontologies as background knowledge for subgroup discovery with SEGS - was done in collaboration with I.Trajkovski, F. Železny and J. Tolar

Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction

- Data Mining and KDD process
- DM standards, tools and visualization
- Classification of Data Mining techniques: Predictive and descriptive DM (Mladenić et al. Ch. 1 and 11, Kononenko & Kukar
- Ch. 1) XX. Selected data mining techniques:
- Advanced subgroup discovery techniques and applications
- XXX. Recent advances: Cross-context link discovery

129

131

The **BISON** project

- EU project: Bisociation networks for creative information discovery (<u>www.bisonet.eu</u>), 2008-2010
- Exploring the idea of bisociation (Arthur Koestler, The act of creation, 1964):
 - The mixture in one human mind of two different contexts or different categories of objects, that are normally considered separate categories by the processes of the mind.
 - The thinking process that is the functional basis of analogical or metaphoric thinking as compared to logical or associative thinking.
- Main challenge: Support humans to find new interesting associations accross domains

The **BISON** project

- BISON challenge: Support humans to find new, interesting links accross domains, named bisociations
 - across different contexts
 - across different types of data and knowledge sources
- Open problems:
 - Fusion of heterogeneous data/knowledge sources into a joint representation format - a large information network named BisoNet (consisting of nodes and relatioships between nodes)
 - Finding unexpected, previously unknown links between BisoNet nodes belonging to different contexts

Heterogeneous data sources (BISON, M. Berthold, 2008)

132

128

Chains of associations across domains (BISON, M. Berthold, 2008)

Semantic Data Mining for DNA Microarray Data Analysis

- Semantic data mining integrates public gene annotation data through relational features
- It is implemented in the SEGS algorithm (Trajkovski, Železny, Lavrač and Tolar, JBI 2008), available in Orange4WS
- It can be combined with additional biomedical resources (BioMine), providing additional means for creative knowledge discovery from publicly available data sources

Biomine graph exploration (Toivonnen et al., Uni. Helsinki)

- **BioMine graph** contains information from public databases, including annotated sequences, proteins, orthology groups, genes and gene expressions, gene and protein interactions, PubMed articles, and different ontologies.
 - nodes (~1 mio) correspond to different concepts (such as gene, protein, domain, phenotype, biological process, tissue)
 - semantically labeled edges (~7 mio) connect related concepts
- BioMine query engine answers queries to potentially discover new links between entities by sophisticated graph exploration algorithms

137

135

The SEGS + BioMine Methodology

e.g. slow-vs-fast cell growth

Work by Lavrač et al. 2009, 2010 Podpečan et al. 2010

Semantic Data Mining in Orange4WS: ¹³⁸ SEGS + BioMine workflow implementation

136

SEGS output:

BioMine query:

139

141

143

Summary of SEGS + BioMine

- Semantic Data Mining algorithm SEGS discovers interesting gene group descriptions as conjunctions of concepts from three ontologies: GO, KEGG and Entrez
- Biomine finds cross-context links (paths) between concepts discovered by SEGS, using other ontologies, PubMed and other biomedical resources
- Initial results in stem cell microarray data analysis (EMBC 2009) indicate that the SEGS+Biomine methodology may lead to new insights – in vitro experiments are in progress at NIB to verify and validate the preliminary insights
- A general purpose Semantic Data Mining algorithm g-SEGS is also available in Orange4WS

Introductory seminar lecture: Summary

- JSI & Knowledge Technologies
- Introduction to Data mining and KDD
 - Data Mining and KDD process
 - DM standards, tools and visualization
- Classification of Data Mining techniques: Predictive and descriptive DM
- Selected data mining techniques: Advanced subgroup discovery techniques and applications
- Recent advances: Cross-context link discovery

142

144

Part II. Predictive DM techniques

- Naive Bayesian classifier
 - Decision tree learning
 - Classification rule learning
 - Classifier evaluation

Bayesian methods

- Bayesian methods simple but powerful classification methods
 - Based on Bayesian formula

$$p(H \mid D) = \frac{p(D \mid H)}{p(D)} p(H)$$

- Main methods:
 - Naive Bayesian classifier
 - Semi-naïve Bayesian classifier
 - Bayesian networks *

* Out of scope of this course

Naïve Bayesian classifier

• Probability of class, for given attribute values

$$p(c_{j} | v_{1}...v_{n}) = p(c_{j}) \cdot \frac{p(v_{1}...v_{n} | c_{j})}{p(v_{1}...v_{n})}$$

 For all C_j compute probability p(C_j), given values v_i of all attributes describing the example which we want to classify (assumption: conditional independence of attributes, when estimating p(C_i) and p(C_i |v_i))

$$p(c_j | v_1 \dots v_n) \approx p(c_j) \cdot \prod_i \frac{p(c_j | v_i)}{p(c_i)}$$

Output C_{MAX} with maximal posterior probability of class:

$$C_{MAX} = \arg\max_{C_i} p(c_i | v_1 \dots v_n)$$

Naïve Bayesian classifier

$$p(c_{j} | v_{1}...v_{n}) = \frac{p(c_{j} \cdot v_{1}...v_{n})}{p(v_{1}...v_{n})} = \frac{p(v_{1}...v_{n} | c_{j}) \cdot p(c_{j})}{p(v_{1}...v_{n})} =$$

$$= \frac{\prod_{i} p(v_{i} | c_{j}) \cdot p(c_{i})}{p(v_{1}...v_{n})} = \frac{p(c_{j})}{p(v_{1}...v_{n})} \prod_{i} \frac{p(c_{j} | v_{i}) \cdot p(v_{i})}{p(c_{j})} =$$

$$= p(c_{j}) \cdot \frac{\prod_{i} p(v_{i})}{p(v_{1}...v_{n})} \prod_{i} \frac{p(c_{j} | v_{i})}{p(c_{j})} \approx p(c_{j}) \cdot \prod_{i} \frac{p(c_{j} | v_{i})}{p(c_{j})}$$

Semi-naïve Bayesian classifier

• Naive Bayesian estimation of probabilities (reliable) $p(c, |v_i) = p(c, |v_i)$

$$\frac{p(c_j | v_i)}{p(c_j)} \cdot \frac{p(c_j | v_k)}{p(c_j)}$$

 Semi-naïve Bayesian estimation of probabilities (less reliable)

$$\frac{p(c_j | v_i, v_k)}{p(c_j)}$$

147

149

145

Probability estimation

Relative frequency:

$$p(c_j) = \frac{n(c_j)}{N}, p(c_j | v_i) = \frac{n(c_j, v_i)}{n(v_i)} \qquad j = 1..k, \text{ for k classes}$$

· Prior probability: Laplace law

$$p(c_j) = \frac{n(c_j) + 1}{N + k}$$

• m-estimate:

$$p(c_j) = \frac{n(c_j) + m \cdot p_a(c_j)}{N + m}$$

Probability estimation: intuition

- Experiment with N trials, n successful
- Estimate probability of success of next trial
 - Relative frequency: n/N
 reliable estimate when number of trials is large
 Unreliable when number of trials is small, e.g.,
 1/1=1
- Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes
 Assumes uniform distribution of classes
- m-estimate: (n+m.p_a)/(N+m)
 - Prior probability of success p_{*}, parameter m (weight of prior probability, i.e., number of 'virtual' examples)

Explanation of Bayesian classifier

- · Based on information theory
 - Expected number of bits needed to encode a message = optimal code length -log p for a message, whose probability is p (*)
- Explanation based of the sum of information gains of individual attribute values v_i (Kononenko and Bratko 1991, Kononenko 1993)

$$-\log(p(c_j | v_1...v_n)) =$$

= -log(p(c_j)) - $\sum_{i=1}^{n} (-\log p(c_j) + \log(p(c_j | v_i)))$

* log p denotes binary logarithm

Example of explanation of semi-naïve Bayesian classifier

Hip surgery prognosis

•

Class = no ("no complications", most probable class, 2 class problem)

Attribute value	For decision	Against
	(bit)	(bit)
Age = 70-80	0.07	
Sex = Female		-0.19
Mobility before injury = Fully mobile	0.04	
State of health before injury = Other	0.52	
Mechanism of injury = Simple fall		-0.08
Additional injuries = None	0	
Time between injury and operation > 10 days	0.42	
Fracture classification acc. To Garden = Garden III		-0.3
Fracture classification acc. To Pauwels = Pauwels III		-0.14
Transfusion = Yes	0.07	
Antibiotic profilaxies = Yes		-0.32
Hospital rehabilitation = Yes	0.05	
General complications = None		0
Combination:	0.21	
Time between injury and examination < 6 hours		
AND Hospitalization time between 4 and 5 weeks		
Combination:	0.63	
Therepy - Artroplactic AND anticegrulant therepy - Yes		

146

Naïve Bayesian classifier

- Naïve Bayesian classifier can be used

 when we have sufficient number of training examples for reliable probability estimation
- It achieves good classification accuracy

 can be used as 'gold standard' for comparison with other classifiers
- Resistant to noise (errors)
 - Reliable probability estimation
 Uses all available information
- · Successful in many application domains
 - Web page and document classification
 - Medical diagnosis and prognosis, ...

