Data Mining and Knowledge Discovery

Knowledge Discovery and Knowledge Management in e-Science

Petra Kralj Petra.Kralj@ijs.si

Practice, 2007/11/8

Practice plan

- 2007/11/8: Predictive data mining
 - Decision trees
 - Naïve Bayes classifier
 - Evaluating classifiers (confusion matrix, classification accuracy)
 - Predictive data mining in Weka
- 2007/11/15: Regression and Descriptive data mining
 - Regression models
 - Association rules
 - Regression models and evaluation in Weka
 - Descriptive data mining in Weka
 - Discussion about seminars and exam
- 2007/11/29: Written examination and seminar proposal presentations

Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

- 1. Compute the entropy E(S) of the set S
- 2. **IF** E(S) = 0
- 3. The current set is "clean" and therefore a leaf in our tree
- 4. **IF** E(S) > 0
- 5. Compute the information gain of each attribute Gain(S, A)
- 6. The attribute A with the highest information gain becomes the root
- 7. Divide the set S into subsets S_i according to the values of A
- 8. Repeat steps 1-7 on each Si

Test the model on the test set T

Attribute-value data target variable attributes Astigmatic Tear rate Person Prescription Lenses Age examples _N P1 YES young mγope normal no classes P2 NO myope reduced young no P3 YES young hypermetrope normal no = P4NO hypermetrope reduced young no P5 YES myope normal young yes values P6 reduced NO myope young yes P7 YES hypermetrope normal of the young yes P8 young hypermetrope reduced NO ves target P9 YES pre-presbyopic myope normal no variable P10 NO pre-presbyopic myope reduced no P11 YES pre-presbyopic hypermetrope normal no P12 NO pre-presbyopic hypermetrope reduced no P13 YES pre-presbyopic normal myope ves P14 NO pre-presbyopic reduced myope γes P15 pre-presbyopic hypermetrope normal NO γes P16 pre-presbyopic hypermetrope reduced NO γes P17 presbyopic normal NO myope no P18 presbyopic reduced NO myope no YES P19 presbyopic hypermetrope normal no P20 NO presbyopic hypermetrope reduced no P21 presbyopic normal YES myope γes P22 presbyopic reduced NO myope γes P23 presbyopic hypermetrope NO normal γes P24 presbyopic hypermetrope reduced NO γes

Training and test set

Person	Age	Prescription Astigmatic		Tear_Rate	Lenses	
P1	young	myope	myope no		YES	
P2	young	myope	myope no		NO	
P3	young	hypermetrope	no	normal	YES	
P4	young	hypermetrope	no	reduced	NO	
P5	young	myope	yes	normal	YES	
P6	young	myope	yes	reduced	NO	
P7	young	hypermetrope	yes	normal	YES	
P8	young	hypermetrope	yes	reduced	NO	[
P9	pre-presbyopic	myope	no	normal	YES	
P10	pre-presbyopic	myope	no	reduced	NO	
P11	pre-presbyopic	hypermetrope	no	normal	YES	
P12	pre-presbyopic	hypermetrope	no	reduced	NO	/
P13	pre-presbyopic	myope	yes	normal	YES	+
P14	pre-presbyopic	myope	yes	reduced	NO	
P15	pre-presbyopic	hypermetrope	yes	normal	NO	
P16	pre-presbyopic	hypermetrope	yes	reduced	NO	Ļ
P17	presbyopiceko	myope	no	normal	NO	
P18	presbyopiceko	myope	no	reduced	NO	
P19	presbyopiceko	hypermetrope	no	normal	YES	
P20	presbyopiceko	hypermetrope	no	reduced	NO	
P21	presbyopiceko	myope	yes	normal	YES	
P22	presbyopiceko	myope	yes	reduced	NO	
P23	presbyopiceko	hypermetrope	yes	normal	NO	
P24	presbyopiceko	hypermetrope	yes	reduced	NO	2
CHNOLOGIES				1	A.	

TECHNOLOGIES

ožef Stefan Institute

Put 30% of examples in a separate test set

5

IEDIA

Test set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	туоре	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopiceko	hypermetrope	yes	normal	NO

Put these data away and do not look at it in the training phase!

