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IST data description

Two sources of the data:

« Table of IST projects from internal EC
database with fields:
— Project Ref., Acronym, Key Action, Unit, Officer
— Org. Name, Country, Org Type, Role in project
« List of IST project descriptions as 1-2 page

text summaries from the Web (Cordis at
http://dbs.cordis.lu/fep/FP5/FP5_PROJI_search.html)

IST 5FP has 2786 projects in which participate
/886 organizations
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Example of data for Sol-
Eu-Net (1)

Table of all IST projects — for each project list of partners
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A B C D E F G H | J
1 |Project Ref Acronym Domain / kLUnit PO Legal Mame Legal Cauntry Type of organisation  Participant role
2 |[5T-1999-11485  SOLEU-NET KAZ C2 HANSEN RALF - ALARI, D.0.0. SLOVEMIA — Private non research arg, CR
(3 |[5T-1999-11485  SOLEUNET KAZ 2 HANSEN RALF - AUSTRIAN RESEARCH INZ AUSTRIA Research centres CR
4 |I5T-1999-11456  SOL-EU-NET KAZ C2 HANSEN RALF  CZECH TECHMICAL UNINVERCZECH REPUE Higher education CR
6 |[5T-1999-11485  SOLEU-NET KAZ C2 HANSEN RALF - DIALOGIS SOFTWARE & 5 GERMANY  Private non research arg. CR
B |[5T-1999-11485  SOLEU-NET KAZ 2 HANSEN RALF - FACHHOCHSCHULE BONN GERMANY — Higher education CR
7 |IST-1999-11456  SOL-EU-NET KAZ C2 HANSEN RALF - FRAUMHOFER GESELLSCEGERMANY  Research centres Co
B |[5T-1999-11485  SOLEU-NET KAZ C2 HANSEN RALF  GMD - FORSCHUNGSZENT GERMANY  Research centres CR
9 |I5T-1999-11485  SOLEUNET KAZ 2 HANSEN RALF  INSTITUT JOZEF STEFAM  SLOVENIA — Research centres CR
0| I5T-1999-11456  SOL-EU-NET  KAZ C2 HANSEN RALF - KATHOLIEKE UNIVERSITEIBELGIUM — Higher education CR
1 ]I5T-1999-11485 - SOLEU-NET KAZ C2 HANSEMN RALF - STUDIO PHID.O.O., COMMSLOVENIA — Private non research arg. AC
12]15T-1999-11485  SOLEU-NET KA2 2 HANSEN RALF - TEMIDA D.0.0., COMPANY SLOVENIA — Private non research arg, CR
13 |15T-1999-11456  SOL-EU-NET KAZ C2 HANSEN RALF - THE CHANCELLOR, MASTEUNITED KINGD Higher education CR
4 ]15T-1999-11485  SOLEU-NET KAZ C2 HANSEN RALF - UNIVERSIDADE DO PORTCPORTUGAL  Private non research arg. CR
15 ]15T-1999-11485  SOLEU-NET KAZ 2 HANSEN RALF - UNIVERSITY OF BRISTOL UNITED KINGD Higher education CR




Example of data for Sol-Eu-Net (2)
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FF% Project Record

Project
Acronym ~]

1. vata Mining and decision support for business comp etitiveness:
Solomon European Virtual Enterprise

General Project Information Home Page
FP5 Programme Acronym: ST ERoutiErs
Programmes
roject Reference: |[ST-1999-11495  Contract Type: Cost-sharing Legal & Financial lssues
contracts S
Support Metworks
+2000-01-01 End Drate: 2002-12-31
CONRONS FP5 Services
ths Project Status: Execution B —
Mews & Events
Project Acronym: SCH-ELUENET Update Date: 2003-01-20 c
alls for Proposals
- Project URL: http:A=alEulMet.ijs. si Find a Partner
PrOJeCt Contract Preparation
Project Description L L

Descrl ptlon’ The goal of this project is to enhance competitiveness and find new business Results & Exploitation
opportunities in the global IT market by establishing a virtual European Search FP5 Web

enterprise composed of companies and research labarataries with highly

specialised expertise in two IT areas: data mining and decision support. The I
established SolEm-Net enterprise will be organised as a flexible business
structure made of cross-organisational, time-focused, task-driven work Search FFESweb

tearms. It will work towards enhanced usage of data mining and decision
support in industry, businesses and public services, contributing to improved
gquality, efficiency and effectiveness of their operations. This will be achieved
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Analysis tasks

