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Course Schedule - 2007/08 
Data Mining and Knowledge Discovery (DM)

Knowledge Management (KM)

• DM - Wednesday, 17 Oct. 07, 15-19 - Lavrač, lectures, MPS
• KM - Wednesday, 24 Oct. 07, 15-19 - Lavrač, lectures, MPS
• DM - Thursday, 8 Nov. 07, 15-19 - Kralj et al., practice, E8
• DM - Thursday, 15 Nov. 07, 15-19 - Kralj et al., practice, E8
• KM - Thursday, 22 Nov. 07, 15-19 - Fortuna,  practice, E8
• DM - Thursday, 29 Nov. 07, 15-19 - written exam 

& seminar topic presentations, E8
• DM - Wednesday, 13 Feb. 08, 15-19 - seminar results

presentations, MPS
• KM - Wednesday, 27 Feb. 07, 15-19 - written exam

& seminar results presentations, MPS
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DM - Credits and coursework
“New Media and eScience” MSc

Programme

• 12 credits (30 hours)
• Lectures
• Practice 

– Theory exercises and hands-on 
(WEKA)

• Seminar – choice:
– Majority: Programming 

assignment  - write your own 
data mining module, and 
evaluate it on a (few) 
domain(s), or

– Minority: Data analysis results 
on your own data (e.g., using 
WEKA for questionnaire data 
analysis)

• Contacts: 
– Nada Lavrač nada.lavrac@ijs.si
– Petra Kralj petra.kralj@ijs.si

“Statistics” MSc Programme

• 12 credits (36 hours)
• Lectures
• Practice 

– Theory exercises and hands-on 
(WEKA)

• Seminar – choice:
– Majority: Data analysis results 

on your own data (e.g., using 
WEKA for questionnaire data 
analysis), or

– Minority: Programming 
assignment  - write your own 
data mining module, and 
evaluate it on a (few) domain(s

• Contacts: 
– same as for MPS students
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DM - Credits and coursework
Exam

Thursday, 29.11.07
• Written exam - Theory – 1 hour
• Oral presentations of your seminar topic (DM task or 

dataset presentation,  max. 4 slides) – 3 hours
Wednesday, 12.2.07 seminar results presentation – 4 hours
• Presentation of your seminar results  (max. 8 slides)
• Deliver written report + electronic copy (4 pages, double 

column, possibly with appendices, in Information Society 
paper format, see instructions on Petra’s Web pages), 
– Report on data analysis of own data needs to follow the  

CRISP-DM methodology
– Report on DM SW development needs to include SW 

uploaded on a Web page – format to be announced
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Course Outline
I. Introduction

– Data Mining and KDD process
– DM standards, related research 

areas and tools
(Ch. 1 and 11 of  Mladenić at al. 
book, Introduction to 
Kononenko et al. book)

II. Predictive DM Techniques
– Bayesian classifier

(Ch. in Kononenko’s book)
– Decision Tree learning (Ch. 

3 of Mitchell’s book)
– Classification rule learning

(Ch. 7 of IDA book, Ch. 10 of 
Mitchell’s book)

– Classifier Evaluation
(Ch. 7 in Bramer’s book)

III. Descriptive DM
– Predictive vs. descriptive 

induction
– Subgroup discovery
– Association rule induction
– Hierarchical clustering

IV. Conclusions and literature
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Part I. Introduction

Data Mining and the KDD process
• DM standards, related research areas and 

tools
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Data Mining and KDD
• KDD is defined as “the process of identifying 

valid, novel, potentially useful and ultimately 
understandable models/patterns in data.” *

• Data Mining (DM) is the key step in the KDD 
process, performed by using data mining 
techniques for extracting models or interesting 
patterns from the data. 

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting 
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11
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KDD Process
KDD process of discovering useful knowledge from data

• KDD process involves several phases:
• data preparation
• data mining (machine learning, statistics)
• evaluation and use of discovered patterns

• Data mining is the key step, but represents only 
15%-25% of the entire KDD process
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MEDIANA – analysis of media research data

• Questionnaires about journal/magazine reading, watching 
of TV programs and listening of radio programs, since 
1992, about 1200 questions. Yearly publication: frequency 
of reading/listening/watching, distribution w.r.t. Sex, Age, 
Education, Buying power,..

• Data for 1998, about 8000 questionnaires, covering 
lifestyle, spare time activities, personal viewpoints, 
reading/listening/watching of media (yes/no/how much), 
interest for specific topics in media, social status

• good quality, “clean” data
• table of n-tuples (rows: individuals, columns: attributes, in 

classification tasks selected class)
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MEDIANA – media research pilot study

• Patterns uncovering regularities concerning:
– Which other journals/magazines are read by readers of 

a particular journal/magazine ?
– What are the properties of individuals that are 

consumers of a particular media offer ?
– Which properties are distinctive for readers of different 

journals ?
• Induced models: description (association rules, clusters) 

and classification (decision trees, classification rules)
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Association rules
Rules X => Y, X, Y conjunction of bin. attributes
Task: Find all association rules that satisfy minimum 

support and minimum confidence constraints
- Support:  Sup(X,Y) = #XY/#D = p(XY)
- Confidence: Conf(X,Y) = #XY/#X = p(XY)/p(X) = p(Y|X)

Example association rule about readers of yellow 
press daily newspaper SloN (Slovenian News):
read_Love_Stories_Magazine => read_SloN

sup = 3.5% (3.5% of the whole dataset population  
reads both LSM and SloN)

conf = 61% (61% of those reading LSM also read SloN)



13

Association rules
Finding profiles of readers of the Delo daily 

newspaper
1. read_Marketing_magazine 116 =>

read_Delo 95 (0.82)
2. read_Financial_News (Finance) 223 => read_Delo 180 (0.81)

3. read_Views (Razgledi) 201 => read_Delo 157 (0.78)

4. read_Money (Denar) 197 => read_Delo 150 (0.76)

