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Course Outline

I. Introduction

” Data Mining in a Nutshell

” Predictive and descriptive DM 
techniques

” Data Mining and KDD process

” DM standards, tools and 
visualization

(Mladenić et al. Ch. 1 and 11, 
Kononenko & Kukar Ch. 1)

II. Predictive DM Techniques

” Bayesian classifier (Kononenko Ch.  
9.6)

” Decision Tree learning (Mitchell Ch. 
3, Kononenko Ch. 9.1)

” Classification rule learning
(Berthold book Ch. 7, Kononenko 
Ch. 9.2)

” Classifier Evaluation (Bramer Ch. 6)

III. Regression 

(Kononenko Ch. 9.4)

IV. Descriptive DM

” Predictive vs. descriptive induction

” Subgroup discovery

” Association rule learning 
(Kononenko Ch. 9.3)

” Hierarchical clustering (Kononenko 
Ch. 12.3)

” V. Relational Data Mining

” RDM and Inductive Logic 
Programming (Dzeroski & Lavrac 
Ch. 3, Ch. 4)

” Propositionalization approaches 

” Relational subgroup discovery
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Introductory seminar lecture

X. JSI & Department of Knowledge Technologies

I. Introduction: First generation data mining

” Data Mining in a nutshell

” Predictive and descriptive DM techniques

” Data Mining and KDD process

” DM standards, tools and visualization

(Mladenić et al. Ch. 1 and 11, Kononenko & Kukar Ch. 1)

XX. Selected data mining techniques: Advanced 

subgroup discovery techniques and applications

XXX. Recent advances: Cross-context link 

discovery
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Jožef Stefan Institute

“ Jožef Stefan Institute (JSI, founded in 1949)

” named after a distinguished physicist 

Jožef Stefan (1835-1893) 

” leading national research organization in natural sciences
and technology (~700 researchers and students)

“ JSI research areas

” information and communication technologies

” chemistry, biochemistry & nanotechnology

” physics, nuclear technology and safety

“ Jožef Stefan International Postgraduate School (IPS, 
founded in 2004) 

” offers MSc and PhD programs (ICT, nanotechnology, 
ecotechnology)

” research oriented, basic + management courses

” in English
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Department of Knowledge Technologies

“ Head: Nada Lavrač, Staff: 40 researchers, 15 students

“ Machine learning & Data mining
” ML (decision tree and rule learning, subgroup discovery, …)

” Text and Web mining

” Relational data mining - inductive logic programming 

” Equation discovery 

“ Other research areas:
” Semantic Web and Ontologies

” Knowledge management 

” Decision support

” Human language technologies

“ Applications:
” Medicine, Bioinformatics, Public Health 

” Ecology, Finance, …
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Basic Data Mining Task

data

Data MiningData Mining

knowledge discovery 

from data

model, patterns, …

Input: transaction data table, relational database, text documents, Web pages

Goal: build a classification model, find interesting patterns in data, ...
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Data Mining and Machine Learning

“ Machine learning techniques

” classification rule learning

” subgroup discovery

” relational data mining and

ILP

” equation discovery

” inductive databases

“ Data mining and decision 

support integration

“ Data mining applications

” medicine, health care

” ecology, agriculture

” knowledge management, 

virtual organizations
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Relational data mining: domain 

knowledge = relational database

Data 

mining

Background 

knowledge

patterns 

odel

patterns 

model

data
domain 

knowledge
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Semantic data mining: domain 

knowledge = ontologies

Data 

mining

Domain 

knowledge

patterns 

odel

patterns 

model

data ontologies
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Basic DM and DS Tasks

data

Data MiningData Mining

knowledge discovery 
from data

experts

Decision SupportDecision Support

mutli-criteria modeling

models

model, patterns, …

Input: transaction data table, relational database, text documents, Web pages

Goal: build a classification model, find interesting patterns in data, ...

Input: expert knowledge about data and decision alternatives

Goal: construct decision support model ” to support the evaluation and 

choice of best decision alternatives
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Decision support tools: DEXi

DEXi supports :
“ if-then analysis
“ analysis of stability
“ Time analysis
“ how explanation
“ why explanation

Hormonal
circumstances

Personal
characteristics Other

Menstrual
cycle Fertility

Oral
contracept.

RISK

Cancerog.
exposure

Fertility
duration

Reg. and
stab. of men.

Age

First delivery

# deliveries

Quetel's
index

Family
history

Demograph.
circumstance

Physical
factors

Chemical
factorsMenopause
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DM and DS integration

Data 

mining

Decision 

support

patterns 

odel

patterns 

model

data
expert

knowledge
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Basic Text and Web Mining Task

TextText//Web Web MiningMining

knowledge discovery 
from text data and Web

model, patterns, …

Input: text documents, Web pages

Goal: text categorization, user modeling, data visualization...

documents

Web pages
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Text Mining Tools

SEKTbar

Document-Atlas

Contexter

OntoGen

Semantic-Graphs

Content-Land
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“ SearchPoint extends search 

engines

“ Prize: Inovations for economy

“ Interest in industry:

http://searchpoint.ijs.si
Hits about subtopic are

Moved to the top

Focus moved to subtopic
“... PANTHERA, JAGUARS”

16

Selected Publications
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http//:videolectures.net

ideolectures.net portal

• 8782 videos
• 7014 lectures
• 5548 authors
• 352 events
• 6118 registred users
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Knowledge Technologies: 

Main research areas & IPS lectures

ICT

Knowledge Technologies 

(Artificial Intelligence)

Data Mining 

(knowledge discovery from 

data, text, web, multimedia)

Lavrač, Mladenić, Cestnik, 

Kralj Novak, Fortuna

Semantic Web

Mladenić

Human Language 

Technologies

Erjavec

Decision 

Support

Bohanec

Knowledge 

Management

Lavrač, Mladenić
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Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction: First generation data mining
” Data Mining in a Nutshell

” Predictive and descriptive DM techniques

” Data Mining and the KDD process

” DM standards, tools and visualization

(Mladenić et al. Ch. 1 and 11, Kononenko & Kukar 
Ch. 1)

XX. Selected data mining techniques: 
Advanced subgroup discovery techniques 
and applications

XXX. Recent advances: Cross-context link 
discovery
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Part I. Introduction

“ Data Mining in a Nutshell

“ Predictive and descriptive DM techniques

“ Data Mining and the KDD process

“ DM standards, tools and visualization
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What is DM

“ Extraction of useful information from data: 

discovering relationships that have not 

previously been known

“ The viewpoint in this course: Data Mining is 

the application of Machine Learning 

techniques to solve real-life data analysis 

problems

22

Data Mining in a Nutshell

data

Data MiningData Mining

knowledge discovery 
from data

model, patterns, …

Given: transaction data table, relational database, text

documents, Web pages

Find: a classification model, a set of interesting patterns 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Data Mining in a Nutshell

data

Data MiningData Mining

knowledge discovery 

from data

model, patterns, …

Given: transaction data table, relational database, text

documents, Web pages

Find: a classification model, a set of interesting patterns 

new unclassified instance classified  instance

black box classifier 
no explanation

symbolic model  
symbolic patterns 

explanation

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Simplified example: Learning a classification 

model from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE



5

25

Simplified example: Learning a 

classification model from contact lens 

data
Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE

Data MiningData Mining

26

Task reformulation: Binary Class Values

Binary classes (positive vs. negative examples of Target class) 

- for Concept learning – classification and class description 

- for Subgroup discovery – exploring patterns 

characterizing 

groups of instances of target class

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO
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Learning from Numeric Class Data

Numeric class values – regression analysis

Person Age Spect. presc. Astigm. Tear prod. LensPrice

O1 17 myope no reduced 0

O2 23 myope no normal  8

O3 22 myope yes reduced 0

O4 27 myope yes normal 5

O5 19 hypermetrope no reduced 0

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal 5

O15 43 hypermetrope yes reduced 0

O16 39 hypermetrope yes normal 0

O17 54 myope no reduced 0

O18 62 myope no normal 0

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal 0
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Learning from Unlabeled Data

Unlabeled data - clustering: grouping of similar instances 

- association rule learning

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Data Mining: Related areas

Database technology

and data warehouses

“ efficient storage, 

access and 

manipulation

of data
DM

statistics

machine

learning

visualization

text and Web 

mining

soft

computing pattern

recognition

databases
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Statistics, 

machine learning,

pattern recognition

and soft computing* 

“ classification 

techniques and 

techniques for 

knowledge extraction 

from data

* neural networks, fuzzy logic, genetic

algorithms, probabilistic reasoning

DM

statistics

machine

learning

visualization

text and Web 

mining

soft

computing pattern

recognition

databases

Related areas



6

31

DM

statistics

machine

learning

visualization

text and Web 

mining

soft

computing pattern

recognition

databases

Related areas

Text and Web mining
“ Web page analysis

“ text categorization

“ acquisition, filtering 
and structuring of 
textual information

“ natural language 
processing

text and Web 

mining

32

Related areas

Visualization

“ visualization of data 

and discovered 

knowledge

DM

statistics

machine

learning

visualization

text and Web 

mining

soft

computing pattern

recognition

databases

33

Point of view in this course

Knowledge 

discovery using 

machine 

learning 

methods
DM

statistics

machine

learning

visualization

text and Web 

mining

soft

computing pattern

recognition

databases
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Data Mining, ML and Statistics

“ All three areas have a long tradition of developing 
inductive techniques for data analysis.

” reasoning from properties of a data sample to 
properties of a population

“ DM vs. ML - Viewpoint in this course: 

” Data Mining is the application of Machine Learning 
techniques to  hard real-life data analysis problems

35

Data Mining, ML and Statistics

“ All three areas have a long tradition of developing 
inductive techniques for data analysis.

” reasoning from properties of a data sample to 
properties of a population

“ DM vs. Statistics:

” Statistics

“ Hypothesis testing when certain theoretical 
expectations about the data distribution, 
independence, random sampling, sample size, etc. 
are satisfied

“ Main approach: best fitting all the available data

” Data mining

“ Automated construction of understandable 
patterns, and structured models

“ Main approach: structuring the data space, 
heuristic search for decision trees, rules, …  
covering (parts of) the data space

36

Part I. Introduction

Data Mining in a Nutshell

“ Predictive and descriptive DM techniques 

“ Data Mining and the KDD process

“ DM standards, tools and visualization
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Types of DM tasks

“ Predictive DM:

” Classification (learning of rules, decision 

trees, ...)

” Prediction and estimation (regression)

” Predictive relational DM (ILP) 

“ Descriptive DM:

” description and summarization

” dependency analysis (association rule 

learning)

” discovery of properties and constraints

” segmentation (clustering)

” subgroup discovery

+
+

+
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-

H

x
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x x

+
x
xx

H
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Predictive vs. descriptive DM

Predictive DM

Descriptive DM
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Predictive vs. descriptive DM

“ Predictive DM: Inducing classifiers for solving 

classification and prediction tasks, 

” Classification rule learning, Decision tree learning, ...

” Bayesian classifier, ANN, SVM, ...

” Data analysis through hypothesis generation and testing

“ Descriptive DM: Discovering interesting regularities in 

the data, uncovering patterns, ... for solving KDD tasks

” Symbolic clustering, Association rule learning, Subgroup 

discovery, ...

” Exploratory data analysis

40

Predictive DM formulated as a 

machine learning task:

“ Given a set of labeled training examples (n-tuples of 
attribute values, labeled by class name) 

A1        A2        A3         Class

example1     v1,1 v1,2           v1,3                C1

example2     v2,1 v2,2           v2,3                C2

. . 

“ By performing generalization from examples 
(induction) find a hypothesis (classification rules, 
decision tree, …) which explains the training 
examples, e.g. rules of the form:

(Ai = vi,k) & (Aj = vj,l) & ... Class = Cn  

41

Predictive DM - Classification

“ data are objects, characterized with attributes -

they belong to different classes (discrete labels)

“ given objects described with attribute values, 

induce a model to predict different classes

“ decision trees, if-then rules, discriminant 

analysis, ...
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Data mining example

Input: Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Contact lens data: Decision tree

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

Type of task: prediction and classification

Hypothesis language: decision trees

(nodes: attributes, arcs: values of attributes,  

leaves: classes)

44

Contact lens data: 

Classification rules

Type of task: prediction and classification

Hypothesis language: rules X  C,  if X then C

X conjunction of attribute values, C class

tear production=reduced → lenses=NONE

tear production=normal & astigmatism=yes & 

spect. pre.=hypermetrope → lenses=NONE

tear production=normal & astigmatism=no →

lenses=SOFT

tear production=normal & astigmatism=yes & 

spect. pre.=myope → lenses=HARD
DEFAULT lenses=NONE
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Task reformulation: Concept learning problem 
(positive vs. negative examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NO

O2 young myope no normal  YES

O3 young myope yes reduced NO

O4 young myope yes normal YES

O5 young hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal YES

O15 pre-presbyohypermetrope yes reduced NO

O16 pre-presbyohypermetrope yes normal NO

O17 presbyopic myope no reduced NO

O18 presbyopic myope no normal NO

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NO

46

Contact lens data: 

Classification rules in concept learning

Type of task: prediction and classification

Hypothesis language: rules X  C,  if X then C

X conjunction of attribute values, C target class

Target class: yes

tear production=normal & astigmatism=no →

lenses=YES 

tear production=normal & astigmatism=yes & 

spect. pre.=myope → lenses=YES

else NO

47

Illustrative example:

Customer data

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes

48

Customer data: Decision trees

Income

Age

no

yes

 102000  102000

 58  58

yes

Gender

Age

no

no

= female = male

 49  49

yes
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Predictive DM - Estimation

“ often referred to as regression

“ data are objects, characterized with attributes (discrete 

or continuous), classes of objects are continuous 

(numeric)

“ given objects described with attribute values, induce a 

model to predict the numeric class value

“ regression trees, linear and logistic regression, ANN, 

kNN, ...

