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Decision trees 
A decision tree is a predictive model which maps observations about an item to conclusions about 
the item's target value. Another name for such tree models is classification trees. In these tree 
structures, leaves represent classifications and branches represent conjunctions of attribute-values 
that lead to those classifications. In decision trees, each interior node corresponds to an attribute; 
an arc to a child represents a possible value of that attribute. A leaf represents a possible value of 
target variable given the values of the variables represented by the path from the root. 
 
A tree can be "learned" by splitting the source set into subsets based on an attribute value test. This 
process is repeated on each derived subset in a recursive manner. The recursion is completed when 
splitting is either non-feasible, or a singular classification can be applied to each element of the 
derived subset. In advanced algorithms like C4.5 (J48), other stopping criteria are also used. 

Decision tree induction - Algorithm ID3 
Given: training set S 
    1.   Compute the entropy E(S) of the set S 
    2.   IF E(S) = 0 
    3.      The current set is “clean” and therefore a leaf in our tree 
    4.   IF E(S) > 0 
    5.      Compute the information gain of each attribute Gain(S, A) 
    6.      The attribute A with the highest information gain becomes the root 
    7.      Divide the set S into subsets Si according to the values of A 
    8.      Repeat steps 1-7 on each Si 
 
The information gain of an attribute Gain(S ,A) is computed as follows: 
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The entropy of a set E(S) is computed as follows, where pc are probabilities of each class: 
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Exercise 
Given: Attribute-value data with nominal target variable Lenses. 
Induce a decision tree and estimate its performance on new data. 
 
The data: 

 
 

We split the data into two parts: one for training and one for testing. 
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We induce a decision tree on the training set S according to the algorithm ID3. 
Compute the entropy E(S) of the set S: 

 

There are 17 examples in our training set. 6 of 
them have value Lenses=YES and 11 of them 
have the value Lenses=NO.  

 
E(S) = E(6/17, 11/17) = 0.94 

 
Since the entropy E(S) is not zero, we compute the information gain of each attribute: Gain(S, A). 
 
Information gain of the attribute Age on set S: 

 

 
The attribute Age splits the set S into three subsets: 
Age=young, Age=pre-presbyopic and 
Age=presbyopic with 7, 3 and 7 instances 
respectively.  
In the subset Age = young, there are 3 items with 
Lenses=YES and 4 with Lenses=NO.  
E(Age=young) = E(3/7, 4/7) = 0.99. 
Similar for the other two sets: 
E(Age=pre-presbyopic) = E(1/3, 2/3) = 0.92 
E(Age=presbyopic) = E(2/7, 5/7) = 0.86 

Gain (S,Age) =  
E(S) – 7/17 E(Age= young) – 3/17 E(Age=pre-presbyopic) – 7/17 E(Age=presbyopic) = 
= 0.94 – 7/17 * 0.99 – 3/17 *0.92 – 7/17 *0.86 = 0.02 
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Information gain of the attribute Prescription on set S: 

 
 
E(Prescription=hypermetrope) =  
    = E(3/7, 4/7) = 0.99 
 
E(Prescription=myope) =  
     = E(3/10, 7/10) = 0.88 
 
Gain (S, Prescription) =  
= E(S) –  

– 7/17 E(Prescription=hypermetrope)  
– 10/17 E(Prescription=myope) =  

= 0.94 – 7/17* 0.99 – 10/17 * 0.88 = 0.02 
 

 
 
Information gain of the attribute Astigmatic on set S: 

 
 
E(Astigmatic=no) = E(3/9, 6/9) = 0.92 
 
E(Astigmatic =yes) =  E(3/8, 5/8) = 0.95 
 
Gain (S, Astigmatic) =  
= E(S) –  

– 9/17 E(Astigmatic=no)  
– 8/17 E(Astigmatic=yes) =  

= 0.94 – 9/17* 0.92 – 8/17 * 0.95 = 0.006 
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Information gain of the attribute Tear_Rate on set S: 

 
 
E(Tear_Rate=normal) = E(6/7, 1/7) = 0.59 
 
E(Tear_Rate=reduced) = E(0/10, 10/10) = 0 
 
Gain (S, Tear_Rate) =  
= E(S) –  

– 7/17 E(Tear_Rate=normal)  
– 10/17 E(Tear_Rate=reduced) =  

= 0.94 – 7/17* 0.59 – 10/17 * 0 = 0.70 

 
 
The attribute with the highest information gain is Tear_Rate with information gain of 0.70. This 
attribute is chosen to become the root of our tree. We recursively continue to build the tree on 
subsets of set S according to values of the attribute Tear_Rate. 
 

 

On the one hand, the entropy of the subset with Tear_Rate=normal is 
not zero, therefore we continue with the built. On the other hand, the 
entropy of the set Tear_Rate=reduced is zero, which means that the 
algorithm has reached the end and this node is a leaf of the tree. It 
classifies into class Lenses=NO. 
 