Improved classification accuracy due ¹⁵³ to using m-estimate

	Primary	Breast	thyroid	Rheumatology
	tumor	cancer		
#instan	339	288	884	355
#class	22	2	4	6
#attrib	17	10	15	32
#values	2	2.7	9.1	9.1
majority	25%	80%	56%	66%
entropy	3.64	0.72	1.59	1.7

	Relative freq.	m-estimate
Primary tumor	48.20%	52.50%
Breast cancer	77.40%	79.70%
hepatitis	58.40%	90.00%
lymphography	79.70%	87.70%

Part II. Predictive DM techniques

- Naïve Bayesian classifier
- Decision tree learning
 - Classification rule learning
 - Classifier evaluation

Illustrative example: Contact lenses data

155

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
02	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
04	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
06-013					
014	pre-presbyc	hypermetrope	no	normal	SOFT
O15	pre-presbyc	hypermetrope	yes	reduced	NONE
O16	pre-presbyc	hypermetrope	yes	normal	NONE
017	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
O24	presbyopic	hypermetrope	yes	normal	NONE

Decision tree for contact lenses recommendation

154

	Play	Tennis :	Training	examples
--	------	-----------------	----------	----------

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Weak	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision tree representation for PlayTennis

161

157

159

PlayTennis: Other representations

- Logical expression for PlayTennis=Yes:
 - (Outlook=Sunny ∧ Humidity=Normal) ∨ (Outlook=Overcast) ∨ (Outlook=Rain ∧ Wind=Weak)
- Converting a tree to if-then rules
 - IF Outlook=Sunny ^ Humidity=Normal THEN PlayTennis=Yes
 - IF Outlook=Overcast THEN PlayTennis=Yes
 - IF Outlook=Rain <> Wind=Weak THEN PlayTennis=Yes
 - IF Outlook=Sunny ^ Humidity=High THEN PlayTennis=No
 - IF Outlook=Rain ^ Wind=Strong THEN PlayTennis=No

PlayTennis: Using a decision tree for classification

Is Saturday morning OK for playing tennis? Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong PlayTennis = No, because Outlook=Sunny ^ Humidity=High

Appropriate problems for decision tree learning

- Classification problems: classify an instance into one of a discrete set of possible categories (medical diagnosis, classifying loan applicants, ...)
- Characteristics:
 - instances described by attribute-value pairs (discrete or real-valued attributes)
 - target function has discrete output values (boolean or multi-valued, if real-valued then regression trees)
 - disjunctive hypothesis may be required
 - training data may be noisy (classification errors and/or errors in attribute values)
 - training data may contain missing attribute values

Learning of decision trees

- ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5, WEKA, ...
 - create the root node of the tree
 - if all examples from S belong to the same class Cj
 then label the root with Ci
 - else
 - select the 'most informative' attribute A with values v1, v2, ... vn
 - divide training set S into S1,... , Sn according to values v1,...,vn (A)
 - recursively build sub-trees T1,...,Tn for S1,...,Sn

1 ... Tn

165

167

163

Search heuristics in ID3

- Central choice in ID3: Which attribute to test at each node in the tree ? The attribute that is most useful for classifying examples.
- Define a statistical property, called **information gain**, measuring how well a given attribute separates the training examples w.r.t their target classification.
- First define a measure commonly used in information theory, called **entropy**, to characterize the (im)purity of an arbitrary collection of examples.

Entropy

- S training set, C₁,...,C_N classes
- Entropy E(S) measure of the impurity of training set S

 $E(S) = -\sum_{c=1}^{N} p_c \log_2 p_c \qquad \qquad \text{\mathbf{p}_c-prior probability of class \mathbf{C}_c} \\ \text{(relative frequency of \mathbf{C}_c in \mathbf{S})}$

• Entropy in binary classification problems

 $\mathbf{E(S)} = -\mathbf{p}_{+} \log_2 \mathbf{p}_{+} - \mathbf{p}_{-} \log_2 \mathbf{p}_{-}$

Entropy

- E(S) = p₊ log₂p₊ p₋ log₂p₋
- The entropy function relative to a Boolean classification, as the proportion p₊ of positive examples varies between 0 and 1

Entropy – why ?

- Entropy E(S) = expected amount of information (in bits) needed to assign a class to a randomly drawn object in S (under the optimal, shortest-length code)
- Why ?
- Information theory: optimal length code assigns
 log,p bits to a message having probability p
- So, in binary classification problems, the expected number of bits to encode + or – of a random member of S is:

 $p_+(-\log_2 p_+) + p_-(-\log_2 p_-) = -p_+\log_2 p_+ - p_-\log_2 p_-$

166

PlayTennis: Entropy

- Training set S: 14 examples (9 pos., 5 neg.)
- Notation: S = [9+, 5-]
- $E(S) = -p_{+}\log_2 p_{+} p_{-}\log_2 p_{-}$
- Computing entropy, if probability is estimated by relative frequency

$$E(S) = -\left(\frac{|S_+|}{|S|} \cdot \log\frac{|S_+|}{|S|}\right) - \left(\frac{|S_-|}{|S|} \cdot \log\frac{|S_-|}{|S|}\right)$$

• $E([9+,5-]) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14)$ = 0.940

PlayTennis: Entropy

- E(S) = p₊ log₂p₊ p₋ log₂p₋
- E(9+,5-) = -(9/14) log₂(9/14) (5/14) log₂(5/14) = 0.940

Information gain search heuristic

- Information gain measure is aimed to minimize the number of tests needed for the classification of a new object
- Gain(S,A) expected reduction in entropy of S due to sorting on A

$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

Most informative attribute: max Gain(S,A)

Information gain search heuristic

• Which attribute is more informative, A1 or A2 ?

- Gain(S,A1) = 0.94 (8/14 x 0.811 + 6/14 x 1.00) = 0.048
- Gain(S,A2) = 0.94 0 = 0.94 A2 has max Gain

173

169

171

PlayTennis: Information gain

$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

• Values(Wind) = {Weak, Strong}

E=1.00

- S = [9+,5-], E(S) = 0.940
- $S_{weak} = [6+,2-], E(S_{weak}) = 0.811$
- $S_{strong} = [3+,3-], E(S_{strong}) = 1.0$
- Gain(S,Wind) = E(S) (8/14)E(S_{weak}) (6/14)E(S_{strong}) = 0.940 (8/14)x0.811 (6/14)x1.0=0.048

PlayTennis: Information gain

• Which attribute is the best?

- Gain(S,Outlook)=0.246 MAX !
- Gain(S,Humidity)=0.151
- Gain(S,Wind)=0.048
- Gain(S,Temperature)=0.029

172

PlayTennis: Information gain

Rain {D4,D5,D6,D10,D14} [3+, 2-] E>0 ??? Outlook?

Overcast Sunny

{D3,D7,D12,D13} [4+ 0-] F = 0 OK - assian class Yes {D1,D2,D8,D9,D11} [2+, 3-] E>0 ??? -

175

177

· Which attribute should be tested here?

- Gain(S_{sunny}, Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !
- Gain(S_{sunny},Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570
- Gain(S_{sunny},Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

Probability estimates

Relative frequency : problems with small samples

> [6+,1-](7) = 6/7[2+,0-](2) = 2/2 = 1

Laplace estimate : assumes uniform prior distribution of k classes p(Class | Cond) =n(Class.Cond) n(Cond)

n(Class.Cond)+1 k=2n(Cond) + k

```
[6+,1-](7) = 6+1/7+2 = 7/9
[2+,0-](2) = 2+1/2+2 = 3/4
```

178

180

Heuristic search in ID3

- Search bias: Search the space of decision trees from simplest to increasingly complex (greedy search, no backtracking, prefer small trees)
- Search heuristics: At a node, select the attribute ٠ that is most useful for classifying examples, split the node accordingly
- Stopping criteria: A node becomes a leaf - if all examples belong to same class C_i, label the leaf with C
 - if all attributes were used, label the leaf with the most common value Ck of examples in the node
- · Extension to ID3: handling noise tree pruning

Pruning of decision trees

- · Avoid overfitting the data by tree pruning
- · Pruned trees are
 - less accurate on training data
 - more accurate when classifying unseen data

179

Handling noise – Tree pruning

Sources of imperfection

- 1. Random errors (noise) in training examples
 - · erroneous attribute values
 - · erroneous classification
- 2. Too sparse training examples (incompleteness)
- 3. Inappropriate/insufficient set of attributes (inexactness)
- 4. Missing attribute values in training examples

Handling noise – Tree pruning

- · Handling imperfect data
 - handling imperfections of type 1-3
 - pre-pruning (stopping criteria)
 - · post-pruning / rule truncation
 - handling missing values
- Pruning avoids perfectly fitting noisy data: relaxing the completeness (fitting all +) and consistency (fitting all -) criteria in ID3

Accuracy and error

- Accuracy: percentage of correct classifications
 on the training set
 - on unseen instances
- How accurate is a decision tree when classifying unseen instances
 - An estimate of accuracy on unseen instances can be computed, e.g., by averaging over 4 runs:
 - split the example set into training set (e.g. 70%) and test set (e.g. 30%)
 - induce a decision tree from training set, compute its accuracy on test
 set
- Error = 1 Accuracy
- · High error may indicate data overfitting

183

Overfitting and accuracy

• Typical relation between tree size and accuracy

· Question: how to prune optimally?

