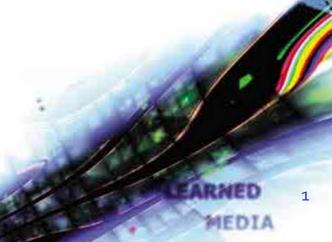
Data Mining and Knowledge Discovery

Knowledge Discovery and Knowledge Management in e-Science

Petra Kralj

Petra.Kralj@ijs.si

Practice, 2007/11/15



- → List evaluation methods for classification.
 - How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - What would be the classification accuracy of our decision tree if we would have pruned it at he node Astigmatic?
 - How would you compute the information gain of a numeric attribute?
 - Compare the naïve Bayes classifier and decision trees regarding the handling of missing values.
 - Compare the naïve Bayes classifier and decision trees regarding numeric attributes.

List of evaluation methods

- Separate train and test set
- K-fold cross validation
- Leave one out
 - used with very small datasets (few 10 examples)
 - For each example e:
 - use e as test example and the rest for training
 - Count the correctly classified examples
- Optimistic estimate: test on training set

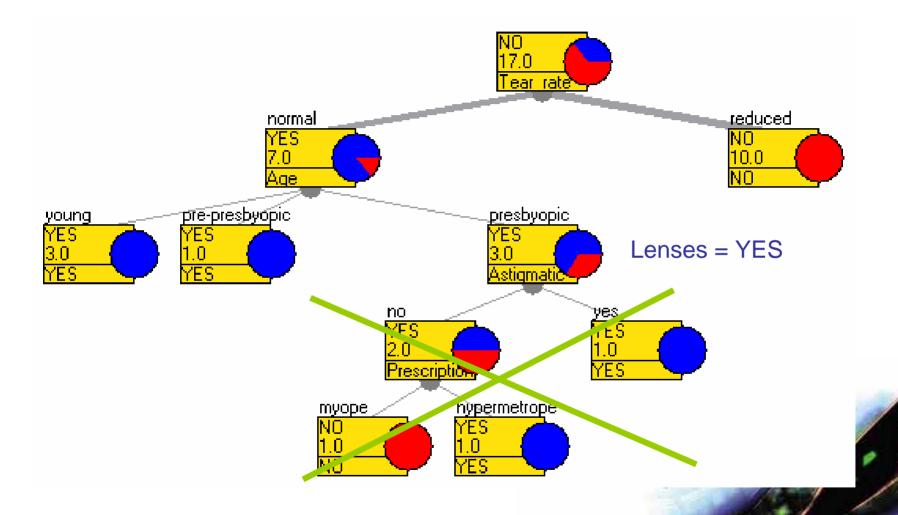
- List evaluation methods for classification.
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 - What would be the classification accuracy of our decision tree if we would have pruned it at he node Astigmatic?
 - How would you compute the information gain of a numeric attribute?
 - Compare the naïve Bayes classifier and decision trees regarding the handling of missing values.
 - Compare the naïve Bayes classifier and decision trees regarding numeric attributes.

Entropy{hard=4, soft=5, none=13}=

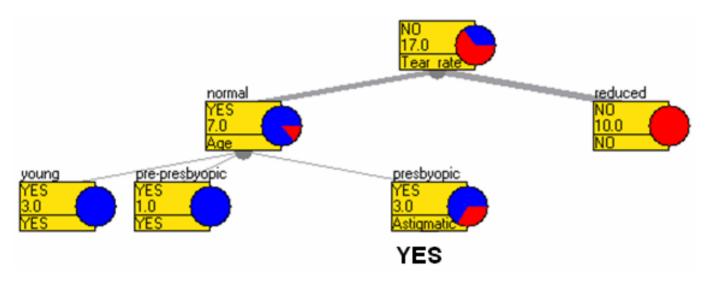
- = E(4/22, 5/22, 13/22)
- $= -\sum p_i * \log_2 p_i$
- = -4/22 * log₂4/22 5/22 * log₂5/22- 13/22*log₂13/22
- = 1.38