 
 
Information gain of the attribute Age on set Tear_Rate=normal: 

 
E(Age=young | Tear_Rate=normal) = E(3/3, 0/3) = 0 
E(Age=pre-presbyopic | Tear_Rate=normal) = E(1/1, 0/1) = 0 
E(Age=presbyopic | Tear_Rate=normal) = E(2/3, 1/3) = 0.92 
 
Gain (S Tear_Rate=normal, Age) =  

E(S Tear_Rate=normal) – 3/7 E(Age=young | Tear_Rate=normal)  
– 1/7 E(Age=pre-presbyopic | Tear_Rate=normal) 
– 3/7 E(Age=presbyopic | Tear_Rate=normal) = 
= 0.59 – 3/7 * 0 - 1/7 * 0 - 3/7 *0.92 = 0.20 
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Information gain of the attribute Prescription on set Tear_Rate=normal: 

 
 
E(Prescription=myope | Tear_Rate=normal) = E(3/4, 1/4) = 0.81 
E(Prescription=hypermetropy | Tear_Rate=normal) = E(3/3, 0/3) = 0 
 
Gain (S Tear_Rate=normal, Prescription) =  

E(S Tear_Rate=normal) – 4/7 E(Prescription=myope | Tear_Rate=normal)  
– 3/7 E(Prescription=hypermetropy | Tear_Rate=normal) = 
= 0.59 – 4/7 * 0.81 - 3/7 * 0 = 0.13 

 
Information gain of the attribute Astigmatic on set Tear_Rate=normal: 

 
 
E(Astigmatic=no | Tear_Rate=normal) = E(3/4, 1/4) = 0.81 
E(Astigmatic=yes | Tear_Rate=normal) = E(3/3, 0/3) = 0 
 
Gain (S Tear_Rate=normal, Astigmatic) =  

E(S Tear_Rate=normal) – 4/7 E(Astigmatic=no | Tear_Rate=normal)  
– 3/7 E(Astigmatic=yes | Tear_Rate=normal) = 
= 0.59 – 4/7 * 0.81 - 3/7 * 0 = 0.13 

 
 
The attribute with the highest information gain on set Tear_Rate=normal is Age with information 
gain of 0.20. This attribute is chosen to become the next node of our tree. We recursively continue 
to build the tree on subsets of this set according to values of the attribute Age. 
 

On the one hand, the entropies of the subsets
with Age=pre-presbyopic and Age=young  
are zero, therefore we reached the end of the 
tree. On the other hand, the entropy of the set
Age=presbyopic is not zero, which means 
that the algorithm continues with the built. 
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Information gain of the attribute Prescription on set Tear_Rate=normal&Age=presbyopic: 

 
E(Prescription=myope | Tear_Rate=normal&Age=presbyopic) = E(1/2, 1/2) = 1 
E(Prescription=hypermetropy | Tear_Rate=normal&Age=presbyopic) = E(1/1, 0/1) = 0 
 
Gain (S Tear_Rate=normal&Age=presbyopic, Prescription) =  

E(S Tear_Rate=normal&Age=presbyopic)  
– 2/3 E(Prescription=myope | Tear_Rate=normal&Age=presbyopic) 
– 1/3 E(Prescription=hypermetropy | Tear_Rate=normal&Age=presbyopic) = 
= 0.92 – 2/3 *1 – 1/3 * 0 = 0.25 

 
Information gain of the attribute Astigmatic on set Tear_Rate=normal&Age=presbyopic: 

 
E(Astigmatic=no | Tear_Rate=normal&Age=presbyopic) = E(1/2, 1/2) = 1 
E(Astigmatic=yes | Tear_Rate=normal&Age=presbyopic) = E(1/1, 0/1) = 0 
 
Gain (S Tear_Rate=normal&Age=presbyopic, Prescription) =  

E(S Tear_Rate=normal&Age=presbyopic)  
– 2/3 E(Astigmatic=no | Tear_Rate=normal&Age=presbyopic)  
– 1/3 E(Astigmatic=yes | Tear_Rate=normal&Age=presbyopic)= 
= 0.92 – 2/3 *1 – 1/3 * 0 = 0.25 

 
Both attributes Prescription and Astigmatic have the same information gain of 0.25. The ID3 
algorithm would choose one of them for the next node (implementations usually take the first one). 
If we choose the attribute Prescription, the only remaining attribute is Astigmatic, which finally 
splits the dataset into “clean” subsets with entropy zero. 
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If we choose the attribute Astigmatic, the only remaining attribute is Prescription, which also splits 
the dataset into “clean” subsets with entropy zero. 

 
 
We use the former tree and test its performance on the testing set. 

 
 

Confusion matrix predicted 
    Lenses=YES Lenses=NO

Lenses=YES TP =3 FN=0 

ac
tu

al
 

Lenses=NO FP=2 TN=2  

Classification accuracy is 
CA = (TP + TN)/(TP+TN+FP+FN) 
       = 5 / 7  
       = 0.71 
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