Avoiding overfitting

- How can we avoid overfitting?
 - Pre-pruning (forward pruning): stop growing the tree e.g., when data split not statistically significant or too few examples are in a split
 - Post-pruning: grow full tree, then post-prune

forward pruning considered inferior (myopic)
post pruning makes use of sub trees

185

How to select the "best" tree

- Measure performance over training data (e.g., pessimistic post-pruning, Quinlan 1993)
- Measure performance over separate validation data set (e.g., reduced error pruning, Quinlan 1987)
 until further pruning is harmful DO:
 - for each node evaluate the impact of replacing a subtree by a leaf, assigning the majority class of examples in the leaf, if the pruned tree performs no worse than the original over the validation set
 - greedily select the node whose removal most improves tree accuracy over the validation set
- MDL: minimize
 - size(tree)+size(misclassifications(tree))

Selected decision/regression tree learners

- · Decision tree learners
 - ID3 (Quinlan 1979)
 - CART (Breiman et al. 1984)
 - Assistant (Cestnik et al. 1987)
 - C4.5 (Quinlan 1993), C5 (See5, Quinlan)
 - J48 (available in WEKA)
- · Regression tree learners, model tree learners
 - M5, M5P (implemented in WEKA)

184

Features of C4.5

- Implemented as part of the WEKA data mining workbench
- Handling noisy data: post-pruning
- Handling incompletely specified training instances: 'unknown' values (?)
 - in learning assign conditional probability of value v: $p(vlC) = p(vC) \, / \, p(C)$
 - in classification: follow all branches, weighted by prior prob. of missing attribute values

Other features of C4.5

- Binarization of attribute values
 - for continuous values select a boundary value maximally increasing the informativity of the attribute: sort the values and try every possible split (done automaticaly)
 - for discrete values try grouping the values until two groups remain *
- 'Majority' classification in NULL leaf (with no corresponding training example)
 - if an example 'falls' into a NULL leaf during classification, the class assigned to this example is the majority class of the parent of the NULL leaf

* the basic C4.5 doesn't support binarisation of discrete attributes, it supports grouping

189

187

Part II. Predictive DM techniques

- Naïve Bayesian classifier
- Decision tree learning
- Classification rule learning
 - Classifier evaluation

Rule Learning in a Nutshell

Given: transaction data table, relational database (a set of objects, described by attribute values)

Find: a classification model in the form of a set of rules; or a set of interesting patterns in the form of individual rules

191

Rule set representation

- · Rule base is a disjunctive set of conjunctive rules
 - Standard form of rules: IF Condition THEN Class Class IF Conditions Class ← Conditions

IF Outlook=Sunny ∧ Humidity=Normal THEN PlayTennis=Yes IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain ^ Wind=Weak THEN PlayTennis=Yes

Form of CN2 rules:

- IF Conditions THEN MajClass [ClassDistr]
- Rule base: {R1, R2, R3, ..., DefaultRule}

Data mining example Input: Contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
02	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
04	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
O6-O13					
O14	pre-presbyc	hypermetrope	no	normal	SOFT
O15	pre-presbyc	hypermetrope	yes	reduced	NONE
O16	pre-presbyc	hypermetrope	yes	normal	NONE
017	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
024	presbyopic	hypermetrope	ves	normal	NONE

190

Contact lens data: Classification rules

Type of task: prediction and classification Hypothesis language: rules X → C, if X then C X conjunction of attribute values, C class

tear production=reduced → lenses=NONE tear production=normal & astigmatism=yes & spect. pre.=hypermetrope → lenses=NONE tear production=normal & astigmatism=no → lenses=SOFT tear production=normal & astigmatism=yes & spect. pre.=myope → lenses=HARD

DEFAULT lenses=NONE

193

Rule learning

- Two rule learning approaches:
 - Learn decision tree, convert to rules
 - Learn set/list of rules
 - Learning an unordered set of rules
 - Learning an ordered list of rules
- Heuristics, overfitting, pruning

Contact lenses: convert decision tree to

197

Converting decision tree to rules, and rule post-pruning (Quinlan 1993)

- Very frequently used method, e.g., in C4.5 and J48
- Procedure:
 - grow a full tree (allowing overfitting)
 - convert the tree to an equivalent set of rules
 - prune each rule independently of others
 - sort final rules into a desired sequence for use

Concept learning: Task reformulation for rule learning: (pos. vs. neg. examples of Target class)

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NO
02	young	myope	no	normal	YES
O3	young	myope	yes	reduced	NO
04	young	myope	yes	normal	YES
O5	young	hypermetrope	no	reduced	NO
06-013					
014	ore-presbyc	hypermetrope	no	normal	YES
O15	ore-presbyc	hypermetrope	yes	reduced	NO
O16	ore-presbyc	hypermetrope	yes	normal	NO
017	presbyopic	myope	no	reduced	NO
O18	presbyopic	myope	no	normal	NO
019-023					
O24	presbyopic	hypermetrope	ves	normal	NO

Original covering algorithm (AQ, Michalski 1969,86)

+ +

+ +

_" ||+

Given examples of N classes $C_1, ..., C_N$

- for each class Ci do
 - Ei := Pi U Ni (Pi pos., Ni neg.)
 - RuleBase(Ci) := empty
 - repeat {learn-set-of-rules}
 - learn-one-rule R covering some positive examples and no negatives
 - add R to RuleBase(Ci)
 - delete from Pi all pos. ex. covered by R
 - until Pi = empty

Covering algorithm

Covering algorithm Positive examples Rule1: Cl=+
Cond2 AND Cond3 Negative examples

Covering algorithm

203

201

PlayTennis: Training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Weak	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	Hiah	Strong	No

204

200

Heuristics for learn-one-rule: ²⁰⁵ PlayTennis example

Play I ennis = yes [9+,5-	·] (14)
PlayTennis = yes	← Wind=weak [6+,2-] (8) ← Wind=strong [3+,3-] (6) ← Humidity=normal [6+,1-] (7) ←
PlayTennis = yes	← Humidity=normal Outlook=sunny [2+,0-] (2)
	←
Estimating rule accurate that a covered exam	cy (rule precision) with the probability ple is positive

A(Class ← Cond) = p(Classi Cond)

Estimating the **probability** with the **relative frequency** of covered pos. ex. / all covered ex.

[6+,1-](7) = 6/7,

[2+,0-] (2) = 2/2 = 1

207

209

Probability estimates

Relative frequency : – problems with small samples

> [6+,1-] (7) = 6/7 [2+,0-] (2) = 2/2 = 1

 Laplace estimate :

 assumes uniform prior distribution of k classes

 p(Class | Cond) = $= \frac{n(Class.Cond)}{n(Cond)}$

 $=\frac{n(Class.Cond)+1}{n(Cond)+k} \quad k=2$

[6+,1-] (7) = 6+1 / 7+2 = 7/9 [2+,0-] (2) = 2+1 / 2+2 = 3/4

208

210

206

Learn-one-rule: search heuristics

- Assume a two-class problem
- Two classes (+,-), learn rules for + class (Cl).
- Search for specializations R' of a rule R = Cl ← Cond from the RuleBase.
- Specializarion R' of rule R = CI ← Cond
 - has the form $R' = CI \leftarrow Cond \& Cond'$
- Heuristic search for rules: find the 'best' Cond' to be added to the current rule R, such that rule accuracy is improved, e.g., such that Acc(R') > Acc(R)
 - where the expected classification accuracy can be estimated as A(R) = p(CIICond)

Learn-one-rule: Greedy vs. beam search

- learn-one-rule by greedy general-to-specific search, at each step selecting the `best' descendant, no backtracking
 - e.g., the best descendant of the initial rule
 PlayTennis = yes ←
 - is rule PlayTennis = yes ← Humidity=normal
- beam search: maintain a list of k best candidates at each step; descendants (specializations) of each of these k candidates are generated, and the resulting set is again reduced to k best candidates

Learn-one-rule as search: PlayTennis example

Learn-one-rule as heuristic search: PlayTennis example

What is "high" rule accuracy (rule precision) ?