5. read_Vip 181 => read_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine, 
Financial News, Views, Money and Vip read also 
Delo.
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Association rules (in Slovene)

1. bere_Sara 332 => bere_Slovenske novice 211 (0.64)
2. bere_Ljubezenske zgodbe 283 =>

bere_Slovenske novice 174 (0.61)
3. bere_Dolenjski list 520 =>

bere_Slovenske novice 310 (0.6)
4. bere_Omama 154 => bere_Slovenske novice 90 (0.58)
5. bere_Delavska enotnost 177 =>

bere_Slovenske novice 102 (0.58)
Večina bralcev Sare, Ljubezenskih zgodb, 

Dolenjskega lista, Omame in Delavske enotnosti 
bere tudi Slovenske novice.
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Association rules (in Slovene)

1. bere_Sportske novosti 303 =>
bere_Slovenski delnicar 164 (0.54)

2. bere_Sportske novosti 303 =>
bere_Salomonov oglasnik 155 (0.51)

3. bere_Sportske novosti 303 =>
bere_Lady 152 (0.5)

Več kot pol bralcev Sportskih novosti bere tudi 
Slovenskega delničarja, Salomonov oglasnik in 
Lady.
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Classification rules
Set of Rules: if Cond then Class
Interpretation:   if-then ruleset, or

if-then-else decision list
Class: Reading of daily newspaper EN (Evening News)
if a person does not read MM (Maribor Magazine) and rarely 

reads the weekly magazine “7Days”
then the person does not read EN (Evening News)
else if a person rarely reads MM and does not read the 
weekly magazine SN (Sunday News) 

then the person reads EN
else if a person rarely reads MM 

then the person does not read  EN
else the person reads EN.



17Decision trees
Finding reader profiles: decision tree for classifying people 

into readers and non-readers of a teenage magazine.
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Part I. Introduction

Data Mining and the KDD process
• DM standards, related research areas and 

tools
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CRISP-DM

• Cross-Industry Standard Process for DM
• A collaborative, 18-months partially EC 

founded project started in July 1997
• NCR, ISL (Clementine), Daimler-Benz, OHRA 

(Dutch health insurance companies), and SIG 
with more than 80 members

• DM from art to engineering
• Views DM broadly than Fayyad et al., actually 

DM is treated as KDD process
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CRISP Data Mining Process

• DM Tasks
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Related areas

Database technology
and data warehouses
• efficient storage, 

access and 
manipulation
of data DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases
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Statistics, 
machine learning,
pattern recognition
and soft computing* 
• classification 

techniques and 
techniques for 
knowledge extraction 
from data

* neural networks, fuzzy logic, genetic
algorithms, probabilistic reasoning

DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases

Related areas
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DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases

Related areas

Text and Web mining
• Web page analysis
• text categorization
• acquisition, filtering 

and structuring of 
textual information

• natural language 
processing

text and Web 
mining
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Related areas

Visualization
• visualization of data 

and discovered 
knowledge

DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases
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Point of view in this tutorial

Knowledge 
discovery using 
machine 
learning 
methods DM

statistics

machine
learning

visualization

text and Web 
mining

soft
computing pattern

recognition

databases
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Data Mining, ML and Statistics
• All areas have a long tradition of developing inductive 

techniques for data analysis.
– reasoning from properties of a data sample to properties of a 

population
• DM vs. ML - Viewpoint in this course:

– Data Mining is the application of Machine Learning techniques to
hard real-life problems

• DM vs. Statistics:
– Statistics 

• Hypothesis testing when certain theoretical expectations 
about the data distribution, independence, random sampling, 
sample size, etc. are satisfied

• Main approach: best fitting all the available data
– Data mining

• Automated construction of understandable patterns, and 
structured models

• Main approach: heuristic search for decision trees, rules 
covering (parts of) the data space
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DM tools
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Public DM tools
• WEKA - Waikato Environment for Knowledge 

Analysis
• Orange
• KNIME - Konstanz Information Miner 
• …
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Part II. Predictive DM techniques

• Naive Bayesian classifier
• Decision tree learning
• Classification rule learning
• Classifier evaluation
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Bayesian methods

• Bayesian methods – simple but powerful 
classification methods
– Based on Bayesian formula

• Main methods:
– Naive Bayesian classifier
– Semi-naïve Bayesian classifier
– Bayesian networks *

* Out of scope of this course
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Naïve Bayesian classifier
• Probability of class, for given attribute values

• For all Cj compute probability p(Cj), given values vi of all 
attributes describing the example which we want to classify 
(assumption: conditional independence of attributes, when 
estimating p(Cj) and p(Cj |vi))

• Output CMAX with maximal posterior probability of class: 
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Naïve Bayesian classifier
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Semi-naïve Bayesian classifier

• Naive Bayesian estimation of probabilities 
(reliable)

• Semi-naïve Bayesian estimation of 
probabilities (less reliable)
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Probability estimation

• Relative frequency:

• Prior probability: Laplace law

• m-estimate:
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Probability estimation: intuition
• Experiment with N trials, n successful
• Estimate probability of success of next trial 
• Relative frequency: n/N

– reliable estimate when number of trials is large
– Unreliable when number of trials is small, e.g., 

1/1=1
• Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes

– Assumes uniform distribution of classes
• m-estimate: (n+m.pa) /(N+m)

– Prior probability of success pa, parameter m 
(weight of prior probability, i.e., number of ‘virtual’
examples )



36Explanation of Bayesian 
classifier

• Based on information theory
– Expected number of bits needed to encode a message = 

optimal code length -log p for a message, whose probability is 
p (*)

• Explanation based of the sum of information gains of 
individual attribute values vi (Kononenko and Bratko 1991, 
Kononenko 1993)

*  log p denotes binary logarithm
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Example of explanation of semi-naïve 
Bayesian classifier

Hip surgery prognosis
Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision Against
(bit) (bit)

