Data Mining and Knowledge Discovery

Knowledge Discovery and Knowledge Management in e-Science

Petra Kralj Novak

Petra.Kralj@ijs.si

Practice, 2008/10/22

Practice plan

- 2008/10/22: Predictive data mining
 - Decision trees
 - Naïve Bayes classifier
 - Evaluating classifiers (separate test set, cross validation, confusion matrix, classification accuracy)
 - Predictive data mining in Weka
- 2008/11/12: Numeric prediction and descriptive data mining
 - Regression models
 - Association rules
 - Regression models and evaluation in Weka
 - Descriptive data mining in Weka
 - Discussion about seminars and exam
- 2008/12/1: Written exam
- 2008/12/8: Seminar proposals presentations

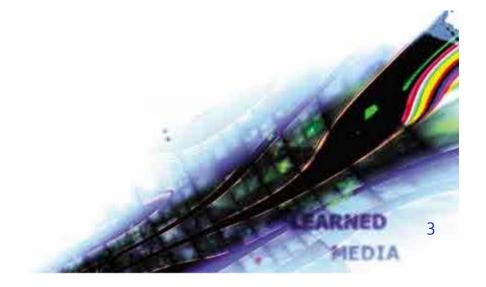
Decision tree induction

Given

Attribute-value data with nominal target variable

Induce

 A decision tree and estimate its performance on new data



Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

- Compute the entropy E(S) of the set S
- 2. **IF** E(S) = 0
- 3. The current set is "clean" and therefore a leaf in our tree
- 4. **IF** E(S) > 0
- 5. Compute the information gain of each attribute Gain(S, A)
- 6. The attribute A with the highest information gain becomes the root
- 7. Divide the set S into subsets S_i according to the values of A
- 8. Repeat steps 1-7 on each Si

Test the model on the test set T



Attribute-value data

(nominal) target variable

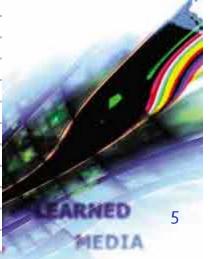
examples

					—	
	Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
•	P1	young	myope	no	normal	YES
	P2	young	myope	no	reduced	NO
*	P3	young	hypermetrope	no	normal	YES
*	P4	young	hypermetrope	no	reduced	NO
	P5	young	myope	yes	normal	YES
	P6	young	myope	yes	reduced	NO
	P7	young	hypermetrope	yes	normal	YES
	P8	young	hypermetrope	yes	reduced	NO
	P9	pre-presbyopic	myope	no	normal	YES
	P10	pre-presbyopic	myope	no	reduced	NO
	P11	pre-presbyopic	hypermetrope	no	normal	YES
	P12	pre-presbyopic	hypermetrope	no	reduced	NO
	P13	pre-presbyopic	myope	yes	normal	YES
	P14	pre-presbyopic	myope	yes	reduced	NO
	P15	pre-presbyopic	hypermetrope	yes	normal	NO
	P16	pre-presbyopic	hypermetrope	yes	reduced	NO
	P17	presbyopic	myope	no	normal	NO
	P18	presbyopic	myope	no	reduced	NO
	P19	presbyopic	hypermetrope	no	normal	YES
	P20	presbyopic	hypermetrope	no	reduced	NO
	P21	presbyopic	myope	yes	normal	YES
	P22	presbyopic	myope	yes	reduced	NO
	P23	presbyopic	hypermetrope	yes	normal	NO
•	P24	presbyopic	hypermetrope	yes	reduced	NO

