Social Network Analysis

Course: New Media and Knowledge Management

Lecturer: Prof. Dr. Nada Lavrač

Slide Design: Sergeja Sabo, David Fabjan and Miha Grčar

Slide review and correction: Jure Ferlež

Ljubljana, January 2007

Overview

- 1. Introduction to social network analysis
- 2. Domain: Co-authorship graph: ILPnet2
- 3. Cohesion
- 4. Brokerage
- 5. Ranking

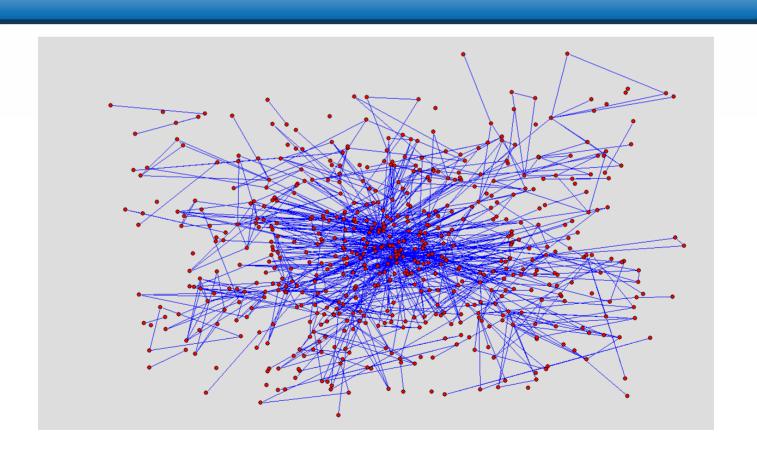
SOCIAL NETWORK ANALYSIS

- Social network analysis focuses on interpreting patterns of social ties among people, groups of people, organizations, and countries.
- A typical domain is a group of individuals and their characteristics and the structure of their ties.
- Goals:
 - 1. COHESION
 - 1. How many separate research groups do exits?
 - 2. How connected are the researchers with each other?
 - BROKERAGE
 - 1. Who are the most influential authors?
 - 2. Who are the authors who are responsible for ideas trading across the community?
 - 3. RANKING
 - 1. Who are the most prestigeus authors in the area?
 - 2. Is there a census on who are the most important authors

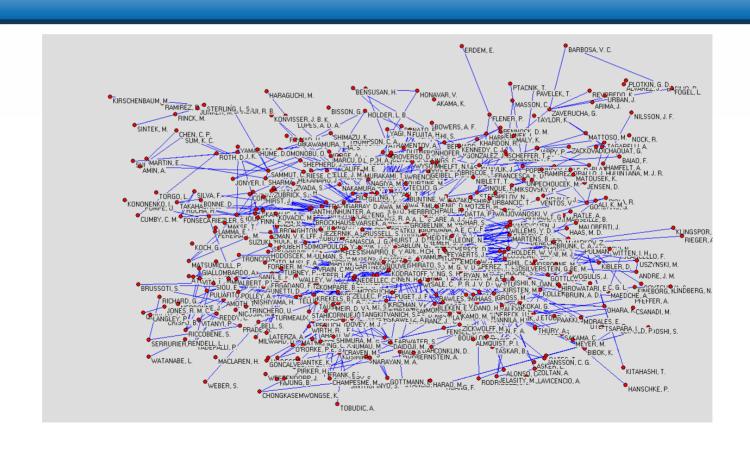
THE DOMAIN: ILPnet2

- Network of Excellence in Inductive Logic Programming (1998-2002)
- http://www.cs.bris.ac.uk/~ILPnet2/
- Basic characteristics: 589 authors, 1046 coauthorships, 1147 publications from 1970 to 2003

ILPnet2 network



ILPnet2 labeled network



COHESION

What is Cohesion?

- 1. Density
- 2. Degree
- 3. Components
- 4. Cores

COHESION

- COHESION = an attractive "force" between individuals
- SOCIAL NETWORKS ⇒ dense pockets of people who »stick together« = COHESIVE SUBGROUPS.
- The first concern of social network analysis
 to investigate who is related and who is
 not.

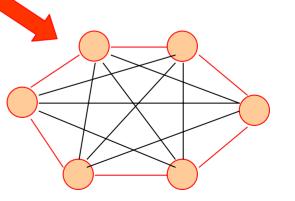
DENSITY

Density of the network = the number of lines in a simple network, expressed as a proportion of the maximum possible number of lines

•all possible lines = 15

•number of lines = 6

•Density = 6/15 = 0.4



DENSITY

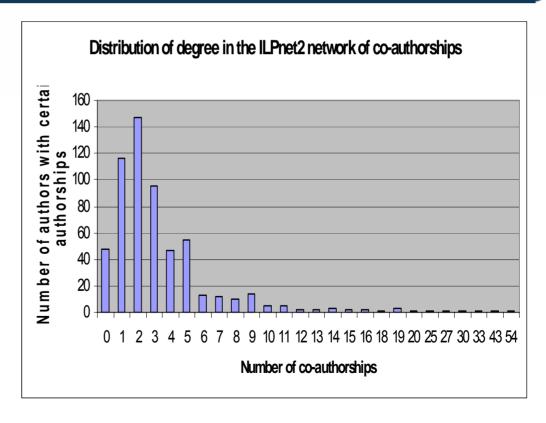
 inversely related to network size ⇒ the larger the social network, the lower the density

 ILPnet2 network Density = number of lines / maximum possible number of lines =

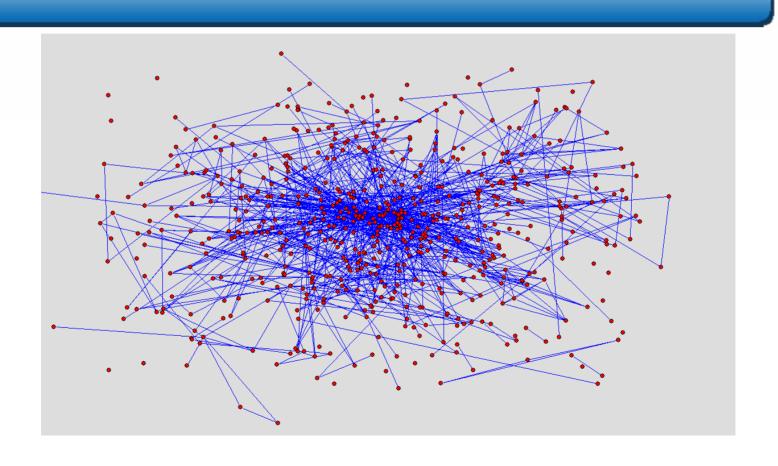
= 1046 / 173166 = 0.0060

DEGREE

 A degree of a vertex = the number of lines incident with it.