Visualization of project topics
Analysis of collaboration
Community/clique identification
Thematic consortia identification
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Visualization into 25 groups of 2786 IST
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Electronics

Institutional Backbone of IST
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Community identification
(based on project partnership)

Organizations “more connected” between
each other than to the rest of “the world”

Example of a star-shaped cooperation (around

Fraunhofer):

— 'FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER
ANGEWANDTEN FORSCHUNG"0.758

— 'UNIVERSITAET STUTTGART"0.177

— 'THALES BROADCAST MULTIMEDIA':0.155

— 'STAEDTISCHE KLINIKEN OFFENBACH"0.129

— 'AVATARME".0.107

— 'NTEC MEDIA ADVANCED DIGITAL MOTION PICTURE
SOLUTIONS"0.089

— 'FOERSAEKRINGSAKTIEBOLAGET SKANDIA PUBL"0.085
— 'EXODUS':0.085

RARTMENT OF
DWLEDGE . .
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Community identification
(based on project partnership)

« Example of a cycle-shaped (clique) cooperation

(mainly Greece, some Germany and Portugal,...):
— 'NATIONAL TECHNICAL UNIVERSITY ATHENS"0.548

— 'INTRACOM HELLENIC TELECOMMUNICATIONS ELECTRONICS
INDUSTRY":0.412

— 'ATHENS UNIVERSITY ECONOMICS BUSINESS":0.351

— 'NOKIA CORPORATION"0.229

— 'POULIADIS ASSOCIATES CORP':0.153

— 'NATIONAL KAPODISTRIAN UNIVERSITY ATHENS'"0.139

— 'LAMBRAKIS RESEARCH FOUNDATION'"0.129

— 'PORTUGAL TELECOM INOVACAQ"0.116

— 'INTRASOFT INTERNATIONAL'"0.106

- 'SEMA GROUP':0.102

— 'SIEMENS INFORMATION COMMUNICATION NETWORKS':0.097
— 'UNIVERSITAET ZU KOELN"0.083

— 'HELLENIC BROADCASTING CORPORATION'"0.083

— 'STADT KOELN"0.081

— 'HELLENIC TELECOMMUNICATIONS ORGANIZATION'0.081
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Identifying thematic consortia given a
set of keywords

 The task is to list relevant institutions
for the given set of keywords

* This can be seen as generating a
knowledge map

* The set of institutions can be
understood as proposed consortium for
a given thematic area
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Thematic consortia identification

Example of possible Data Mining consortium:
Top 20 institutions for the set of “data-mining” related keywords: “knowledge discovery

text mining classification machine learning data mining data analysis

. {1.537) FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG - [KDNE
.{1.305) GMD FORSCHUNGSZENTRUM INFORMATIONSTECHNIK - [SPINI, SOL-EU-NET. XML-KM. ITCOLE]
-{1.120) UNIVERSITAET DORTMUND - [KDNET. MINING MART. DREAM. INTERMON]

- {0.939) RESEARCH ACADEMIC COMPUTER TECHNOLOGY INSTITUTE - [NEMIS]

.{(0.817) CZECH TECHNICAL UNIVERSITY PRAGUE - [KDNET. SOL-EU-NET. CLOCKWORK. EUTIST-IMV]
_(0.727) UNIVERSITA DEGLI STUDI DI BARI - [KDNET. SPINL. ASS0]

L (0. 72b) INSTITUT JOZEF STEFAN - [KDNET. SOL-EU-NET. ELENA]

BN SO0 =@ NOOALN =

U fUb) UNIVERSITY BRISTUL - [EDNET. SUL-EU-NET. TRHUST]

_{0.696) VYSOKA SKOLA EKONOMICKA PRAZE - [KDNET. MINING MART]

_(0.696) PEROT SYSTEMS NEDERLAND - [KDNET. MINING MART]

_{0.678) UNIVERSITY MANCHESTER - [PARMENIDES. E-UTILITIES]

. (0.668) EUROPEAN COMMISSION JOINT RESEARCH CENTRE - [KDNET. MINEO. EDEN-IW. DISMAR]
. (0.659) KATHOLIEKE UNIVERSITEIT LEUVEN - [KDNET. SOL-EU-NET]

_{0.638) QUANTOS - [NEMIS. X-STATIS]