50

Estimation/regression example:

Customer data

Customer Gender Age Income Spent

c1 male 30 214000 18800

c2 female 19 139000 15100

c3 male 55 50000 12400

c4 female 48 26000 8600

c5 male 63 191000 28100

O6-O13 ... ... ... ...

c14 female 61 95000 18100

c15 male 56 44000 12000

c16 male 36 102000 13800

c17 female 57 215000 29300

c18 male 33 67000 9700

c19 female 26 95000 11000

c20 female 55 214000 28800
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Customer data: 

regression tree

Income

Age

16500

12000

 108000  108000

 42.5  42.5

26700

In the nodes one usually has 

Predicted value +- st. deviation

52

Predicting algal biomass: regression 

tree

Month

Ptot

2.341.65Ptot

Si

Si
2.08 0.712.971.09

Ptot 4.322.07

0.700.341.150.21

1.281.08

Jan.-June

> 9.34  10.1 >10.1

July - Dec.

> 2.13
 2.13

 9.1 > 9.1

 9.34

 5.9 > 5.9

53

Descriptive DM:

Subgroup discovery example -

Customer data

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes

54

Customer data: 

Subgroup discovery

Type of task: description (pattern discovery)

Hypothesis language: rules X  Y, if X then Y 

X is conjunctions of items, Y is target class

Age  52 & Sex = male  BigSpender = no

Age  52 & Sex = male & Income  73250 

 BigSpender = no
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Customer data: 

Association rules

Type of task: description (pattern discovery)

Hypothesis language: rules X  Y, if X then Y 

X, Y conjunctions of items 

1. Age  52 & BigSpender = no Sex = male 

2. Age  52 & BigSpender = no

Sex = male & Income  73250

3. Sex = male & Age  52 & Income  73250 

BigSpender = no

56

Predictive vs. descriptive DM: 

Summary from a rule learning 

perspective

“ Predictive DM: Induces rulesets acting as classifiers 
for solving classification and prediction tasks

“ Descriptive DM: Discovers individual rules 
describing interesting regularities in the data

“ Therefore: Different goals, different heuristics, 
different evaluation criteria

57

Relational Data Mining (Inductive Logic 

Programming) in a Nutshell

Relational Relational Data MiningData Mining

knowledge discovery 
from data

model, patterns, …

Given: a relational database, a set of tables. sets of logical 

facts, a graph, …

Find: a classification model, a set of interesting patterns 

58

Relational Data Mining (ILP)

“ Learning from multiple 

tables

“ Complex relational 

problems:

” temporal data: time 

series in medicine, trafic 

control, ...

” structured data: 

representation of 

molecules and their 

properties in protein 

engineering, 

biochemistry, ...

59

Relational Data Mining (ILP)

60

ID Zip Sex Soc St Income Age Club Resp

... ... ... ... ... ... ... ...

3478 34667 m si 60-70 32 me nr

3479 43666 f ma 80-90 45 nm re

... ... ... ... ... ... ... ...

Basic table for analysis
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ID Zip Sex Soc St Income Age Club Resp

... ... ... ... ... ... ... ...

3478 34667 m si 60-70 32 me nr

3479 43666 f ma 80-90 45 nm re

... ... ... ... ... ... ... ...

Data table presented as logical facts (Prolog format)

customer(Id,Zip,Sex,SoSt,In,Age,Club,Re)

Prolog facts describing data in Table 2:

customer(3478,34667,m,si,60-70,32,me,nr).

customer(3479,43666,f,ma,80-90,45,nm,re).

Expressing a property of a relation:
customer(_,_,f,_,_,_,_,_).

62

Relational Data Mining (ILP)

Logic programming:

“ Predicate symbol p

“ Argument of predicate p

“ Ground fact p(v1, ..., vn)

“ Definition of predicate p 

“ Set of ground facts

“ Prolog clause or a set of Prolog 

clauses 

Example predicate definition:

good_customer(C)  :-

customer(C,_,female,_,_,_,_,_), 
order(C,_,_,_,creditcard).

Data bases:

“ Name of relation p

“ Attribute of p

“ n-tuple  < v1, ..., vn > = row in 

a relational table

“ relation p = set of n-tuples = 

relational table

63

Part I. Introduction

“ Data Mining in a Nutshell

“ Predictive and descriptive DM techniques

“ Data Mining and the KDD process

“ DM standards, tools and visualization

64

Data Mining and KDD

“ KDD is defined as ‚the process of identifying 
valid, novel, potentially useful and ultimately 
understandable models/patterns in data.‛ *

“ Data Mining (DM) is the key step in the KDD 
process, performed by using data mining 
techniques for extracting models or interesting 
patterns from the data. 

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting 
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

65

KDD Process

KDD process of discovering useful knowledge from data

“ KDD process involves several phases:

“ data preparation

“ data mining (machine learning, statistics)

“ evaluation and use of discovered patterns

“ Data mining is the key step, but represents only 
15%-25% of the entire KDD process

66

MEDIANA – analysis of media research data

“ Questionnaires about journal/magazine reading, watching 
of TV programs and listening of radio programs, since 
1992, about 1200 questions. Yearly publication: frequency 
of reading/listening/watching, distribution w.r.t. Sex, Age, 
Education, Buying power,..

“ Data for 1998, about 8000 questionnaires, covering 
lifestyle, spare time activities, personal viewpoints, 
reading/listening/watching of media (yes/no/how much), 
interest for specific topics in media, social status

“ good quality, ‚clean‛ data

“ table of n-tuples (rows: individuals, columns: attributes, in 
classification tasks selected class)
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MEDIANA – media research pilot study

“ Patterns uncovering regularities concerning:

” Which other journals/magazines are read by readers of 
a particular journal/magazine ?

” What are the properties of individuals that are 
consumers of a particular media offer ?

” Which properties are distinctive for readers of different 
journals ?

“ Induced models: description (association rules, clusters) 
and classification (decision trees, classification rules)

68

Simplified association rules

Finding profiles of readers of the Delo daily 

newspaper

1. reads_Marketing_magazine  116 

reads_Delo 95 (0.82)

2. reads_Financial_News (Finance) 223  reads_Delo 180 

(0.81)

3. reads_Views (Razgledi) 201  reads_Delo 157 (0.78)

4. reads_Money (Denar) 197  reads_Delo 150 (0.76)

5. reads_Vip  181  reads_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine, 

Financial News, Views, Money and Vip read also 

Delo.
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Simplified association rules

1. reads_Sara 332  reads_Slovenske novice 211 (0.64)

2. reads_Ljubezenske zgodbe 283 

reads_Slovenske novice 174 (0.61)

3. reads_Dolenjski list 520 

reads_Slovenske novice 310 (0.6)

4. reads_Omama 154  reads_Slovenske novice 90 (0.58)

5. reads_Delavska enotnost 177 

reads_Slovenske novice 102 (0.58)

Most of the readers of Sara, Love stories, Dolenjska 

new, Omama in Workers new read also Slovenian 

news.
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Simplified association rules

1. reads_Sportske novosti 303 

reads_Slovenski delnicar 164 (0.54)

2. reads_Sportske novosti 303 

reads_Salomonov oglasnik 155 (0.51)

3. reads_Sportske novosti 303 

reads_Lady 152 (0.5)

More than half of readers of Sports news reads 

also Slovenian shareholders magazine, 

Solomon advertisements and Lady.
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Decision tree

Finding reader profiles: decision tree for classifying people 
into readers and non-readers of a teenage magazine 
Antena.

72

Part I. Introduction

“ Data Mining in a Nutshell

“ Predictive and descriptive DM techniques

“ Data Mining and the KDD process

“ DM standards, tools and visualization
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CRISP-DM

“ Cross-Industry Standard Process for DM

“ A collaborative, 18-months partially EC 

founded project started in July 1997

“ NCR, ISL (Clementine), Daimler-Benz, OHRA 

(Dutch health insurance companies), and SIG 

with more than 80 members

“ DM from art to engineering

“ Views DM more broadly than Fayyad et al. 

(actually DM is treated as KDD process):

74

CRISP Data Mining Process

“ DM Tasks

75

DM tools

76

Public DM tools

“ WEKA - Waikato Environment for Knowledge 

Analysis

“ Orange, Orange4WS

“ KNIME - Konstanz Information Miner 

“ R ” Bioconductor, …

77

Visualization

“ can be used on its own (usually for 

description and summarization tasks)

“ can be used in combination with other DM 

techniques, for example

” visualization of decision trees

” cluster visualization

” visualization of association rules

” subgroup visualization

78

Data visualization: 

Scatter plot
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DB Miner: Association rule 

visualization

80

MineSet: Decision tree visualization

81

Orange: Visual programming and 

subgroup discovery visualization

82

Part I: Summary

“ KDD is the overall process of discovering useful 
knowledge in data
” many steps including data preparation, cleaning, 

transformation, pre-processing

“ Data Mining is the data analysis phase in KDD
” DM takes only 15%-25% of the effort of the overall KDD 

process

” employing techniques from machine learning and statistics

“ Predictive and descriptive induction have different 
goals: classifier vs. pattern discovery

“ Many application areas

“ Many powerful tools available

83

Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction: First generation data mining
” Data Mining in a nutshell

” Data Mining and KDD process

” DM standards, tools and visualization

” Classification of Data Mining techniques: Predictive 
and descriptive DM

(Mladenić et al. Ch. 1 and 11, Kononenko & Kukar 
Ch. 1)

XX. Selected data mining techniques: 
Advanced subgroup discovery techniques 
and applications

XXX. Recent advances: Cross-context link 
discovery

84

XX. Talk outline

“ Subgroup discovery in a nutshell

“ Relational data mining and 

propositionalization in a nutshell

“ Semantic data mining: Using ontologies in 

SD
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Task reformulation: Binary Class Values

Binary classes (positive vs. negative examples of Target class) 

- for Concept learning – classification and class description 

- for Subgroup discovery – exploring patterns 

characterizing 

groups of instances of target class

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO

86

Subgroup Discovery

“ A task in which individual interpretable patterns in the 
form of rules are induced from data, labeled by a 
predefined property of interest.

“ SD algorithms learn several independent rules that 
describe groups of target class examples
” subgroups must be large and significant 

1

2

3

Class YES Class NO

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO

Subgroup DiscoverySubgroup Discovery
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Classification versus Subgroup Discovery

“ Classification (predictive induction) -

constructing sets of classification rules

” aimed at learning a model for classification or prediction

” rules are dependent

“ Subgroup discovery (descriptive induction) –

constructing individual subgroup describing 

rules 

” aimed at finding interesting patterns in target class 

examples

“ large subgroups (high target class coverage)

“ with significantly different distribution of target class examples (high

TP/FP ratio, high significance, high WRAcc

” each rule (pattern) is an independent chunk of knowledge
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Subgroup discovery task

Task definition (Kloesgen, Wrobel 1997)

” Given: a population of individuals and a property 
of interest (target class, e.g. CHD)

” Find: `most interesting’ descriptions of population 
subgroups

“ are as large as possible
(high target class coverage)

“ have most unusual distribution of the target 
property

(high TP/FP ratio, high significance)

90Subgroup discovery example:

CHD Risk Group Detection

Input: Patient records described by stage A (anamnestic), 
stage B (an. & lab.), and stage C (an., lab. & ECG)
attributes

Task: Find and characterize population subgroups with high 
CHD risk (large enough, distributionally unusual)

From best induced descriptions, five were selected by the 
expert as most actionable for CHD risk screening (by GPs):

CHD-risk  male & pos. fam. history & age > 46

CHD-risk  female & bodymassIndex > 25 & age > 63

CHD-risk  ...

CHD-risk  ...

CHD-risk  ...
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Characteristics of SD Algorithms

“ SD algorithms do not look for 

a single complex rule to 

describe all examples of 

target class YES (all CHD-

risk patients), but several 

rules that describe parts 

(subgroups) of YES.

“ Standard rule learning 

approach: Using the 

covering algorithm for rule 

set construction

1

2

3

Class YES Class NO
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Covering algorithm
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Covering algorithm
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Covering algorithm
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Characteristics of SD Algorithms

“ SD algorithms do not look for 
a single complex rule to 
describe all examples of 
target class YES (all CHD-
risk patients), but several 
rules that describe parts 
(subgroups) of YES.

