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SOCIAL NETWORK 
ANALYSIS

Social network analysis focuses on interpreting
patterns of social ties among people, groups of
people, organizations, and countries.
A typical domain is a group of individuals and their
characteristics and the structure of their ties.
Program Pajek is a professional software for
performing social network analysis, developed by V. 
Batagelj and A. Mrvar (Department of Mathematics, 
Faculty of mathematics and physics, University of 
Ljubljana)
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THE DOMAIN: ILPnet2
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THE DOMAIN: ILPnet2
Network of Excellence in Inductive Logic 
Programming (1998-2002)
Consisting of 37 universities and research institutes
Successor of ILPnet (1993-1996)
http://www.cs.bris.ac.uk/~ILPnet2/
Basic characteristics: 589 authors, 1046 co-
authorships, 1147 publications from 1970 to 2003
Goals 1. Who are the most important authors in the area?

2. Are there any closed groups of authors?
3. Is there any person in-between most of these groups?
4. Is this same person also very important?

http://www.cs.bris.ac.uk/~ILPnet2/
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ILPnet2 network
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ILPnet2 labeled network
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COHESION IN 
SOCIAL NETWORKS
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Outline of the Presentation

What is Cohesion? 
1. Density
2. Degree
3. Components
4. Cores
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COHESION
COHESION = an attractive “force” between
individuals
SOCIAL NETWORKS ⇒ dense pockets of people 
who »stick together« = COHESIVE SUBGROUPS. 
The first concern of social network analysis ⇒ to 
investigate who is related and who is not.
HYPOTHESIS = people involved are joined by more 
than interaction.
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DENSITY

Density of the network = the number of lines in 
a simple network, expressed as a proportion
of the maximum possible number of lines

all possible lines = 15

number of lines = 6

Density = 6/15 = 0.4
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inversely related to network size ⇒ the larger 
the social network, the lower the density

ILPnet2 network Density = number of lines / 
maximum possible number of lines = 

= 1046 / 173166 = 0.0060
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DEGREE

A degree of a vertex = the number of lines
incident with it.

Distribution of degree in the ILPnet2 network of co-authorships
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ILPnet2 network
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ILPnet2 network – removed lines
with value lower than 2
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ILPnet2 network – removed lines
with value lower than 2 and reducted
for vertices with degree lower than 1
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ILPnet2 network – removed lines
with value lower than 3
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ILPnet2 network – removed lines with
value lower than 3 and reducted for
vertices with degree lower than 1
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ILPnet2 network – removed lines
with value lower than 10
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ILPnet2 network – removed lines with
value lower than 10 and reducted for
vertices with degree lower than 1
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COMPONENTS

Components identify cohesive subgroups in a 
straightforward manner - each vertex belongs 
to exactly one component. 
weakly connected networks = all vertices are 
connected by a semipath
strongly connected networks = all vertices 
are connected by a path 
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semiwalk = we don`t consider
the direction of the arcs (from
v5→v3→v1) 
walk = we have to follow the
directions of the arcs (v5→v3) 
semipath = semiwalk in which no 
vertex in between the first and
last vertex of the semiwalk
occurs more than once
(v5→v3→v4→v5→v3)
path = walk in which no vertex in 
between the first and last vertex
of the walk occurs more than
once (v5→v3)

v4
v5

v3

v2

v1

ILPnet2 network is undirected
⇓

strongly/weakly connected
network
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110 Components in ILPnet2 network
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Zoomed component
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110 Components in ILPnet2 network
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Zoomed component
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110 Components in ILPnet2 network
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Zoomed component
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110 Components in ILPnet2 network



Ljubljana, January 2007 Sergeja Sabo, David Fabjan, Miha Grčar 30

Zoomed component
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110 Components in ILPnet2 network
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Zoomed component
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110 Components in ILPnet2 network
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Zoomed component