_(0.620) UNIVERSITAT POLITECNICA DE CATALUNYA - [NEMIS. ESIS. INTERFACE, ALCOM-FT]
{0587) ROYAL HOLLOWAY BEDFORD COLLEGE - [KDNET. KERMIT]

(0.567) TEKNILLINEN KORKEAKOULU - [KDNET. E-SHARING. OR-WORLD. NOMAD]

. (0.557) DIALOGIS SOFTWARE SERVICES - [SPINI, SOL-EU-NET]

_{0.552) ATKOSOFT - [X-STATIS. VITAMIN S]

. {0.543) PIXELPARK - [KDNET. CERENA]

_(0.530) UNIVERSITEIT VAN AMSTERDAM - [KDNET. ITCOLE. CODEX-IP, COMMORG]

_{0.524) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA - [NEMIS. ITCOLE]

. {0.516) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE - [NEMIS. INTERFACE]

_(0.482) UNIVERSITEIT UTRECHT - [KDNET. ITCOLE. ALCOM-FT]

25.

{0.470) KUNGLIGA TEKNISKA HOEGSKOLAN - [KDNET. WEBLABS]

3
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Project Intelligence Web site

* All demos, reports and results
available at the web at
http://pi.ijs.si/
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Text Mining Techniques
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What is Text-Mining?

« “...finding interesting regularities in large
textual datasets...” (Usama Fayad, adapted)

— ...where interesting means: non-trivial,
hidden, previously unknown and potentially
useful

 “...finding semantic and abstract
iInformation from the surface form of
textual data...”

RARTMENT OF
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Which areas are active in Text

Processing?
Knowledge Rep. & Search & DB
Reasoning \
Info: ation

Computational
Linguistics




Levels of text representations

« Character (character n-grams and sequences)
* Words (stop-words, stemming, lemmatization)
* Phrases (word n-grams, proximity features)
« Part-of-speech tags

« Taxonomies / thesauri

* Vector-space model
 Language models

* Full-parsing

« Cross-modality

« Collaborative tagging / Web2.0
 Templates / Frames

* Ontologies / First order theories

@LUGEEE © Dunja Mladenic 18



Levels of text representations

« Words

| OF £ . .
\mcrnoLogies.  © Dunja Mladenic
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Word level

 The most common representation of text
used for many techniques
— ...there are many tokenization software
packages which split text into the words
* Important to know:

— Word is well defined unit in western
languages — e.g. Chinese has different notion
of semantic unit

RARTMENT OF
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Words Properties

» Relations among word surface forms and their
senses:

— Homonomy: same form, but different meaning
(e.g. bank: river bank, financial institution)

— Polysemy: same form, related meaning (e.qg.
bank: blood bank, financial institution)

— Synonymy: dlfferent form, same meaning (e.g.
singer, vocalist)

— Hyponymy: one word denotes a subclass of an
another (e.g. breakfast, meal)

« Word frequencies in texts have power
distribution:

— ...small number of very frequent words
...big number of low frequency words

i"t"}hﬁsngE © Dunja Mladenic 21
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Stop-words

« Stop-words are words that from non-linguistic view do
not carry information

— ...they have mainly functional role

— ...usually we remove them to help the methods to
perform better

« Stop words are language dependent — examples:

— English: A, ABOUT, ABOVE, ACROSS, AFTER, AGAIN,
AGAINST, ALL, ALMOST, ALONE, ALONG, ALREADY, ...

— Dutch: de, en, van, ik, te, dat, die, in, een, hij, het, niet,
zijn, Is, was, op, aan, met, als, voor, had, er, maar, om,
hem, dan, zou, of, wat, mijn, men, dit, zo,

— Slovenlan A, AH AHA, ALl, AMPAK BAJE BODISI,
BOJDA, BRZKONE BRZCAS BREZ, CELO DA, DO

RARTMENT OF
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Stemming and Lemmatization

 Different forms of the same word usually

problematic for text data analysis

— because they have different spelling and similar meaning (e.g.
learns, learned, learning,...)