“ Advanced rule learning 
approach: using example 
weights in the weighted 
covering algorithm for 
repetitive subgroup 
construction and in the rule 
quality evaluation heuristics.

1

2

3

Class YES Class NO
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Weighted covering algorithm for 

rule set construction
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• For learning a set of subgroup describing rules, SD 

implements an iterative weigthed covering algorithm.

• Quality of a rule is measured by trading off coverage 

and precision.
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Weighted covering algorithm for 

rule set construction
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Rule quality measure in SD: q(Cl  Cond) = TP/(FP+g)

Rule quality measure in CN2-SD: WRAcc(Cl Cond) = p(Cond) x 

[p(Cl | Cond) – p(Cl)] =  coverage x (precision – default precision)

*Coverage = sum of the covered weights, *Precision = purity of the covered examples
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Weighted covering algorithm for 

rule set construction
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In contrast with classification rule learning algorithms (e.g. CN2), 

the covered positive examples are not deleted from the training 

set in the next rule learning iteration; they are re-weighted, and a 

next ‘best’ rule is learned.
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Subgroup visualization

The CHD task: Find, 

characterize and visualize 

population subgroups with high 

CHD risk (large enough, 

distributionally unusual, most 

actionable)
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Induced subgroups and their statistical 

characterization

Subgroup A2 for femle patients:

High-CHD-risk IF                                      

body mass index over 25 kg/m2 (typically 29)  

AND                                          

age over 63 years

Supporting characteristics (computed using 2 

statistical significance test) are: positive family 

history and hypertension.  Women in this risk group 

typically have slightly increased LDL cholesterol 

values and normal but decreased HDL cholesterol 

values.

102

SD algorithms in the Orange DM 

Platform
“ SD Algorithms in 

Orange
” SD (Gamberger & Lavrač, 

JAIR 2002

” APRIORI-SD (Kavšek & 
Lavrač, AAI 2006

” CN2-SD (Lavrač et al., 
JMLR 2004): Adapting CN2 
classification rule learner to 
Subgroup Discovery

“ Weighted covering algorithm

“ Weighted relative accuracy 
(WRAcc) search heuristics, 
with added example 
weights
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103SD algorithms in Orange and 

Orange4WS

“ Orange 

” classification and subgroup 

discovery algorithms 

” data mining workflows

” visualization

” developed at FRI, Ljubljana

“ Orange4WS (Podpečan 

2010)

” Web service oriented

” supports workflows and 

other Orange functionality

” includes also

“ WEKA algorithms

“ relational data mining

“ semantic data mining with 

ontologies

” Web-based platform is 

under construction

104

XX. Talk outline

“ Subgroup discovery in a nutshell

“ Relational data mining and 

propositionalization in a nutshell

“ Semantic data mining: Using ontologies in 

SD

105

Relational Data Mining (Inductive 

Logic Programming) in a nutshell

Relational Relational Data MiningData Mining

knowledge discovery 
from data

model, patterns, …

Given: a relational database, a set of tables. sets of logical 

facts, a graph, …

Find: a classification model, a set of interesting patterns 

106

Relational Data Mining (ILP)
“ Learning from multiple 

tables

” patient records 
connected with other 
patient and 
demographic 
information

“ Complex relational 
problems:

” temporal data: time 
series in medicine, ...

” structured data: 
representation of 
molecules and their 
properties in protein 
engineering, 
biochemistry, ...

107

Sample ILP problem: 

East-West trains

108

Relational data representation

TRAIN EASTBOUND

t1 TRUE

t2 TRUE

… …

t6 FALSE

… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t1 rectangle short none 2

c2 t1 rectangle long none 3

c3 t1 rectangle short peaked 2

c4 t1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 triangle 1

l4 c4 rectangle 3

… … …
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Relational data representation

TRAIN EASTBOUND

t1 TRUE

t2 TRUE

… …

t6 FALSE

… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t1 rectangle short none 2

c2 t1 rectangle long none 3

c3 t1 rectangle short peaked 2

c4 t1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 triangle 1

l4 c4 rectangle 3

… … …
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Propositionalization in a nutshell

TRAIN EASTBOUND

t1 TRUE

t2 TRUE

… …

t6 FALSE

… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t1 rectangle short none 2

c2 t1 rectangle long none 3

c3 t1 rectangle short peaked 2

c4 t1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 triangle 1

l4 c4 rectangle 3

… … …
Propositionalization task

Transform a multi-relational 

(multiple-table)

representation to a 

propositional representation

(single table)

Proposed in ILP systems 

LINUS (Lavrac et al. 1991, 1994), 

1BC (Flach and Lachiche 1999), …
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Propositionalization in a nutshell

TRAIN EASTBOUND

t1 TRUE

t2 TRUE

… …

t6 FALSE

… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t1 rectangle short none 2

c2 t1 rectangle long none 3

c3 t1 rectangle short peaked 2

c4 t1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 triangle 1

l4 c4 rectangle 3

… … …

train(T) f1(T) f2(T)        f3(T) f4(T)      f5(T) 

t1 t t f t t 

t2 t t t t t 

t3 f f t f f 

t4 t f t f f 

… … …   … 

 

PROPOSITIONAL TRAIN_TABLEPROPOSITIONAL TRAIN_TABLE

Main propositionalization step:

first-order feature construction

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L),

loadShape(L,circle)

f3(T) :- ….

Propositional learning:

t(T)  f1(T), f4(T)

Relational interpretation:

eastbound(T) 

hasShortCar(T),hasClosedCar(T).
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Relational Data Mining through 

Propositionalization

PropositionalizationPropositionalization

Step 1

113

Relational Data Mining through 

Propositionalization

PropositionalizationPropositionalization

model, patterns, …

Data MiningData Mining

Step 1

Step 2

114

RSD Lessons learned
Efficient propositionalization can be applied to 
individual-centered, multi-instance learning problems:

” one free global variable (denoting an individual, e.g. molecule M)

” one or more structural predicates: (e.g. has_atom(M,A)),  each 
introducing a new existential local variable (e.g. atom A), using either the 
global variable (M) or a local variable introduced by other structural 
predicates (A)

” one or more utility predicates defining properties of individuals or their 
parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)

feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)

mutagenic(M):- feature121(M), feature235(M)
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Relational Data Mining in Orange4WS

 service for propositionalization through efficient 

first-order feature construction (Železny and Lavrač, 

MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)

f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

“ subgroup discovery using CN2-SD

mutagenic(M)  feature121(M), feature235(M)
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Talk outline

“ Subgroup discovery in a nutshell

“ Relational data mining and 

propositionalization in a nutshell

“ Semantic data mining: Using ontologies in 

SD

117

Semantic Data Mining in Orange4WS

“ Exploiting semantics in data mining

” Using domain ontologies as background knowledge for 

data mining

“ Semantic data mining technology: a two-step 

approach

” Using propositionalization through first-order feature 

construction

” Using subgroup discovery for rule learning

118

Using domain ontologies (e.g. Gene 

Ontology) as background knowledge for 

Data Mining

Gene Ontology

12093 biological process

1812 cellular components

7459 molecular functions

Joint work with 

Igor Trajkovski 

and Filip Zelezny
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Using domain ontologies (e.g. Gene 

Ontology) as background knowledge for 

Data Mining

First-order features, describing 

gene properties and relations 

between genes, can be viewed 

as generalisations of individual 

genes
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First order feature construction

f(7,A):-function(A,'GO:0046872').

f(8,A):-function(A,'GO:0004871').

f(11,A):-process(A,'GO:0007165').

f(14,A):-process(A,'GO:0044267').

f(15,A):-process(A,'GO:0050874').

f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874').

f(26,A):-component(A,'GO:0016021').

f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020').

f(122,A):-interaction(A,B),function(B,'GO:0004872').

f(223,A):-interaction(A,B),function(B,'GO:0004871'), 
process(B,'GO:0009613').

f(224,A):-interaction(A,B),function(B,'GO:0016787'), 
component(B,'GO:0043231').

First order features with support > min_support

existential
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Propositionalization

f1 f2 f3 f4 f5 f6 … … fn

g1 1 0 0 1 1 1 0 0 1 0 1 1

g2 0 1 1 0 1 1 0 0 0 1 1 0

g3 0 1 1 1 0 0 1 1 0 0 0 1

g4 1 1 1 0 1 1 0 0 1 1 1 0

g5 1 1 1 0 0 1 0 1 1 0 1 0

g1 0 0 1 1 0 0 0 1 0 0 0 1

g2 1 1 0 0 1 1 0 1 0 1 1 1

g3 0 0 0 0 1 0 0 1 1 1 0 0

g4 1 0 1 1 1 0 1 0 0 1 0 1

diffexp g1 (gene64499) 

diffexp g2 (gene2534)   

diffexp g3 (gene5199)   

diffexp g4 (gene1052)    

diffexp g5 (gene6036)   

….

random g1 (gene7443)

random g2 (gene9221)

random g3 (gene2339)

random g4 (gene9657)

random g5 (gene19679)

….
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Propositional learning: subgroup 

discovery

f1 f2 f3 f4 f5 f6 … … fn

g1 1 0 0 1 1 1 0 0 1 0 1 1

g2 0 1 1 0 1 1 0 0 0 1 1 0

g3 0 1 1 1 0 0 1 1 0 0 0 1

g4 1 1 1 0 1 1 0 0 1 1 1 0

g5 1 1 1 0 0 1 0 1 1 0 1 0

g1 0 0 1 1 0 0 0 1 0 0 0 1

g2 1 1 0 0 1 1 0 1 0 1 1 1

g3 0 0 0 0 1 0 0 1 1 1 0 0

g4 1 0 1 1 1 0 1 0 0 1 0 1

f2 and f3f2 and f3

[4,0][4,0]
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Subgroup Discovery
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Subgroup Discovery
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In RSD (using propositional learner CN2In RSD (using propositional learner CN2--SD):SD):

Quality of the rules = Coverage  x  PrecisionQuality of the rules = Coverage  x  Precision
*Coverage = sum of the covered weights*Coverage = sum of the covered weights

*Precision = purity of the covered genes*Precision = purity of the covered genes
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Subgroup Discovery
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RSD naturally uses gene weights in its procedure for repetitive 
subgroup generation, via its heuristic rule evaluation: weighted 
relative accuracy
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Semantic Data Mining in two steps

“ Step 1: Construct relational logic features of genes such 
as 

(g interacts with another gene whose functions include protein binding)

and propositional table construction with features as 
attributes

“ Step 2: Using these features to discover and describe 
subgroups of genes that are differentially expressed (e.g., 
belong to class DIFF.EXP. of top 300 most differentially 
expressed genes) in contrast with RANDOM genes (randomly 
selected genes with low differential expression). 

“ Sample subgroup description:
diffexp(A) :- interaction(A,B) AND 

function(B,'GO:0004871') AND 
process(B,'GO:0009613')

interaction(g, G) & function(G, protein_binding)
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Summary: SEGS, using the RSD 

approach

“ The SEGS approach enables to discover new 

medical knowledge from the combination of gene 

expression data with public gene annotation 

databases

“ In past 2-3 years, the SEGS approach proved 

effective in several biomedical applications (JBI 

2008, …)

“ The work on semantic data mining - using ontologies as 

background knowledge for subgroup discovery with SEGS - was 

done in collaboration with I.Trajkovski, F. Železny and J. Tolar
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Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction

” Data Mining and KDD process

” DM standards, tools and visualization

” Classification of Data Mining techniques: Predictive 

and descriptive DM

(Mladenić et al. Ch. 1 and 11, Kononenko & Kukar 

Ch. 1)

XX. Selected data mining techniques: 

Advanced subgroup discovery techniques 

and applications

XXX. Recent advances: Cross-context link 

discovery
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The BISON project

“ EU project: Bisociation networks for creative 

information discovery (www.bisonet.eu), 2008-

2010

“ Exploring the idea of bisociation (Arthur 

Koestler, The act of creation, 1964):
” The mixture - in one human mind ” of two different contexts or 

different categories of objects, that are normally considered 

separate categories by the processes of the mind.

” The thinking process that is the functional basis of analogical 

or metaphoric thinking as compared to logical or associative 

thinking.

“ Main challenge: Support humans to find new 

interesting associations accross domains

130

Bisociation (A. Koestler 1964)
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The BISON project

“ BISON challenge: Support humans to find new, 

interesting links accross domains, named 

bisociations

” across different contexts

” across different types of data and knowledge sources

“ Open problems:

” Fusion of heterogeneous data/knowledge sources 

into a joint representation format - a large information 

network named BisoNet (consisting of nodes and 

relatioships between nodes)

” Finding unexpected, previously unknown links 

between BisoNet nodes belonging to different 

contexts

132

Heterogeneous data sources

(BISON, M. Berthold, 2008)

http://www.bisonet.eu/
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Bridging concepts

(BISON, M. Berthold, 2008)
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Chains of associations across domains

(BISON, M. Berthold, 2008)

135

Semantic Data Mining for DNA 

Microarray Data Analysis

“ Semantic data mining integrates public gene 

annotation data through relational features 

“ It is implemented in the SEGS algorithm

(Trajkovski, Železny, Lavrač and Tolar, JBI 

2008), available in Orange4WS

“ It can be combined with additional biomedical 

resources (BioMine), providing additional means 

for creative knowledge discovery from publicly 

available data sources
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Biomine graph explorationBiomine graph exploration

(Toivonnen et al., Uni. Helsinki)(Toivonnen et al., Uni. Helsinki)

“ BioMine graph contains information from public 
databases, including annotated sequences, proteins, 
orthology groups, genes and gene expressions, gene 
and protein interactions, PubMed articles, and different 
ontologies. 