211

213

- Rule evaluation measures:
 - aimed at maximizing classification accuracy
 - minimizing Error = 1 Accuracy
 - avoiding overfitting
- - 68% accuracy is OK if there are 20% examples of that class in the training set, but bad if there are 80%
- Relative accuracy
 - $\text{RAcc}(\text{Cl} \leftarrow \text{Cond}) = p(\text{Cl} \mid \text{Cond}) p(\text{Cl})$

Weighted relative accuracy

- If a rule covers a single example, its accuracy/precision is either 0% or 100%
 - maximising relative accuracy tends to produce many overly specific rules
- Weighted relative accuracy WRAcc(Cl(-Cond) = p(Cond) . [p(Cl | Cond) - p(Cl)]
- WRAcc is a fundamental rule evaluation measure:
 WRAcc can be used if you want to assess both accuracy and significance
 - WRAcc can be used if you want to compare rules with different heads and bodies

Learn-one-rule: search heuristics

- Assume two classes (+,-), learn rules for + class (Cl). Search for specializations of one rule R = Cl ← Cond from RuleBase.
- Expected classification accuracy: A(R) = p(CllCond)
- Informativity (info needed to specify that example covered by Cond belongs to Cl): I(R) = - log₂p(CllCond)
- Accuracy gain (increase in expected accuracy): AG(R',R) = p(CllCond') - p(CllCond)
- Information gain (decrease in the information needed): IG(R',R) = log₂p(CIICond') - log₂p(CIICond)
- Weighted measures favoring more general rules: WAG, WIG WAG(R',R) =
 - p(Cond')/p(Cond) . (p(CllCond') p(CllCond))
- Weighted relative accuracy trades off coverage and relative accuracy WRAcc(R) = p(Cond).(p(CIICond) - p(CI))

Sequential covering algorithm (similar as in Mitchell's book)

- RuleBase := empty
- E_{cur}:= E
- repeat
 - learn-one-rule R
 - RuleBase := RuleBase U R
 - E_{cur} := E_{cur} {examples covered and correctly classified by R} (DELETE ONLY POS. EX.!)
 - until performance(R, E_{cur}) < ThresholdR
- RuleBase := sort RuleBase by performance(R,E)
- return RuleBase

Ordered set of rules: if-then-else rules

- rule Class IF Conditions is learned by first determining Conditions and then Class
- Notice: mixed sequence of classes C1, ..., Cn in RuleBase
- But: ordered execution when classifying a new instance: rules are sequentially tried and the first rule that `fires' (covers the example) is used for classification
- Decision list {R1, R2, R3, ..., D}: rules Ri are interpreted as if-then-else rules
- If no rule fires, then DefaultClass (majority class in $E_{\rm cur})$

Learn ordered set of rules (CN2, Clark and Niblett 1989)

- RuleBase := empty
- E_{cur}:= E
- repeat
 - learn-one-rule R
 - RuleBase := RuleBase U R
 - E_{cur} := E_{cur} {all examples covered by R} (NOT ONLY POS. EX.!)
- until performance(R, E_{cur}) < ThresholdR
- RuleBase := sort RuleBase by performance(R,E)
- RuleBase := RuleBase U DefaultRule(E_{cur})

214

Learn-one-rule: Beam search in CN2

- · Beam search in CN2 learn-one-rule algo .:
 - construct BeamSize of best rule bodies (conjunctive conditions) that are statistically significant
 - BestBody min. entropy of examples covered by Body
 - construct best rule R := Head ← BestBody by adding majority class of examples covered by BestBody in rule Head
- performance (R, E_{cur}) : Entropy(E_{cur})
 - performance(R, E_{cur}) < ThresholdR (neg. num.)
 - Why? Ent. > t is bad, Perf. = -Ent < -t is bad

Variations

- Sequential vs. simultaneous covering of data (as in TDIDT): choosing between attribute-values vs. choosing attributes
- Learning rules vs. learning decision trees and converting them to rules
- Pre-pruning vs. post-pruning of rules
- · What statistical evaluation functions to use
- Probabilistic classification

Probabilistic classification

- In the ordered case of standard CN2 rules are interpreted in an IF-THEN-ELSE fashion, and the first fired rule assigns the class.
- In the unordered case all rules are tried and all rules which fire are collected. If a clash occurs, a probabilistic method is used to resolve the
- clash. • A simplified example:
 - 1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]
 - tear production=normal & astigmatism=yes & spect. pre.=hypermetrope => lenses=NONE [S=0.H=1,N=2]
 tear production=normal & astigmatism=no => lense=SPET
 - 3. tear production=normal & astigmatism=no=> lenses=SOFT [S=5,H=0,N=1]
 - 4. tear production=normal & astigmatism=yes & spect. pre=myope => lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total coverage as [S=0,H=4,N=4], resulting in probabilistic classification into class H with probability 0.5 and N with probability 0.5 and N with probability 0.5 and N to probabilities are equal.

221

217

219

Classifier evaluation

- · Accuracy and Error
- n-fold cross-validation
- · Confusion matrix
- ROC

Part II. Predictive DM techniques

- Naïve Bayesian classifier
- Decision tree learning
- Classification rule learning
- Classifier evaluation

- **Evaluating hypotheses**
- Use of induced hypotheses
 - discovery of new patterns, new knowledge
 classification of new objects
- Evaluating the quality of induced hypotheses - Accuracy, Error = 1 - Accuracy
 - classification accuracy on testing examples = percentage of correctly classified instances
 - split the example set into training set (e.g. 70%) to induce a concept, and test set (e.g. 30%) to test its accuracy
 - more elaborate strategies: 10-fold cross validation, leave-one-out, ...
 - comprehensibility (compactness)
 - information contents (information score), significance

220

n-fold cross validation

223

- · A method for accuracy estimation of classifiers
- Partition set D into n disjoint, almost equally-sized folds T_i where U_i T_i = D
- for i = 1, ..., n do

•Partition

•Train

 $D \mid T_1 = D$

- form a training set out of n-1 folds: $Di = D \setminus T_i$
- induce classifier H_i from examples in Di
- use fold T_i for testing the accuracy of H_i
- Estimate the accuracy of the classifier by averaging accuracies over 10 folds T_i

Confusion matrix and rule (in)accuracy

- Accuracy of a classifier is measured as TP+TN / N.
- Suppose two rules are both 80% accurate on an evaluation dataset, are they always equally good?
 - e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out of 50 negatives; Rule 2 correctly classifies 30 out of 50 positives and 50 out of 50 negatives
 - on a test set which has more negatives than positives, Rule 2 is preferable;
 - on a test set which has more positives than negatives, Rule 1 is preferable; unless...
 ...the proportion of positives becomes so high that the 'always
- positive' predictor becomes superior!
 Conclusion: classification accuracy is not always an
- appropriate rule quality measure

Confusion matrix

• also called *contingency table*

ROC space

- *True positive rate* = #true pos. / #pos. TPr₁ = 40/50 = 80%
- TPr₂ = 30/50 = 60%
 False positive rate
- = #false pos. / #neg. $- FPr_1 = 10/50 = 20%$ $- FPr_2 = 0/50 = 0%$
- *ROC space* has
 FPr on X axis
- TPr on Y axis

231

233

229

The ROC space

The ROC convex hull

Summary of evaluation

- 10-fold cross-validation is a standard classifier evaluation method used in machine learning
- ROC analysis is very natural for rule learning and subgroup discovery
 - can take costs into account
 - here used for evaluation
 - also possible to use as search heuristic

234

Part III. Numeric prediction

- Baseline
 - Linear Regression
 - Regression tree
 - Model Tree
 - kNN

230

Regression	Classification
Data: attribute-value description	n
Target variable:	Target variable:
Continuous	Categorical (nominal)
Evaluation: cross validation, s	eparate test set,
Error:	Error:
MSE, MAE, RMSE,	1-accuracy
Algorithms:	Algorithms:
Linear regression, regression	Decision trees, Naïve Bayes,
trees,	
trees, Baseline predictor:	Baseline predictor:

Example

• data about 80 people: Age and Height

Age	Height
3	1.03
5	1.19
6	1.26
9	1.39
15	1.69
19	1.67
22	1.86
25	1.85
41	1.59
48	1.60
54	1.90
71	1.82

237

Test set

Age	Height
2	0.85
10	1.4
35	1.7
70	1.6

Baseline numeric predictor

• Average of the target variable

239

Baseline predictor: prediction

Average of the target variable is 1.63

Age	Height	Baseline
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Linear Regression Model

238

Linear Regression: prediction

241

243

245

Height =	0.0056 *	Age + 1.4181
		Linear
Age	Height	regression
2	0.85	
10	1.4	
35	1.7	
70	1.6	