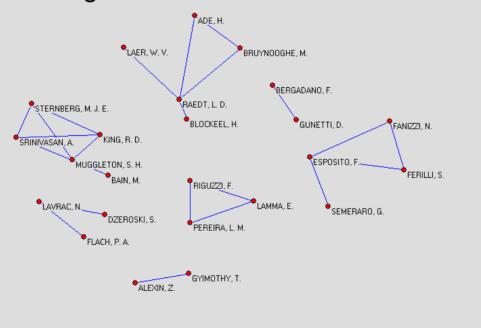


ILPnet2 network



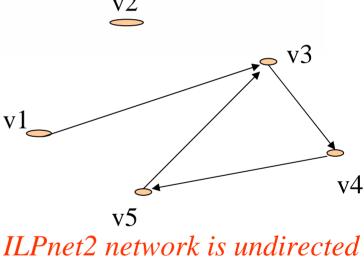
ILPnet2 network

 removed lines with value lower than 10 and reducted for vertices with degree lower than 1



WALKS AND PATHS

- semiwalk = we don't consider the direction of the arcs (from $v5\rightarrow v3\rightarrow v1)$
- walk = we have to follow the directions of the arcs ($v5\rightarrow v3$)
- semipath = semiwalk in which no vertex in between the first and last vertex of the semiwalk occurs more than once $(v5\rightarrow v3\rightarrow v4\rightarrow v5\rightarrow v3)$
- path = walk in which no vertex in between the first and last vertex of the walk occurs more than once $(v5\rightarrow v3)$



strongly/weakly connected network

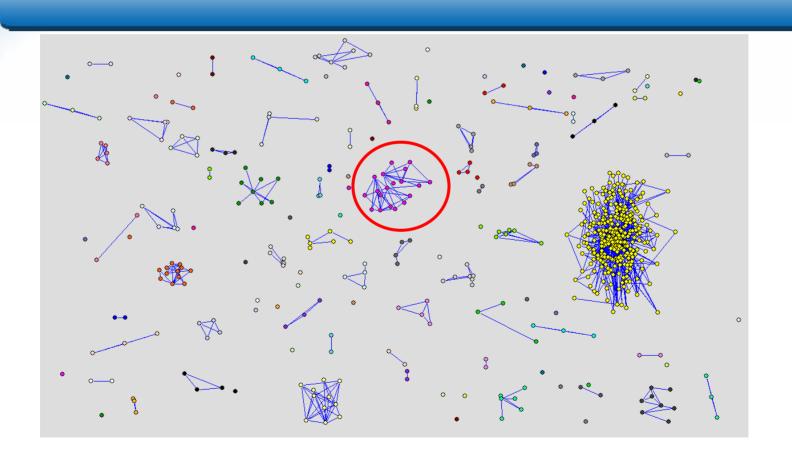
COMPONENTS

- Components identify cohesive subgroups in a straightforward manner - each vertex belongs to exactly one component.
- weakly connected networks = all vertices are connected by a semipath
- strongly connected networks = all vertices are connected by a path

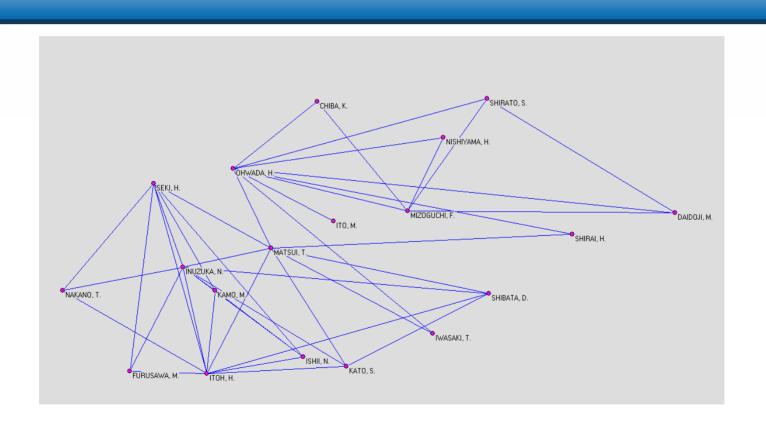
COMPONENTS

- A weak component is a maximal weakly connected subnetwork
- A strong component is a maximal strongly connected subnetwork.