Age = 70-80 0.07
Sex = Female -0.19
Mobility before injury = Fully mobile 0.04
State of health before injury = Other 0.52
Mechanism of injury = Simple fall -0.08
Additional injuries = None 0
Time between injury and operation > 10 days 0.42
Fracture classification acc. To Garden = Garden III -0.3
Fracture classification acc. To Pauwels = Pauwels III -0.14
Transfusion = Yes 0.07
Antibiotic profilaxies = Yes -0.32
Hospital rehabilitation = Yes 0.05
General complications = None 0
Combination: 0.21
   Time between injury and examination < 6 hours
   AND Hospitalization time between 4 and 5 weeks
Combination: 0.63
 Therapy = Artroplastic AND anticoagulant therapy = Yes



38Visualization of information 
gains for/against Ci
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Naïve Bayesian classifier
• Naïve Bayesian classifier can be used

– when we have sufficient number of training examples 
for reliable probability estimation

• It achieves good classification accuracy
– can be used as ‘gold standard’ for comparison with 

other classifiers
• Resistant to noise (errors)

– Reliable probability estimation
– Uses all available information

• Successful in many application domains
– Web page and document classification 
– Medical diagnosis and prognosis, …
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to using m-estimate

Relative freq. m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%

Primary Breast thyroid Rheumatology
tumor cancer

#instan 339 288 884 355
#class 22 2 4 6
#attrib 17 10 15 32

#values 2 2.7 9.1 9.1
majority 25% 80% 56% 66%
entropy 3.64 0.72 1.59 1.7
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Part II. Predictive DM techniques

• Naïve Bayesian classifier
• Decision tree learning
• Classification rule learning
• Classifier evaluation
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Predictive DM - Classification

• data are objects, characterized with attributes -
they belong to different classes (discrete labels)

• given objects described with attribute values, 
induce a model to predict different classes

• decision trees, if-then rules, discriminant
analysis, ...
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Illustrative example:
Contact lenses data

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 young myope no reduced NONE
O2 young myope no normal  SOFT
O3 young myope yes reduced NONE
O4 young myope yes normal HARD
O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...
O14 pre-presbyohypermetrope no normal SOFT
O15 pre-presbyohypermetrope yes reduced NONE
O16 pre-presbyohypermetrope yes normal NONE
O17 presbyopic myope no reduced NONE
O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...
O24 presbyopic hypermetrope yes normal NONE
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Decision tree for
contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD
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Decision tree for
contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]
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Illustrative example:
Customer data

Customer Gender Age Income Spent BigSpender
c1 male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...
c14 female 61 95000 18100 yes
c15 male 56 44000 12000 no
c16 male 36 102000 13800 no
c17 female 57 215000 29300 yes
c18 male 33 67000 9700 no
c19 female 26 95000 11000 no
c20 female 55 214000 28800 yes
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Induced decision trees
Income

Age

no

yes

≤ 102000 > 102000

≤ 58 > 58

yes

Gender

Age

no

no

= female = male

≤ 49 > 49

yes
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Predictive DM - Estimation

• often referred to as regression
• data are objects, characterized with attributes (discrete 

or continuous), classes of objects are continuous 
(numeric)

• given objects described with attribute values, induce a 
model to predict the numeric class value

• regression trees, linear and logistic regression, ANN, 
kNN, ...
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Illustrative example:
Customer data

Customer Gender Age Income Spent
c1 male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

O6-O13 ... ... ... ...
c14 female 61 95000 18100
c15 male 56 44000 12000
c16 male 36 102000 13800
c17 female 57 215000 29300
c18 male 33 67000 9700
c19 female 26 95000 11000
c20 female 55 214000 28800



50

Customer data: 
regression tree

Income

Age

16500

12000

≤ 108000 > 108000

≤ 42.5 > 42.5

26700
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Predicting algal biomass: 
regression tree

Month

Ptot

2.34±1.65Ptot

Si

Si
2.08 ±0.712.97±1.09

Ptot 4.32±2.07

1.28±1.08

Jan.-June

> 9.34 ≤ 10.1 >10.1

July - Dec.

> 2.13
≤ 2.13

≤ 9.1 > 9.1

≤ 9.34

> 5.9

0.70±0.341.15±0.21

≤ 5.9
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Decision tree learning
• Top-Down Induction of Decision Trees 

(TDIDT, Chapter 3 of Mitchell’s book)
• decision tree representation
• the ID3 learning algorithm (Quinlan 1986)
• heuristics: information gain (entropy 

minimization)
• overfitting, decision tree pruning
• brief on evaluating the quality of learned trees 

(more in Chapter 5)
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PlayTennis: Training examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Weak Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Decision tree representation 
for PlayTennis

Outlook

Humidity WindYes

Overcast RainSunny

High Normal

No

Strong Weak

Yes No Yes

- each internal node is a test of an attribute

- each branch corresponds to an attribute value

- each path is a conjunction of attribute values

- each leaf node assigns a classification
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Decision tree representation 
for PlayTennis

Outlook

Humidity WindYes

Overcast RainSunny

High Normal Strong Weak

No Yes No Yes
Decision trees represent a disjunction of conjunctions of constraints 

on the attribute values of instances

( Outlook=Sunny  ∧ Humidity=Normal )   
V           ( Outlook=Overcast )
V     ( Outlook=Rain  ∧ Wind=Weak )
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PlayTennis:
Other representations

• Logical expression for PlayTennis=Yes:

– (Outlook=Sunny  ∧ Humidity=Normal) ∨ (Outlook=Overcast) ∨

(Outlook=Rain  ∧ Wind=Weak)

• If-then rules

– IF Outlook=Sunny ∧ Humidity=Normal THEN PlayTennis=Yes

– IF Outlook=Overcast THEN PlayTennis=Yes

– IF Outlook=Rain ∧ Wind=Weak THEN PlayTennis=Yes

– IF Outlook=Sunny ∧ Humidity=High THEN PlayTennis=No

– IF Outlook=Rain ∧ Wind=Strong THEN PlayTennis=No
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PlayTennis: Using a decision tree for 
classification

Is Saturday morning OK for playing tennis?