Ljubljana, January 2007 Sergeja Sabo, David Fabjan, Miha Grčar 35

Zoomed component
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CORES

When we try to find cores we pay no attention
to the degree of one vertex but to the degree
of all vertices within a cluster ⇒ these 
clusters are called k-cores, where k indicates 
the minimum degree of each vertex within the 
core
A k-core is not necessarily a cohesive group
itself.
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ILPnet2 network with 7 cores – each
color represents one core
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Zoomed k-core
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Zoomed k-core
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Zoomed k-core
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Nested cores:
a vertex in a 3-core (red-colored dots) 
is also part of a 2-core (green-colored
dot), but not all members of a 2-core
belong to a 3-core
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BROKERAGE
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OUTLINE OF THE 
PRESENTATION

Center and Periphery:

- Degree centrality/centralization
- Closeness centrality/centralization
- Betweenness centrality/centralization

Brokers and Bridges
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CENTER AND 
PERIPHERY
Social networks:

- looking for a way of flow of the information
- ways of diffusion and retrival of the information

Concepts of social network analisys:

- centrality (individual vertices)
- centralization (entire network)
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COMMUNICATION TIES  
(an example)
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COMMUNICATION TIES 
(an example)

A group of people voted with whom they 
communicate (connections) 

Information may easily reach vertices (people) who 
are central in the communication network 

Simplest indicator of centrality of vertex is the
number of its neighbors (connected)

Problem: Given a fixed number of lines what is the 
most efficient structure to exchange the information?
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DISTANCE

b) line network

a) star network
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Distance – degree
centrality/centralization
reachability of a vertex inside a network

In this case star network the most efficient structure 
(given the fix number of lines)
Network is more centralized if the vertices vary more 
with respect to their centrality. More variation in centrality
scores of verices yields a more centralized network.

Defining degree of centralization

Who has the more sources of information at its disposal?
The degree centrality of vertex is its degree
Degree centralization of a network is the variation in the
degrees of vertices divided by the maximum degree
which is posible in the network of the same size
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Distance – degree centrality/centralization
reachability of a vertex inside network

a) star network (most efficient) degree
centralizaton: 

v5 degree = 4 (max degree)
v1 to v4 degree = 1 (min degree) 

=> v5 contributes 1x (4-4)  and v2 to v4 
contributes 4x (4-1) => so 12 is the
maximum degree variations

=> 12/12 = 1 max degree centralization

b) line network:

v1  and v2  degree = 1
v3, v4 and v5 degree = 2 max degree in this

network

=> v1 and v2 contributes 2 x  (2 – 1) and v3 to v5 
contibutes 3 x (2 – 2)

=> 2 / 12 (max degree in the network of the
same size) = 0,17

1
5

43

2 1
5

43

2
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COMMUNICATION TIES
an example
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Distance – degree
centrality/centralization
reachability of a vertex inside network

Using “Pajek” on our simple network: Net > Partitions > 
Degree => centralization degree of network

All degree centrality of 1. C:\DownLoads\Firefox\Pajek -
All data\Sawmill\Sawmill.net (36)
---------------------------------------------------------------------------
---
Working...
-------------------------------------------
Network All Degree Centralization = 0.28908
-------------------------------------------
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Distance – degree
centrality/centralization

Using “Pajek” on our simple network: Net > Partitions > Degree => degree centrality of vertices

1.                      0.0285714 - HP-1
2.                      0.0857143 - HP-2
3.                      0.0285714 - HP-3
4.                      0.1142857 - HP-4
5.                      0.1428571 - HP-5
6.                      0.0857143 - HP-6
7.                      0.1428571 - HP-7
8.                      0.1142857 - HP-8
9.                      0.0857143 - HP-9

10.                      0.0571429 - HP-10
11.                      0.0571429 - HP-11
12.                      0.3714286 - HM-1 (Juan)
13.                      0.1142857 - HM-2
14.                      0.1142857 - HM-3
15.                      0.0571429 - HM-4
16.                      0.1142857 - HM-5
17.                      0.0857143 - HM-6
18.                      0.0857143 - HM-7
19.                      0.0857143 - HM-8
20.                      0.1714286 - HM-9
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Distance – degree 
centrality/centralization
on our assignment IlpNet2 (all vertices)
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Distance – degree 
centrality/centralization
on our assignment IlpNet2 (reduced)

Who are the most central persons in network; who 
has the most collaborations?