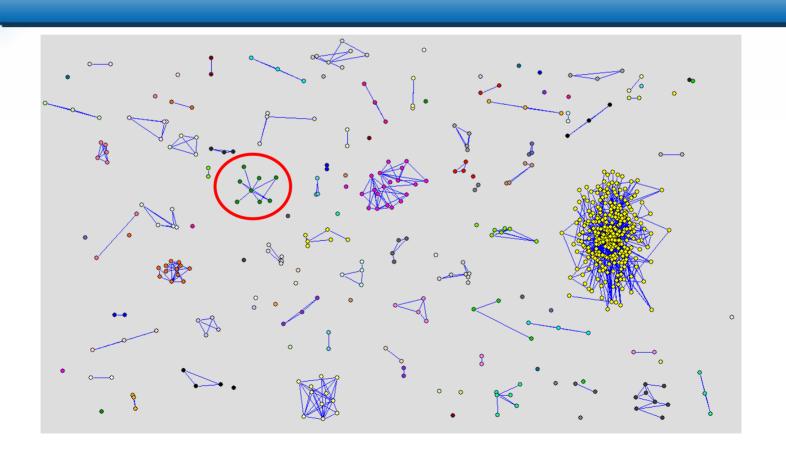
110 Components in ILPnet2 network



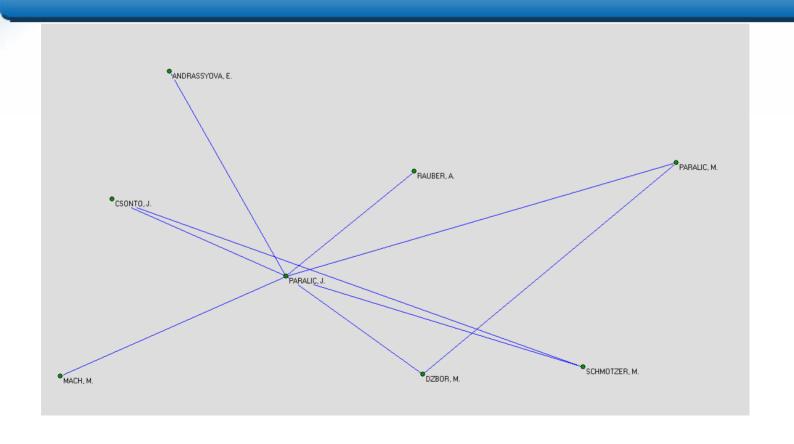
Zoomed component



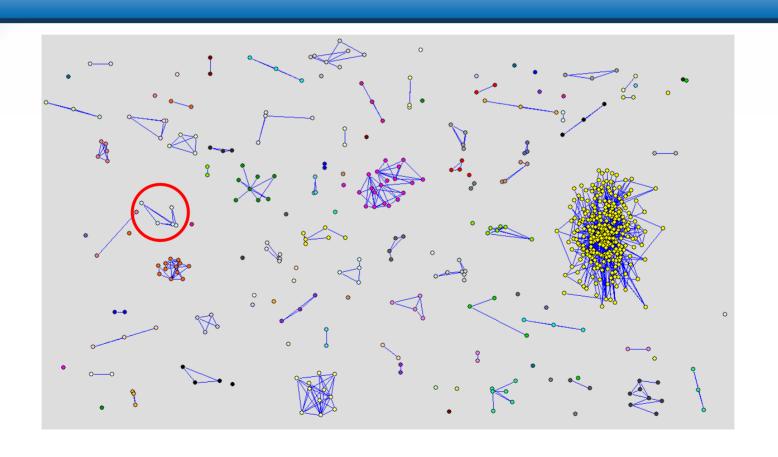
110 Components in ILPnet2 network



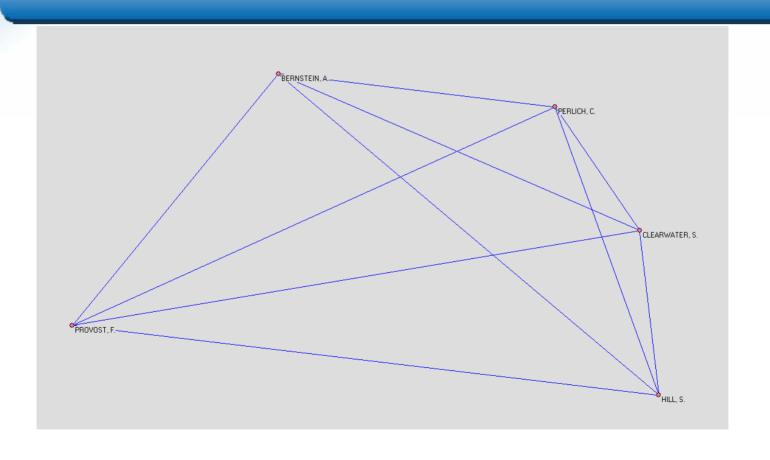
Zoomed component



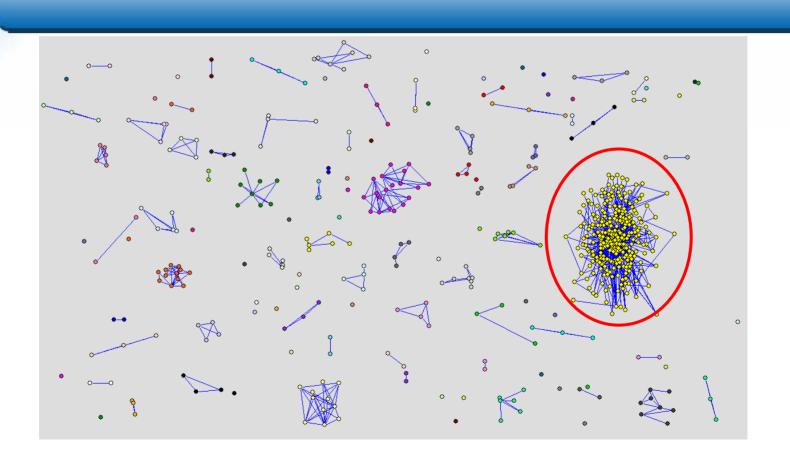
110 Components in ILPnet2 network



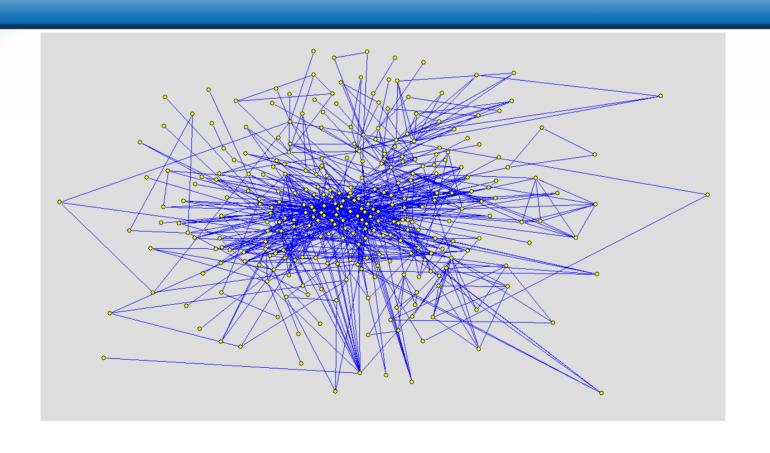
Zoomed component



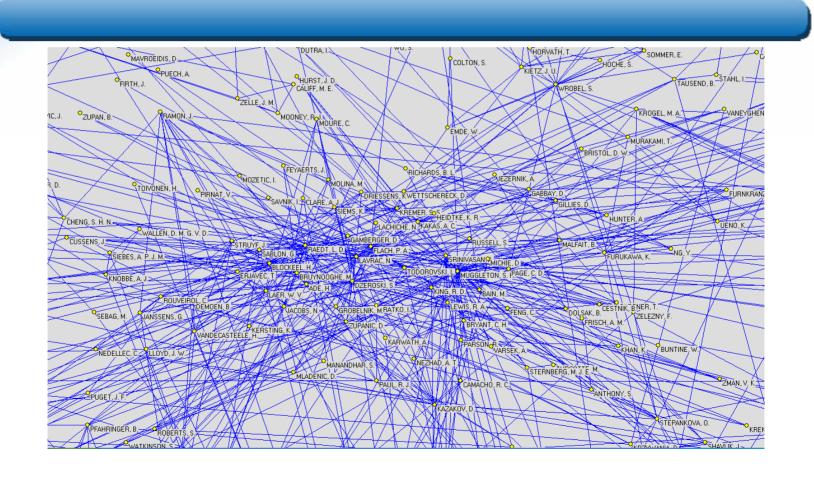
110 Components in ILPnet2 network



Zoomed component



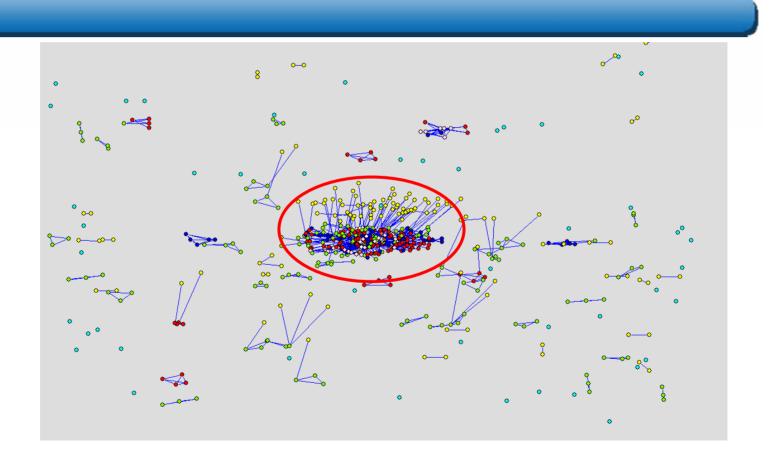
Zoomed component



CORES

- A k-core is a maximal subnetwork in which each vertex has at least degree k within the subnetwork
- A k-core is not necessarily a cohesive group itself.
- Are the important people all present in the same component or are they scatered around?