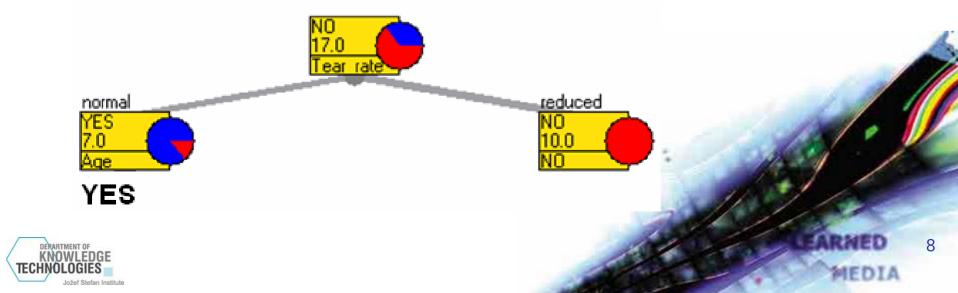
- List evaluation methods for classification.
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we would have pruned it at he node Astigmatic?
 - How would you compute the information gain of a numeric attribute?
 - Compare the naïve Bayes classifier and decision trees regarding the handling of missing values.
 - Compare the naïve Bayes classifier and decision trees regarding numeric attributes.

Decision tree



These two trees are equivalent





Classification accuracy of the pruned tree

Person	Age	Prescription	Astigmatic	Tear_rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Ca = (3+2)/(3+2+2+0) = 0.71%

	Predicted positive	Predicted negative
Actual positive	TP=3	FN=0
Actual	FP=2	TN=2

YES

- List evaluation methods for classification.
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we would have pruned it at he node Astigmatic?
- How would you compute the information gain of a numeric attribute?
 - Compare the naïve Bayes classifier and decision trees regarding the handling of missing values.
 - Compare the naïve Bayes classifier and decision trees regarding numeric attributes.

	II .
Age 67	Lenses
	Lenses YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
39	NO
45	YES

Age	Lenses	
67	YES	
52	YES	
63	NO	
26	YES	
65	NO	
23	YES	
65	NO	
25	YES	
26	YES	
57	NO	
49	NO	
23	YES	
39	NO	
55	NO	
53	NO	
38	NO	
67	YES	
54	NO	
29	YES	
46	NO	
44	YES	
32	NO	
39	NO	
45	YES	

Sort by Age

Age	Lenses	
Age 23 23	YES	
23	YES	
25	YES	
25 26	YES	
26	YES YES YES	
29	YES	
32	NO	
38	NO	
39	NO	
39	NO	
44	YES	
45	YES	
46	NO	
49	NO	
52	YES	
53	NO	
54	NO	
55	NO	
57	NO	
63	NO	
65	NO	
65	NO	
67	YES	
67	YES	

Age	Lenses
67	YES
52	YES
63	NO
26	YES
65	NO
23	YES
65	NO
25	YES
26	YES
57	NO
49	NO
23	YES
39	NO
55	NO
53	NO
38	NO
67	YES
54	NO
29	YES
46	NO
44	YES
32	NO
39	NO
45	YES

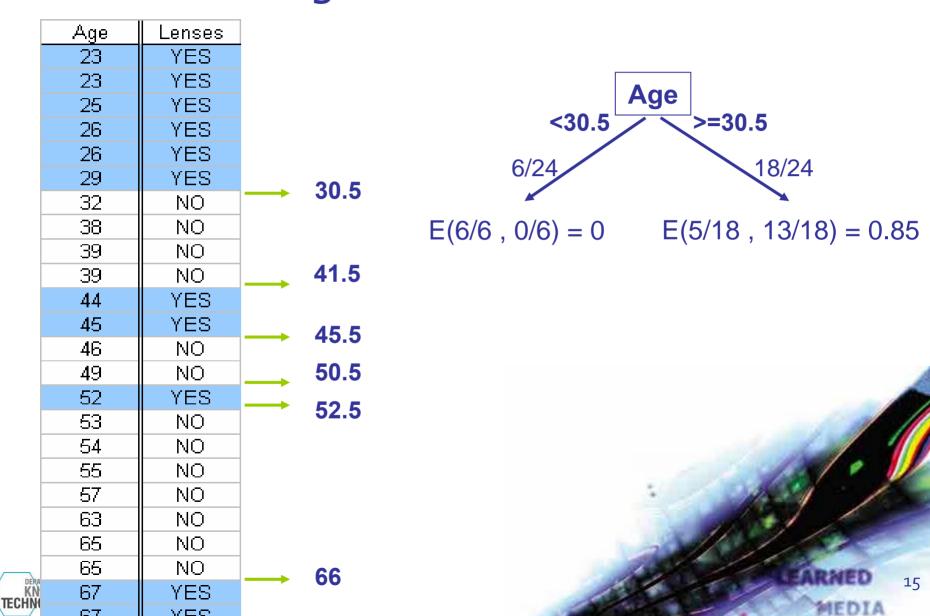
Sort by Age

Age	Lenses
23	YES
23	YES
25	YES
26	YES
26	YES
29	YES
32	NO
38	NO
39	NO
39	NO
44	YES
45	YES
46	NO
49	NO
52	YES
53	NO
54	NO
55	NO
57	NO
63	NO
65	NO
65	NO
67	YES
67	YES