Outlook=Sunny, Temperature=Hot, Humidity=High, Wind=Strong

PlayTennis = No,  because Outlook=Sunny ∧ Humidity=High

Outlook

Humidity WindYes

Overcast RainSunny

High Normal

No

Strong Weak

Yes No Yes
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Appropriate problems for 
decision tree learning

• Classification problems: classify an instance into one 
of a discrete set of possible categories (medical 
diagnosis, classifying loan applicants, …)

• Characteristics:
– instances described by attribute-value pairs       

(discrete or real-valued attributes)
– target function has discrete output values             

(boolean or multi-valued, if real-valued then regression trees)
– disjunctive hypothesis may be required
– training data may be noisy                                     

(classification errors and/or errors in attribute values)
– training data may contain missing attribute values
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Learning of decision trees
• ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5, 

WEKA, ...
– create the root node of the tree
– if all examples from S belong to the same class Cj

• then label the root with Cj
– else

• select the ‘most informative’ attribute A with values 
v1, v2, … vn

• divide training set S into S1,… , Sn according to 
values v1,…,vn

• recursively build sub-trees
T1,…,Tn for S1,…,Sn

A

...

...T1 Tn

vnv1
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Search heuristics in ID3
• Central choice in ID3: Which attribute to test at 

each node in the tree ? The attribute that is most 
useful for classifying examples. 

• Define a statistical property, called information 
gain, measuring how well a given attribute 
separates the training examples w.r.t their target 
classification.

• First define a measure commonly used in 
information theory, called entropy, to characterize 
the (im)purity of an arbitrary collection of examples.
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Entropy

• S - training set, C1,...,CN - classes
• Entropy E(S) – measure of the impurity of 

training set S

∑
=

−=
N

c
cc ppSE

1
2log.)( pc - prior probability of class Cc 

(relative frequency of Cc in S)

E(S) = - p+ log2p+ - p- log2p-

• Entropy in binary classification problems 
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Entropy
• E(S) = - p+ log2p+ - p- log2p-

• The entropy function relative to a Boolean 
classification, as the proportion p+ of positive 
examples varies between 0  and 1

0
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Entropy – why ?
• Entropy E(S) = expected amount of information (in 

bits) needed to assign a class to a randomly drawn 
object in S (under the optimal, shortest-length 
code)

• Why ?
• Information theory: optimal length code assigns      

- log2p bits to a message having probability p
• So, in binary classification problems, the expected 

number of bits to encode + or – of a random 
member of S is:

p+ ( - log2p+ ) + p- ( - log2p- ) = - p+ log2p+  - p- log2p-
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PlayTennis: Entropy

• Training set S: 14 examples (9 pos., 5 neg.)
• Notation: S = [9+, 5-] 
• E(S) = - p+ log2p+ - p- log2p-
• Computing entropy, if probability is estimated by 

relative frequency

• E([9+,5-]) = - (9/14) log2(9/14) - (5/14) log2(5/14)        
= 0.940 
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PlayTennis: Entropy

• E(S) = - p+ log2p+ - p- log2p-

• E(9+,5-) = -(9/14) log2(9/14) - (5/14) log2(5/14) = 0.940 

Outlook?

{D1,D2,D8,D9,D11}       [2+, 3-]   E=0.970  

{D3,D7,D12,D13}          [4+, 0-]   E=0

{D4,D5,D6,D10,D14}     [3+, 2-]   E=0.970  

Sunny

Overcast

Rain

Humidity?

[3+, 4-]    E=0.985 

[6+, 1-]    E=0.592

High

Normal

Wind?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

Weak

Strong
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search heuristic

• Information gain measure is aimed to minimize the 

number of tests needed for the classification of a new 

object

• Gain(S,A) – expected reduction in entropy of S due to 

sorting on A 

• Most informative attribute: max Gain(S,A)

)(
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||)(),(

)(
v

AValuesv

v SE
S
SSEASGain ⋅−= ∑

∈
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search heuristic

• Which attribute is more informative, A1 or A2 ?

• Gain(S,A1) = 0.94 – (8/14 x 0.811 + 6/14 x 1.00) = 0.048

• Gain(S,A2) = 0.94 – 0 = 0.94                 A2 has max Gain

Α1

[9+,5−],  Ε = 0.94 

[3+, 3−][6+, 2−]
Ε=0.811 Ε=1.00

Α2

[0+, 5−][9+, 0−]
Ε=0.0 Ε=0.0

[9+,5−],  Ε = 0.94 
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PlayTennis: Information gain

• Values(Wind) = {Weak, Strong}

– S = [9+,5-],  E(S) = 0.940

– Sweak = [6+,2-], E(Sweak ) = 0.811

– Sstrong = [3+,3-], E(Sstrong ) = 1.0

– Gain(S,Wind) = E(S) - (8/14)E(Sweak) - (6/14)E(Sstrong) = 0.940 -

(8/14)x0.811 - (6/14)x1.0=0.048

)(
||
||)(),(

)(
v

AValuesv

v SE
S
SSEASGain ⋅−= ∑

∈

Wind?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

Weak

Strong
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PlayTennis: Information gain

• Which attribute is the best?

– Gain(S,Outlook)=0.246        MAX  !

– Gain(S,Humidity)=0.151

– Gain(S,Wind)=0.048

– Gain(S,Temperature)=0.029
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PlayTennis: Information gain

• Which attribute should be tested here?
– Gain(Ssunny, Humidity) = 0.97-(3/5)0-(2/5)0 = 0.970    MAX  !

– Gain(Ssunny,Temperature) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

– Gain(Ssunny,Wind) = 0.97-(2/5)1-(3/5)0.918 = 0.019

Outlook?

{D1,D2,D8,D9,D11}     [2+, 3-]   E > 0  ???