ILPnet2 network with 7 cores – each color represents one core

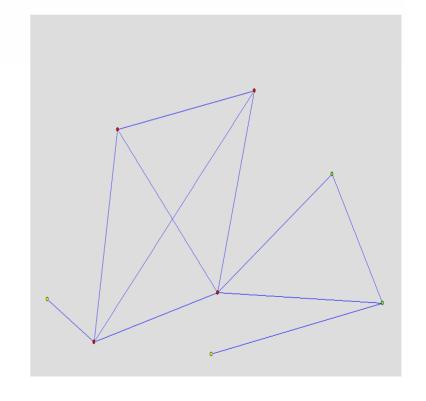


Zoomed k-core

CORES

Nested cores:

a vertex in a 3-core (redcolored dots) is also part of a 2-core (green-colored dot), but not all members of a 2-core belong to a 3core



CLIQUES

- Homework:
 - What is a clique?
 - What is clique hierarchy?
 - What is the interpretation of a clique?

BROKERAGE

Center and Periphery:

- Nodes in the center have more information and are share the information easier
- Centrality Measures
 - Degree centrality/centralization
 - Closeness centrality/centralization
 - Betweenness centrality/centralization

Brokers and Bridges

- Nodes which bridge structural holes are more important Bridges
- Brokers are bridges across many structural holes

Degree centrality/centralization reachability of a vertex inside a network

- The star network is the most efficient structure (given the fix number of lines)
- Network is more centralized if the vertices vary more with respect to their centrality. More variation in centrality scores of vertices yields a more centralized network.

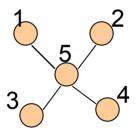
Defining degree of centralization

In social network: Who has the more sources of information at its disposal?

- The degree centrality of vertex is its degree
- Degree centralization of a network is the variation in the degrees of vertices divided by the maximum degree which is posible in the network of the same size

Degree centrality/centralization

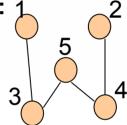
a) star network (most efficient) degree centralizaton:



v5 degree = 4 (max degree) v1 to v4 degree = 1 (min degree)

- => v5 contributes 1x (4-4) and v2 to v4 contributes 4x (4-1) => so **12** is the maximum degree variations
- => 12/12 = 1 max degree centralization

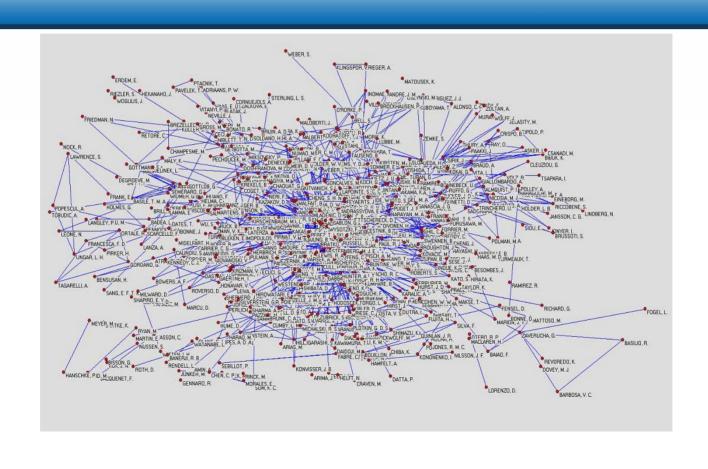
b) line network:



v1 and v2 degree = 1

- v3, v4 and v5 degree = 2 (max degree in this network)
- => v1 and v2 contributes $2 \times (2-1)$ and v3 to v5 contibutes $3 \times (2-2)$
- => 2 / 12 (max degree in the network of the same size) = 0,17

Degree centrality/centralization on IIpNet2 (all vertices)



Degree centrality/centralization on IIpNet2

- Who are the most central persons in network; who has the most collaborations?
- First we reduce number of vertices to those connected with min two neighbors
- Net > Transform > Reduction > Degree > All (min. Degree of vertices < 2)
- From 589 to 416 vertices

We remove people who wrote only one article by themselves or pairs of people that wrote one article together

Degree centrality/centralization on IIpNet2

Centralization of the network:

Net > Partitions > Degree > All

- All degree centrality of 2. All (recursive) degree reduction of N1 [2] (416)
- •
- Working...
- ------
- Network All Degree Centralization = 0.10282

Top 20 central persons in IlpNet2 (sorted using excel)

1.	0.1132530	- MUGGLETON,S	١.
----	-----------	---------------	----

- 2. 0.1036145 DZEROSKI,S.
- 3. 0.0722892 BLOCKEEL,H.
- 4. 0.0722892 RAEDT,L.
- 5. 0.0650602 LAVRAC,N.
- 6. 0.0481928 FLACH,P.
- 7. 0.0457831 LAER,W.
- 8. 0.0457831 SRINIVASAN.A.
- 9. 0.0433735 WROBEL,S.
- 10. 0.0433735 BRUYNOOGHE,M.

- 11. 0.0409639 PAGE,C.
- 12. 0.0385542 KING.R.
- 13. 0.0385542 JACOBS.N.
- 14. 0.0361446 STEPANKOVA,O.
- 15. 0.0337349 RAMON,J.
- 16. 0.0337349 DEHASPE,L.
- 17. 0.0337349 GYIMOTHY,T.
- 18. 0.0337349 BERGADANO.F.
- 19. 0.0313253 KAZAKOV,D.
- 20. 0.0289157 ZUPANIC,D.

Distance – Geodesic

Two vertices (people) are connected if path exists form one to another

 In undirected network the distance is the number of lines or steps in the shortest path that connect two vertices together

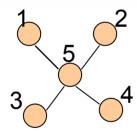
In directed network distance can be different in reverse way (one-way street example)

A geodesic is the shortest path between two vertices

• The distance from vertex *u* to vertex *v* is the length of the geodesic *u* to *v*.

Distance/Closeness – centrality/centralization

• The closeness centrality of a vertex is the number of all other vertices divided by the sum of all distances between the vertex and all others



$$v1: 4 / 1+2+2+2 = 4 / 7$$

- We see that the problem arises if all vertices are not (strongly) connected!
- In social network: how easy is it for a person to notify the whole network with information.