— usually treated as completely unrelated words

e Stemming is a process of transforming a word into
its stem
— cutting off a suffix (eg., smejala -> sme;j)
 Lemmatization is a process of transforming a
word into its normalized form

— replacing the word, most often replacing a suffix (eg.,
smejala -> smejati)

RARTMENT OF
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Stemming

* For English it is not a big problem - publicly

available algorithms give good results

— Most widely used is Porter stemmer at
http://www.tartarus.org/~martin/PorterStemmer/

 In Slovenian language 10-20 different forms

correspond to the same word:

— (“to laugh” in Slovenian): smej, smejal, smejala, smejale,
smejali, smejalo, smejati, smejejo, smejeta, smejete, smejeva,
smejes, smejemo, smejiS, smeje, smejocC, smejta, smejte, smejva

RARTMENT OF
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 Phrases

Levels of text representations

{ _ KNOWLEDGE : .
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Phrase level

* Instead of having just single words we can deal
with phrases

« Commonly used are two types of phrases:
— Phrases as contiguous word sequences
— Phrases as non-contiguous word sequences
— ...both types of phrases could be identified by a
simple dynamic programming algorithm
« The main effect of using phrases is to more
precisely identify sense

RARTMENT OF
WLEDGE . .
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Google n-gram corpus

* In Sep 2006 Google announced availability of n-
gram corpus:
— http://googleresearch.blogspot.com/2006/08/all-our-n-

gram-are-belong-to-you.html#links

— Some statistics of the corpus:

 File sizes: approx. 24 GB compressed (gzip'ed) text
files

Number of tokens: 1,024,908,267,229
Number of sentences: 95,119,665,584
Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

RARTMENT OF
DWLEDGE . .
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Levels of text representations

e Taxonomies / thesauri

\mcrnoLogies.  © Dunja Mladenic
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Taxonomies/thesaurus level

 Thesaurus has a main function to connect
different surface word forms with the same
meaning into one sense (synonyms)

— ...additionally we often use hypernym relation to
relate general-to-specific word senses

— ...by using synonyms and hypernym relation we
compact the feature vectors

* The most commonly used general thesaurus is
WordNet which exists in many other languages

(e.g. EuroWordNet)
— http://www.illc.uva.nl/EuroWordNet/

RARTMENT OF
DWLEDGE . .
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http://www.illc.uva.nl/EuroWordNet/

WordNet — a database of lexical

relations
« WordNet is the most well e e of
developed and widely used
lexical database for English Noun — |94474 | 116317

— ...it consist from 4 databases Verb 10319 | 22066
(nouns, verbs, adjec —an e
adve rbs) Adjective | 20170 29881

« Each database consists from Adverb | 4546 5677

sense entries consisting from a
set of synonyms, e.g.:

— musician, instrumentalist, player
— person, individual, someone

— life form, organism, being

[ KNOWLEDGE
\rcinoLoies.  © Dunja Mladenic 30



WordNet relations

Each WordNet entry is connected with other entries in a
graph through relations.

Relations in the database of nouns:

Relation Definition Example

Hypernym From concepts to breakfast -> meal
subordinate

Hyponym From concepts to meal -> lunch
subtypes

Has-Member From groups to their faculty -> professor
members

Member-Of From members to their copilot -> crew
groups

Has-Part From wholes to parts table -> leg

Part-Of From parts to wholes course -> meal

Antonym Opposites leader -> follower

[ KNOWLEDGE
wechjoLogies.  © Dunja Mladenic
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Levels of text representations

 Vector-space model

\mcrnoLogies.  © Dunja Mladenic
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Vector-space model level

* The most common way to deal with documents
is first to transform them into sparse numeric
vectors and then deal with them with linear
algebra operations

— ...by this, we forget everything about the linguistic
structure within the text

— ...this is sometimes called “structural curse” because
this way of forgetting about the structure doesn’t harm
efficiency of solving many relevant problems

— This representation is referred to also as “Bag-Of-
Words” or “Vector-Space-Model”

— Typical tasks on vector-space-model are
classification, clustering, visualization etc.

RARTMENT OF
WLEDGE : :
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Representing document as a vector

Having a set of documents, represent each as a
feature vector:

 divide text into units (eg., words), remove punctuation,
(remove stop-words, stemming,...)