Define possible splitting points

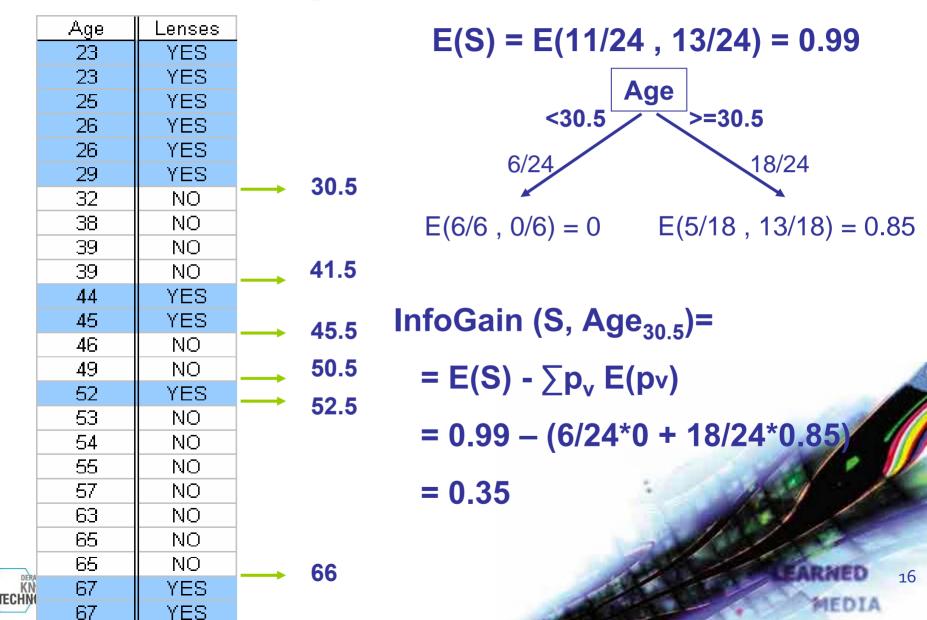
	Aae	Lenses	
	Age 23	YES	
	23	YES	
	25	YES	
	26	YES	
	26	YES	
	29	YES	
	32	NO	
	38	NO	
	39	NO	
	39	NO	
	44	YES	
	45	YES	
	46	NO	
	49	NO	
	52	YES	
	53	NO	ĺ
	54	NO	
	55	NO	
á	57	NO	
d	63	NO	
	65	NO	
	65	NO	
	67	YES	
4	67	YES	

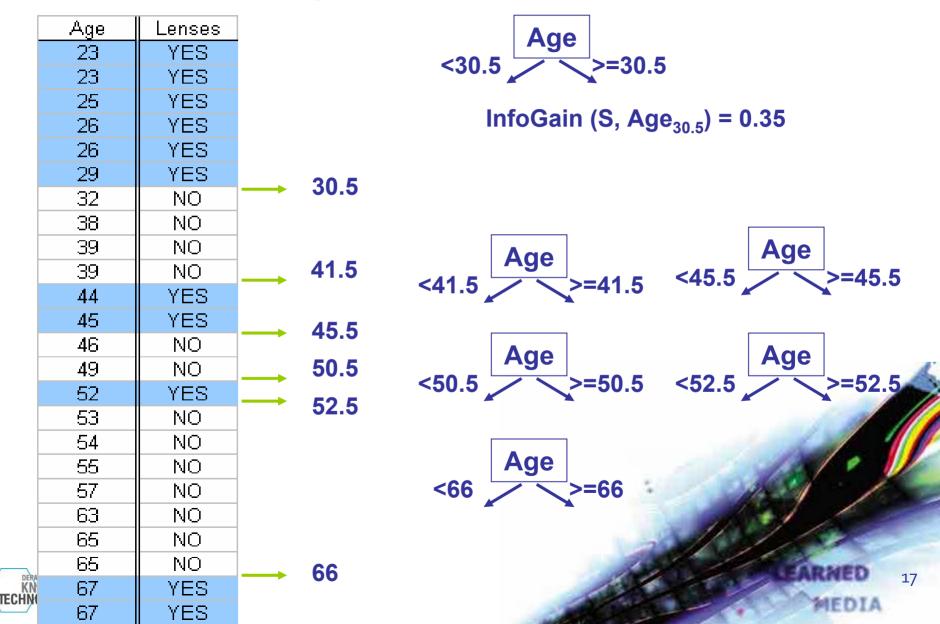
		1	I	
	Age	Lenses		
	23	YES		
	23	YES		
	25	YES		
	26	YES		
	26	YES		
	29	YES		20 E
	32	NO		30.5
	38	NO		
	39	NO		
	39	NO		41.5
	44	YES		
	45	YES		45.5
	46	NO		40.0
	49	NO		50.5
	52	YES		52.5
	53	NO	ĺ	52.5
	54	NO		
	55	NO		
	57	NO		
	63	NO		
	65	NO		
	65	NO		66
N N	67	YES		00
Y	67	YES		