First we reduced number of vertices to those connected 
with min two neighbors
Net > Transform > Reduction > Degree > All (min. Degree 
of vertices < 2)
From 589 to 416 vertices

We removed people who wrote only one article by themselves 
or pairs of people that wrote one article together
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Distance – degree 
centrality/centralization
on our assignment IlpNet2 (reduced)
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Distance – degree centrality/centralization
on our assignment IlpNet2 reduced > 
centrality centralization

Centralization of the network:

Net > Partitions > Degree > All

All degree centrality of 2. All (recursive) degree reduction of N1 [2] (416)
------------------------------------------------------------------------------
Working...
-------------------------------------------
Network All Degree Centralization = 0.10282

Top 20 central persons in IlpNet2 (sorted using excel)

1. 0.1132530 - MUGGLETON,S.
2.  0.1036145 - DZEROSKI,S.
3.  0.0722892 - BLOCKEEL,H.
4. 0.0722892 - RAEDT,L.
5.  0.0650602 - LAVRAC,N.
6.  0.0481928 - FLACH,P.
7.  0.0457831 - LAER,W.
8.  0.0457831 - SRINIVASAN,A.
9.  0.0433735 - WROBEL,S.
10. 0.0433735 - BRUYNOOGHE,M.

11. 0.0409639 - PAGE,C.
12. 0.0385542 - KING,R.
13. 0.0385542 - JACOBS,N.
14. 0.0361446 - STEPANKOVA,O.
15. 0.0337349 - RAMON,J.
16. 0.0337349 - DEHASPE,L.
17. 0.0337349 - GYIMOTHY,T.
18. 0.0337349 - BERGADANO,F.
19. 0.0313253 - KAZAKOV,D.
20. 0.0289157 - ZUPANIC,D.
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Distance – Geodesic

Two vertices (people) are connected if path exists form one to 
another

• In undirected network the distance is the number of lines or steps in 
the shortest path that connect two vertices  together

• In directed network distance can be different in 
reverse way (one-way street example)

A geodesic is the shortest path between two vertices

• The distance from vertex u to vertex v is the length of the geodesic u 
to v.

u v
a

b

c
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Distance – closeness 
centrality/centralization
reachability of a vertex inside network

Closeness centralization is the variation in the closeness centrality of vertices divided 
by the maximum variation in the closeness centrality scores possible in a network of 
the same size. In our example it is of course 1

We see that the problem arises if all vertices are not (strongly) connected! 

1
5

43

2

The closeness centrality of a vertex is the number of all other vertices divided by the 
sum of all distances between the vertex and all others

v5: 4 / 4 =1

v1 to v4: 4 / 1+2+2+2 = 4 / 7
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Distance – closeness 
centrality/centralization
IlpNet2 using “Pajek”
Q: I’ll go and work abroad in the institute; to which persons 

(vertices) should I turn to if I want to work on a subject that 
person that I trust (vertex) have at least three articles on?

an example of components
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Distance – closeness 
centrality/centralization
IlpNet2 using “Pajek”
Q: I’ll go and work abroad in the institute; to which persons 

(vertices) should I turn to if I want to work on a subject that 
person that I trust (vertex) have at least three articles on?

First we reduced number of vertices with less than three articles

Net > Transform > Reduction > Degree > All (min. Degree of 
vertices < 4)
From 589 to 143 vertices

Calculate closeness centrality (closeness centralization is not 
possible in our example since the network is not (strongly 
connected)

Net > Vector > Centrality > Closeness 
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Distance – closeness 
centrality/centralization
IlpNet2 using “Pajek”

A: I’ll look into subjects of the articles these vertices (people) 
and if it’ll match I’ll try and work with him / her

1. 0.3996198 - RAEDT,L.
2. 0.3758981 - DZEROSKI, S.
3. 0.3741894 - MUGGLETON, S.
4. 0.3415837 - LAER, W.
5. 0.3360069 - PAGE, C.
6. 0.3332861 - JACOBS,N.
7. 0.3279748 - LAVRAC, N.
8. 0.3215691 - WROBEL, S.
9. 0.3178443 - BLOCKEEL, H.
10. 0.3142049 - BRUYNOOGHE, M.