{D3,D7,D12,D13}        [4+, 0-]   E = 0  OK - assign class Yes
Sunny

Overcast

{D4,D5,D6,D10,D14}   [3+, 2-]   E > 0 ???Rain
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Probability estimates
• Relative frequency :

– problems with small samples

• Laplace estimate : 
– assumes uniform prior 

distribution of k classes

)(
).(

)|(

Condn
CondClassn

CondClassp

=

=

kCondn
CondClassn

+
+

=
)(

1).( 2=k

[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 = 1

[6+,1-] (7) = 6+1 / 7+2 = 7/9
[2+,0-] (2) = 2+1 / 2+2 = 3/4
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Heuristic search in ID3
• Search bias: Search the space of decision trees 

from simplest to increasingly complex (greedy 
search, no backtracking, prefer small trees)

• Search heuristics: At a node, select the attribute 
that is most useful for classifying examples, split 
the node accordingly

• Stopping criteria: A node becomes a leaf
– if all examples belong to same class Cj, label the 

leaf with Cj
– if all attributes were used, label the leaf with the 

most common value Ck of examples in the node
• Extension to ID3: handling noise - tree pruning 
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Pruning of decision trees
• Avoid overfitting the data by tree pruning
• Pruned trees are

– less accurate on training data
– more accurate when classifying unseen data



74

Handling noise – Tree pruning

Sources of imperfection

1.  Random errors (noise) in training examples

• erroneous attribute values

• erroneous classification

2. Too sparse training examples (incompleteness)

3.  Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples



75

Handling noise – Tree pruning

• Handling imperfect data 

– handling imperfections of type 1-3

• pre-pruning (stopping criteria)

• post-pruning / rule truncation

– handling missing values

• Pruning avoids perfectly fitting noisy data: relaxing 
the completeness (fitting all +) and consistency (fitting 
all -) criteria in ID3
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Prediction of breast cancer 
recurrence: Tree pruning

Degree_of_malig

Tumor_size

Age no_recur 125
recurrence 39

no_recur 4
recurrence 1 no_recur 4

Involved_nodes

no_recur 30
recurrence 18

no_recur 27
recurrence 10

< 3 ≥ 3

< 15 ≥ 15 < 3 ≥ 3

< 40 ≥40

no_rec 4      rec1
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Accuracy and error
• Accuracy: percentage of correct classifications

– on the training set
– on unseen instances

• How accurate is a decision tree when classifying unseen 
instances
– An estimate of accuracy on unseen instances can be computed, 

e.g., by averaging over 4 runs:
• split the example set into training set (e.g. 70%) and test set (e.g. 30%) 
• induce a decision tree from training set, compute its  accuracy on test 

set

• Error = 1 - Accuracy
• High error may indicate data overfitting
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Overfitting and accuracy
• Typical relation between tree size and accuracy

• Question: how to prune optimally?

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 20 40 60 80 100 120

On training data
On test data
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Avoiding overfitting
• How can we avoid overfitting?

– Pre-pruning (forward pruning): stop growing the tree e.g., 
when data split not statistically significant or too few 
examples are in a split

– Post-pruning: grow full tree, then post-prune

• forward pruning considered inferior (myopic)
• post pruning makes use of sub trees 

Pre-pruning

Post-pruning
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How to select the “best” tree
• Measure performance over training data (e.g., 

pessimistic post-pruning, Quinlan 1993)
• Measure performance over separate validation data 

set (e.g., reduced error pruning, Quinlan 1987) 
– until further pruning is harmful DO:

• for each node evaluate the impact of replacing a subtree by a 
leaf, assigning the majority class of examples in the leaf, if the 
pruned tree performs no worse than the original over the 
validation set

• greedily select the node whose removal most improves tree 
accuracy over the validation set

• MDL: minimize
size(tree)+size(misclassifications(tree)) 
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Selected decision/regression 
tree learners

• Decision tree learners

– ID3 (Quinlan 1979)
– CART (Breiman et al. 1984)
– Assistant (Cestnik et al. 1987)
– C4.5 (Quinlan 1993), C5 (See5, Quinlan)
– J48 (available in WEKA)

• Regression tree learners, model tree learners

– M5, M5P (implemented in WEKA)
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Features of C4.5

• Implemented as part of the WEKA data mining 
workbench

• Handling noisy data: post-pruning

• Handling incompletely specified training 
instances: ‘unknown’ values (?)

– in learning assign conditional probability of value v: 
p(v|C) = p(vC) / p(C)

– in classification: follow all branches, weighted by 
prior prob. of missing attribute values
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Other features of C4.5
• Binarization of attribute values

– for continuous values select a boundary value 
maximally increasing the informativity of the 
attribute: sort the values and try every possible 
split (done automaticaly)

– for discrete values try grouping the values until two 
groups remain *

• ‘Majority’ classification in NULL leaf (with no 
corresponding training example)
– if an example ‘falls’ into a NULL leaf during 

classification, the class assigned to this example 
is the majority class of the parent of the NULL leaf

* the basic C4.5 doesn’t support binarisation of discrete attributes, it supports grouping
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Part II. Predictive DM techniques

• Naïve Bayesian classifier
• Decision tree learning
• Classification rule learning
• Classifier evaluation
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Rule learning
• Two rule learning approaches:

– Learn decision tree, convert to rules
– Learn set/list of rules

• Learning an unordered set of rules
• Learning an ordered list of rules

• Heuristics, overfitting, pruning 
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Contact lenses: convert decision tree to 
decision listtear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/

IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/

IF spect. pre.=myope THEN lenses=HARD 
ELSE /* spect.pre.=hypermetrope*/

lenses=NONE                                         Ordered (order dependent) rule list 
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Contact lenses: convert decision tree to  
an unordered rule settear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT
myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

tear production=reduced => lenses=NONE [S=0,H=0,N=12] 
tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE  [S=0,H=1,N=2]
tear production=normal & astigmatism=no => lenses=SOFT [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD 
[S=0,H=3,N=2]
DEFAULT lenses=NONE                      Order independent rule set (may overlap)
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PlayTennis:
Converting a tree to rules

IF Outlook=Sunny ∧ Humidity=Normal THEN PlayTennis=Yes
IF Outlook=Overcast THEN PlayTennis=Yes