Training set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P1	young	myope	no	normal	YES
P2	young	myope	no	reduced	NO
P4	young	hypermetrope	no	reduced	NO
P5	young	myope	yes	normal	YES
P6	young	myope	yes	reduced	NO
P7	young	hypermetrope	yes	normal	YES
P8	young	hypermetrope	yes	reduced	NO
P10	pre-presbyopic	myope	no	reduced	NO
P11	pre-presbyopic	hypermetrope	no	normal	YES
P14	pre-presbyopic	myope	yes	reduced	NO
P17	presbyopiceko	myope	no	normal	NO
P18	presbyopiceko	myope	no	reduced	NO
P19	presbyopiceko	hypermetrope	no	normal	YES
P20	presbyopiceko	hypermetrope	no	reduced	NO
P21	presbyopiceko	myope	yes	normal	YES
P22	presbyopiceko	myope	yes	reduced	NO
P24	presbyopiceko	hypermetrope	yes	reduced	NO

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

 Calculate the following entropies: E(1/2, 1/2) =E(1/4, 3/4) =E(1/7, 6/7) =E(6/7, 1/7) =E(0.1, 0.9) =E(0.001, 0.999) =

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

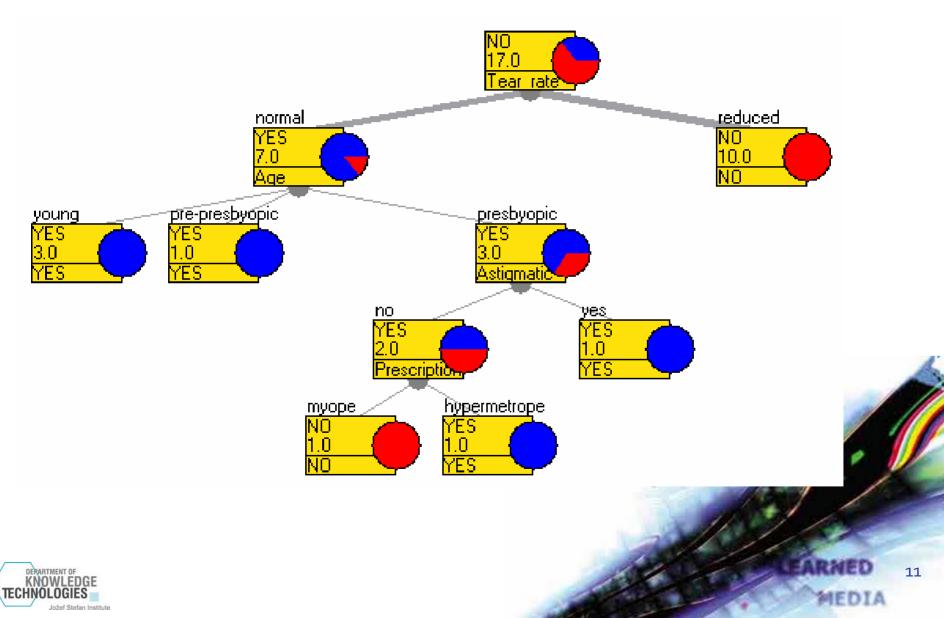
 Calculate the following entropies: E(1/2, 1/2) = 1E(1/4, 3/4) = 0.81E(1/7, 6/7) = 0.59E(6/7, 1/7) = 0.59E(0.1, 0.9) = 0.47E(0.001, 0.999) = 0.01