attributes

classes

values of the (nominal) target variable



Training and test set

Person	erson Age Prescription Astigma		Astigmatic	Tear_Rate	Lenses
P1	P1 young myope		no	normal	YES
P2	young	myope	no	reduced	NO
P3	young	hypermetrope	no	normal	YES
P4	young	hypermetrope	no	reduced	NO
P5	young	myope	yes	normal	YES
P6	young	myope	yes	reduced	NO
P7	young	hypermetrope	yes	normal	YES
P8	young	hypermetrope	yes	reduced	NO
P9	pre-presbyopic	myope	no	normal	YES
P10	pre-presbyopic	myope	no	reduced	NO
P11	pre-presbyopic	hypermetrope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P14	pre-presbyopic	myope	yes	reduced	NO
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P17	presbyopic	myope	no	normal	NO
P18	presbyopic	myope	no	reduced	NO
P19	presbyopic	hypermetrope	no	normal	YES
P20	presbyopic	hypermetrope	no	reduced	NO
P21	presbyopic	myope	yes	normal	YES
P22	presbyopic	myope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO
P24	presbyopic	hypermetrope	yes	reduced	NO

Put 30% of examples in a separate test set

Test set

Person	Person Age Prescription		Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Put these data away and do not look at them in the training phase!

Training set

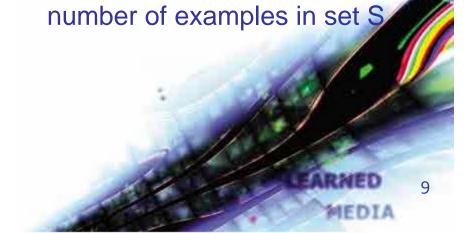
Person	Person Age Prescription		Astigmatic	Tear_Rate	Lenses
P1	P1 young myope		no	normal	YES
P2	young	myope	no	reduced	NO
P4	young	hypermetrope	no	reduced	NO
P5	young	myope	yes	normal	YES
P6	young	myope	yes	reduced	NO
P7	young	hypermetrope	yes	normal	YES
P8	young	hypermetrope	yes	reduced	NO
P10	pre-presbyopic	myope	no	reduced	NO
P11	pre-presbyopic	hypermetrope	no	normal	YES
P14	pre-presbyopic	myope	yes	reduced	NO
P17	presbyopic	myope	no	normal	NO
P18	presbyopic	myope	no	reduced	NO
P19	presbyopic	hypermetrope	no	normal	YES
P20	presbyopic	hypermetrope	no	reduced	NO
P21	presbyopic	myope	yes	normal	YES
P22	presbyopic	myope	yes	reduced	NO
P24	presbyopic	hypermetrope	yes	reduced	NO

Information gain

number of examples in the subset S_v

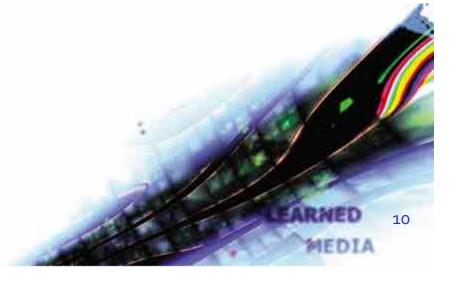
(probability of the branch)