” nodes (~1 mio) correspond to different concepts 
(such as gene, protein, domain, phenotype, biological 
process, tissue)

” semantically labeled edges (~7 mio) connect 
related concepts 

“ BioMine query engine answers queries to potentially 
discover new links between entities by sophisticated 
graph exploration algorithms
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The SEGS + BioMine Methodology

e.g. slow-vs-fast 

cell growth

Gene setsMicroarray Exploratory

link discovery

Work by 

Lavrač et al. 2009, 2010

Podpečan et al. 2010

138
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Semantic Data Mining in Orange4WS:

SEGS + BioMine workflow

implementation
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SEGS output:        BioMine query:

140

Summary of SEGS + BioMineSummary of SEGS + BioMine

“ Semantic Data Mining algorithm SEGS discovers 

interesting gene group descriptions as conjunctions of 

concepts from three ontologies: GO, KEGG and Entrez

“ Biomine finds cross-context links (paths) between 

concepts discovered by SEGS, using other ontologies, 

PubMed and other biomedical resources

“ Initial results in stem cell microarray data analysis (EMBC 

2009) indicate that the SEGS+Biomine methodology may 

lead to new insights – in vitro experiments are in progress 

at NIB to verify and validate the preliminary insights

“ A general purpose Semantic Data Mining algorithm g-

SEGS is also available in Orange4WS
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Introductory seminar lecture:

Summary

“ JSI & Knowledge Technologies

“ Introduction to Data mining and KDD

” Data Mining and KDD process

” DM standards, tools and visualization

” Classification of Data Mining techniques: Predictive 

and descriptive DM

“ Selected data mining techniques: 

Advanced subgroup discovery techniques 

and applications

“ Recent advances: Cross-context link 

discovery
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Part II. Predictive DM techniques

“ Naive Bayesian classifier

“ Decision tree learning

“ Classification rule learning

“ Classifier evaluation

143

Bayesian methods

“ Bayesian methods ” simple but powerful 

classification methods

” Based on Bayesian formula

“ Main methods:

” Naive Bayesian classifier

” Semi-naïve Bayesian classifier

” Bayesian networks *

* Out of scope of this course
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Naïve Bayesian classifier
“ Probability of class, for given attribute values

“ For all Cj compute probability p(Cj), given values vi of all 

attributes describing the example which we want to classify 

(assumption: conditional independence of attributes, when 

estimating p(Cj) and p(Cj |vi))

“ Output CMAX with maximal posterior probability of class: 
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Naïve Bayesian classifier
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Semi-naïve Bayesian classifier

“ Naive Bayesian estimation of probabilities 

(reliable)

“ Semi-naïve Bayesian estimation of 

probabilities (less reliable)
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Probability estimation

“ Relative frequency:

“ Prior probability: Laplace law

“ m-estimate:
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Probability estimation: intuition

“ Experiment with N trials, n successful

“ Estimate probability of success of next trial 

“ Relative frequency: n/N

” reliable estimate when number of trials is large

” Unreliable when number of trials is small, e.g., 
1/1=1

“ Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes

” Assumes uniform distribution of classes

“ m-estimate: (n+m.pa) /(N+m)

” Prior probability of success pa, parameter m 
(weight of prior probability, i.e., number of ‘virtual’ 
examples )
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Explanation of Bayesian 

classifier

“ Based on information theory

” Expected number of bits needed to encode a message = 

optimal code length -log p for a message, whose probability is 

p (*)

“ Explanation based of the sum of information gains of 

individual attribute values vi (Kononenko and Bratko 1991, 

Kononenko 1993)

*  log p denotes binary logarithm
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Example of explanation of semi-naïve 

Bayesian classifier

Hip surgery prognosis

Class = no (‚no complications‛, most probable class, 2 class problem)

Attribute value For decision Against

(bit) (bit)

Age = 70-80 0.07

Sex = Female -0.19

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall -0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Fracture classification acc. To Garden = Garden III -0.3

Fracture classification acc. To Pauwels = Pauwels III -0.14

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes -0.32

Hospital rehabilitation = Yes 0.05

General complications = None 0

Combination: 0.21

   Time between injury and examination < 6 hours

   AND Hospitalization time between 4 and 5 weeks

Combination: 0.63

 Therapy = Artroplastic AND anticoagulant therapy = Yes
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Visualization of information 

gains for/against Ci
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Naïve Bayesian classifier

“ Naïve Bayesian classifier can be used
” when we have sufficient number of training examples 

for reliable probability estimation

“ It achieves good classification accuracy

” can be used as ‘gold standard’ for comparison with 

other classifiers

“ Resistant to noise (errors)
” Reliable probability estimation

” Uses all available information

“ Successful in many application domains

” Web page and document classification 

” Medical diagnosis and prognosis, …
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Improved classification accuracy due 

to using m-estimate

Relative freq. m-estimate

Primary tumor 48.20% 52.50%

Breast cancer 77.40% 79.70%

hepatitis 58.40% 90.00%

lymphography 79.70% 87.70%

Primary Breast thyroid Rheumatology

tumor cancer

#instan 339 288 884 355

#class 22 2 4 6

#attrib 17 10 15 32

#values 2 2.7 9.1 9.1

majority 25% 80% 56% 66%

entropy 3.64 0.72 1.59 1.7
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Part II. Predictive DM techniques

“ Naïve Bayesian classifier

“ Decision tree learning

“ Classification rule learning

“ Classifier evaluation
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Illustrative example:

Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Decision tree for

contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD
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Decision tree for

contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]
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PlayTennis: Training examples

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Weak Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Decision tree representation 

for PlayTennis
Outlook

Humidity WindYes

OvercastSunny Rain

High Normal Strong Weak

No Yes No Yes

- each internal node is a test of an attribute

- each branch corresponds to an attribute value

- each path is a conjunction of attribute values

- each leaf node assigns a classification
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Decision tree representation 

for PlayTennis
Outlook

Humidity WindYes

OvercastSunny Rain

High Normal Strong Weak

No Yes No Yes

Decision trees represent a disjunction of conjunctions of constraints 

on the attribute values of instances

( Outlook=Sunny   Humidity=Normal )   

V           ( Outlook=Overcast )

V     ( Outlook=Rain   Wind=Weak )

161

PlayTennis:

Other representations

“ Logical expression for PlayTennis=Yes:

” (Outlook=Sunny   Humidity=Normal)  (Outlook=Overcast) 

(Outlook=Rain   Wind=Weak)

“ Converting a tree to if-then rules

” IF Outlook=Sunny  Humidity=Normal THEN PlayTennis=Yes

” IF Outlook=Overcast THEN PlayTennis=Yes

” IF Outlook=Rain  Wind=Weak THEN PlayTennis=Yes

” IF Outlook=Sunny  Humidity=High THEN PlayTennis=No

” IF Outlook=Rain  Wind=Strong THEN PlayTennis=No
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PlayTennis: Using a decision tree for 

classification

Is Saturday morning OK for playing tennis?

Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong

PlayTennis = No,  because Outlook=Sunny  Humidity=High

Outlook

Humidity WindYes

OvercastSunny Rain

High Normal Strong Weak

No Yes No Yes
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Appropriate problems for 

decision tree learning

“ Classification problems: classify an instance into one 
of a discrete set of possible categories (medical 
diagnosis, classifying loan applicants, …)

“ Characteristics:
” instances described by attribute-value pairs       

(discrete or real-valued attributes)

” target function has discrete output values             
(boolean or multi-valued, if real-valued then regression trees)

” disjunctive hypothesis may be required

” training data may be noisy                                     
(classification errors and/or errors in attribute values)

” training data may contain missing attribute values
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Learning of decision trees

“ ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5, 

WEKA, ...

” create the root node of the tree

” if all examples from S belong to the same class Cj

“ then label the root with Cj

” else

“ select the ‘most informative’ attribute A with values 

v1, v2, … vn

“ divide training set S into S1,… , Sn according to 

values v1,…,vn

“ recursively build sub-trees

T1,…,Tn for S1,…,Sn

A

...

...T1 Tn

vnv1

165

Search heuristics in ID3

“ Central choice in ID3: Which attribute to test at 
each node in the tree ? The attribute that is most 
useful for classifying examples. 

“ Define a statistical property, called information 
gain, measuring how well a given attribute 
separates the training examples w.r.t their target 
classification.

“ First define a measure commonly used in 
information theory, called entropy, to characterize 
the (im)purity of an arbitrary collection of examples.
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Entropy

“ S - training set, C1,...,CN - classes

“ Entropy E(S) ” measure of the impurity of 
training set S





N

c

cc ppSE
1

2log.)( pc - prior probability of class Cc 

(relative frequency of Cc in S)

E(S) = - p+ log2p+ - p- log2p-

“ Entropy in binary classification problems 
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Entropy

“ E(S) = - p+ log2p+ - p- log2p-

“ The entropy function relative to a Boolean 

classification, as the proportion p+ of positive 

examples varies between 0  and 1
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Entropy – why ?

“ Entropy E(S) = expected amount of information (in 

bits) needed to assign a class to a randomly drawn 

object in S (under the optimal, shortest-length 

code)

“ Why ?

“ Information theory: optimal length code assigns      

- log2p bits to a message having probability p

“ So, in binary classification problems, the expected 

number of bits to encode + or ” of a random 

member of S is:

p+ ( - log2p+ ) + p- ( - log2p- ) = - p+ log2p+  - p- log2p-
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PlayTennis: Entropy

“ Training set S: 14 examples (9 pos., 5 neg.)

“ Notation: S = [9+, 5-] 

“ E(S) = - p+ log2p+ - p- log2p-

“ Computing entropy, if probability is estimated by 
relative frequency

“ E([9+,5-]) = - (9/14) log2(9/14) - (5/14) log2(5/14)        

= 0.940 
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PlayTennis: Entropy

“ E(S) = - p+ log2p+ - p- log2p-

“ E(9+,5-) = -(9/14) log2(9/14) - (5/14) log2(5/14) = 0.940 

Outlook?

{D1,D2,D8,D9,D11}       [2+, 3-]   E=0.970  

{D3,D7,D12,D13}          [4+, 0-]   E=0

{D4,D5,D6,D10,D14}     [3+, 2-]   E=0.970  

Sunny

Overcast

Rain

Humidity?

[3+, 4-]    E=0.985 

[6+, 1-]    E=0.592

High

Normal

Wind?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

Weak

Strong
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Information gain 

search heuristic

“ Information gain measure is aimed to minimize the 

number of tests needed for the classification of a new 

object

“ Gain(S,A) ” expected reduction in entropy of S due to 

sorting on A 

“ Most informative attribute: max Gain(S,A)
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Information gain 

search heuristic

“ Which attribute is more informative, A1 or A2 ?

“ Gain(S,A1) = 0.94 ” (8/14 x 0.811 + 6/14 x 1.00) = 0.048

“ Gain(S,A2) = 0.94 ” 0 = 0.94                 A2 has max Gain

A1

[9,5],  E  0.94 

[3, 3][6, 2]

E0.811 E1.00

A2

[0, 5][9, 0]

E0.0 E0.0

[9,5],  E  0.94 
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PlayTennis: Information gain

“ Values(Wind) = {Weak, Strong}

” S = [9+,5-],  E(S) = 0.940

” Sweak   = [6+,2-], E(Sweak ) = 0.811

” Sstrong = [3+,3-], E(Sstrong ) = 1.0

” Gain(S,Wind) = E(S) - (8/14)E(Sweak) - (6/14)E(Sstrong) = 0.940 -

(8/14)x0.811 - (6/14)x1.0=0.048
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Wind?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

Weak

Strong
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PlayTennis: Information gain

“ Which attribute is the best?

” Gain(S,Outlook)=0.246        MAX  !

” Gain(S,Humidity)=0.151

” Gain(S,Wind)=0.048

” Gain(S,Temperature)=0.029
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PlayTennis: Information gain

“ Which attribute should be tested here?

” Gain(Ssunny, Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970    MAX  !

” Gain(Ssunny,Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

” Gain(Ssunny,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

Outlook?

{D1,D2,D8,D9,D11}     [2+, 3-]   E > 0  ???