11. 0.3142049 - KAZAKOV, D.
12. 0.3106478 - DEHASPE, L.
13. 0.3071704 - FLACH, P.
14. 0.3037700 - RAMON, J.
15. 0.3015446 - CUSSENS, J.
16. 0.2993516 - BRATKO, I.
17. 0.2961211 - DRIESSENS, K.
18. 0.2919208 - WEBER, I.
19. 0.2898651 - MOURE, C.
20. 0.2898651 - MOLINA, M.



Ljubljana, January 2007 Sergeja Sabo, David Fabjan, Miha Grčar 62

Distance – betweenness
centrality/centralization

The betweenness centrality of a vertex is the proportion of all geodesics between pairs of other 
vertices that include this vertex

Betweenness centralization is the variation in the betweenness centrality of vertices divides by the 
maximum variation in betweenness centrality scores in the network of the same size.

In social network : to what extent may a person (vertice) control the flow of informaton due to the 
his / her position inside the communication network?

1
5

43

2 v5: 1

v1 to v4:0
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Distance – betweenness
centrality/centralization
IlpNet2 using “Pajek”

Q: I discovered something new in the area, to whom to 
turn to in a social network to disperse the quickest 
possible way information about my discovery

Net > Vector > Centrality > Betweenness

Network Betweenness Centralization = 0.09198
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A: This are top twenty persons with ability to disperse 
information quickly 

Distance – betweenness
centrality/centralization
IlpNet2 using “Pajek”

1.  0.0931813 - MUGGLETON, S.
2.  0.0742590 - RAEDT, L.
3.  0.0546139 - DZEROSKI, S.
4.  0.0459601 - WROBEL, S.
5.  0.0375969 - PAGE, C.
6.  0.0343720 - FLACH, P.
7.  0.0234424 - ADE, H.
8.  0.0218422 - BLOCKEEL, H.
9.  0.0192772 - LAVRAC, N.
10. 0.0181330 - STEPANKOVA, O.

11. 0.0178831 - ROUVEIROL, C.
12. 0.0170300 - BERGADANO, F.
13. 0.0157335 - BOSTROM, H.
14. 0.0153786 - FURUKAWA, K.
15. 0.0152876 - BAIN, M.
16. 0.0143174 - GYIMOTHY, T.
17. 0.0119656 - SHAVLIK, J.
18. 0.0110439 - CHENG, S.
19. 0.0107273 - SRINIVASAN, A.
20. 0.0106385 - LAER, W.
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Distance – betweenness centrality/centralization
IlpNet2 using “Pajek”, reduced number of 
vertices and multiplied vector for better viewing
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Broker and Bridges
The bridges and lines who bridge structural holes between other 
have more control and perform better 

A bridge is a line whose removal increases the number of 
components in the network

Deleting a vertex from a network means that the vertex and all lines 
incident with this vertex are removed from the network

A cut-vertex is a vertex whose deletion increases the number of 
components in the network

A bi-component is a component of minimum size of three that does 
not contain a cut-vertex 
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Broker and Bridges
simple example using “Pajek”
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Broker and Bridges
IlpNet2

Who are the bridges and lines in IlpNet2 who 
bridge structural holes

Net > Components > Bi-Components (with a 
minimum size of 2 so we can look for lines 
that represents bridges) 
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Broker and Bridges
IlpNet2 using “Pajek”
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Broker and Bridges
IlpNet2 – enlarged part
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Broker and Bridges
IlpNet2

Who are the bridges and lines in IlpNet2 who bridge structural 
holes, articles that two persons work together on?
Net > Components > Bi-Components (with a minimum size of 2 so 
we can look for lines that represents bridges) 