Entropy and information gain

probability of class 1	probability of class 2	entropy E(p ₁ , p ₂) =	1.00
p1	p ₂ = 1-p ₁	-p ₁ *log ₂ (p ₁) - p ₂ *log ₂ (p ₂)	0.90
0	1	0.00	0.80
0.05	0.95	0.29	0.70
0.10	0.90	0.47	g 0.50
0.15	0.85	0.61	≥ 0.60 9 0.50 5 0.40
0.20	0.80	0.72	0.30
0.25	0.75	0.81	0.20
0.30	0.70	0.88	0.10
0.35	0.65	0.93	0.00
0.40	0.60	0.97	0 0.2 0.4 0.6 0.8 1
0.45	0.55	0.99	distribution of probabilities
0.50	0.50	1.00	
0.55	0.45	0.99	
0.60	0.40	0.97	number of examples in the subset 🥃
0.65	0.35	0.93	probability of the "branch"
0.70	0.30	0.88 a	ttribut A
0.75	0.25	0.81	
0.80	0.20	0.72 Gai	$m(S, A) = E(S) - \sum_{v \in [A, V]} \left(\frac{TS_v}{1 + S_v} \right) E(S_v)$
0.85	0.15	0.61	
0.90	0.10	0.47	
0.95	0.05	0.29	`set S
1	0	0.00	number of example in the set S
	-	-	LEARNED 10

MEDIA

Decision tree



Confusion matrix

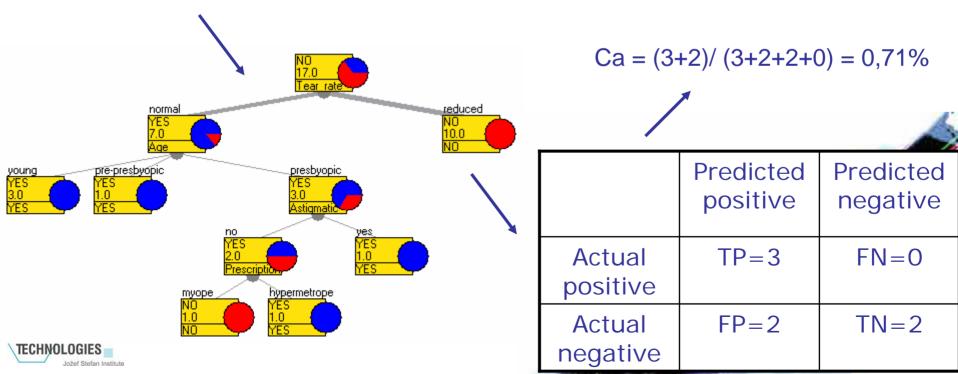
predicted

		Predicted positive	Predicted negative
ual	Actual positive	TP	FN
actu	Actual negative	FP	TN

- Confusion matrix is a matrix showing actual and predicted classifications
- Classification measures can be calculated from it, like classification accuracy
 - = #(correctly classified examples) / #(all examples)
 - = (TP+TN) / (TP+TN+FP+FN)

Evaluating decision tree accuracy

Person	Age	Prescription	Astigmatic	Tear_rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO



Naïve Bayes classifier

$$P(c \mid a_1, a_2, \dots, a_n) = P(c) \prod_i \frac{P(c \mid a_i)}{P(c)}$$

Assumption: conditional independence of attributes given the class.

Will the spider catch these two ants?

DERABTMENT O

efan Institute

				<u> </u>
•	Color =	black, S	ize = larg	ge, Time = day
	Color	Size	Time	Caught
	black	large	day	YES
	white	small	night	YES
	black	small	day	YES
	red	large	night	NO
	black	large	night	NO
	white	large	night	NO
1				

Naïve Bayes classifier -example

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

$$v_1 = "Color = white"$$

 $v_2 = "Time = night"$
 $c_1 = YES$
 $c_2 = NO$

$$p(c_1|v_1, v_2) = p(Caught = YES|Color = white, Time = night) = p(Caught = YES) * \frac{p(Caught = YES|Color = white)}{p(Caught = YES)} * \frac{p(Caught = YES|Time = night)}{p(Caught = YES)} = \frac{1}{2} * \frac{\frac{1}{2}}{\frac{1}{2}} * \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{4}$$

Discussion

- List evaluation methods for classification.
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- How would you compute the information gain for a numeric attribute?
- What would be the classification accuracy of our decision tree if we would have pruned it at he node *Astigmatic*?
- Compare the naïve Bayes classifier and decision trees regarding the handling of missing values.
- Compare the naïve Bayes classifier and decision trees regarding numeric attributes.