{D3,D7,D12,D13}        [4+, 0-]   E = 0  OK - assign class Yes
Sunny

Overcast

{D4,D5,D6,D10,D14}   [3+, 2-]   E > 0 ???Rain
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Probability estimates

“ Relative frequency :
” problems with small samples

“ Laplace estimate : 
” assumes uniform prior 

distribution of k classes
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[6+,1-] (7) = 6/7

[2+,0-] (2) = 2/2 = 1

[6+,1-] (7) = 6+1 / 7+2 = 7/9

[2+,0-] (2) = 2+1 / 2+2 = 3/4
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Heuristic search in ID3

“ Search bias: Search the space of decision trees 
from simplest to increasingly complex (greedy 
search, no backtracking, prefer small trees)

“ Search heuristics: At a node, select the attribute 
that is most useful for classifying examples, split 
the node accordingly

“ Stopping criteria: A node becomes a leaf

” if all examples belong to same class Cj, label the 
leaf with Cj

” if all attributes were used, label the leaf with the 
most common value Ck of examples in the node

“ Extension to ID3: handling noise - tree pruning 
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Pruning of decision trees

“ Avoid overfitting the data by tree pruning

“ Pruned trees are
” less accurate on training data

” more accurate when classifying unseen data

179

Handling noise – Tree pruning

Sources of imperfection

1.  Random errors (noise) in training examples

“ erroneous attribute values

“ erroneous classification

2. Too sparse training examples (incompleteness)

3.  Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples
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Handling noise – Tree pruning

“ Handling imperfect data 

” handling imperfections of type 1-3

“ pre-pruning (stopping criteria)

“ post-pruning / rule truncation

” handling missing values

“ Pruning avoids perfectly fitting noisy data: relaxing 

the completeness (fitting all +) and consistency (fitting 

all -) criteria in ID3
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Prediction of breast cancer 

recurrence: Tree pruning
Degree_of_malig

Tumor_size

Age no_recur 125
recurrence 39

no_recur 4
recurrence 1 no_recur 4

Involved_nodes

no_recur 30
recurrence 18

no_recur 27
recurrence 10

< 3  3

< 15  15 < 3  3

< 40 40

no_rec 4      rec1
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Accuracy and error

“ Accuracy: percentage of correct classifications

” on the training set

” on unseen instances

“ How accurate is a decision tree when classifying unseen 

instances

” An estimate of accuracy on unseen instances can be computed, 

e.g., by averaging over 4 runs:

“ split the example set into training set (e.g. 70%) and test set (e.g. 30%) 

“ induce a decision tree from training set, compute its  accuracy on test 

set

“ Error = 1 - Accuracy

“ High error may indicate data overfitting
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Overfitting and accuracy

“ Typical relation between tree size and accuracy

“ Question: how to prune optimally?

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80 100 120

On training data

On test data
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Avoiding overfitting

“ How can we avoid overfitting?
” Pre-pruning (forward pruning): stop growing the tree e.g., 

when data split not statistically significant or too few 
examples are in a split

” Post-pruning: grow full tree, then post-prune

“ forward pruning considered inferior (myopic)

“ post pruning makes use of sub trees 

Pre-pruning

Post-pruning
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How to select the “best” tree

“ Measure performance over training data (e.g., 
pessimistic post-pruning, Quinlan 1993)

“ Measure performance over separate validation data 
set (e.g., reduced error pruning, Quinlan 1987) 
” until further pruning is harmful DO:

“ for each node evaluate the impact of replacing a subtree by a 
leaf, assigning the majority class of examples in the leaf, if the 
pruned tree performs no worse than the original over the 
validation set

“ greedily select the node whose removal most improves tree 
accuracy over the validation set

“ MDL: minimize
size(tree)+size(misclassifications(tree)) 
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Selected decision/regression 

tree learners

“ Decision tree learners

” ID3 (Quinlan 1979)

” CART (Breiman et al. 1984)

” Assistant (Cestnik et al. 1987)

” C4.5 (Quinlan 1993), C5 (See5, Quinlan)

” J48 (available in WEKA)

“ Regression tree learners, model tree learners

” M5, M5P (implemented in WEKA)
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Features of C4.5

“ Implemented as part of the WEKA data mining 

workbench

“ Handling noisy data: post-pruning

“ Handling incompletely specified training 

instances: ‘unknown’ values (?)

” in learning assign conditional probability of value v: 

p(v|C) = p(vC) / p(C)

” in classification: follow all branches, weighted by 

prior prob. of missing attribute values
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Other features of C4.5

“ Binarization of attribute values
” for continuous values select a boundary value 

maximally increasing the informativity of the 
attribute: sort the values and try every possible 
split (done automaticaly)

” for discrete values try grouping the values until 
two groups remain *

“ ‘Majority’ classification in NULL leaf (with no 
corresponding training example)
” if an example ‘falls’ into a NULL leaf during 

classification, the class assigned to this example 
is the majority class of the parent of the NULL leaf

* the basic C4.5 doesn’t support binarisation of discrete attributes, it supports grouping
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Part II. Predictive DM techniques

“ Naïve Bayesian classifier

“ Decision tree learning

“ Classification rule learning

“ Classifier evaluation
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Rule Learning in a Nutshell

data

Rule learningRule learning

knowledge discovery 
from data

Model: a set of rules

Patterns: individual rules

Given: transaction data table, relational database (a set of 

objects, described by attribute values)

Find: a classification model in the form of a set of rules;

or a set of interesting patterns in the form of individual 

rules 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Rule set representation
“ Rule base is a disjunctive set of conjunctive rules

“ Standard form of rules:

IF Condition THEN Class

Class IF Conditions

Class  Conditions

IF Outlook=Sunny  Humidity=Normal THEN 

PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain  Wind=Weak THEN PlayTennis=Yes

“ Form of CN2 rules:    

IF Conditions THEN MajClass [ClassDistr]

“ Rule base:   {R1, R2, R3, …, DefaultRule}
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Data mining example

Input: Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Contact lens data: 

Classification rules

Type of task: prediction and classification

Hypothesis language: rules X  C,  if X then C

X conjunction of attribute values, C class

tear production=reduced → lenses=NONE

tear production=normal & astigmatism=yes & 

spect. pre.=hypermetrope → lenses=NONE

tear production=normal & astigmatism=no →

lenses=SOFT

tear production=normal & astigmatism=yes & 

spect. pre.=myope → lenses=HARD
DEFAULT lenses=NONE
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Rule learning

“ Two rule learning approaches:

” Learn decision tree, convert to rules

” Learn set/list of rules

“ Learning an unordered set of rules

“ Learning an ordered list of rules

“ Heuristics, overfitting, pruning 
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Contact lenses: convert decision tree to  

an unordered rule settear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

tear production=reduced => lenses=NONE [S=0,H=0,N=12] 

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>

lenses=NONE  [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT [S=5,H=0,N=1]

tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD 

[S=0,H=3,N=2]

DEFAULT lenses=NONE                      Order independent rule set (may overlap)

196

Contact lenses: convert decision tree to 

decision listtear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

IF tear production=reduced THEN lenses=NONE

ELSE /*tear production=normal*/

IF astigmatism=no THEN lenses=SOFT

ELSE /*astigmatism=yes*/

IF spect. pre.=myope THEN lenses=HARD 

ELSE /* spect.pre.=hypermetrope*/

lenses=NONE                                         Ordered (order dependent) rule list 
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Converting decision tree to rules, and 

rule post-pruning (Quinlan 1993)

“ Very frequently used method, e.g., in C4.5

and J48

“ Procedure:

” grow a full tree (allowing overfitting)

” convert the tree to an equivalent set of rules

” prune each rule independently of others

” sort final rules into a desired sequence for use
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Concept learning: Task reformulation for rule 

learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NO

O2 young myope no normal  YES

O3 young myope yes reduced NO

O4 young myope yes normal YES

O5 young hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal YES

O15 pre-presbyohypermetrope yes reduced NO

O16 pre-presbyohypermetrope yes normal NO

O17 presbyopic myope no reduced NO

O18 presbyopic myope no normal NO

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NO
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Original covering algorithm

(AQ, Michalski 1969,86)

Given examples of N classes C1, …, CN

for each class Ci do

” Ei := Pi U Ni (Pi pos., Ni neg.)

” RuleBase(Ci) := empty

” repeat {learn-set-of-rules}

“ learn-one-rule R covering some positive 
examples and no negatives 

“ add R to RuleBase(Ci)

“ delete from Pi all pos. ex. covered by R

” until Pi = empty 
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Covering algorithm
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PlayTennis: Training examples

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Weak Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No
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Heuristics for learn-one-rule:

PlayTennis example 
PlayTennis = yes [9+,5-] (14)

PlayTennis = yes  Wind=weak  [6+,2-] (8)
 Wind=strong [3+,3-] (6) 
 Humidity=normal [6+,1-] (7)
 …

PlayTennis = yes  Humidity=normal
Outlook=sunny [2+,0-] (2)

 …

Estimating rule accuracy (rule precision) with the probability 
that a covered example is positive

A(Class  Cond) = p(Class| Cond)

Estimating the probability with the relative frequency of covered 
pos. ex. / all covered ex.  

[6+,1-] (7) = 6/7,                    [2+,0-] (2) = 2/2 = 1 
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Probability estimates

“ Relative frequency :
” problems with small samples

“ Laplace estimate : 
” assumes uniform prior 

distribution of k classes

)(

).(

)|(

Condn

CondClassn

CondClassp





kCondn

CondClassn






)(

1).( 2k

[6+,1-] (7) = 6/7

[2+,0-] (2) = 2/2 = 1

[6+,1-] (7) = 6+1 / 7+2 = 7/9

[2+,0-] (2) = 2+1 / 2+2 = 3/4
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Learn-one-rule:

search heuristics

“ Assume a two-class problem

“ Two classes (+,-),  learn rules for + class (Cl). 

“ Search for specializations R’ of a rule R = Cl  Cond 

from the RuleBase.

“ Specializarion R’ of rule R = Cl  Cond

has the form    R’ = Cl  Cond & Cond’

“ Heuristic search for rules: find the ‘best’ Cond’ to be 

added to the current rule R, such that rule accuracy is 

improved, e.g., such that Acc(R’) > Acc(R)

” where the expected classification accuracy can be 

estimated as A(R) = p(Cl|Cond)
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Learn-one-rule:

Greedy vs. beam search

“ learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’ 
descendant, no backtracking
” e.g., the best descendant of the initial rule 

PlayTennis = yes 

” is rule PlayTennis = yes  Humidity=normal

“ beam search: maintain a list of k best candidates 
at each step; descendants (specializations) of 
each of these k candidates are generated, and 
the resulting set is again reduced to k best 
candidates
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Learn-one-rule as search: 

PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

...
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Learn-one-rule as heuristic search: 

PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

[9,5] (14)

[6,2] (8)

[3,3] (6) [6,1] (7)

[3,4] (7)

...

[2,0] (2)
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What is “high” rule accuracy

(rule precision) ?

“ Rule evaluation measures: 
” aimed at maximizing classification accuracy 

” minimizing Error = 1 - Accuracy

” avoiding overfitting

“ BUT: Rule accuracy/precision should be traded 
off against the ‚default‛ accuracy/precision of the 
rule Cl true

” 68% accuracy is OK if there are 20% examples of that class in 
the training set, but bad if there are 80%

“ Relative accuracy

” RAcc(Cl Cond) = p(Cl | Cond) ” p(Cl)
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Weighted relative accuracy

“ If a rule covers a single example, its accuracy/precision 
is either 0% or 100%
” maximising relative accuracy tends to produce many overly 

specific rules

“ Weighted relative accuracy

WRAcc(ClCond) = p(Cond) . [p(Cl | Cond) – p(Cl)]

“ WRAcc is a fundamental rule evaluation measure: 
” WRAcc can be used if you want to assess both accuracy and 

significance

” WRAcc can be used if you want to compare rules with different 
heads and bodies
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Learn-one-rule:

search heuristics
“ Assume two classes (+,-),  learn rules for + class (Cl). Search 

for specializations of one rule R = Cl  Cond from RuleBase.

“ Expected classification accuracy:   A(R) = p(Cl|Cond)

“ Informativity (info needed to specify that example covered by 
Cond belongs to Cl):  I(R) =  - log2p(Cl|Cond)

“ Accuracy gain (increase in expected accuracy):

AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)

“ Information gain (decrease in the information needed):

IG(R’,R) = log2p(Cl|Cond’) - log2p(Cl|Cond)

“ Weighted measures favoring more general rules: WAG, WIG

WAG(R’,R) = 

p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond))

“ Weighted relative accuracy trades off coverage and relative 

accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl))
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Ordered set of rules:

if-then-else rules
“ rule  Class IF Conditions is learned by first 

determining Conditions and then Class

“ Notice: mixed sequence of classes C1, …, Cn in 
RuleBase 

“ But: ordered execution when classifying a new 
instance: rules are sequentially tried and the first 
rule that `fires’ (covers the example) is used for 
classification

“ Decision list {R1, R2, R3, …, D}: rules Ri are 
interpreted as if-then-else rules

“ If no rule fires, then DefaultClass (majority class in

Ecur)
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Sequential covering algorithm

(similar as in Mitchell’s book)

“ RuleBase := empty 

“ Ecur:= E 

“ repeat 

” learn-one-rule R

” RuleBase := RuleBase U R

” Ecur := Ecur - {examples covered and correctly 
classified by R}  (DELETE ONLY POS. EX.!)