Root (449)
1 (3)
2 (3)
3 (11)
4 (4)
5 (3)
6 (4)

...
25(2)
26(2)

Bridges are bi components of size two in an undirected network, so 
we can easily find them 

1.  11 - MUGGLETON, S.
2.  7  - FLACH, P.
3.  6  - BOSTROM, H.
4.  6  - CHENG, S.
5.  5  - ROUVEIROL, C.
6.  5  - PARALIC, J.
7.  4  - ZAVERUCHA, G.
8.  4  - VRAIN, C.
9.  4  - RAEDT, L.
10. 4  - PAGE, C.
11. 4  - SAMMUT, C.
12. 3  - POPELINSKY, L
13. 3  - OHWADA, H.

14. 3  - KIETZ, J.
15. 3  - SEBAG, M.
16. 3  - KRAMER, S.
17. 3  - FURUKAWA, K.
18. 3  - KAKAS, A.
19. 3  - GIORDANA, A.
20. 3  - MORIK, K.
21. 3  - PAZZANI, M.
22. 2  - RIGUZZI, F.
23. 2  - WROBEL, S.
24. 2  - HORVATH, T.
25. 2  - TURAN, G.



Ljubljana, January 2007 Sergeja Sabo, David Fabjan, Miha Grčar 72

RANKING IN 
SOCIAL NETWORKS
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Outline

I. Prestige
Structural prestige, social prestige, correlation
Ways of calculating structural prestige

II. Ranking
Triad census
Acyclic decomposition
Symmetric-acyclic decomposition
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I. Prestige
Prestigious people 

People who receive many positive in-links 
Structural prestige measures

Popularity or in-degree
(Restricted) input domain
Proximity prestige

Structural prestige ≠ social prestige (social status)
Correlation between structural and social prestige

Pearson’s correlation coefficient
Spearman’s rank correlation coefficient
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Popularity or in-degree

0 3
1 2

0

0

01
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Input domain
Input domain size

How many nodes are path-connected to a particular node?
Overall structure of the network is taken into account

Problematic in a well-connected network

0 7
3 2

0

0

01
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Restricted input domain
Resolves the input-domain issue in a 
well-connected network

Issue: the choice of the maximum distance is 
quite arbitrary

0 5
3 2

0

01
0

Maximum distance = 2
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Proximity prestige

Eliminates the maximum-distance parameter
Closer neighbors are weighted higher

Proximity prestige = Input domain size / Number of nodes
Average path-distance to the node

7 / 8
(3+3+2+2+1+1+1) / 7(3+3(3+3+2+2(3+3+2+2+1+1+1

0.47
0.23 0.25

0

0
0

0

0.13

= 0.47
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Structural prestige
ILPnet2 dataset top 25 
28 MUGGLETON, S. H.

21 RAEDT, L. D.

20 DZEROSKI, S.

17 LAVRAC, N.

17 BLOCKEEL, H.

12 FLACH, P. A.

12 SRINIVASAN, A.

11 GYIMOTHY, T.

10 JACOBS, N.

10 BERGADANO, F.

9 WROBEL, S.

9 STEPANKOVA, O.

9 ITOH, H.

9 ADE, H.

8 KING, R. D.

8 OHWADA, H.

8 BRUYNOOGHE, M.

8 BOSTROM, H.

8 KRAMER, S.

8 FURUKAWA, K.

8 CSIRIK, J.

7 HORVATH, T.

7 ESPOSITO, F.

7 SHOUDAI, T.

7 DEHASPE, L.

152 LAMMA, E.

152 RIGUZZI, F.

152 PEREIRA, L. M.

152 RAMON, J.

152 FLACH, P. A.

152 LAVRAC, N.

152 STRUYF, J.

152 BLOCKEEL, H.

152 DEHASPE, L.

152 LAER, W. V.

152 BRUYNOOGHE, M.

152 DZEROSKI, S.

152 RAEDT, L. D.
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II. Ranking
We discuss techniques to extract discrete ranks 
from social relations
Triad analysis helps us determine if our network is 
biased towards…