IF Outlook=Rain ∧ Wind=Weak THEN PlayTennis=Yes

IF Outlook=Sunny ∧ Humidity=High THEN PlayTennis=No

IF Outlook=Rain ∧ Wind=Strong THEN PlayTennis=No

Outlook

Humidity WindYes

OvercastSunny Rain

High Normal Strong Weak

No Yes No Yes
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Rule post-pruning 
(Quinlan 1993)

• Very frequently used method, e.g., in C4.5
• Procedure:

– grow a full tree (allowing overfitting)
– convert the tree to an equivalent set of rules
– prune each rule independently of others
– sort final rules into a desired sequence for use
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Rule set representation
• Rule base is a disjunctive set of conjunctive rules
• Standard form of rules:

IF Condition THEN Class
Class IF Conditions
Class ← Conditions

IF Outlook=Sunny ∧ Humidity=Normal THEN 
PlayTennis=Yes

IF Outlook=Overcast THEN PlayTennis=Yes
IF Outlook=Rain ∧ Wind=Weak THEN PlayTennis=Yes

• Form of CN2 rules:    
IF Conditions THEN MajClass [ClassDistr]

• Rule base:   {R1, R2, R3, …, DefaultRule}



91Original covering algorithm
(AQ, Michalski 1969,86)

Basic covering algorithm
for each class Ci do

– Ei := Pi U Ni (Pi pos., Ni neg.)
– RuleBase(Ci) := empty
– repeat {learn-set-of-rules}

• learn-one-rule R covering some positive 
examples and no negatives 

• add R to RuleBase(Ci)
• delete from Pi all pos. ex. covered by R

– until Pi = empty 

++

+
+ +

+
-

-
-

-
-

+
-
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PlayTennis example 

PlayTennis = yes [9+,5-] (14)
PlayTennis = yes ← Wind=weak  [6+,2-] (8)

← Wind=strong [3+,3-] (6) 
← Humidity=normal [6+,1-] (7)
← …

PlayTennis = yes ← Humidity=normal
Outlook=sunny [2+,0-] (2)

← …
Estimating rule accuracy (rule precision) with the probability that 

a covered example is positive
A(Class ← Cond) = p(Class| Cond)

Estimating the probability with the relative frequency of covered 
pos. ex. / all covered ex.  

[6+,1-] (7) = 6/7,                    [2+,0-] (2) = 2/2 = 1 
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Probability estimates
• Relative frequency :

– problems with small samples

• Laplace estimate : 
– assumes uniform prior 

distribution of k classes

)(
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CondClassn
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[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 = 1

[6+,1-] (7) = 6+1 / 7+2 = 7/9
[2+,0-] (2) = 2+1 / 2+2 = 3/4
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Learn-one-rule:
Greedy vs. beam search

• learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’
descendant, no backtracking

• beam search: maintain a list of k best 
candidates at each step; descendants 
(specializations) of each of these k 
candidates are generated, and the resulting 
set is again reduced to k best candidates
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Learn-one-rule as search: 
PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

...
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Learn-one-rule as heuristic search: 
PlayTennis example

Play tennis = yes    IF

Play tennis = yes 
IF Wind=weak

Play tennis = yes
IF Wind=strong

Play tennis = yes 
IF Humidity=normal

Play tennis = yes
IF Humidity=high

Play tennis = yes 
IF Humidity=normal,

Wind=weak

Play tennis = yes 
IF Humidity=normal,

Wind=strong

Play tennis = yes 
IF Humidity=normal,

Outlook=sunny

Play tennis = yes 
IF Humidity=normal,

Outlook=rain

[9+,5−] (14)

[6+,2−] (8)

[3+,3−] (6) [6+,1−] (7)

[3+,4−] (7)

...

[2+,0−] (2)
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What is “high” rule accuracy
(rule precision) ?

• Rule evaluation measures - aimed at avoiding overfitting
• Predictive evaluation measures: aimed at maximizing 

classification accuracy, minimizing Error = 1 - Accuracy, 
avoiding overfitting

• Rule accuracy/precision should be traded off against the 
“default” accuracy/precision of the rule Cl ←true

– 68% accuracy is OK if there are 20% examples of that class in the 
training set, but bad if there are 80%

• Relative accuracy
– RAcc(Cl ←Cond) = p(Cl | Cond) – p(Cl)
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Weighted relative accuracy

• If a rule covers a single example, its accuracy/precision 
is either 0% or 100%
– maximising relative accuracy tends to produce many overly 

specific rules
• Weighted relative accuracy

WRAcc(Cl←Cond) = p(Cond) . [p(Cl | Cond) – p(Cl)]

• WRAcc is a fundamental rule evaluation measure: 
– WRAcc can be used if you want to assess both accuracy and 

significance
– WRAcc can be used if you want to compare rules with different 

heads and bodies
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search heuristics

• Assume two classes (+,-),  learn rules for + class (Cl). Search 
for specializations of one rule R = Cl ← Cond from RuleBase.

• Expected classification accuracy:   A(R) = p(Cl|Cond)
• Informativity (info needed to specify that example covered by 

Cond belongs to Cl):  I(R) =  - log2p(Cl|Cond)
• Accuracy gain (increase in expected accuracy):

AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)
• Information gain (decrease in the information needed):

IG(R’,R) = log2p(Cl|Cond’) - log2p(Cl|Cond)
• Weighted measures favoring more general rules: WAG, WIG

WAG(R’,R) = 
p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond))

• Weighted relative accuracy trades off coverage and relative 
accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - pa(Cl))
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Probabilistic classification
• In the ordered case of standard CN2 rules are interpreted in an IF-

THEN-ELSE fashion, and the first fired rule assigns the class.
• In the unordered case all rules are tried and all rules which fire are 

collected. If a clash occurs, a probabilistic method is used to resolve the 
clash.