* each unit becomes a feature having numeric weight as its
value (eg., number of occurrences in the text - referred to
as term frequency or TF)

Commonly used weight is TFIDF: N
TFIDF (w) =tf (w)* Iog(—j
df (w)
tf(w) — term frequency (no. of occurrences of word w in document

dokumentu)
df(w) — document frequency (no. of documents containing word w)
N — no. of all documents

RARTMENT OF
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Example of document representation

Bob the builder is a Pixar has several
children animated short animated
movie on a character|| movies suitable for

Bob and his friends || children. Locomotion
that include several is one of them

Simpson family
provokes a smile
on many adult

vehicle characters. showing train engine and children
They face challenges|| and a train wagon as faces showing
and jointly solve two characters that

everyday life of a
family of four... 7

them, such as, repair|| f5ce g challenge of
a roof or save Bob'’s crossing a half-

cat from a tall tree.V broken bridge. .. V
( bob W irrated | movie | character | friend | vehicle

| AT 1 1 1 2 1 | 1
Q0| 0 | ¢ 1 1 1 | 0| O

A0 0 1 0 0 0 0 0
\ECATOLGES. © Dunja Mladenic




Document Categorization



Document categorization

2727? unlabeled

Machine learning document

FL
_ gbocumegﬂassiﬁer

labeled documents
document category
(label)

KNOWLEDGE . .
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Automatic Document Categorization

* Given is a set of documents labeled with
content categories

* The goal is: to build a model which would
automatically assign content categories to
new, unlabeled documents

» Content categories can be:

— unstructured (e.g., Reuters) or
— structured (e.g., Yahoo, DMoz, Medline)

KNOWLEDGE : ,
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Algorithms for learning document
classifiers

* Popular algorithms for text categorization:
— Support Vector Machines
— Logistic Regression
— Perceptron algorithm
— Naive Bayesian classifier
— Winnow algorithm
— Nearest Neighbour

» Unlike decision tree and rule learning
algorithms, these are mainly non-symbolic
learning algorithms

RARTMENT OF
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Measuring success - Model quality

estimation
The truth, and

Precision(M,targetC) = P(targetC| targetC) =
..the whole truth

Recall(M, targetC) = P(targetCltargetC)

Accuracy(M) = Z P( a ) x Precision(M,C.)

(1+ B’ )Precision(M,targetC) x Recall(M, targetC)
B’ Precision(M, targetC) + Recall(M, targetC)

Fy(M targetC) =

» Classification accuracy
* Break-even point (precision=recall)
* F-measure (precision, recall = sensitivity)

(. KNOWLEDGE : :
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Categorization to flat categories

Example data set used in research:

* Documents are classified by editors
Into one or more categories

* Publicly available set of Reuter news
mainly from 1987

— 120 categories giving the document content, such
as: earn, acquire, corn, rice, jobs, oilseeds, gold,
coffee, housing, income,...

» Larger dataset available for research
from 2000 having 830,000 Reuters
news documents

E . .
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Distribution of documents
(Reuters-21578)

Number of Documents

Unbalanced

Top 20 categories of Reuter news in 1987-91

distribution
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Categorization into hierarchy

* There are several hierarchies
(taxonomies) of textual documents:
— Yahoo, DMoz, Medline, ...

 Different people use different approaches:
— ...series of hierarchically organized classifiers
— ...set of independent classifiers just for leaves
— ...set of independent classifiers for all nodes

 Example systems: Yahoo Planet [Miadenic

& Grobelnik, 1998], WebClass [Ceci & Malerba,
2003]

RARTMENT OF
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17 =% Architecture of Yahoo Planet

\17 1/(1

Feature construction

Web & X -

D l J vectors of n-grams

Sub-problem definition
Feature selection
Classifier construction

labeled documents
(from Yahoo! hierarchy)

unlabeled document ﬂ

ﬂ
——> Document Classifier ——>

W52 © Dunja Miadenic document category (label)




Document categorization with only
few labeled documents

* we have many documents but only some
of them are labeled

 we may have a human available for a
limited time to provide labels of documents

Approaches:

« Using unlabeled data
» Co-training

* Active learning

NOWLEDGE : :
LUGIESG © Dunja Mladenic
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Using unlabeled data [Nigam et al., 2000]

* Given: a small number of labeled examples and a
large pool of unlabeled examples, no human
available

— e.g., classifying news article as interesting or not interesting

» Approach description (EM + Naive Bayes):

— train a classifier with only labeled documents,

— assign probabilistically-weighted class labels to unlabeled
documents,

— train a new classifier using all the documents
— iterate until the classifier remains unchanged

RARTMENT OF
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Using Unlabeled Data with
Expectation-Maximization (EM)

E-step: Estimate
labels of unlabeled

documents
from labeled only

I - %%%e%

M-step: Use all
documents to
rebuild classifier

Initialize: Learn

Guarantees local maximum a posteriori parameters

{ N‘{]WL EDG . .
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Co-training [Bium & mitchell, 1998]