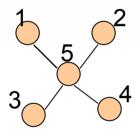
Distance – centrality/centralization on IIpNet2

- 1. 0.3996198 RAEDT,L.
- 2. 0.3758981 DZEROSKI, S.
- 3. 0.3741894 MUGGLETON, S.
- 4. 0.3415837 LAER, W.
- 5. 0.3360069 PAGE, C.
- 6. 0.3332861 JACOBS, N.
- 7. 0.3279748 LAVRAC, N.
- 8. 0.3215691 WROBEL, S.
- 9. 0.3178443 BLOCKEEL, H.
- 10. 0.3142049 BRUYNOOGHE, M.

- 11. 0.3142049 KAZAKOV, D.
- 12. 0.3106478 DEHASPE, L.
- 13. 0.3071704 FLACH, P.
- 14. 0.3037700 RAMON, J.
- 15. 0.3015446 CUSSENS, J.
- 16. 0.2993516 BRATKO, I.
- 17. 0.2961211 DRIESSENS, K.
- 18. 0.2919208 WEBER, I.
- 19. 0.2898651 MOURE, C.
- 20. 0.2898651 MOLINA, M.

Betweenness centrality/centralization

 The betweenness centrality of a vertex is the proportion of all geodesics between pairs of other vertices that include this vertex



v5: 1

v1 to v4:0

• In social network : to what extent may a person (vertice) control the flow of information due to the his / her position inside the communication network?

Betweenness centrality/centralization on IIpNet2

Q: I discovered something new in the area, how likely is that the information spreading will get blocked and not the whole network will be informed

- Net > Vector > Centrality > Betweenness
- Network Betweenness Centralization = 0.09198

Betweenness centrality/centralization on IIpNet2

This are top twenty persons with ability to control information spreading

```
1. 0.0931813 - MUGGLETON, S.
```

8. 0.0218422 - BLOCKEEL, H.

9. 0.0192772 - LAVRAC, N.

10. 0.0181330 - STEPANKOVA, O.

11. 0.0178831 - ROUVEIROL, C.

12. 0.0170300 - BERGADANO, F.

13. 0.0157335 - BOSTROM, H.

14. 0.0153786 - FURUKAWA, K.

15. 0.0152876 - BAIN, M.

16. 0.0143174 - GYIMOTHY, T.

17. 0.0119656 - SHAVLIK, J.

18. 0.0110439 - CHENG, S.

19. 0.0107273 - SRINIVASAN, A.

20. 0.0106385 - LAER, W.

^{2. 0.0742590 -} RAEDT, L.

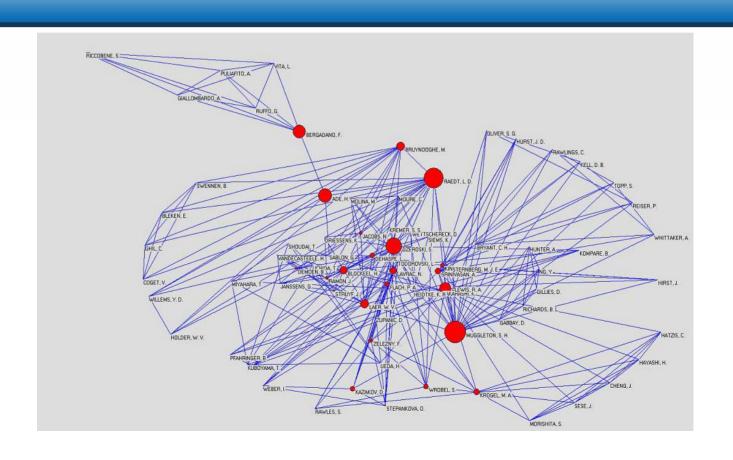
^{3. 0.0546139 -} DZEROSKI, S.

^{4. 0.0459601 -} WROBEL, S.

^{5. 0.0375969 -} PAGE, C.

^{6. 0.0343720 -} FLACH, P.

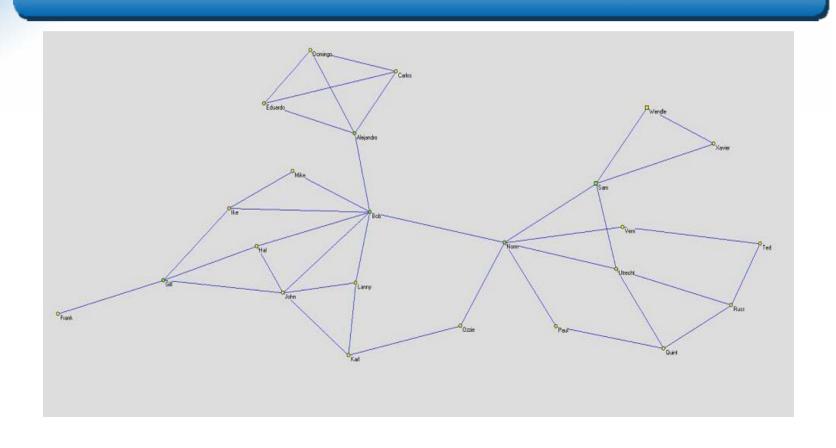
Betweenness centrality/centralization on IlpNet2 using "Pajek",



Bridges

- The bridges and lines who bridge structural holes between other have more control and perform better
- A bridge is a line whose removal increases the number of components in the network
- Deleting a vertex from a network means that the vertex and all lines incident with this vertex are removed from the network
- A cut-vertex is a vertex whose deletion increases the number of components in the network
- A bi-component is a component of minimum size of three that does not contain a cut-vertex