” until performance(R, Ecur) < ThresholdR 

“ RuleBase := sort RuleBase by performance(R,E)

“ return RuleBase
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Learn ordered set of rules
(CN2, Clark and Niblett 1989)

“ RuleBase := empty 

“ Ecur:= E 

“ repeat 

” learn-one-rule R

” RuleBase := RuleBase U R

” Ecur := Ecur - {all examples covered by R}  
(NOT ONLY POS. EX.!)

“ until performance(R, Ecur) < ThresholdR 

“ RuleBase := sort RuleBase by performance(R,E)

“ RuleBase := RuleBase U DefaultRule(Ecur)
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Learn-one-rule:

Beam search in CN2

“ Beam search in CN2 learn-one-rule algo.:

” construct BeamSize of best rule bodies 
(conjunctive conditions) that are statistically 
significant

” BestBody - min. entropy of examples covered 
by Body 

” construct best rule R := Head  BestBody by 
adding majority class of examples covered by 
BestBody in rule Head

“ performance (R, Ecur) : - Entropy(Ecur) 
” performance(R, Ecur) < ThresholdR (neg. num.)

” Why? Ent. > t is bad, Perf. = -Ent < -t is bad
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Variations

“ Sequential vs. simultaneous covering of data (as 
in TDIDT): choosing between attribute-values vs. 
choosing attributes

“ Learning rules vs. learning decision trees and  
converting them to rules

“ Pre-pruning vs. post-pruning of rules

“ What statistical evaluation functions to use

“ Probabilistic classification

219

Probabilistic classification
“ In the ordered case of standard CN2 rules are interpreted in an IF-

THEN-ELSE fashion, and the first fired rule assigns the class.

“ In the unordered case all rules are tried and all rules which fire are 
collected. If a clash occurs, a probabilistic method is used to resolve the 
clash.

“ A simplified example:
1. tear production=reduced => lenses=NONE [S=0,H=0,N=12] 

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE  [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT 
[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and 
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and 
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total 
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into 
class H with probability 0.5 and N with probability 0.5. In this case, the 
clash can not be resolved, as both probabilities are equal.
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Part II. Predictive DM techniques

“ Naïve Bayesian classifier

“ Decision tree learning

“ Classification rule learning

“ Classifier evaluation
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Classifier evaluation

“ Accuracy and Error

“ n-fold cross-validation

“ Confusion matrix

“ ROC
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Evaluating hypotheses

“ Use of induced hypotheses

” discovery of new patterns, new knowledge

” classification of new objects

“ Evaluating the quality of induced hypotheses

” Accuracy, Error = 1 - Accuracy

” classification accuracy on testing examples = 
percentage of correctly classified instances

“ split the example set into training set (e.g. 70%) to 
induce a concept, and test set (e.g. 30%) to test its 
accuracy

“ more elaborate strategies: 10-fold cross validation, 
leave-one-out, ...

” comprehensibility (compactness)

” information contents (information score), significance 
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n-fold cross validation

“ A method for accuracy estimation of classifiers

“ Partition set D into n disjoint, almost equally-sized 

folds Ti where Ui Ti = D

“ for i = 1, ..., n do

” form a training set out of n-1 folds: Di = D\Ti

” induce classifier Hi from examples in Di

” use fold Ti  for testing the accuracy of Hi

“ Estimate the accuracy of the classifier by 

averaging accuracies over 10 folds Ti 
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•Partition D

T1 T2 T3

225

•Partition

•Train

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train

•Test

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3

T1 T2 T3
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Confusion matrix and 

rule (in)accuracy

“ Accuracy of a classifier is measured as TP+TN / N.

“ Suppose two rules are both 80% accurate on an 
evaluation dataset, are they always equally good? 
” e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out 

of 50 negatives; Rule 2 correctly classifies 30 out of 50 
positives and 50 out of 50 negatives

” on a test set which has more negatives than positives, Rule 2 is 
preferable; 

” on a test set which has more positives than negatives, Rule 1 is 
preferable; unless…

” …the proportion of positives becomes so high that the ‘always 
positive’ predictor becomes superior!

“ Conclusion: classification accuracy is not always an 
appropriate rule quality measure
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Confusion matrix

“ also called contingency table

Classifier 1 
 Predicted positive Predicted negative  

Positive examples 40 10 50 
Negative examples 10 40 50 
 50 50 100   

Classifier 2 
 Predicted positive Predicted negative  

Positive examples 30 20 50 
Negative examples 0 50 50 
 30 70 100  
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ROC space
“ True positive rate = 

#true pos. / #pos.

” TPr1 = 40/50 = 80% 

” TPr2 = 30/50 = 60%

“ False positive rate

= #false pos. / #neg.

” FPr1 = 10/50 = 20%

” FPr2 = 0/50 = 0%

“ ROC space has 

” FPr on X axis 

” TPr on Y axis
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The ROC convex hull
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Summary of evaluation

“ 10-fold cross-validation is a standard classifier 

evaluation method used in machine learning

“ ROC analysis is very natural for rule learning 

and subgroup discovery

” can take costs into account

” here used for evaluation

” also possible to use as search heuristic
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Part III. Numeric prediction

“ Baseline

“ Linear Regression

“ Regression tree

“ Model Tree

“ kNN
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Regression Classification

Data: attribute-value description

Target variable:

Continuous

Target variable:

Categorical (nominal)

Evaluation: cross validation, separate test set, …

Error:

MSE, MAE, RMSE, …

Error:

1-accuracy

Algorithms:

Linear regression, regression 

trees,…

Algorithms:

Decision trees, Naïve Bayes, …

Baseline predictor:

Mean of the target variable

Baseline predictor:

Majority class
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Example

“ data about 80 people: Age and Height
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Test set
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Baseline numeric predictor
“ Average of the target variable
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Baseline predictor: prediction

Average of the target variable is 1.63
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Linear Regression Model

Height =    0.0056 * Age + 1.4181
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Linear Regression: prediction

Height =    0.0056 * Age + 1.4181
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Regression tree
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Regression tree: prediction
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Model tree
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Model tree: prediction
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kNN – K nearest neighbors

“ Looks at K closest examples (by age) and predicts the 

average of their target variable

“ K=3

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 20 40 60 80 100

Age

H
e

ig
h

t

Height

Prediction KNN, n=3



42

247

kNN prediction

Age Height

1 0.90

1 0.99

2 1.01

3 1.03

3 1.07

5 1.19

5 1.17
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kNN prediction

Age Height

8 1.36

8 1.33

9 1.45

9 1.39

11 1.49

12 1.66

12 1.52

13 1.59

14 1.58
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kNN prediction

Age Height

30 1.57

30 1.88

31 1.71

34 1.55

37 1.65

37 1.80

38 1.60

39 1.69

39 1.80
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kNN prediction

Age Height

67 1.56

67 1.87

69 1.67

69 1.86

71 1.74

71 1.82

72 1.70

76 1.88
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Which predictor is the best?

Age Height Baseline

Linear 

regression

Regression 

tree Model tree kNN

2 0.85 1.63 1.43 1.39 1.20 1.01

10 1.4 1.63 1.47 1.46 1.47 1.51

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.81
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Evaluating numeric prediction
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Part IV. Descriptive DM techniques

“ Predictive vs. descriptive induction

“ Subgroup discovery

“ Association rule learning

“ Hierarchical clustering
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Predictive vs. descriptive 

induction

“ Predictive induction: Inducing classifiers for solving 
classification and prediction tasks, 
” Classification rule learning, Decision tree learning, ...

” Bayesian classifier, ANN, SVM, ...

” Data analysis through hypothesis generation and testing

“ Descriptive induction: Discovering interesting 
regularities in the data, uncovering patterns, ... for 
solving KDD tasks
” Symbolic clustering, Association rule learning, Subgroup 

discovery, ...

” Exploratory data analysis
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Descriptive DM

“ Often used for preliminary explanatory data 

analysis

“ User gets feel for the data and its structure

“ Aims at deriving descriptions of characteristics 

of the data

“ Visualization and descriptive statistical 

techniques can be used
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Descriptive DM
“ Description

” Data description and summarization: describe elementary and 

aggregated data characteristics (statistics, …)

” Dependency analysis:

“ describe associations, dependencies, … 

“ discovery of properties and constraints

“ Segmentation

” Clustering: separate objects into subsets according to distance and/or 

similarity (clustering, SOM, visualization, ...)

” Subgroup discovery: find unusual subgroups that are significantly 

different from the majority (deviation detection w.r.t. overall class 

distribution)
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Predictive vs. descriptive 

induction: A rule learning 

perspective

“ Predictive induction: Induces rulesets acting as 
classifiers for solving classification and prediction 
tasks

“ Descriptive induction: Discovers individual rules 
describing interesting regularities in the data

“ Therefore: Different goals, different heuristics, 
different evaluation criteria

258

Supervised vs. unsupervised 

learning: A rule learning 

perspective

“ Supervised learning: Rules are induced from 
labeled  instances (training examples with class 
assignment) - usually used in predictive induction

“ Unsupervised learning: Rules are induced from 
unlabeled  instances (training examples with no 
class assignment) - usually used in descriptive 
induction

“ Exception: Subgroup discovery 

Discovers individual rules describing interesting 
regularities in the data from labeled examples
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Part IV. Descriptive DM techniques

“ Predictive vs. descriptive induction

“ Subgroup discovery

“ Association rule learning

“ Hierarchical clustering

260

Subgroup Discovery

Given: a population of individuals and a target 

class label (the property of individuals we are 

interested in)

Find: population subgroups that are statistically 

most `interesting’, e.g., are as large as 

possible and have most unusual statistical 

(distributional) characteristics w.r.t. the target 

class (property of interest)
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Subgroup interestingness

Interestingness criteria:

– As large as possible

– Class distribution as different as possible from 
the distribution in the entire data set

– Significant

– Surprising to the user

– Non-redundant

– Simple

– Useful - actionable

262

Subgroup Discovery: 

Medical Case Study
“ Find and characterize population subgroups with high

risk for coronary heart disease (CHD) (Gamberger, Lavrač, 
Krstačić) 

“ A1 for males: principal risk factors

CHD  pos. fam. history & age > 46

“ A2 for females: principal risk factors

CHD  bodyMassIndex > 25 & age >63

“ A1, A2 (anamnestic info only), B1, B2 (an. and physical 
examination), C1 (an., phy. and ECG)

“ A1: supporting factors (found by statistical analysis): 
psychosocial stress, as well as cigarette smoking, 
hypertension and overweight

263

Subgroup visualization

Subgroups of 

patients with 

CHD risk

[Gamberger, Lavrač

& Wettschereck, 

IDAMAP2002]
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Subgroups vs. classifiers
“ Classifiers:

” Classification rules aim at pure subgroups

” A set of rules forms a domain model

“ Subgroups:

” Rules describing subgroups aim at significantly higher proportion of 
positives

” Each rule is an independent chunk of knowledge

“ Link 

” SD can be viewed as

cost-sensitive 

classification

” Instead of FNcost we 

aim at increased TPprofit

negativespositives

true

positives

false

pos.
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Classification Rule Learning for 

Subgroup Discovery: Deficiencies

“ Only first few rules induced by the covering 

algorithm have sufficient support (coverage)

“ Subsequent rules are induced from smaller and 

strongly biased example subsets (pos. examples 

not covered by previously induced rules), which 

hinders their ability to detect population 

subgroups 

“ ‘Ordered’ rules are induced and interpreted 

sequentially as a if-then-else decision list 
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CN2-SD: Adapting CN2 Rule 

Learning to Subgroup Discovery

“ Weighted covering algorithm

“ Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights

“ Probabilistic classification

“ Evaluation with different interestingness 

measures
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CN2-SD: CN2 Adaptations

“ General-to-specific search  (beam search) for best rules 

“ Rule quality measure: 

” CN2: Laplace: Acc(Class  Cond) = 

= p(Class|Cond) = (nc+1)/(nrule+k)

” CN2-SD: Weighted Relative Accuracy

WRAcc(Class  Cond) = 

p(Cond) (p(Class|Cond) - p(Class)) 

“ Weighted covering approach (example weights)

“ Significance testing (likelihood ratio statistics)

“ Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering 

“ Standard covering approach: 
covered examples are deleted from current training set

“ Weighted covering approach:
” weights assigned to examples 

” covered pos. examples are re-weighted: 

in all covering loop iterations, store 

count i how many times (with how many 

rules induced so far) a pos. example has 

been covered: w(e,i), w(e,0)=1

“ Additive weights:  w(e,i) = 1/(i+1)

w(e,i) – pos. example e being covered i times
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Subgroup Discovery
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Subgroup Discovery
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Subgroup Discovery 
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Subgroup Discovery 
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CN2-SD: Weighted WRAcc Search 

Heuristic
“ Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights 
WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

increased coverage, decreased # of rules, approx. equal 
accuracy (PKDD-2000)

“ In WRAcc computation, probabilities are estimated 
with relative frequencies, adapt:
WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) = 

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’ )
” N’ : sum of weights of examples

” n’(Cond) : sum of weights of all covered examples

” n’(Cl.Cond) : sum of weights of all correctly covered examples

274

Part IV. Descriptive DM techniques

“ Predictive vs. descriptive induction

“ Subgroup discovery

“ Association rule learning

“ Hierarchical clustering
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Association Rule Learning
Rules: X =>Y,  if X then Y

X and Y are itemsets (records, conjunction of items), 

where items/features are binary-valued attributes)

Given: Transactions i1     i2  ………………… i50

itemsets (records) t1     1      1                 0 

t2     0      1             0

…    … ………………...  …

Find: A set of association rules in the form X =>Y

Example: Market basket analysis

beer & coke => peanuts & chips (0.05, 0.65)

“ Support:  Sup(X,Y) = #XY/#D = p(XY)

“ Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =

= p(XY)/p(X) = p(Y|X)
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Association Rule Learning: 

Examples

“ Market basket analysis

” beer & coke  peanuts & chips  (5%, 65%)                   

(IF beer AND coke THEN peanuts AND chips)

” Support 5%: 5% of all customers buy all four items

” Confidence 65%: 65% of customers that buy beer and coke 

also buy peanuts and chips

“ Insurance

” mortgage & loans & savings  insurance (2%, 62%)

” Support 2%: 2% of all customers have all four 

” Confidence 62%: 62% of all customers that have mortgage, 

loan and savings also have insurance
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Association rule learning

“ X  Y . . . IF X THEN Y, where X and Y are itemsets

“ intuitive meaning: transactions that contain X tend to contain Y

“ Items - binary attributes (features) m,f,headache, muscle pain, 

arthrotic, arthritic, spondylotic, spondylitic, stiff_less_1_hour

“ Example transactions ” itemsets formed of patient records

i1        i2  ……    … i50 

t1      1          0                   0           

t2      0          1                   0 

…      …         …                  ...  