Theory behind co-training

* Possible to learn from unlabeled examples

» Value of unlabeled data depends on

— How (conditionally) independent are the two
representations of the same data
* The more the better

— The number of redundant inputs (features)
» Expected error decreases exponentially with this number

» Disagreement on unlabeled data predicts true
error

Better performance on labelling unlabeled data

OWLEDGE

.. compared to EM approach
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Bootstrap Learning to Classify Web Pages

Document

fs.5i/Dunj/textgarden/ v|[+2]| %

File Edit View Favorites Tools Help

=

Given: set of documents where each EET e 88 8 e 0w "

Text-Garden -- Text-Mining Software Tools

document is described by two independent |
sets of features (e.g. document text + o o Do

Department of Knor! echnologies

hyperlinks anchor text)

Text-Garden is a software librarv and collection of software tools for solving large scale tasks dealing with structured. semi-structured and

Text-Garden is being used by several institutions including British Telecom, Camnegie Mellon University. Microsoft Research, Cycorp.

Some history
I I l any u n I ab e I ed The development of Text-Garden started in 1996 as a set of C++ classes for dealing with text in order to perform text-leaming tasks. There

were two people working on it until 2002 and it was developed slowlv according to the academic tasks being on our agenda. From 2003 on

Text-Garden became central software platform in our research group at J. Stefan Institute. Text-Garden is used in a number of research and
ag e applicative projects (~10 people contributing).

Classifier S——

Text Garden is almost entirely written in portable C++.

+ it compiles under Windows (Microsoft Visual C=+, Borland C+=) and Unix/Limux (GNU C)
« it runs under 32bit and 64bit platforms
+ it consists of ~200.000 relatively compact lines of code

Using Text-Garden Functionality
Text-Garden fimctionality can be accessed in a number of ways

o As plain C++ classes giving complete functionality.
AsDLL librarv of functions giving simplified extract of major functionality.

-
As command fine utiities with ~60 command line utlities getting connected in pipeline. Basic utiliies covering document classification.
I clustering and visualization can be downloaded under LGPL license.

Through GUI tools developed on the top of Text-Garden. including Document Atlas, OntoGen.
C I . f.

Through interfaces to several platforms with the same APT:
o C/C++ - through simplified DLL & native C++
o Java — through JNI
o NET - e.g. accessible through C2, VB, ..

> Matlab — through standard Matlab interface

Python — through standard Python mterface

Mathematica, Prolog, R — in preparation
The API has ~40 classes and ~2350 functions. Interfaces to the all above platforms are generated automatically from the master Text-
Garden header file.

unstructured data - emphasis of functionalty is on dealing with text. Tt can be used in various ways covering research and applicative scenarios.

Department of Knowledge Technologies, J.Stefan I

te. Ljubljana, Slovenia

Goal: Our goal is to develop new me d approaches that will enable addressing different problems of Text and Web data analvsis as well .

as Multimedia data analvsis ang effiantic Web by applving primarilv Knowledge Discovery methods (KDD). Towards that end we are Hype rl N k tO

/Nl developing and using Text Garden library of tools.

| For further information, contact Dunja Mladenic or Marko Grobelnik. th e d ocume nt




Active Learning

 We use this methods
whenever hand-labeled
data are rare or
expensive to obtain

* |[nteractive method

* Requests only labeling *=

of “interesting” objects

e Much less human work ™™

needed for the same
result compared to
arbitrary labeling
examples

performance

EDGE . .
TEGHNNRLOGIEE © Dunja Mladenic

»passive student

Teacher | Data&
labels
_query

Teacher [*

;| active student

Active student
asking smart
questions

Passive student -
asking random
questions

a =)0 =8
number of questions
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Approaches to Active Learning

* Uncertainty sampling (efficient)

— select example closest to the decision hyperplane (or the one with classification
probability closest to P=0.5) [Tong & Koller 2000]

« Maximum margin ratio change

— select example with the largest predicted impact on the margin size if selected
[Tong & Koller 2000]

 Monte Carlo Estimation of Error Reduction
— select example that reinforces our current beliefs [Roy & McCallum 2001]
« Random sampling as baseline

« Experimental evaluation (using F1-measure) of the four listed
approaches shown on three categories from Reuters-2000
dataset [Novak & Mladenic & Grobelnik, 2006]