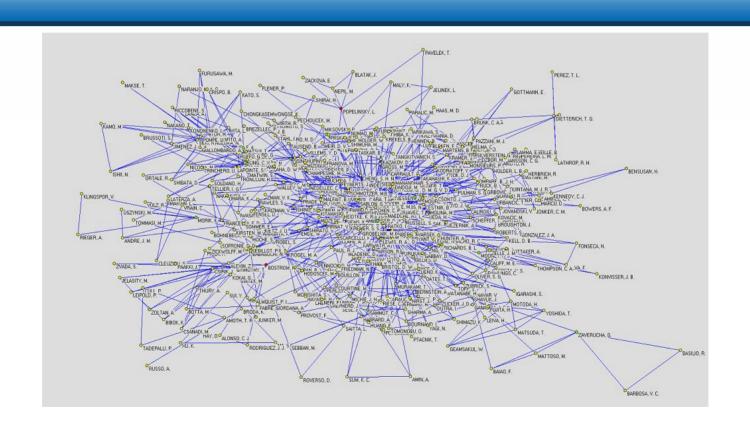
Bridges simple example



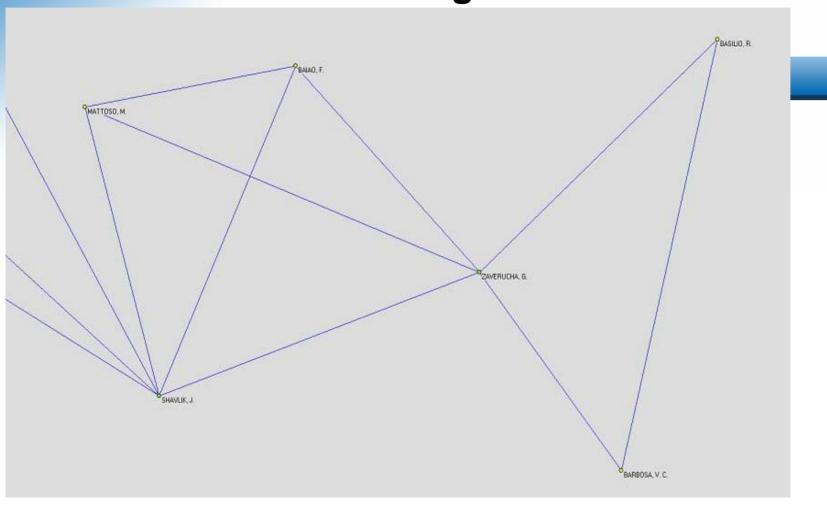
Bridges on IlpNet2

- Who are the bridges and lines in IlpNet2 who bridge structural holes
- Net > Components > Bi-Components (with a minimum size of 2 so we can look for lines that represents bridges)

Bridges on IIpNet2



Bridges



Bridges IIpNet2

- Who are the bridges and lines in IlpNet2 who bridge structural holes, articles that two persons work together on?
- Net > Components > Bi-Components (with a minimum size of 2 so we can look for lines that represents bridges)

```
1. 11 - MUGGLETON, S.
                                                  14. 3 - KIETZ.
                      2. 7 - FLACH. P.
                                                  15. 3 - SEBAG,
                                                                           M
Root (449)
                      3. 6 - BOSTROM, H.
                                                  16. 3 - KRAMER, S.
        1 (3)
                      4. 6 - CHENG. S.
                                                  17. 3 - FURUKAWA. K.
        2 (3)
                      5. 5 - ROUVEIROL, C.
                                                  18.3 - KAKAS.
                                                                           Α.
        3 (11)
                      6. 5 - PARALIC, J.
                                                  19. 3 - GIORDANA. A.
       4 (4)
                      7. 4 - ZAVERUCHA, G.
                                                  20.3 - MORIK.
                                                                           K.
       5 (3)
                      8. 4 - VRAIN. C.
                                                  21. 3 - PAZZANI, M.
       6 (4)
                      9. 4 - RAEDT. L.
                                                  22. 2 - RIGUZZI, F.
                      10. 4 - PAGE. C.
                                                  23. 2 - WROBEL. S.
       25(2)
                      11. 4 - SAMMUT, C.
                                                  24. 2 - HORVATH, T.
       26(2)
                      12.3 - POPELINSKY, L
                                                  25. 2 - TURAN,
                                                                           G.
                      13. 3 - OHWADA, H.
```

 Bridges are bi components of size two in an undirected network, so we can easily find them

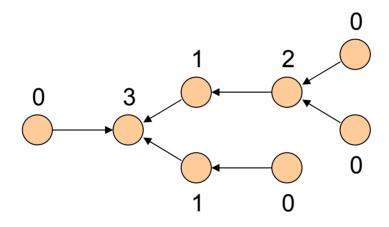
RANKING

- I. Prestige
 - Structural prestige, social prestige, correlation
 - Ways of calculating structural prestige
- II. Ranking
 - Triad census
 - Acyclic decomposition
 - Symmetric-acyclic decomposition

I. Prestige

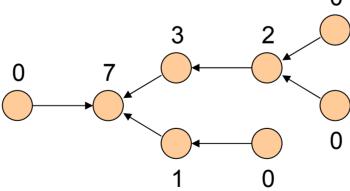
- Prestigious people
 - People who receive many positive in-links
- Structural prestige measures
 - Popularity or in-degree
 - (Restricted) input domain
 - Proximity prestige
- Structural prestige ≠ social prestige (social status)
- Correlation between structural and social prestige
 - Pearson's correlation coefficient
 - Spearman's rank correlation coefficient

Popularity or in-degree



Input domain

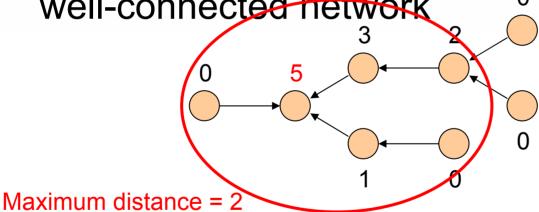
- Input domain size
 - How many nodes are path-connected to a particular node?
- Overall structure of the network is taken into account



Problematic in a well-connected network

Restricted input domain

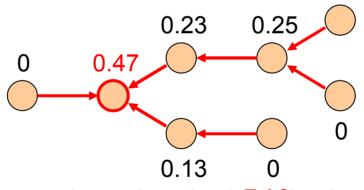
 Resolves the input-domain issue in a well-connected network



 Issue: the choice of the maximum distance is quite arbitrary

Proximity prestige

- Eliminates the maximum-distance parameter
- Closer neighbors are weighted higher



Proximity prestige = Input domain size / Number of nodes

Average + Average

Structural prestige ILPnet2 dataset top 25

	28	MUGGLETON, S. H.		152	LAMMA, E.		0.082030307	RAEDT, L. D.
	21	RAEDT, L. D.		152	RIGUZZI, F.		0.077044151	DZEROSKI, S.
	20	DZEROSKI, S.		152	PEREIRA, L. M.		0.068453862	LAVRAC, N.
	17	LAVRAC, N.	4)	152	RAMON, J.		0.066777042	MUGGLETON, S. H.
	17	BLOCKEEL, H.	ze	152	FLACH, P. A.		0.064946309	ADE, H.
	12	FLACH, P. A.	<u>.</u> S	152	LAVRAC, N.		0.06462585	BRUYNOOGHE, M.
	12	SRINIVASAN, A.	.⊑	152	STRUYF, J.	4	0.063683172	LAER, W. V.
	11	GYIMOTHY, T.	ع	152	BLOCKEEL, H.	ge	0.060918631	TODOROVSKI, L.
	10	JACOBS, N.	domain	152	DEHASPE, L.	prestige	0.057783113	FLACH, P. A.
	10			152	LAER, W. V.	ĕ	0.054504505	SRINIVASAN, A.
)	9	WROBEL, S.	input	152	BRUYNOOGHE, M.	d	0.054346497	GAMBERGER, D.
	9	STEPANKOVA, O.	ر	152	DZEROSKI, S.	₹	0.052812523	SABLON, G.
	9	ІТОН, Н.	· =	152	RAEDT, L. D.	\equiv	0.051974229	DEHASPE, L.
	9	ADE, H.	Unrestricted	152	GAMBERGER, D.	roximity	0.051837094	BLOCKEEL, H.
	8	KING, R. D.	\mathbf{c}	152	LACHICHE, N.	2	0.048245614	KING, R. D.
	8	OHWADA, H.	ij	152	TODOROVSKI, L.	Д_	0.048015873	STERNBERG, M. J. E.
	8	BRUYNOOGHE, M.	G S	152	KAKAS, A. C.		0.047743034	KAKAS, A. C.
	8	BOSTROM, H.	ī	152	JOVANOSKI, V.		0.047283414	LACHICHE, N.
	8	KRAMER, S.	\supset	152	TURNEY, P.		0.044957113	JOVANOSKI, V.
	8	FURUKAWA, K.		152	ADE, H.		0.044957113	TURNEY, P.
	8	CSIRIK, J.		152	DIMOPOULOS, Y.		0.043609897	RAMON, J.
	7	HORVATH, T.		152	SABLON, G.		0.043226091	STRUYF, J.
	7	ESPOSITO, F.		77	KING, R. D.		0.040507749	RIGUZZI, F.
	7	SHOUDAI, T.		77	MUGGLETON, S. H.		0.040341393	DIMOPOULOS, Y.
	7	DEHASPE, L.		77	SRINIVASAN, A.		0.035082604	LAMMA, E.