• A simplified example:
1. tear production=reduced => lenses=NONE [S=0,H=0,N=12] 
2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>

lenses=NONE  [S=0,H=1,N=2]
3. tear production=normal & astigmatism=no => lenses=SOFT 

[S=5,H=0,N=1]
4. tear production=normal & astigmatism=yes & spect. pre.=myope =>

lenses=HARD [S=0,H=3,N=2]
5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and 
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and 
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total 
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into 
class H with probability 0.5 and N with probability 0.5. In this case, the 
clash can not be resolved, as both probabilities are equal.
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Part II. Predictive DM techniques

• Naïve Bayesian classifier
• Decision tree learning
• Classification rule learning
• Classifier evaluation
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Classifier evaluation

• Accuracy and Error
• n-fold cross-validation
• Confusion matrix
• ROC
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Evaluating hypotheses
• Use of induced hypotheses

– discovery of new patterns, new knowledge
– classification of new objects

• Evaluating the quality of induced hypotheses
– Accuracy, Error = 1 - Accuracy
– classification accuracy on testing examples = 

percentage of correctly classified instances
• split the example set into training set (e.g. 70%) to 

induce a concept, and test set (e.g. 30%) to test its 
accuracy

• more elaborate strategies: 10-fold cross validation, 
leave-one-out, ...

– comprehensibility (compactness)
– information contents (information score), significance 
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n-fold cross validation
• A method for accuracy estimation of classifiers
• Partition set D into n disjoint, almost equally-sized 

folds Ti where Ui Ti = D
• for i = 1, ..., n do

– form a training set out of n-1 folds: Di = D\Ti

– induce classifier Hi from examples in Di
– use fold Ti  for testing the accuracy of Hi

• Estimate the accuracy of the classifier by 
averaging accuracies over 10 folds Ti 



105

•Partition D

T1 T2 T3
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•Partition

•Train
D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train
D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train

•Test

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3

T1 T2 T3
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Confusion matrix and 
rule (in)accuracy

• Accuracy of a classifier is measured as TP+TN / N.
• Suppose two rules are both 80% accurate on an 

evaluation dataset, are they always equally good? 
– e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out 

of 50 negatives; Rule 2 correctly classifies 30 out of 50 
positives and 50 out of 50 negatives

– on a test set which has more negatives than positives, Rule 2 is
preferable; 

– on a test set which has more positives than negatives, Rule 1 is
preferable; unless…

– …the proportion of positives becomes so high that the ‘always 
positive’ predictor becomes superior!

• Conclusion: classification accuracy is not always an 
appropriate rule quality measure
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Confusion matrix

• also called contingency table

 Predicted positive Predicted negative  
Positive examples True positives False negatives  
Negative examples False positives True negatives  
     

Classifier 1 
 Predicted positive Predicted negative  
Positive examples 40 10 50 
Negative examples 10 40 50 
 50 50 100  

Classifier 2 
 Predicted positive Predicted negative  
Positive examples 30 20 50 
Negative examples 0 50 50 
 30 70 100
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ROC space
• True positive rate = 

#true pos. / #pos.
– TPr1 = 40/50 = 80% 
– TPr2 = 30/50 = 60%

• False positive rate
= #false pos. / #neg.
– FPr1 = 10/50 = 20%
– FPr2 = 0/50 = 0%

• ROC space has 
– FPr on X axis 
– TPr on Y axis
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The ROC convex hull

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

false positive rate

tr
ue

 p
os

iti
ve

 ra
te



114

Part III. Descriptive DM techniques

• Predictive vs. descriptive induction
• Subgroup discovery
• Association rule induction
• Hierarchical clustering
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Descriptive DM

• Often used for preliminary explanatory data 
analysis

• User gets feel for the data and its structure
• Aims at deriving descriptions of characteristics 

of the data
• Visualization and descriptive statistical 

techniques can be used
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Descriptive DM
• Description

– Data description and summarization: describe elementary and 
aggregated data characteristics (statistics, …)

– Dependency analysis:
• describe associations, dependencies, …
• discovery of properties and constraints

• Segmentation
– Clustering: separate objects into subsets according to distance and/or 

similarity (clustering, SOM, visualization, ...)
– Subgroup discovery: find unusual subgroups that are significantly 

different from the majority (deviation detection w.r.t. overall class 
distribution)
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Types of DM tasks 
• Predictive DM:

– Classification (learning of rules, decision 
trees, ...)

– Prediction and estimation (regression)
– Predictive relational DM (ILP) 

• Descriptive DM:
– description and summarization
– dependency analysis (association rule 

learning)
– discovery of properties and constraints
– segmentation (clustering)
– subgroup discovery

• Text, Web and image analysis

+
+

+

--
-

H

x
xx x

+x
xx H



118Predictive vs. descriptive 
induction

Predictive induction

Descriptive induction
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119Predictive vs. descriptive 
induction

• Predictive induction: Inducing classifiers for solving 
classification and prediction tasks, 
– Classification rule learning, Decision tree learning, ...
– Bayesian classifier, ANN, SVM, ...
– Data analysis through hypothesis generation and testing

• Descriptive induction: Discovering interesting 
regularities in the data, uncovering patterns, ... for 
solving KDD tasks
– Symbolic clustering, Association rule learning, Subgroup 

discovery, ...
– Exploratory data analysis
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Predictive vs. descriptive 
induction: A rule learning 

perspective
• Predictive induction: Induces rulesets acting as 

classifiers for solving classification and prediction 
tasks

• Descriptive induction: Discovers individual rules 
describing interesting regularities in the data

• Therefore: Different goals, different heuristics, 
different evaluation criteria
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Supervised vs. unsupervised 
learning: A rule learning 

perspective
• Supervised learning: Rules are induced from 

labeled  instances (training examples with class 
assignment) - usually used in predictive induction

• Unsupervised learning: Rules are induced from 
unlabeled  instances (training examples with no 
class assignment) - usually used in descriptive 
induction

• Exception: Subgroup discovery 
Discovers individual rules describing interesting 
regularities in the data from labeled examples
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Part III. Descriptive DM techniques