Regression tree

Regression tree: prediction LM 4 (63/44.833%) B.5
 Height =
 1.7096 Height = LM 2 (4/13.419; 1.4644 Regression LM 1 (5/23.737%) Height tree Height = 1.3932 Height = 1.4025 Age 2 0.85 10 1.4 35 1.7 70 1.6

Model tree M 1 (17/15.516%) LM 2 (63/44.833%) Height = Height = 0.0333 * Age 0.0011 * Age + 1.6692 + 1.1366 2 **:** 1.5 Height 1 0.5 Height Prediction 0 0 20 40 60 80 100 Age

246

kNN - K nearest neighbors

- Looks at K closest examples (by age) and predicts the average of their target variable
- K=3

Model tree: prediction

247

kNN prediction

Age	Height
1	0.90
1	0.99
2	1.01
3	1.03
3	1.07
5	1.19
5	1.17

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

kNN prediction

Age	Height
8	1.36
8	1.33
9	1.45
9	1.39
11	1.49
12	1.66
12	1.52
13	1.59
14	1.58

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

249

251

kNN prediction

Age	Height	
30	1.57	
30	1.88	
31	1.71	
34	1.55	
37	1.65	
37	1.80	
38	1.60	
39	1.69	
39	1.80	

Age Height kNN 2 0.85 10 1.4 35 1.7 70 1.6

kNN prediction

Age	Height
67	1.56
67	1.87
69	1.67
69	1.86
71	1.74
71	1.82
72	1.70
76	1.88

Age	Height	kNN
2	0.85	
10	1.4	
35	1.7	
70	1.6	

252 Evaluating numeric prediction

Performance measure	Formula
mean-squared error	$\frac{\left(p_1-a_1\right)^2+\ldots+\left(p_n-a_n\right)^2}{n}$
root mean-squared error	$\sqrt{\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{n}}$
mean absolute error	$\frac{ p_1-a_1 +\ldots+ p_n-a_n }{n}$
relative squared error	$\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{(a_1-\overline{a})^2+\ldots+(a_n-\overline{a})^2}, \text{ where } \overline{a}=\frac{1}{n}\sum_i a_i$
root relative squared error	$\sqrt{\frac{\left(p_1-a_1\right)^2+\ldots+\left(p_n-a_n\right)^2}{\left(a_1-\overline{a}\right)^2+\ldots+\left(a_n-\overline{a}\right)^2}}$
relative absolute error	$\frac{ \boldsymbol{\rho}_1 - \boldsymbol{a}_1 + \ldots + \boldsymbol{\rho}_n - \boldsymbol{a}_n }{ \boldsymbol{a}_1 - \overline{\boldsymbol{a}} + \ldots + \boldsymbol{a}_n - \overline{\boldsymbol{a}} }$
correlation coefficient	$rac{S_{PA}}{\sqrt{S_PS_A}}$, where $S_{PA} = rac{\sum_i (p_i - \overline{p})(a_i - \overline{a})}{n-1}$,
	$S_p = \frac{\sum_i (p_i - \overline{p})^2}{n-1}$, and $S_A = \frac{\sum_i (a_i - \overline{a})^2}{n-1}$

Which predictor is the best?

			Linear	Regression		
Age	Height	Baseline	regression	tree	Model tree	kNN
2	0.85	1.63	1.43	1.39	1.20	1.01
10	1.4	1.63	1.47	1.46	1.47	1.51
35	1.7	1.63	1.61	1.71	1.71	1.67
70	1.6	1.63	1.81	1.71	1.75	1.81

Part IV. Descriptive DM techniques

- Predictive vs. descriptive induction
 - Subgroup discovery
 - Association rule learning
 - Hierarchical clustering

Predictive vs. descriptive induction

- Predictive induction: Inducing classifiers for solving classification and prediction tasks,
 - Classification rule learning, Decision tree learning, ...
 - Bayesian classifier, ANN, SVM, ...
 - Data analysis through hypothesis generation and testing
- Descriptive induction: Discovering interesting regularities in the data, uncovering patterns, ... for solving KDD tasks
 - Symbolic clustering, Association rule learning, Subgroup discovery, ...
 - Exploratory data analysis

255

Descriptive DM

- Often used for preliminary explanatory data analysis
- · User gets feel for the data and its structure
- Aims at deriving descriptions of characteristics of the data
- Visualization and descriptive statistical techniques can be used

Descriptive DM

Description

- Data description and summarization: describe elementary and aggregated data characteristics (statistics, ...)
- Dependency analysis:
 - describe associations, dependencies, ...
 - · discovery of properties and constraints
- Segmentation
 - Clustering: separate objects into subsets according to distance and/or similarity (clustering, SOM, visualization, ...)
 - Subgroup discovery: find unusual subgroups that are significantly different from the majority (deviation detection w.r.t. overall class distribution)

257

Predictive vs. descriptive induction: A rule learning perspective

- **Predictive induction:** Induces **rulesets** acting as classifiers for solving classification and prediction tasks
- **Descriptive induction:** Discovers **individual rules** describing interesting regularities in the data
- Therefore: Different goals, different heuristics, different evaluation criteria

Supervised vs. unsupervised learning: A rule learning perspective

- Supervised learning: Rules are induced from labeled instances (training examples with class assignment) usually used in **predictive induction**
- Unsupervised learning: Rules are induced from unlabeled instances (training examples with no class assignment) - usually used in descriptive induction
- Exception: Subgroup discovery
 Discovers individual rules describing interesting
 regularities in the data from labeled examples

Part IV. Descriptive DM techniques

- · Predictive vs. descriptive induction
- Subgroup discovery
 - Association rule learning
 - Hierarchical clustering

Subgroup Discovery

- **Given:** a population of individuals and a target class label (the property of individuals we are interested in)
- Find: population subgroups that are statistically most `interesting', e.g., are as large as possible and have most unusual statistical (distributional) characteristics w.r.t. the target class (property of interest)

261

263

Subgroup interestingness

Interestingness criteria:

- As large as possible
- Class distribution as different as possible from the distribution in the entire data set
- Significant
- Surprising to the user
- Non-redundant
- Simple
- Useful actionable

Subgroup Discovery: Medical Case Study

- Find and characterize population subgroups with high risk for coronary heart disease (CHD) (Gamberger, Lavrač, Krstačić)
- A1 for males: principal risk factors CHD ← pos. fam. history & age > 46
- A2 for females: principal risk factors CHD ← bodyMassIndex > 25 & age >63
- A1, A2 (anamnestic info only), B1, B2 (an. and physical examination), C1 (an., phy. and ECG)
- A1: supporting factors (found by statistical analysis): psychosocial stress, as well as cigarette smoking, hypertension and overweight

Subgroup visualization

Subgroups vs. classifiers

- Classifiers:
- Classification rules aim at pure subgroups
 A set of rules forms a domain model
- A set of
 Subgroups:
 - Rules describing subgroups aim at significantly higher proportion of positives
 - Each rule is an independent chunk of knowledge
- Link
 - SD can be viewed as
 - cost-sensitive
 - classification
 - Instead of FNcost we aim at increased TPprofit

262

Classification Rule Learning for Subgroup Discovery: Deficiencies

- Only first few rules induced by the covering algorithm have sufficient support (coverage)
- Subsequent rules are induced from smaller and strongly biased example subsets (pos. examples not covered by previously induced rules), which hinders their ability to detect population subgroups
- 'Ordered' rules are induced and interpreted sequentially as a if-then-else decision list

CN2-SD: Adapting CN2 Rule Learning to Subgroup Discovery

- · Weighted covering algorithm
- Weighted relative accuracy (WRAcc) search heuristics, with added example weights
- Probabilistic classification
- Evaluation with different interestingness measures

267

265

CN2-SD: CN2 Adaptations

- · General-to-specific search (beam search) for best rules
- Rule quality measure:
 - CN2: Laplace: Acc(Class \leftarrow Cond) = = p(Class|Cond) = $(n_c+1) / (n_{rule}+k)$
 - CN2-SD: Weighted Relative Accuracy
 - WRAcc(Class ← Cond) = p(Cond) (p(ClasslCond) - p(Class))
- Weighted covering approach (example weights)
- Significance testing (likelihood ratio statistics)
- Output: Unordered rule sets (probabilistic classification)

CN2-SD: Weighted Covering

Standard covering approach: covered examples are deleted from current training set

- Weighted covering approach:
 weights assigned to examples
 - covered pos. examples are re-weighted: in all covering loop iterations, store count i how many times (with how many rules induced so far) a pos. example has been covered: w(e,i), w(e,0)=1
 - Additive weights: w(e,i) = 1/(i+1)
 w(e,i) pos. example e being covered i times