Set S atribut A
$$Gain(S,A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$



$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

E
$$(0,1) =$$
E $(1/2, 1/2) =$
E $(1/4, 3/4) =$
E $(1/7, 6/7) =$
E $(6/7, 1/7) =$
E $(0.1, 0.9) =$
E $(0.001, 0.999) =$



$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

$$E(0,1) = 0$$

$$E(1/2, 1/2) = 1$$

$$E(1/4, 3/4) = 0.81$$

$$E(1/7, 6/7) = 0.59$$

$$E(6/7, 1/7) = 0.59$$

$$E(0.1, 0.9) = 0.47$$

$$E(0.001, 0.999) = 0.01$$

$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

$$E(0,1) = 0$$

$$E(1/2, 1/2) = 1$$

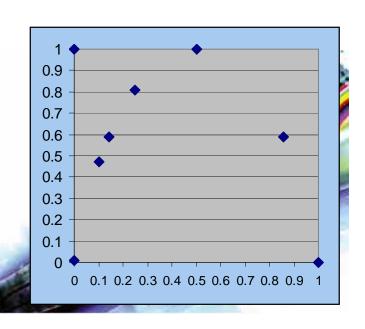
$$E(1/4, 3/4) = 0.81$$

$$E(1/7, 6/7) = 0.59$$

$$E(6/7, 1/7) = 0.59$$

$$E(0.1, 0.9) = 0.47$$

$$E(0.001, 0.999) = 0.01$$



$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

$$E(0,1) = 0$$

$$E(1/2, 1/2) = 1$$

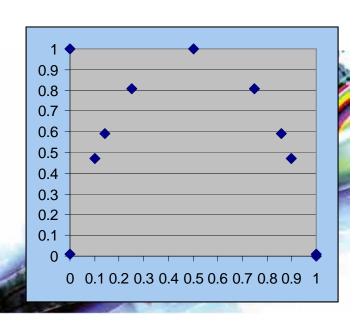
$$E(1/4, 3/4) = 0.81$$

$$E(1/7, 6/7) = 0.59$$

$$E(6/7, 1/7) = 0.59$$

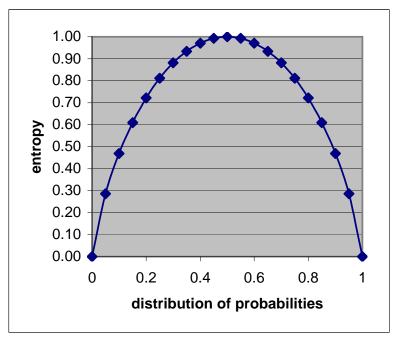
$$E(0.1, 0.9) = 0.47$$

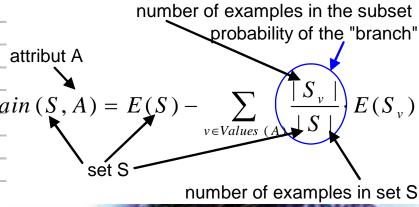
$$E(0.001, 0.999) = 0.01$$



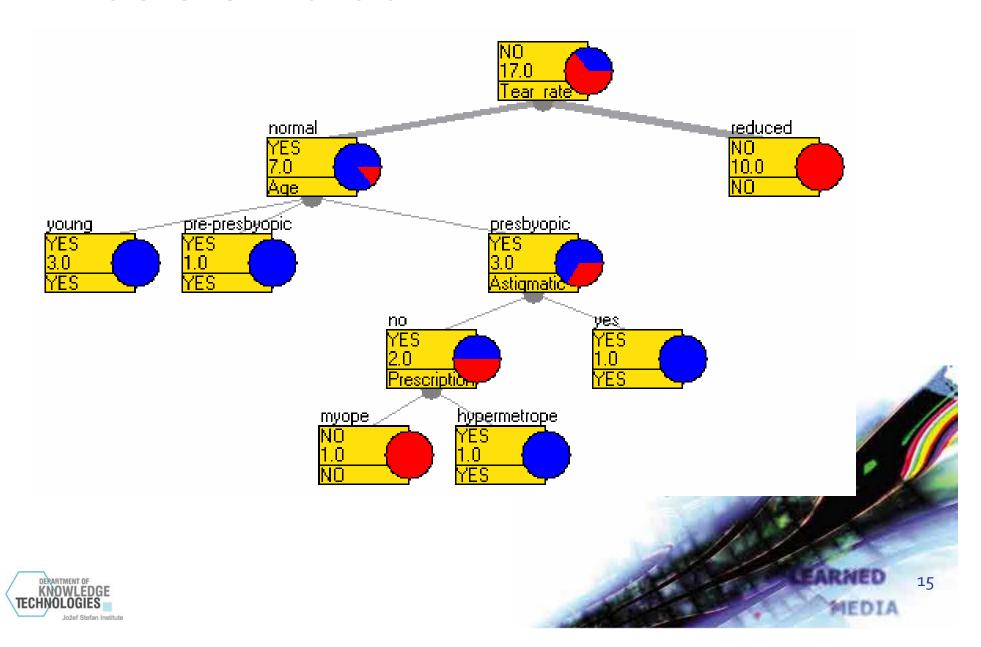
Entropy and information gain

probability of class 1	probability of class 2	ontropy E/p _ p) _
Class I		entropy $E(p_1, p_2) =$
p ₁	$p_2 = 1 - p_1$	$-p_1*log_2(p_1) - p_2*log_2(p_2)$
0	1	0.00
0.05	0.95	0.29
0.10	0.90	0.47
0.15	0.85	0.61
0.20	0.80	0.72
0.25	0.75	0.81
0.30	0.70	0.88
0.35	0.65	0.93
0.40	0.60	0.97
0.45	0.55	0.99
0.50	0.50	1.00
0.55	0.45	0.99
0.60	0.40	0.97
0.65	0.35	0.93
0.70	0.30	0.88
0.75	0.25	0.81
0.80	0.20	0.72 Ga
0.85	0.15	0.61
0.90	0.10	0.47
0.95	0.05	0.29
1	0	0.00





Decision tree



Confusion matrix

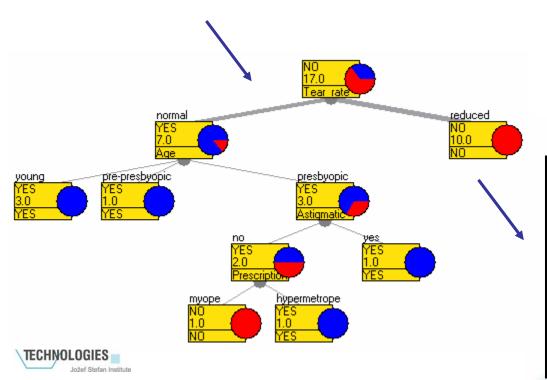
predicted

		Predicted positive	Predicted negative
ual	Actual positive	TP	FN
act	Actual negative	FP	TN

- Confusion matrix is a matrix showing actual and predicted classifications
- Classification measures can be calculated from it, like classification accuracy