Unrelated clusters (cluster = clique)
Ranked clusters
Hierarchical clusters

Recipes for determining the hierarchy
Acyclic decomposition
Symmetric-acyclic decomposition
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Triad analysis

Triads
Atomic network structures (local)
16 different types
M-A-N naming convention

Mutual positive
Asymmetric 
Null
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All 16 types of triads
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Triad census

6 balance-theoretic models
Balance
Clusterability
Ranked clusters
Transitivity
Hierarchical clusters
(Theoretic model)

Triad census: triads found in the network, arranged 
by the balance-theoretic model to which they belong

Restricted to

Unrestricted

Less and less restricted

Unrelated clusters

Ranked clusters

Hierarchical clusters



Ljubljana, January 2007 Sergeja Sabo, David Fabjan, Miha Grčar 84

Triad census
ILPnet2 dataset
------------------------------------------------------------------------------------------------------

Type    Number of triads (ni)        Expected (ei)             (ni-ei)/ei Model
------------------------------------------------------------------------------------------------------

3 - 102                247225              1292.72                 190.24     Balance
16 - 300                   112                 0.00          1539118270.84     Balance

------------------------------------------------------------------------------------------------------
1 - 003              33404551          33159112.00                 0.01     Clusterability

------------------------------------------------------------------------------------------------------
4 - 021D                   36              1292.72                 -0.97     Ranked Clusters
5 - 021U                 1176              1292.72                 -0.09     Ranked Clusters
9 - 030T                   39                 9.32                 3.18     Ranked Clusters
12 - 120D                   91                 0.02                5415.95     Ranked Clusters
13 - 120U                   83                 0.02                4939.74     Ranked Clusters

------------------------------------------------------------------------------------------------------
2 - 012                228351            717207.24                 -0.68     Transitivity

------------------------------------------------------------------------------------------------------
14 - 120C                    1                 0.03                 28.76     Hierarchical Clusters
15 - 210                    64                 0.00              528411.66     Hierarchical Clusters

------------------------------------------------------------------------------------------------------
6 - 021C                  182              2585.44                 -0.93     Forbidden
7 - 111D                  719                 9.32                 76.14     Forbidden
8 - 111U                   63                 9.32                 5.76     Forbidden
10 - 030C                    0                 3.11                 -1.00     Forbidden
11 - 201                   121                 0.02                7201.76     Forbidden

------------------------------------------------------------------------------------------------------
Chi-Square: 172464018511.5997***
7 cells (43.75%) have expected frequencies less than 5.
The minimum expected cell frequency is 0.00.
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Acyclic decomposition
Cyclic networks (strong components) are 
clusters of equals
Acyclic networks perfectly reflect hierarchy
Recipe

Partition the network into strong components 
(i.e. clusters of equals)
Create a new network in which each node 
represents one cluster
Compute the maximum depth of each node to 
determine the hierarchy
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Acyclic decomposition
An example
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Acyclic decomposition
An example

(0) (2)

(1)

The maximum depth of a node determines its position in the hierarchy
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Acyclic decomposition 
ILPnet2 dataset 
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Acyclic decomposition
ILPnet2, hierarchical view
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Acyclic decomposition
ILPnet2, hierarchical view (people)

1. Remove 
inter-cluster 

arcs

2. Convert bidirected
intra-cluster arcs into 

edges

3. Remove all 
remaining arcs
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Acyclic decomposition
ILPnet2, hierarchical view (people)
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Symmetric-acyclic 
decomposition

Strong components are not strict enough to 
detect clusters in the triad-census sense
Symmetric-acyclic decomposition extracts 
clusters of vertices that are connected both 
ways
After the clusters are identified, we can follow 
the same steps as in acyclic decomposition 
to determine the hierarchy
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Symmetric-acyclic decomp.
An example
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Reference

Batagelj V., Mrvar A., de Nooy W. (2004): 
Exploratory Network Analysis with Pajek. 
Cambridge University Press
Some figures used in the presentation are 
taken from this book
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