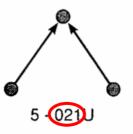
Input degree

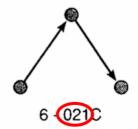
II. Ranking

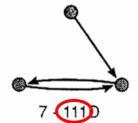
- We discuss techniques to extract discrete ranks from social relations
- Triad analysis helps us determine if our network is biased towards...
 - Unrelated clusters (cluster = clique)
 - Ranked clusters
 - Hierarchical clusters
- Recipes for determining the hierarchy
 - Acyclic decomposition
 - Symmetric-acyclic decomposition

Triad analysis

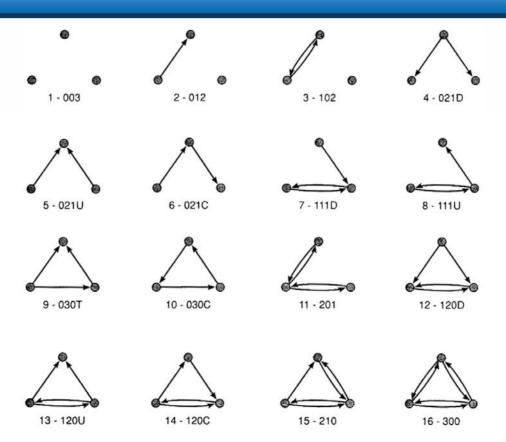
- Triads
 - Atomic network structures (local)
 - 16 different types
 - M-A-N naming convention
 - Mutual positive
 - Asymmetric
 - Null







All 16 types of triads



Triad census

• 6 balance-theoretic models

- Balance	Restricted to
Clusterability	Unrelated clusters
 Ranked clusters 	Ranked clusters
Transitivity	Less and less restricted
 Hierarchical clusters 	↓ Hierarchical clusters
(Theoretic model)	Unrestricted

• **Triad census**: triads found in the network, arranged by the balance-theoretic model to which they belong

Triad census ILPnet2 dataset

Model	(ni-ei)/ei	Expected (ei)	Number of triads (ni)	Type
Balance	190.24	1292.72	247225	3 - 102
Balance	1539118270.84	0.00	112	16 - 300
Clusterability	0.01	33159112.00	3 33404551	1 - 003
Ranked Clusters	-0.97	1292.72	1D 36	4 - 021D
Ranked Clusters	0.09	1292.72	lU 1176	5 - 021U
Ranked Clusters	3.18	9.32	OT 39	9 - 030T
Ranked Clusters	5415.95	0.02	OD 91	12 - 120D
Ranked Clusters	4939.74	0.02	ου 83	13 - 120U
Transitivity	-0.68	717207.24	2 228351	2 - 012
Hierarchical Clusters	28.76	0.03	0C 1	14 - 120C
Hierarchical Clusters	528411.66	0.00	0 64	15 - 210
Forbidden	-0.93	2585.44	182	6 - 021C
Forbidden	76.14	9.32	1D 719	7 - 111D
Forbidden	5.76	9.32	1U 63	8 - 111U
Forbidden	-1.00	3.11	0C 0	10 - 030C
Forbidden	7201.76	0.02	1 121	11 - 201

Chi-Square: 172464018511.5997***

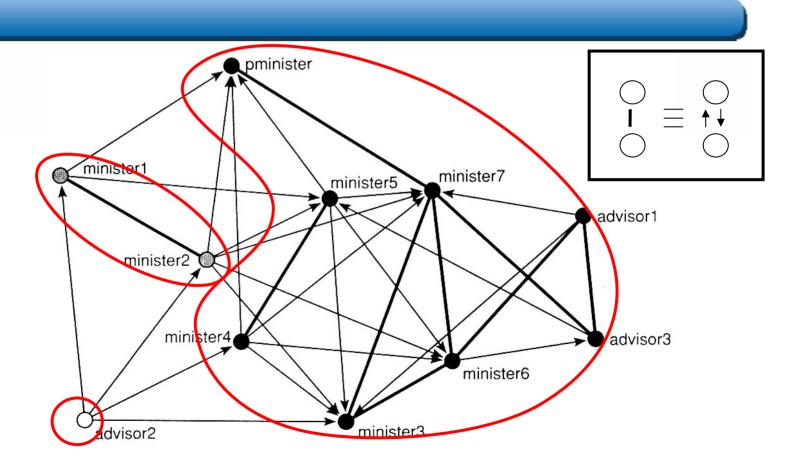
The minimum expected cell frequency is 0.00.

⁷ cells (43.75%) have expected frequencies less than 5.