• Predictive vs. descriptive induction
• Subgroup discovery
• Association rule induction
• Hierarchical clustering
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Subgroup Discovery

Given: a population of individuals and a 
property of individuals we are interested in

Find: population subgroups that are statistically 
most `interesting’, e.g., are as large as 
possible and have most unusual statistical 
(distributional) characteristics w.r.t. the 
property of interest
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Subgroup interestingness
Interestingness criteria:

– As large as possible
– Class distribution as different as possible from 

the distribution in the entire data set
– Significant
– Surprising to the user
– Non-redundant
– Simple
– Useful - actionable
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Medical Case Study

• Find and characterize population subgroups with high 
CHD risk (Gamberger, Lavrač, Krstačić) 

• A1 for males: principal risk factors
CHD ← pos. fam. history & age > 46

• A2 for females: principal risk factors
CHD ← bodyMassIndex > 25 & age >63

• A1, A2 (anamnestic info only), B1, B2 (an. and physical 
examination), C1 (an., phy. and ECG)

• A1: supporting factors (found by statistical analysis): 
psychosocial stress, as well as cigarette smoking, 
hypertension and overweight
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Subgroup visualization

Subgroups of 
patients with 
CHD risk

[Gamberger, Lavrač
& Wettschereck, 
IDAMAP2002]
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Subgroups vs. classifiers
• Classifiers:

– Classification rules aim at pure subgroups
– A set of rules forms a domain model

• Subgroups:
– Rules describing subgroups aim at significantly higher proportion of 

positives
– Each rule is an independent chunk of knowledge

• Link 
– SD can be viewed as

cost-sensitive 
classification

– Instead of FNcost we 
aim at increased TPprofit

negativespositives

true
positives

false
pos.
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Classification Rule Learning for 
Subgroup Discovery: Deficiencies
• Only first few rules induced by the covering 

algorithm have sufficient support (coverage)
• Subsequent rules are induced from smaller and 

strongly biased example subsets (pos. examples 
not covered by previously induced rules), which 
hinders their ability to detect population 
subgroups 

• ‘Ordered’ rules are induced and interpreted 
sequentially as a if-then-else decision list 
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CN2-SD: Adapting CN2 Rule 
Learning to Subgroup Discovery

• Weighted covering algorithm
• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights
• Probabilistic classification
• Evaluation with different interestingness 

measures
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CN2-SD: CN2 Adaptations
• General-to-specific search  (beam search) for best rules 
• Rule quality measure: 

– CN2: Laplace: Acc(Class ← Cond) = 
= p(Class|Cond) = (nc+1)/(nrule+k)

– CN2-SD: Weighted Relative Accuracy
WRAcc(Class ← Cond) = 

p(Cond) (p(Class|Cond) - p(Class)) 
• Weighted covering approach (example weights)
• Significance testing (likelihood ratio statistics)
• Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering 
• Standard covering approach: 

covered examples are deleted from current training set
• Weighted covering approach:

– weights assigned to examples 
– covered pos. examples are re-weighted: 

in all covering loop iterations, store 
count i how many times (with how many 
rules induced so far) a pos. example has 
been covered: w(e,i), w(e,0)=1

• Additive weights:  w(e,i) = 1/(i+1)
w(e,i) – pos. example e being covered i times

• Multiplicative weights: w(e,i) = gammai , 0<gamma<1
note: gamma = 1 find the same (first) rule again and again                      

gamma = 0 behaves as standard CN2
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CN2-SD: Weighted WRAcc Search 
Heuristic

• Weighted relative accuracy (WRAcc) search 
heuristics, with added example weights 
WRAcc(Cl ← Cond) = p(Cond) (p(Cl|Cond) - p(Cl))
increased coverage, decreased # of rules, approx. equal 

accuracy (PKDD-2000)
• In WRAcc computation, probabilities are estimated 

with relative frequencies, adapt:
WRAcc(Cl ← Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) = 

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’ )
– N’ : sum of weights of examples
– n’(Cond) : sum of weights of all covered examples
– n’(Cl.Cond) : sum of weights of all correctly covered examples
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Part III. Descriptive DM techniques

• Predictive vs. descriptive induction
• Subgroup discovery
• Association rule induction
• Hierarchical clustering
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Association Rule Learning
Rules: X =>Y,  if X then Y

X, Y itemsets (records, conjunction of items), where 
items/features are binary-valued attributes)

Transactions: i1     i2  ………………… i50

itemsets (records) t1     1          1                   0 
t2     0          1                   0

Example:   … … … ... 

Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)

• Support:  Sup(X,Y) = #XY/#D = p(XY)

• Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(Y|X)
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Association Rule Learning
Given: a set of transactions D

Find: all association rules that hold on the set of transactions 
that have support > MinSup and confidence > MinConf

Procedure:
• find all large itemsets Z, Sup(Z) > MinSup
• split every large itemset Z into XY,  

compute Conf(X,Y) = Sup(X,Y)/Sup(X),
if Conf(X,Y) > MinConf then X =>Y
(Sup(X,Y) > MinSup, as XY is large)
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Part III. Descriptive DM techniques

• Predictive vs. descriptive induction
• Subgroup discovery
• Association rule induction
• Hierarchical clustering
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Hierarchical clustering

• Algorithm (agglomerative 
hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair Ci in Cj;
fuse Ci in Cj in a new cluster

Cr = Ci U Cj;
determine dissimilarities between

Cr and other clusters;

until one cluster left;

• Dendogram:
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Hierarchical clustering

• Fusing the nearest pair of clusters

iC

jC

kC),( ji CCd

),( ki CCd

),( kj CCd

• Minimizing intra-cluster 
similarity

• Maximizing inter-cluster 
similarity

• Computing the dissimilarities   
from the “new” cluster
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Hierarchical clustering: example
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Results of clustering
A dendogram of 
resistance vectors

[Bohanec et al., “PTAH: 
A system for supporting 
nosocomial infection 
therapy”, IDAMAP 
book, 1997]
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