 - = #(correctly classified examples) / #(all examples)
 - = (TP+TN) / (TP+TN+FP+FN)

Evaluating decision tree accuracy

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO



Ca = (3+2)/(3+2+2+0) = 0.71%

	Predicted positive	Predicted negative
Actual positive	TP=3	FN=0
Actual negative	FP=2	TN=2

Predicting with Naïve Bayes

Given

Attribute-value data with nominal target variable

Induce

 Build a Naïve Bayes classifier and estimate its performance on new data

Naïve Bayes classifier

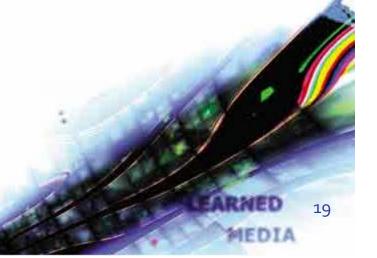
$$P(c \mid a_1, a_2, a_n) = P(c) \prod_i \frac{P(c \mid a_i)}{P(c)}$$

Assumption: conditional independence of attributes given the class.

Will the spider catch these two ants?

- Color = white, Time = night
- Color = black, Size = large, Time = day

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

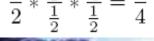


Naïve Bayes classifier -example

Color	\mathbf{Size}	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$v_1 = "Color = white"$$
 $v_2 = "Time = night"$
 $c_1 = YES$
 $c_2 = NO$

$$p(c_1|v_1,v_2) = \\ p(Caught = YES|Color = white, Time = night) = \\ p(Caught = YES) * \frac{p(Caught = YES|Color = white)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{1}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{1}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{1}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{1}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{1}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{1}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{1}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{1}{p(Caught = YES|Time = night)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} * \frac{p(Caught = Y$$



Discussion

- List evaluation methods for classification.
- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding
 - the handling of missing values
 - numeric attributes
 - interpretability of the model