269

Subgroup Discovery

270

Subgroup Discovery

Subgroup Discovery

Part IV. Descriptive DM techniques

· Predictive vs. descriptive induction

Subgroup discovery

Association rule learning

Hierarchical clustering

CN2-SD: Weighted WRAcc Search²⁷³ Heuristic

 Weighted relative accuracy (WRAcc) search heuristics, with added example weights WRAcc(Cl ← Cond) = p(Cond) (p(CllCond) - p(Cl))

increased coverage, decreased # of rules, approx. equal accuracy (PKDD-2000)

 In WRAcc computation, probabilities are estimated with relative frequencies, adapt:

$$\begin{split} \mathsf{WRAcc}(\mathsf{Cl} \leftarrow \mathsf{Cond}) = \mathsf{p}(\mathsf{Cond}) \left(\mathsf{p}(\mathsf{CllCond}) - \mathsf{p}(\mathsf{Cl}) \right) = \\ \mathsf{n}'(\mathsf{Cond})/\mathsf{N}' \left(\, \mathsf{n}'(\mathsf{Cl}.\mathsf{Cond})/\mathsf{n}'(\mathsf{Cond}) - \mathsf{n}'(\mathsf{Cl})/\mathsf{N}' \, \right) \end{split}$$

- N': sum of weights of examples
- n'(Cond) : sum of weights of all covered examples
- n'(Cl.Cond) : sum of weights of all correctly covered examples

275

271

Association Rule Learning

Rules: X = >Y, if X then Y

X and Y are itemsets (records, conjunction of items), where items/features are binary-valued attributes)

Given: Transactions itemsets (records)

	i1	i2	i50
t1	1	1	0
ť2	0	1	0

Find: A set of association rules in the form X =>Y **Example:** Market basket analysis

beer & coke => peanuts & chips (0.05, 0.65)

- Support: Sup(X,Y) = #XY/#D = p(XY)
- Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) == p(XY)/p(X) = p(Y|X)

Association Rule Learning: Examples

Market basket analysis

- beer & coke ⇒ peanuts & chips (5%, 65%)
 (IF beer AND coke THEN peanuts AND chips)
 - (IF beer AND coke THEN peanuts AND chips)
- Support 5%: 5% of all customers buy all four items
 Confidence 65%: 65% of customers that buy beer and coke
- also buy peanuts and chips
- Insurance
 - mortgage & loans & savings ⇒ insurance (2%, 62%)
 - Support 2%: 2% of all customers have all four
 - Confidence 62%: 62% of all customers that have mortgage, loan and savings also have insurance

274

Association rule learning

- X ⇒ Y ... IF X THEN Y, where X and Y are itemsets
- intuitive meaning: transactions that contain X tend to contain Y
- Items binary attributes (features) m,f,headache, muscle pain, arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour
- Example transactions itemsets formed of patient records
 - i1 i2 i50 t1 1 0 0 t2 0 1 0

Association rules

spondylitic \Rightarrow arthritic & stiff_gt_1_hour [5%, 70%] arthrotic & spondylotic \Rightarrow stiff_less_1_hour [20%, 90%] **Association Rule Learning**

Given: a set of transactions D

Find: all association rules that hold on the set of transactions that have

- user defined minimum support, i.e., support > MinSup, and
- user defined minimum confidence, i.e., confidence > MinConf
- It is a form of exploratory data analysis, rather than hypothesis verification

279

281

277

Searching for the associations

- · Find all large itemsets
- Use the large itemsets to generate association rules
- If XY is a large itemset, compute r =support(XY) / support(X)
- If r > MinConf, then X ⇒ Y holds
 (support > MinSup, as XY is large)

Large itemsets

- Large itemsets are itemsets that appear in at least MinSup transaction
- All subsets of a large itemset are large itemsets (e.g., if A,B appears in at least MinSup transactions, so do A and B)
- This observation is the basis for very efficient algorithms for association rules discovery (linear in the number of transactions)

Association vs. Classification rules rules

Exploration of dependencies

- Different combinations of dependent and independent attributes
- Complete search (all rules found)
- Focused prediction
- Predict one attribute (class) from the others
- Heuristic search (subset of rules found)

Part IV. Descriptive DM techniques

- Predictive vs. descriptive induction
- Subgroup discovery
- Association rule learning
- Hierarchical clustering

280

Hierarchical clustering

Algorithm (agglomerative hierarchical clustering):
 Dendogram:
 Dendogram:

Hierarchical clustering

- Fusing the nearest pair of clusters
 Grad (C_i, C_k)
 Grad (C_i, C_k)
 Minimizing intra-cluster similarity
 Maximizing inter-cluster similarity
 Computing the discimilarities
- Computing the dissimilarities from the "new" cluster

285

283

Hierarchical clustering: example

Results of clustering

A dendogram of resistance vectors

286

288

[Bohanec et al., "PTAH: A system for supporting nosocomial infection therapy", IDAMAP book, 1997]

287

Part V: Relational Data Mining

Learning as search

- What is RDM?
- · Propositionalization techniques
- Inductive Logic Programming

Learning as search

- Structuring the state space: Representing a partial order of hypotheses (e.g. rules) as a graph
 - nodes: concept descriptions (hypotheses/rules)
 arcs defined by specialization/generalization operators : an arc from parent to child exists ifand-only-if parent is a proper most specific generalization of child
- Specialization operators: e.g., adding conditions: s(A=a2 & B=b1) = {A=a2 & B=b1 & D=d1, A=a2 & B=b1 & D=d2}
- Generalization operators: e.g., dropping conditions: g(A=a2 & B=b1) = {A=a2, B=b1}
- Partial order of hypotheses defines a lattice (called a refinement graph)

Learning as search ²⁰¹ (Mitchell's version space model)

- Hypothesis language L_H defines the state space
 How to structure the
- How to structure the hypothesis space L_H?
 How to move from one
- How to move from one hypothesis to another?

complete and consis

 The version space: region between S (maximally specific) and G (maximally general) complete and consistent concept descriptions

Learning as search

- Search/move by applying generalization and specialization
- Prune generalizations:
 - if H covers example e then all generalizations of H will also cover e (prune using neg. ex.)
- Prune specializations:
 - if H does not cover example e, no specialization will cover e (prune using if H pos. ex.)

293

Learning as search: Learner's ingredients

- structure of the search space (specialization and generalization operators)
- search strategy
 - depth-first
 - breath-first
 - · heuristic search (best first, hill-climbing, beam search)
- search heuristics
 - measure of attribute 'informativity'
 - measure of 'expected classification accuracy' (relative frequency, Laplace estimate, m-estimate), ...
- stopping criteria (consistency, completeness, statistical significance, ...)

Learn-one-rule: search heuristics

294

- Assume a two-class problem
- Two classes (+,-), learn rules for + class (Cl).
- Search for specializations R' of a rule R = CI ← Cond from the RuleBase.
- Specialization R' of rule R = CI ← Cond has the form R' = CI ← Cond & Cond'
- Heuristic search for rules: find the 'best' Cond' to be added to the current rule R, such that rule accuracy is improved, e.g., such that Acc(R') > Acc(R)
 - where the expected classification accuracy can be estimated as A(R) = p(CIICond)

Learn-one-rule – Search strategy: Greedy vs. beam search

- learn-one-rule by greedy general-to-specific search, at each step selecting the `best' descendant, no backtracking
 - e.g., the best descendant of the initial rule $PlayTennis = yes \leftarrow$
 - is rule PlayTennis = yes ← Humidity=normal
- beam search: maintain a list of k best candidates at each step; descendants (specializations) of each of these k candidates are generated, and the resulting set is again reduced to k best candidates

Part V: Relational Data Mining

- · Learning as search
- What is RDM?
- · Propositionalization techniques
- Inductive Logic Programming

297

299

295

Predictive relational DM

- Data stored in relational databases
- · Single relation propositional DM
 - example is a tuple of values of a fixed number of attributes (one attribute is a class)
 example set is a table (simple field values)
- Multiple relations relational DM (ILP)
 - example is a tuple or a set of tuples (logical fact or set of logical facts)
 - example set is a set of tables (simple or complex structured objects as field values)

Data for propositional DM

Sample single relation data table

	Name	First Name	Street	City	Zip	S	θX	Social Status	In-		Age	Club Statur	Res- ponse]						_	_	
78	 Smith	John	 38,	Sam	3467	7 0	 nale	 sinude	 i60		32	 men	 110-	1		Zip	s ex	So In St Cor	ne ģ	è	C] 1b	Re sp
			Lake Dr	pleton					708	•		ber	TOS (JIOTISO		 3478	 34677	 m	 si 60-	70 3	2	ne	nr
79	Doe	Jane	45, Sea	Inven- tion	4365	16 Å	Runale	mar- ried	180 901		45	поп- тет-	res- ponse		3479 	43666 	f 	ma 80- 	90 4	5	nm 	re
			Ct 									ber 			Cu	stome	r ta	ble for	ana	dy:	sis.	
				Basic (tuslo	ниет	table															
			ID	Zip	S ex	So St	$_{\rm com}^{\rm In}$	e ge	Cl ub	Re sp	Deli Mod	ver Pa e M	aymt lode	Store Size	Sta Ty	re pe	S	tore ocati]			
			 3478 3479	 34677 43666	 m f	 si ma	 60-7 80-9	 0 32 0 45	 me nm	 nr re	 regu expr	lar ca ess cr	sh edit	 small large	fra inc	nchis lep	eci	ity ıral				
										Ľ.												