“ Association rules

spondylitic  arthritic & stiff_gt_1_hour       [5%, 70%]

arthrotic & spondylotic  stiff_less_1_hour    [20%, 90%]
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions 

that have 

” user defined minimum support, i.e., support > MinSup, and 

” user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis 

verification
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Searching for the associations

“ Find all large itemsets

“ Use the large itemsets to generate 

association rules

“ If XY is a large itemset, compute 

r =support(XY) / support(X)

“ If r > MinConf, then X  Y holds 

(support > MinSup, as XY is large)
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Large itemsets

“ Large itemsets are itemsets that appear in at 

least MinSup transaction

“ All subsets of a large itemset are large 

itemsets (e.g., if A,B appears in at least 

MinSup transactions, so do A and B)

“ This observation is the basis for very efficient 

algorithms for association rules discovery 

(linear in the number of transactions)
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Association  vs.  Classification

rules             rules

“ Exploration of 

dependencies

“ Different combinations 

of dependent and 

independent attributes

“ Complete search (all 

rules found)

“ Focused prediction

“ Predict one attribute 

(class) from the others

“ Heuristic search (subset 

of rules found)

282

Part IV. Descriptive DM techniques

“ Predictive vs. descriptive induction

“ Subgroup discovery

“ Association rule learning

“ Hierarchical clustering
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Hierarchical clustering

“ Algorithm (agglomerative 

hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair Ci in Cj;

fuse Ci in Cj in a new cluster

Cr = Ci U Cj;

determine dissimilarities between

Cr and other clusters;

until one cluster left;

“ Dendogram:

284

Hierarchical clustering

“ Fusing the nearest pair of clusters

iC

jC

kC),( ji CCd

),( ki CCd

),( kj CCd

“ Minimizing intra-cluster 

similarity

“ Maximizing inter-cluster 

similarity

“ Computing the dissimilarities   

from the ‚new‛ cluster
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Hierarchical clustering: example

286

Results of clustering

A dendogram of 

resistance vectors

[Bohanec et al., ‚PTAH: 

A system for supporting 

nosocomial infection 

therapy‛, IDAMAP 

book, 1997]
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Part V: 

Relational Data Mining

“ Learning as search

“ What is RDM?

“ Propositionalization techniques

“ Inductive Logic Programming

288

Learning as search 

“ Structuring the state space: Representing a partial 
order of hypotheses (e.g. rules) as a graph

” nodes: concept descriptions (hypotheses/rules)

” arcs defined by specialization/generalization 
operators : an arc from parent to child exists if-
and-only-if parent is a proper most specific 
generalization of child 

“ Specialization operators: e.g., adding conditions: 
s(A=a2 & B=b1) = {A=a2 & B=b1 &  D=d1, A=a2 & B=b1 & D=d2}

“ Generalization operators: e.g., dropping 

conditions: g(A=a2 & B=b1) = {A=a2, B=b1} 

“ Partial order of hypotheses defines a lattice 
(called a refinement graph)
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Learn-one-rule as search - Structuring the 

hypothesis space: PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

...
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Learn-one-rule as heuristic search: 

PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

[9,5] (14)

[6,2] (8)

[3,3] (6) [6,1] (7)

[3,4] (7)

...

[2,0] (2)
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Learning as search 

(Mitchell’s version space model)

“ Hypothesis language  LH 

defines the state space 

“ How to structure the 

hypothesis space LH?

“ How to move from one 

hypothesis to another?

“ The version space: region 

between S (maximally 

specific) and G (maximally 

general) complete and 

consistent concept 

descriptions

too general

too specific

more
general

more
specific

complete and consistent 
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Learning as search

“ Search/move by applying 

generalization and 

specialization

“ Prune generalizations: 

” if H covers example e then 

all generalizations of H will 

also cover e (prune using 

neg. ex.)

“ Prune specializations:

” if H does not cover 

example e, no 

specialization will cover e 

(prune using if H pos. ex.)

too general

too specific

generalize

specialize

e-

e+
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Learning as search: 

Learner’s ingredients

” structure of the search space (specialization and 

generalization operators)

” search strategy

“ depth-first

“ breath-first

“ heuristic search (best first, hill-climbing, beam search)

” search heuristics 

“ measure of attribute ‘informativity’

“ measure of ‘expected classification accuracy’ (relative 

frequency, Laplace estimate, m-estimate), ...

” stopping criteria (consistency, completeness, statistical 

significance, …)
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Learn-one-rule:

search heuristics

“ Assume a two-class problem

“ Two classes (+,-),  learn rules for + class (Cl). 

“ Search for specializations R’ of a rule R = Cl  Cond 

from the RuleBase.

“ Specializarion R’ of rule R = Cl  Cond

has the form    R’ = Cl  Cond & Cond’

“ Heuristic search for rules: find the ‘best’ Cond’ to be 

added to the current rule R, such that rule accuracy is 

improved, e.g., such that Acc(R’) > Acc(R)

” where the expected classification accuracy can be 

estimated as A(R) = p(Cl|Cond)
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Learn-one-rule – Search strategy: 

Greedy vs. beam search

“ learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’ 
descendant, no backtracking
” e.g., the best descendant of the initial rule 

PlayTennis = yes 

” is rule PlayTennis = yes  Humidity=normal

“ beam search: maintain a list of k best candidates 
at each step; descendants (specializations) of 
each of these k candidates are generated, and 
the resulting set is again reduced to k best 
candidates
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Part V: 

Relational Data Mining

“ Learning as search

“ What is RDM?

“ Propositionalization techniques

“ Inductive Logic Programming
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Predictive relational DM

“ Data stored in relational databases

“ Single relation - propositional DM

” example is a tuple of values of a fixed number of 

attributes (one attribute is a class)

” example set is a table (simple field values)

“ Multiple relations - relational DM (ILP)

” example is a tuple or a set of tuples                         

(logical fact or set of logical facts)

” example set is a set of tables (simple or complex 

structured objects as field values)
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Data for propositional DM

Sample single relation data table

299

Multi-relational data made 

propositional

“ Sample                                                multi-

relation                                                 data 

table

“ Making data                             propositional:                                            

using summary                              attributes
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Relational Data Mining (ILP)
“ Learning from multiple 

tables

“ Complex relational 

problems:

” temporal data: time 

series in medicine, 

trafic control, ...

” structured data:

representation of 

molecules and their 

properties in protein 

engineering, 

biochemistry, ...
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Basic Relational Data Mining tasks

Predictive RDM

Descriptive RDM

+

-

+
+

+

+

- -

--
-

-

+ + +

++
+

H

H
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Predictive ILP

“ Given:
” A set of observations

“ positive examples E +

“ negative examples E -

” background knowledge B

” hypothesis language LH

” covers relation

“ Find:
A hypothesis H  LH, such that (given B) H
covers all positive and no negative examples

“ In logic, find H such that
” e  E + : B   H |=  e  (H is complete)

” e  E - : B   H |=/= e  (H is consistent)

“ In ILP, E are ground facts, B and H are 
(sets of) definite clauses

+ + +
+++

- - -
--

-

H
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Predictive ILP

“ Given:
” A set of observations

“ positive examples E +

“ negative examples E -

” background knowledge B

” hypothesis language LH

” covers relation

” quality criterion

“ Find:
A hypothesis H  LH, such that (given B) H is 
optimal w.r.t. some quality criterion, e.g., max. 
predictive accuracy A(H)  

(instead of finding a hypothesis H  LH, such 
that (given B) H covers all positive and no
negative examples)

+ +

++

- - - -
-

-

H

+

++
+

-
-
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Descriptive ILP

“ Given:
” A set of observations

(positive examples E +)

” background knowledge B

” hypothesis language LH

” covers relation

“ Find:
Maximally specific hypothesis H  LH, such 
that (given B) H covers all positive examples

“ In logic, find H such that c  H, c is true in 
some preferred model of B E (e.g., least 
Herbrand model M (B E ))

“ In ILP, E are ground facts, B are (sets of) 
general clauses

+ + +
+++

H
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Sample problem
Knowledge discovery

E + = {daughter(mary,ann),daughter(eve,tom)}
E - = {daughter(tom,ann),daughter(eve,ann)}

B = {mother(ann,mary), mother(ann,tom), 
father(tom,eve), father(tom,ian), female(ann), 
female(mary), female(eve), male(pat),male(tom), 
parent(X,Y)  mother(X,Y), parent(X,Y) 
father(X,Y)}

ann 

mary tom

eve ian
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Sample problem
Knowledge discovery

“ E + = {daughter(mary,ann),daughter(eve,tom)}
E - = {daughter(tom,ann),daughter(eve,ann)}

“ B = {mother(ann,mary),mother(ann,tom),father(tom,eve),
father(tom,ian),female(ann),female(mary),female(eve),
male(pat),male(tom),parent(X,Y)mother(X,Y),
parent(X,Y)father(X,Y)}

“ Predictive ILP - Induce a definite clause

daughter(X,Y)  female(X), parent(Y,X).

or a set of definite clauses

daughter(X,Y)  female(X), mother(Y,X).

daughter(X,Y)  female(X), father(Y,X).

“ Descriptive ILP - Induce a set of (general) clauses

 daughter(X,Y), mother(X,Y).

female(X) daughter(X,Y).

mother(X,Y); father(X,Y)  parent(X,Y).
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Sample problem
Logic programming

E + = {sort([2,1,3],[1,2,3])}

E - = {sort([2,1],[1]),sort([3,1,2],[2,1,3])}

B : definitions of permutation/2 and sorted/1

“ Predictive ILP

sort(X,Y)  permutation(X,Y), sorted(Y).

“ Descriptive ILP

sorted(Y)  sort(X,Y).

permutation(X,Y)  sort(X,Y)

sorted(X)  sort(X,X)
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Sample problem: 

East-West trains

309

RDM knowledge representation 

(database)
TRAIN EASTBOUND

t1 TRUE

t2 TRUE

… …

t6 FALSE

… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t1 rectangle short none 2

c2 t1 rectangle long none 3

c3 t1 rectangle short peaked 2

c4 t1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 triangle 1

l4 c4 rectangle 3

… … …

LOAD_TABLELOAD_TABLE

CAR_TABLECAR_TABLE
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ER diagram for East-West trains

TrainDirectionDirection

HasHas

Car

Shape

Length

Roof

Wheels

11

MM

HasHas Load
11 11

Number Object
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ILP representation: 

Datalog ground facts

“ Example: 
eastbound(t1).

“ Background theory:
car(t1,c1).     car(t1,c2).       car(t1,c3).    car(t1,c4).
rectangle(c1).   rectangle(c2).    rectangle(c3).  rectangle(c4).
short(c1).      long(c2).       short(c3).    long(c4).
none(c1).        none(c2). peaked(c3).    none(c4).
two_wheels(c1).  three_wheels(c2).  two_wheels(c3). two_wheels(c4).
load(c1,l1).     load(c2,l2).      load(c3,l3).    load(c4,l4).
circle(l1).      hexagon(l2).      triangle(l3).   rectangle(l4).
one_load(l1).    one_load(l2).     one_load(l3).   three_loads(l4).