— average over 10 random samples of 5000 training (out of 500k) and
10k testing (out of 300k)examples

— two of the methods a rather time consuming, thus we run them for
including the first 50 unlabeled examples

— experiments show that active learning is especially useful for
unbalanced data

NOWLEDGE : :
LUGIESG © Dunja Mladenic o1



F1

Reuters “ENERGY HARKETS" - 8,827

6.9 T T T T T T T T
8.8 I 7]
8,7
|
8.6 —
8.5 M
i
8.4 | J_FCJIJ .
L |
o - _w_(j L Catego_ry \_Nith_very upbalanced
T JJJ | Rt class distribution having 2.7% of
T JrJ L1] positive examples
__J L Uncertainty seems to
) outperform MarginRatio
Randon
Uncertainty
. HEEFR
| | | | | | | Harglqkatlu
108 208 300 488 5808 57518 Foa 2151t 908 1088

sanples



Document clustering

* Given is a set of documents

* The goal is: to cluster the documents into several
groups based on some similarity measure

— documents inside the group should be similar while
documents between the groups should be different

Similarity measure plays a crucial role in clustering,
on documents we use cosine similarity:

d d Z xll x21

A

Cos(d, d,) =

@mﬁe”g? © Dunja Miadenic 53
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Clustering methods

Hierarchical

— agglomerative — at each step merge two or more
groups

— divisive — at each step break the selected group into
two or more groups

Non hierarchical

— requires specification of the number of clusters

— optimization of the initial clustering (e.g., maximize
similarity of examples inside the same group)

Geometrical

— map multidimensional space into two- or three-
dimensional (e.g., principal component analysis)

Graph-theoretical

© Dunja Mladenic

|||||

o4



K-Means clustering algorithm

« Given:
— set of examples (e.g., TFIDF vectors of documents),
— distance measure (e.g., cosine)
— K (number of groups)

* For each of K groups initialize its centroid with a
random document

* While not converging

— Each document is assigned to the nearest group
(represented by its centroid)

— For each group calculate new centroid (group mass
point, average document in the group)

RARTMENT OF
DWLEDGE : :
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Example of k-means clustering

Examples:
 A:1,0,1,0,1 1. Randomly select two examples, e.q., A, D to
 B:1,0,0,0,1 be representatives of two clusters I: A, Il: D

e C:1.0100 2. Calculate similarity of other examples to the

L. them
e TIRHL B,I=0.82, B,II=0, C,I=0.82, C,lI=0, E,I= 0, E,lI= 0.7

* E01,0,10 3 Assign examples to the most similar cluster
I: (A,B,C) Il: (D,E)
K=2 4. Calculate the cluster centroid
I: 1,0,0.67,0,0.67 ll: 0,0.5,0,1,0
5. Calculate similarity of all the examples to the
centroids A,1=0.88, All=0,B,1=0.77,B,II=0, C,I=
0.77,C,|I=0, D,I=0, D,lI=0.82, E,I= 0, E,II=0.87
6. Cluster the examples I: (A,B,C) Il: (D,E)
/. Stop as the clustering got stabilized

RARTMENT OF
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Example of hierarchical clustering
(bisecting k-means)
0,1,2,3,4,5,6,7,8,9, 10, 11

01246‘{ \3 8
0,2,4,7,10, 11 1,6,9 3,8 5
RN AN /\
0,2,4,7,11 10 1,9 §) 3 8
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Visualization into 25 groups of 2786
projects (based on project descriptions)
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<kt.ijs.si/Dunja/TextWebJSI>
Text and Web Mining - IJS Grou[! Page J

Goal: Our goal is to develop new methods and approaches that will enable addressing different problems of Text and Web data analysis by applying
primarily Machine Learning (ML) and Data Mining (DM) methods.
For further information, contact Dunja Mladenic or Marko Grobelnik.

Overview

The growing importance of electronic media for storing and exchanging text documents has led to a growing interest in tools and approaches for dealing
with unstructured or semi-structured information included in the text documents. In addition to well-organized and maintained text databases, one of the
important sources of textual information is the World Wide Web which is expected to continue to grow in the number of users and amount of information

M O re O n available. Connected to that is also a problem of Web access analysis, where different Web users show different behavior when browsing the same Web
site (e.g. an e-commerce company Web site).