67

YES





- List evaluation methods for classification.
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain of a numeric attribute?
- What would be the classification accuracy of our decision tree if we would have pruned it at he node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding the handling of missing values.
 - Compare the naïve Bayes classifier and decision trees regarding numeric attributes.

Handling missing values: Naïve Bayes

Will the spider catch these two ants?

- Color = white, Time = night
 ← missing value Size
- Color = black, Size = large, Time = day

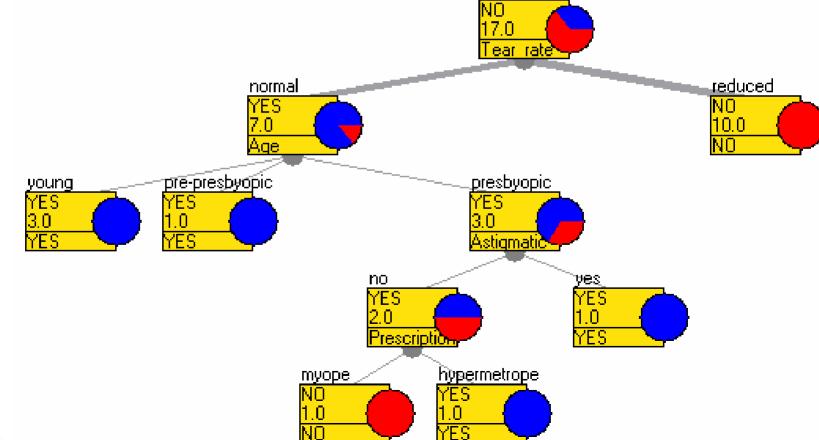
$$p(c_1|v_1,v_2) = \\ p(Caught = YES|Color = white, Time = night) = \\ p(Caught = YES) * \frac{p(Caught = YES|Color = white)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)} = \\ \frac{p(Caught = YES|Time = night)}{p(Caught = YES|Time = night)}$$

 $\frac{1}{2} * \frac{\frac{1}{2}}{\frac{1}{2}} * \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{4}$

Naïve Bayes uses all the available information!

Handling missing values: Decision trees - 1

Age	Prescription	Astigmatic	Tear_Rate
?	hypermetrope	no	normal
pre-presbyopic	myope	?	normal



Handling missing values: Decision trees - 2

Algorithm **ID3**: does not handle missing values Algorithm **C4.5** (J48)deals with two problems:

- Missing values in train data:
 - Missing values are not used in gain and entropy calculations
- Missing values in test data:
 - A missing continuous value is replaced with the median of the training set
 - A missing categorical values is replaced with the most frequent value

- List evaluation methods for classification.
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain of a numeric attribute?
- What would be the classification accuracy of our decision tree if we would have pruned it at he node Astigmatic?
- Compare the naïve Bayes classifier and decision trees regarding the handling of missing values.
- Compare the naïve Bayes classifier and decision trees regarding numeric attributes.

Continuous attributes: decision trees & naïve bayes

- Decision trees ID3 algorithm: does not handle continuous attributes → data need to be discretized
- Decision trees **C4.5** (J48 in Weka) algorithm: deals with continuous attributes as shown earlier
- Naïve Bayes: does not handle continuous attributes → data need to be discretized