“ Hypothesis (predictive ILP):

eastbound(T) :- car(T,C),short(C),not none(C).
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ILP representation: 

Datalog ground clauses

“ Example: 
eastbound(t1):-

car(t1,c1),rectangle(c1),short(c1),none(c1),two_wheels(c1),
load(c1,l1),circle(l1),one_load(l1),

car(t1,c2),rectangle(c2),long(c2),none(c2),three_wheels(c2),
load(c2,l2),hexagon(l2),one_load(l2),

car(t1,c3),rectangle(c3),short(c3),peaked(c3),two_wheels(c3),
load(c3,l3),triangle(l3),one_load(l3),

car(t1,c4),rectangle(c4),long(c4),none(c4),two_wheels(c4),
load(c4,l4),rectangle(l4),three_load(l4).

“ Background theory: empty 

“ Hypothesis: 
eastbound(T):-car(T,C),short(C),not none(C).
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ILP representation: Prolog terms

“ Example: 
eastbound([c(rectangle,short,none,2,l(circle,1)),

c(rectangle,long,none,3,l(hexagon,1)),
c(rectangle,short,peaked,2,l(triangle,1)),
c(rectangle,long,none,2,l(rectangle,3))]).

“ Background theory: member/2, arg/3

“ Hypothesis: 
eastbound(T):-member(C,T),arg(2,C,short), not arg(3,C,none).
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First-order representations

“ Propositional representations: 

” datacase is fixed-size vector of values

” features are those given in the dataset

“ First-order representations: 

” datacase is flexible-size, structured object

“ sequence, set, graph

“ hierarchical: e.g. set of sequences

” features need to be selected from potentially infinite set
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Complexity of RDM problems

“ Simplest case: single table with primary key

” example corresponds to tuple of constants

” attribute-value or propositional learning

“ Next: single table without primary key

” example corresponds to set of tuples of constants

” multiple-instance problem

“ Complexity resides in many-to-one foreign keys

” lists, sets, multisets

” non-determinate variables
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Part V: 

Relational Data Mining

“ Learning as search

“ What is RDM?

“ Propositionalization techniques

“ Inductive Logic Programming
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Rule learning: 

The standard view

“ Hypothesis construction: find a set of n rules

” usually simplified by n separate rule constructions

“ exception: HYPER

“ Rule construction: find a pair (Head, Body)

” e.g. select head (class) and construct body by 

searching the VersionSpace

“ exceptions: CN2, APRIORI

“ Body construction: find a set of m literals

” usually simplified by adding one literal at a time

“ problem (ILP): literals introducing new variables
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Rule learning revisited

“ Hypothesis construction: find a set of n rules

“ Rule construction: find a pair (Head, Body)

“ Body construction: find a set of m features
” Features can be either defined by background knowledge or 

constructed through constructive induction

” In propositional learning features may increase expressiveness 
through negation

” Every ILP system does constructive induction 

“ Feature construction: find a set of k literals
” finding interesting features is discovery task rather than classification 

task e.g. interesting subgroups, frequent itemsets

” excellent results achieved also by feature construction through 
predictive propositional learning and ILP (Srinivasan)
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First-order feature construction

“ All the expressiveness of ILP is in the features

“ Given a way to construct (or choose) first-order 

features, body construction in ILP becomes 

propositional

” idea: learn non-determinate clauses with LINUS by 

saturating background knowledge (performing 

systematic feature construction in a given language bias)
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Standard LINUS
“ Example: learning family relationships

“ Transformation to propositional form:

“ Result of propositional rule learning:
Class =  if (female(X) = true)  (parent(Y,X) = true

“ Transformation to program clause form:
daughter(X,Y)  female(X),parent(Y,X)

Training examples

daughter(sue,eve).       (+) parent(eve,sue). female(ann).

daughter(ann,pat).       (+) parent(ann,tom). female(sue).

daughter(tom,ann).      (-) parent(pat,ann). female(eve).

daughter(eve,ann).       (-) parent(tom,sue).

Background knowledge

Class Variables Propositional features

X Y f(X) f(Y) p(X,X) p(X,Y) p(Y,X) p(Y,Y) X=Y

 sue eve true true false false true false false

 ann pat true false false false true false false

 tom ann false true false false true false false

 eve ann true true false false false false false
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Representation issues (1)

“ In the database and Datalog ground fact 

representations individual examples are not 

easily separable 

“ Term and Datalog ground clause 

representations enable the separation of 

individuals

“ Term representation collects all information 

about an individual in one structured term 
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Representation issues (2)

“ Term representation provides strong 

language bias

“ Term representation can be flattened to be 

described by ground facts, using

” structural predicates (e.g. car(t1,c1), 

load(c1,l1))  to introduce substructures

” utility predicates, to define properties of 

invididuals (e.g. long(t1)) or their parts 

(e.g., long(c1), circle(l1)).

“ This observation can be used as a language 

bias to construct new features
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Declarative bias for first-order 

feature construction
“ In ILP, features involve interactions of local variables

“ Features should define properties of individuals (e.g. trains, 
molecules) or their parts (e.g., cars, atoms) 

“ Feature construction in LINUS, using the following language 
bias:
” one free global variable (denoting an individual, e.g. train)

” one or more structural predicates: (e.g., has_car(T,C)) ,each 
introducing a new existential local variable (e.g. car, atom), using either 
the global variable (train, molecule) or a local variable introduced by 
other structural predicates (car, load)

” one or more utility predicates defining properties of individuals or their 
parts: no new variables, just using variables

” all variables should be used

” parameter: max. number of predicates forming a feature
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Sample first-order features
“ The following rule has two features ‘has a short car’ and ‘has a 

closed car’: 

eastbound(T):-hasCar(T,C1),clength(C1,short),
hasCar(T,C2),not croof(C2,none).

“ The following rule has one feature ‘has a short closed car’: 

eastbound(T):-hasCar(T,C),clength(C,short),
not croof(C,none).

“ Equivalent representation: 

eastbound(T):-hasShortCar(T),hasClosedCar(T).

hasShortCar(T):-hasCar(T,C),clength(C,short).

hasClosedCar(T):-hasCar(T,C),not croof(C,none).
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Propositionalization in a nutshell

TRAIN EASTBOUND

t1 TRUE

t2 TRUE

… …

t6 FALSE

… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t1 rectangle short none 2

c2 t1 rectangle long none 3

c3 t1 rectangle short peaked 2

c4 t1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 triangle 1

l4 c4 rectangle 3

… … …

train(T) f1(T) f2(T)        f3(T) f4(T)      f5(T) 

t1 t t f t t 

t2 t t t t t 

t3 f f t f f 

t4 t f t f f 

… … …   … 

 

PROPOSITIONAL TRAIN_TABLEPROPOSITIONAL TRAIN_TABLE

Propositionalization task

Transform a multi-relational 

(multiple-table)

representation to a 

propositional representation

(single table)

Proposed in ILP systems 

LINUS (1991), 1BC (1999), …
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Propositionalization in a nutshell

TRAIN EASTBOUND

t1 TRUE

t2 TRUE

… …

t6 FALSE

… …

TRAIN_TABLETRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t1 rectangle short none 2

c2 t1 rectangle long none 3

c3 t1 rectangle short peaked 2

c4 t1 rectangle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 triangle 1

l4 c4 rectangle 3

… … …

train(T) f1(T) f2(T)        f3(T) f4(T)      f5(T) 

t1 t t f t t 

t2 t t t t t 

t3 f f t f f 

t4 t f t f f 

… … …   … 

 

PROPOSITIONAL TRAIN_TABLEPROPOSITIONAL TRAIN_TABLE

Main propositionalization step:

first-order feature construction

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L),

loadShape(L,circle)

f3(T) :- ….

Propositional learning:

t(T)  f1(T), f4(T)

Relational interpretation:

eastbound(T) 

hasShortCar(T),hasClosedCar(T).
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LINUS revisited

“ Standard LINUS: 

” transforming an ILP problem to a propositional problem

” apply background knowledge predicates

“ Revisited LINUS: 

” Systematic first-order feature construction in a given 

language bias

“ Too many features?

” use a relevancy filter (Gamberger and Lavrac)
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LINUS revisited:

Example: East-West trains

Rules induced by CN2, using 190 first-order features with up to two 
utility predicates:

eastbound(T):- westbound(T):-

hasCarHasLoadSingleTriangle(T), not hasCarEllipse(T),

not hasCarLongJagged(T),  not hasCarShortFlat(T),

not hasCarLongHasLoadCircle(T). not hasCarPeakedTwo(T).

Meaning:

eastbound(T):-

hasCar(T,C1),hasLoad(C1,L1),lshape(L1,tria),lnumber(L1,1),

not (hasCar(T,C2),clength(C2,long),croof(C2,jagged)),

not (hasCar(T,C3),hasLoad(C3,L3),clength(C3,long),lshape(L3,circ)).

westbound(T):-

not (hasCar(T,C1),cshape(C1,ellipse)),

not (hasCar(T,C2),clength(C2,short),croof(C2,flat)),

not (hasCar(T,C3),croof(C3,peak),cwheels(C3,2)).
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Part V: 

Relational Data Mining

“ Learning as search

“ What is RDM?

“ Propositionalization techniques

“ Inductive Logic Programming
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ILP as search of program clauses

“ An ILP learner can be described by
” the structure of the space of clauses

“ based on the generality relation 
“ Let C and D be  two clauses. 

C is more general than D (C | D) iff 

covers(D)  covers(C) 

“ Example: p(X,Y)  r(Y,X) is more general than 

p(X,Y)  r(Y,X), q(X) 

” its search strategy

“ uninformed search (depth-first, breadth-first, iterative 
deepening)

“ heuristic search (best-first, hill-climbing, beam search)

” its heuristics

“ for directing search

“ for stopping search (quality criterion)
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“ Semantic generality
Hypothesis H1 is semantically more general than H2 w.r.t. 
background theory B if and only if  B  H1 |= H2

“ Syntactic generality or -subsumption
(most popular in ILP)

” Clause c1  -subsumes c2 (c1   c2) 

if and only if  : c1  c2

” Hypothesis H1   H2

if and only if c2  H2 exists c1  H1 such that c1   c2

“ Example
c1 = daughter(X,Y)  parent(Y,X)
c2 = daughter(mary,ann)  female(mary),

parent(ann,mary),
parent(ann,tom).

c1  -subsumes c2 under  = {X/mary,Y/ann}

ILP as search of program clauses 
332

The role of subsumption in ILP

“ Generality ordering for hypotheses

“ Pruning of the search space:

” generalization

“ if C covers a neg. example then its generalizations need 

not be considered

” specialization

“ if C doesn’t cover a pos. example then its specializations 

need not be considered

“ Top-down search of refinement graphs

“ Bottom-up search of the hypo. space by

” building least general generalizations, and

” inverting resolutions
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Structuring the 

hypothesis space

too general

too specific

more
general

more
specific

flies(X) 

flies(X)  bird(X), 

normal(X)

flies(X)  bird(X)
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Two strategies for learning

“ General-to-specific

” if -subsumption is used then refinement 

operators

“ Specific-to-general search

” if -subsumption is used then lgg-operator or 

generalization operator
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“ Two strategies for learning

” Top-down search of refinement graphs

” Bottom-up search

“ building least general generalizations

“ inverting resolution (CIGOL)

“ inverting entailment (PROGOL)

ILP as search of program clauses
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More general 

(induction)

More 

specific



57

337

Generality ordering of clauses

Training examples Background knowledge

daughter(mary,ann).         parent(ann,mary). female(ann.).

daughter(eve,tom).        parent(ann,tom). female(mary).

daughter(tom,ann).          parent(tom,eve). female(eve).

daughter(eve,ann).           parent(tom,ian).

daughter(X,Y) 

daughter(X,Y)  X=Y daughter(X,Y) 
parent(Y,X)

daughter(X,Y) 
parent(X,Z)

daughter(X,Y)  female(X)

daughter(X,Y) 
female (X)
female(Y)

daughter(X,Y) 
female(X)

parent(Y,X)

...
...

... ...

Part of the refinement 

graph for the family 
relations problem.
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Greedy search of the best clause

daughter(X,Y) 

daughter(X,Y)  X=Y daughter(X,Y) 
parent(Y,X)

daughter(X,Y) 
parent(X,Z)

daughter(X,Y)  female(X)

daughter(X,Y) 
female (X)
female(Y)

daughter(X,Y) 
female(X)

parent(Y,X)

...
...

... ...

2/4

0/0
2/3

2/3

1/2 2/2

Training examples Background knowledge

daughter(mary,ann).         parent(ann,mary). female(ann.).

daughter(eve,tom).        parent(ann,tom). female(mary).

daughter(tom,ann).          parent(tom,eve). female(eve).

daughter(eve,ann).           parent(tom,ian).
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FOIL

“ Language:   function-free normal programs 
recursion, negation, new variables in the body, no 
functors, no constants (original)

“ Algorithm:   covering

“ Search heuristics:   weighted info gain

“ Search strategy:   hill climbing

“ Stopping criterion:   encoding length restriction

“ Search space reduction:   types, in/out modes 
determinate literals

“ Ground background knowledge, extensional 
coverage

“ Implemented in C
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Part V: Summary

“ RDM extends DM by allowing multiple tables 

describing structured data

“ Complexity of representation and therefore of 

learning is determined by one-to-many links

“ Many RDM problems are individual-centred 

and therefore allow strong declarative bias