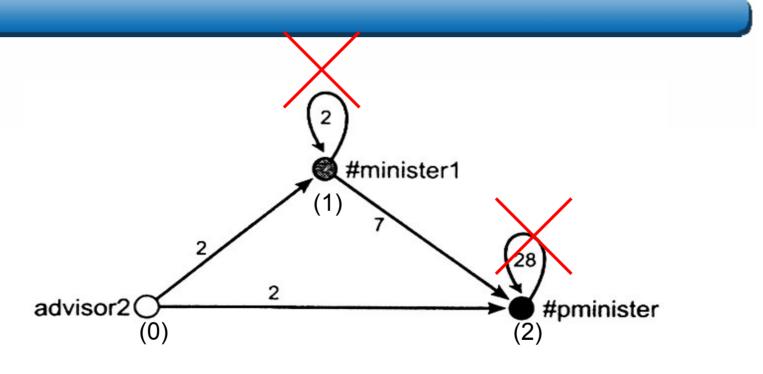
Acyclic decomposition

- Cyclic networks (strong components) are clusters of equals
- Acyclic networks perfectly reflect hierarchy
- Recipe
 - Partition the network into strong components (i.e. clusters of equals)
 - Create a new network in which each node represents one cluster
 - Compute the maximum depth of each node to determine the hierarchy

Acyclic decomposition An example

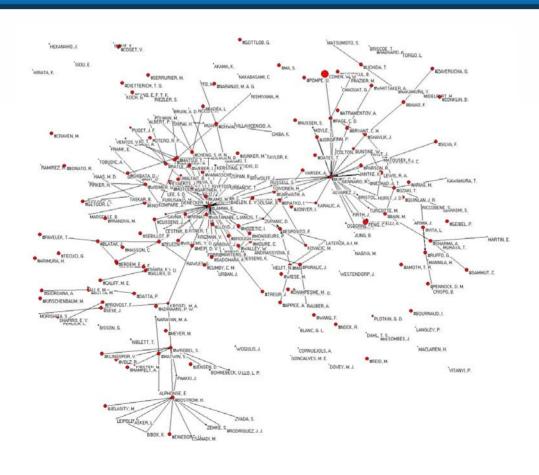


Acyclic decomposition An example

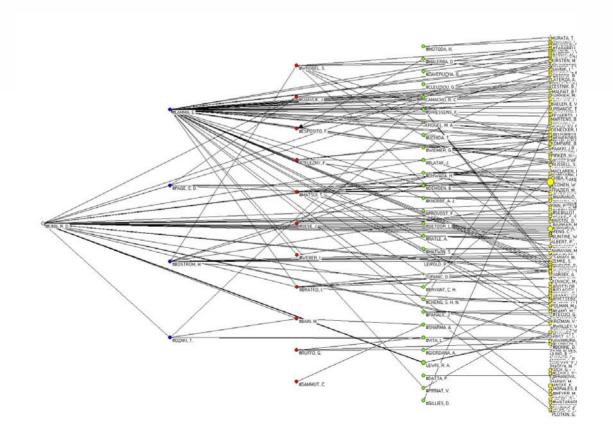


The maximum depth of a node determines its position in the hierarchy

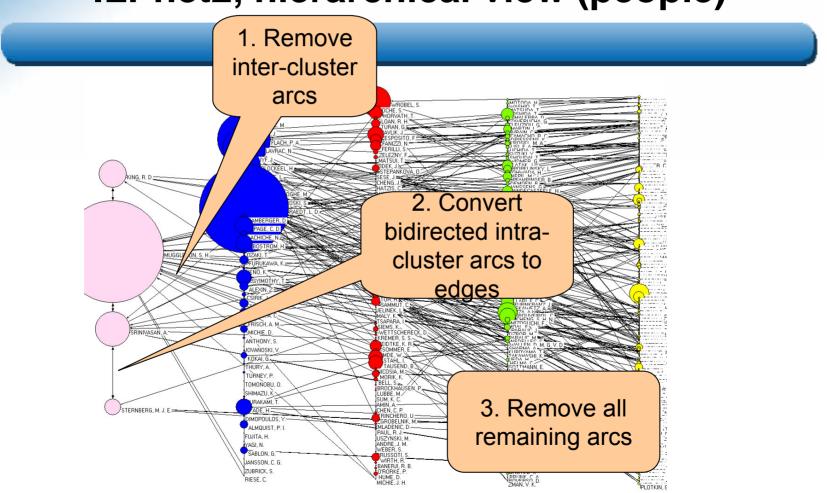
Acyclic decomposition ILPnet2 dataset



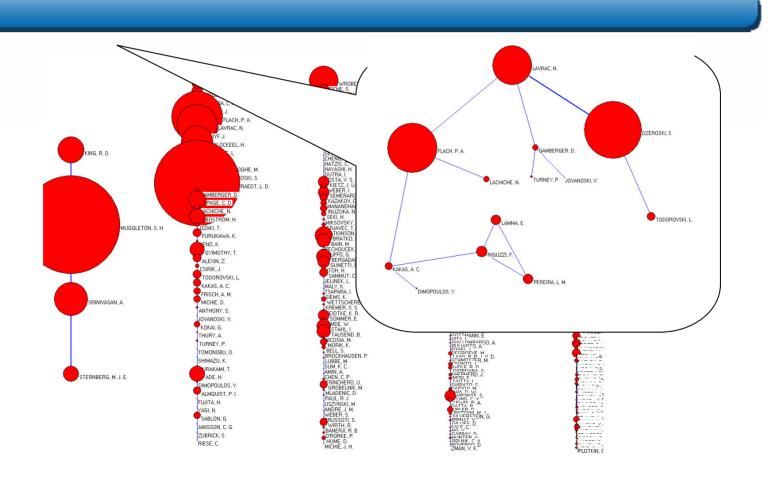
Acyclic decomposition ILPnet2, hierarchical view



Acyclic decomposition ILPnet2, hierarchical view (people)



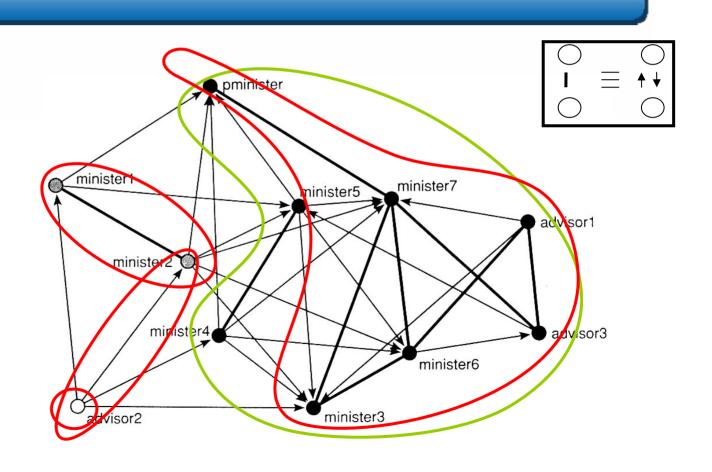
Acyclic decomposition ILPnet2, hierarchical view (people)



Symmetric-acyclic decomposition

- Strong components are not strict enough to detect clusters in the triad-census sense
- Symmetric-acyclic decomposition extracts clusters of vertices that are connected both ways
- After the clusters are identified, we can follow the same steps as in acyclic decomposition to determine the hierarchy

Symmetric-acyclic decomp. An example



Reference

- Batagelj V., Mrvar A., de Nooy W. (2004):
 Exploratory Network Analysis with Pajek.
 Cambridge University Press
- Some figures used in the presentation are taken from this book
- Most of the presentations are taken from presentation of ILPNet2 Social Network Analysis Project of Sergeja Sabo, David Fabjan and Miha Grčar