() u r WO rk Methods developed for mining structured and unstructured data sets as well as text learning and natural language processing techniques are essential for
analysis of textual data. While many approaches to text processing are based on statistics and thus only weakly dependent on the language the data is
written in, those that involve deeper linguistic processing are typically aimed at English texts. Furthermore, an important step towards exploiting
information from texts is automated information extraction from large document sets and building more or less domain specific knowledge bases.

Projects

» Analysis of EU research projects and collaborations Project Intelligence
o European projects under support of EC
o 6FP Integrated project SEKT: Semantically Enabled Knowledge Technologies (2004-2006) (IST-1-506826-1P)
o 6FP Strategic targeted research project AL VIS: Superpeer Semantic Search Engine (2004-2006) (IST-1-002068-STP)
o 6FP Network of Excellence PASCAT: Patfern Analysis. Statistical Modelling and Computational Learning (2003-2007) (IST-1-506778-NOE)
o 6FP ERA project CEC-WYS: Central Furopean Centre for Women and Youth in Science (2004-2006) (SAS6-CT-2004-003582)
o SFP RTD project SOL-EU-NET: Data Mining and Decision Support for Business Competitiveness: Solomon European Virtual Enterprise

(2000-2003) (IST-1999-11495)
o SFP Network of Excellence KDNet: European Knowledge Discovery Network of Excellence (2002-2004) (IST-2001-33086)

o 5FP Network of Excellence KMForum: European Knowledge Management Forum (2000-2003) (IST-2000-26393)
» Join projects with Microsoft Research, Cambridge, UK

o Application of Advanced Natural Language Processing to Text Mining and Summarization (2002-2003)

o Text Analysis using Natural Language Processing (2000-2001)
« Joint projects with CMU Text Learning Group, Pittsburgh, USA

o Personal WebWatcher project

o Yahoo Planet project

o PhD thesis project: Machine Learning on non-homogeneous. distributed text data

o Project on Analysis of Large Text Datasets
» National projects

o Construction of archive for Slovenian Web publications, joint project with National and University Library of Slovenia (2002-2004)

o Design and analysis of Slovenian digitalized electronic publications of national importance, joint project with National and University Library of
Qlovenia (2007-2N04)




Text Garden (clustering,

visualization, classification)
<www.textmining.net>
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Ontology construction using
OntoGen



Ontology

* Ontology is a data model that represents a set of
concepts within a domain and the relationships
between those concepts

* Ontology can be seen as a graph/network
structure consisting from:
— a set of concepts (vertices in a graph),

— a set of instances assigned to a particular concepts
(data records assigned to vertices in a graph)

— a set of relationships connecting concepts (directed
edges in a graph)

RARTMENT OF
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Example of a Topic Ontology
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Ontology construction

One of the methodologies defined for ontology construction is a
methodology for semi-automatic ontology construction
analogous to the CRISP-DM methodology can be defined as
consisting of the following interrelated phases:

-
2.

3.

PR

domain understanding (what is the area we are dealing with?),

data understanding (what is the available data and its relation to
semi-automatic ontology construction?),

task definition (based on the available data and its properties, define
task(s) to be addressed),

ontology learning (semi-automated process addressing the task(s)
ontology evaluation (estimate quality of the solutions to the addressed
task(s)),

refinement with human in the loop (perform any transformation
needed to improve the ontology and return to any of the previous
steps, as desired)

[Grobelnik, Mladeni¢ 2006]
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Ontology learning

* Define the ontology learning tasks in terms of mappings
between ontology components, where some of the
components are given and some are missing and we
want to induce the missing ones.

« Some typical scenarios in ontology learning are the

following:
— Inducing concepts/clustering of instances (given instances)
— Inducing relations (given concepts and the associated instances)
— Ontology population (given an ontology and relevant, but not
associated instances)
— Ontology generation (given instances and any other background
information)

— Ontology updating/extending (given an ontology and background
information, such as, new instances or the ontology usage
patterns)

RARTMENT OF
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Ontology Learning with OntoGen
(developed on the top of Text Garden)

« Semi-Automatic
— provide suggestions and insights into the domain
— the user interacts with parameters of methods
— final decisions taken by the user

 Data-Driven

— most of the aid provided by the system is based on
some underlying data

— instances are described by features extracted from
the data (eg., words-vectors)

[Fortuna & Mladeni¢ & Grobelnik, 2005]

Installation package is publicly available in binaries
at ontogen.ijs.si
tekt
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http://ontogen.ijs.si/

Basic idea behind OntoGen

Ontology
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