Multi-relational data made propositional

 Sample relation table

ID	Zip	S ex	So St	In come	A ge	Cl ub	Re sp	Delivery Mode	Paymt Mode	Store Size	Store Type	Store Locatn
 3478 3478 3478 3479 3479	 34677 34677 34677 43666 43666	m m f f	si si si ma ma	 60-70 60-70 60-70 80-90 80-90	 32 32 32 45 45	me me me nm	nr nr nr re re	 regular express regular express regular	 cash check check credit credit	 small small large large small	 franchise franchise indep indep franchise	 city city rural rural city

Customer table using summary attributes.

Relational Data Mining (ILP)

- Learning from multiple tables
- Complex relational
- problems: - temporal data: time series in medicine, trafic control, ...
- structured data: representation of molecules and their properties in protein engineering, biochemistry, ...

Relational representation of customers, orders and store

298

300

301 **Basic Relational Data Mining tasks**

Predictive RDM

Descriptive RDM

Predictive ILP

· Given:

- A set of observations
- positive examples E⁺
 negative examples E
- background knowledge B - hypothesis language L_H
- covers relation
- Find:
 - A hypothesis $H \in L_H$, such that (given B) H covers all positive and no negative examples
- In logic, find H such that
 - $\forall e \in E^+$: B ∧ H |= e (H is complete) $\forall e \in E^-$: B ∧ H |=/= e (H is consistent)
- In ILP, *E* are ground facts, *B* and *H* are (sets of) definite clauses ٠

Predictive ILP

Given:

- A set of observations
- positive examples E⁺
 negative examples E
- background knowledge B
- hypothesis language L_H
- covers relation
- quality criterion

· Find:

A hypothesis $H \in L_H$ such that (given *B*) *H* is optimal w.r.t. some quality criterion, e.g., max. predictive accuracy A(H)

(instead of finding a hypothesis $H \in L_{H'}$ such that (given *B*) *H* covers all positive and no negative examples)

303

305

Descriptive ILP

Given:

- A set of observations
- (positive examples E +)
- background knowledge B
- hypothesis language L_H
- covers relation

Find:

- Maximally specific hypothesis $H \in L_H$, such that (given *B*) *H* covers all positive examples
- In logic, find *H* such that $\forall c \in H$, *c* is true in some preferred model of $B \cup E$ (e.g., least Herbrand model $M(B \cup E)$)
- In ILP, *E* are ground facts, *B* are (sets of) general clauses

Sample problem Knowledge discovery

E '= {daughter(mary, ann), daughter(eve, tom) }
E '= {daughter(tom, ann), daughter(eve, ann) }

B = {mother(ann,mary), mother(ann,tom), father(tom,eve), father(tom,ian), female(ann), female(mary), female(eve), male(pat),male(tom), parent(X,Y) ← mother(X,Y), parent(X,Y) ← father(X,Y) }

Sample problem **Knowledge discovery**

- E *= { daughter(mary, ann), daughter(eve, tom) }
 E = { daughter(tom, ann), daughter(eve, ann) }
- B = {mother (ann, mary), mother (ann, tom), father (tom, eve), father (tom, ian), female (ann), female (mary), female (eve), male (pat), male (tom), parent (X, Y) ← mother (X, Y), parent (X, Y) ← father (X, Y) } •
- Predictive ILP Induce a definite clause $\begin{array}{l} \text{daughter}(X,Y) \leftarrow \text{female}(X), \text{ mother}(Y,X).\\ \text{daughter}(X,Y) \leftarrow \text{female}(X), \text{ father}(Y,X). \end{array}$
- Descriptive ILP Induce a set of (general) clauses ← daughter(X,Y), mother(X,Y). female(X)← daughter(X,Y). mother(X,Y); father(X,Y) \leftarrow parent(X,Y).

302

304

Sample problem Logic programming

307

$$\begin{split} & E^* = \{ \texttt{sort}([2,1,3],[1,2,3]) \} \\ & E^* = \{ \texttt{sort}([2,1],[1]),\texttt{sort}([3,1,2],[2,1,3]) \} \end{split}$$

B: definitions of permutation/2 and sorted/1

Predictive ILP

 $sort(X, Y) \leftarrow permutation(X, Y), sorted(Y).$

Descriptive ILP

.

· Hypothesis (predictive ILP):

eastbound(T) :- car(T,C),short(C),not none(C).

sorted(Y) \leftarrow sort(X,Y). permutation(X,Y) \leftarrow sort(X,Y) sorted(X) \leftarrow sort(X,X)

East-We	st trains

Sample problem:

308

310

312

RDM knowledge representation[™]

LOAD	TABI	E		(data	aba	se)	TF	RAIN TABLE
LOAD	CAR	OBJECT	1	NUMBER	h				
11	c1	circle		1					
12	c2	hexagor	1	1					
13	c3	triangle		1					
14	c4	rectangle	е	3					
		6	AR	TABLE					
		C	:AR	TRAIN	SHAPE	LENGTH	ROOF	WHEELS	
			c1	t1	rectangle	short	none	2	
			c2	t1	rectangle	long	none	3	
			c3	t1	rectangle	short	peaked	2	
			c4	t1	rectangle	long	none	2	
									-

ER diagram for East-West trains

eastbound(T):-car(T,C),short(C),not none(C).

ILP rep

· Example:

eastbound([c(rectangle c(rectangle,long,none,3,l(hexagon,1)), c(rectangle,short,peaked,2,l(triangle,1)), c(rectangle,long,none,2,l(rectangle,3))]).

- Background theory: member/2, arg/3
- Hypothesis:
 - eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).

First-order representations

- Propositional representations:
 - datacase is fixed-size vector of values
 - features are those given in the dataset
- First-order representations:
 - datacase is flexible-size, structured object · sequence, set, graph
 - · hierarchical: e.g. set of sequences
 - features need to be selected from potentially infinite set

315

317

Complexity of RDM problems

- Simplest case: single table with primary key - example corresponds to tuple of constants - attribute-value or propositional learning
- Next: single table without primary key - example corresponds to set of tuples of constants - multiple-instance problem
- · Complexity resides in many-to-one foreign keys - lists, sets, multisets
 - non-determinate variables

Part V: **Relational Data Mining**

- · What is RDM?
- Propositionalization techniques
- Inductive Logic Programming

- **Rule learning:** The standard view
- Hypothesis construction: find a set of n rules - usually simplified by n separate rule constructions • exception: HYPER
- Rule construction: find a pair (Head, Body)
 - e.g. select head (class) and construct body by searching the VersionSpace • exceptions: CN2, APRIORI
- Body construction: find a set of m literals
 - usually simplified by adding one literal at a time
 - · problem (ILP): literals introducing new variables

Rule learning revisited

- · Hypothesis construction: find a set of n rules
- Rule construction: find a pair (Head, Body)
- Body construction: find a set of m features
 - Features can be either defined by background knowledge or constructed through constructive induction
 - In propositional learning features may increase expressiveness through negation - Every ILP system does constructive induction
- Feature construction: find a set of k literals
- finding interesting features is discovery task rather than classification task e.g. interesting subgroups, frequent itemsets
- excellent results achieved also by feature construction through predictive propositional learning and ILP (Srinivasan)

316

318

re	n	re	S	e

First-order feature construction

- · All the expressiveness of ILP is in the features
- Given a way to construct (or choose) first-order features, body construction in ILP becomes propositional
 - idea: learn non-determinate clauses with LINUS by saturating background knowledge (performing systematic feature construction in a given language bias)

Standard LINUS

[•] Example: learning family relationships

Training examples		Background	knowledge
daughter(sue,eve).	(+)	parent(eve,sue).	female(ann).
daughter(ann,pat).	(+)	parent(ann,tom).	female(sue).
daughter(tom,ann).	(-)	parent(pat,ann).	female(eve).
daughter(eve.ann).	(-)	parent(tom.sue).	

Transformation to propositional form:

Class	Varia	ables		Variables Propositional features								
	х	Y	f(X)	f(X) f(Y)		p(X,Y)	p(Y,X)	p(Y,Y)	X=Y			
⊕	sue	eve	true	true	false	false	true	false	false			
Ð	ann	pat	true	false	false	false	true	false	false			
θ	tom	ann	false	true	false	false	true	false	false			
θ	eve	ann	true	true	false	false	false	false	false			

Result of propositional rule learning:
 Discussion of the second second

321

323

319

Representation issues (1)

- In the database and Datalog ground fact representations individual examples are not easily separable
- Term and Datalog ground clause representations enable the separation of individuals
- Term representation collects all information about an individual in one structured term

Representation issues (2)

- Term representation provides strong language bias
- Term representation can be flattened to be described by ground facts, using
 - structural predicates (e.g. car(t1,c1), load(c1,l1)) to introduce substructures
 - utility predicates, to define properties of invididuals (e.g. long(t1)) or their parts (e.g., long(c1), circle(l1)).
- This observation can be used as a language bias to construct new features

Declarative bias for first-order feature construction

- In ILP, features involve interactions of local variables
- Features should define properties of individuals (e.g. trains, molecules) or their parts (e.g., cars, atoms)
- Feature construction in LINUS, using the following language bias:
 - one free global variable (denoting an individual, e.g. train)
 one or more structural predicates: (e.g., has_car(T,C)) ,each introducing a new existential local variable (e.g. car, atom), using either the global variable (train, molecule) or a local variable introduced by other structural predicates (car, load)
 - one or more utility predicates defining properties of individuals or their parts: no new variables, just using variables
 - all variables should be used
 parameter: max, number of predicates forming
 - parameter: max. number of predicates forming a feature

Sample first-order features

 The following rule has two features 'has a short car' and 'has a closed car':

eastbound(T):-hasCar(T,C1),clength(C1,short), hasCar(T,C2),not croof(C2,none).

- The following rule has one feature 'has a short closed car': eastbound(T):-hasCar(T,C),clength(C,short), not croof(C,none).
- Equivalent representation:

eastbound(T):-hasShortCar(T),hasClosedCar(T).

hasShortCar(T):-hasCar(T,C),clength(C,short).

hasClosedCar(T):-hasCar(T,C),not croof(C,none).

324

Class = \oplus if (female(X) = true) \land (parent(Y,X) = true) **Transformation to program clause form:** daughter(X,Y) \leftarrow female(X),parent(Y,X)

on in a nutshell

Transform a multi-relational (multiple-table) representation to a propositional representation (single table)

propositional representation	PROPOS	ITION/	AL TRAI	N TABLE		
(5	train(T)	f1(T)	f2(T)	f3(T)	f4(T)	f5(T)
	t1	t	t	f	t	t
	t2	t	t	t	t	t
Proposed in ILP systems	t3	f	f	t	f	f
FIODOSECI III ILF SYSTEMIS	t4	t	f	t	f	f
LINUS (1991), 1BC (1999),						

c4 t1

rectangle long

rectangle long none

Propositionalization in a nutshell

11 12

Main propositionalization step: first-order feature construction

325

TRAIN TARI F

HEELS

327

329

f1(T):-hasCar(T,C),clength(C,short). f2(T):-hasCar(T,C), hasLoad(C,L), loadShape(L,circle) f3(T) :-

					T	RAIN_	TABLE
CAR	COLLECT	NUMBER	R all				JUND II
c1	circle	1					E
c2	hexagon	1					E
c3	triangle	1					
c4	rectangle	3					ar i
							-
	~						
	- 1	CAB	TRAIN	SHAPE	LENGTH	ROOF	WHEELS
	- 1	c1	t1	rectangle	short	none	2
		c2	t1	rectangle	long	none	3
	- 1	c3	t1	rectangle	short	peaked	2
		c4	t1	rectangle	long	none	2
	- 1						

Propositional learning: $t(T) \leftarrow f1(T), f4(T)$

Relational interpretation:

eastbound(T) \leftarrow hasShortCar(T), hasClosedCar(T).

PROPOS	OSITIONAL TRAIN_TABLE							
Annal (T)	and the second	and the second		and the second sec				
train(1)	f1(T)	f2(T)	f3(T)	f4(T)	f5(T)	II.		
t1	f1(T)	f2(T) t	f3(T)	t4(T)	f5(T)	ł		

t2	t	t	t	t	t
t3	f	f	t	f	f
t4	t	f	t	f	f

not hasCarEllipse(T),

328

LINUS revisited

- Standard LINUS:
 - transforming an ILP problem to a propositional problem
 - apply background knowledge predicates
- · Revisited LINUS:
 - Systematic first-order feature construction in a given language bias
- Too many features?
 - use a relevancy filter (Gamberger and Lavrac)

LINUS revisited: **Example: East-West trains**

- Rules induced by CN2, using 190 first-order features with up to two utility predicates: westbound(T):-
- eastbound(T):-
- hasCarHasLoadSingleTriangle(T), not hasCarLongJagged(T),
- not hasCarLongHasLoadCircle(T).
- not hasCarShortFlat(T), not hasCarPeakedTwo(T).
- Meaning: eastbound(T):-
- hasCar(T,C1),hasLoad(C1,L1),lshape(L1,tria),lnumber(L1,1),
- not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),
- not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),lshape(L3,circ)). westbound(T):-
- not (hasCar(T,C1),cshape(C1,ellipse)),
- not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),
- not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).

Part V: **Relational Data Mining**

- · Learning as search
- What is RDM?
- Propositionalization techniques
- Inductive Logic Programming

330 ILP as search of program clauses

- An ILP learner can be described by
 - - · based on the generality relation
 - Let C and D be two clauses. C is more general than D (C \mid = D) iff
 - $covers(D) \subseteq covers(C)$
 - Example: $p(X,Y) \leftarrow r(Y,X)$ is more general than $p(X,Y) \leftarrow r(Y,X)$, q(X)
 - - uninformed search (depth-first, breadth-first, iterative deepening)
 - heuristic search (best-first, hill-climbing, beam search)
 - its heuristics
 - · for directing search
 - · for stopping search (quality criterion)

- - the structure of the space of clauses
 - its search strategy

331 ILP as search of program clauses

Semantic generality Hypothesis H_1 is semantically more general than H_2 w.r.t. background theory B if and only if $B \cup H_1 \models H_2$ •

- Syntactic generality or θ-subsumption
- (most popular in ILP)
 - Clause $c_1 \theta$ -subsumes $c_2 (c_1 \ge \theta c_2)$
- if and only if $\exists \theta : c_1 \theta \subseteq c_2$
- Hypothesis $H_1 \ge \theta H_2$
- if and only if $\forall c_2 \in H_2$ exists $c_1 \in H_1$ such that $c_1 \ge \theta c_2$
- Example
 - c1 = daughter(X,Y) \leftarrow parent(Y,X) c2 = daughter(mary,ann) \leftarrow female(mary), parent(ann,mary), parent(ann,tom). c1 θ -subsumes c_2 under θ = {X/mary,Y/ann}

The role of subsumption in ILP

- · Generality ordering for hypotheses
- · Pruning of the search space:
 - generalization • if C covers a neg. example then its generalizations need not be considered
 - specialization
 - · if C doesn't cover a pos. example then its specializations need not be considered
- · Top-down search of refinement graphs
- · Bottom-up search of the hypo. space by - building least general generalizations, and
 - inverting resolutions

Two strategies for learning

- · General-to-specific
 - if Θ -subsumption is used then refinement operators
- · Specific-to-general search
 - if Θ -subsumption is used then Igg-operator or generalization operator

335

333

ILP as search of program clauses

- Two strategies for learning
 - Top-down search of refinement graphs
 - Bottom-up search
 - · building least general generalizations
 - inverting resolution (CIGOL)
 - inverting entailment (PROGOL)

Generality ordering of clauses

337

339

Training examples		Background knowledge		
daughter(mary,ann).	\oplus	parent(ann,mary).	female(ann.).	
daughter(eve,tom).	\oplus	parent(ann,tom).	female(mary).	
daughter(tom,ann).	θ	parent(tom,eve).	female(eve).	
daughter(eve,ann).	θ	parent(tom,ian).		

 $daughter(X,Y) \leftarrow$

Greedy search of the best clause

Ð	parent(ann.marv).	female(ann.)
	1 · · · · · · · · · · · · · · · · · · ·	l'omaio (ami).
Ð	parent(ann,tom).	female(mary).
Ð	parent(tom,eve).	female(eve).
Û	parent(tom,ian).	
	€ € €	 parent(ann,tom). parent(tom,eve). parent(tom,ian).

FOIL

- Language: function-free normal programs recursion, negation, new variables in the body, no functors, no constants (original)
- · Algorithm: covering
- Search heuristics: weighted info gain
- · Search strategy: hill climbing
- · Stopping criterion: encoding length restriction
- Search space reduction: types, in/out modes determinate literals
- Ground background knowledge, extensional coverage
- · Implemented in C

Part V: Summary

- RDM extends DM by allowing multiple tables describing structured data
- Complexity of representation and therefore of learning is determined by one-to-many links
- Many RDM problems are individual-centred and therefore allow strong declarative bias