
Vol.:(0123456789)

Machine Learning (2021) 110:989–1028
https://doi.org/10.1007/s10994-021-05968-x

1 3

autoBOT: evolving neuro‑symbolic representations
for explainable low resource text classification

Blaž Škrlj1,2 · Matej Martinc1,2 · Nada Lavrač1,3 · Senja Pollak1

Received: 20 April 2020 / Revised: 9 February 2021 / Accepted: 4 March 2021 / Published online: 14 April 2021
© The Author(s) 2021

Abstract
Learning from texts has been widely adopted throughout industry and science. While state-
of-the-art neural language models have shown very promising results for text classifica-
tion, they are expensive to (pre-)train, require large amounts of data and tuning of hun-
dreds of millions or more parameters. This paper explores how automatically evolved text
representations can serve as a basis for explainable, low-resource branch of models with
competitive performance that are subject to automated hyperparameter tuning. We pre-
sent autoBOT (automatic Bags-Of-Tokens), an autoML approach suitable for low resource
learning scenarios, where both the hardware and the amount of data required for training
are limited. The proposed approach consists of an evolutionary algorithm that jointly opti-
mizes various sparse representations of a given text (including word, subword, POS tag,
keyword-based, knowledge graph-based and relational features) and two types of docu-
ment embeddings (non-sparse representations). The key idea of autoBOT is that, instead
of evolving at the learner level, evolution is conducted at the representation level. The pro-
posed method offers competitive classification performance on fourteen real-world classifi-
cation tasks when compared against a competitive autoML approach that evolves ensemble
models, as well as state-of-the-art neural language models such as BERT and RoBERTa.
Moreover, the approach is explainable, as the importance of the parts of the input space is
part of the final solution yielded by the proposed optimization procedure, offering potential
for meta-transfer learning.

Keywords Representation learning · Natural language processing · AutoML · Neuro-
symbolic computing

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumančić, Ute Schmid, Jay Pujara.

 * Blaž Škrlj
 blaz.skrlj@ijs.si

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9916-8756
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05968-x&domain=pdf

990 Machine Learning (2021) 110:989–1028

1 3

1 Introduction

Contemporary machine learning approaches successfully solve many natural language
processing tasks, spanning from question answering, disambiguation, duplicate detection
to classification. The emerging paradigm that successfully solves these tasks are trans-
former-based language models, i.e. deep neural networks that are first pre-trained on large
corpora and only fine-tuned for a specific task (Devlin et al. 2019; Jing and Xu 2019).

Even though such (black-box) models offer state-of-the-art performance, the mod-
els are not directly explainable (Rudin 2019). Further, specialized hardware, such as
Tensor Processing Units (TPUs) or GPGPUs (General Purpose Graphical Processing
Units) are needed for their training and evaluation. Neural language models (such as
the transformer architectures) inherently operate with dense vector spaces (embed-
dings), leveraging the multiparallelism of the modern hardware (Jouppi et al. 2017).
This work focuses on the other part of the model spectrum: we investigated whether dif-
ferent sparse representations of text could be evolved in a low-resource manner, offering
similar performance as dense representations, especially in settings where the available
data is scarce. The main contributions of this work are summarized below.

– We propose autoBOT (automatic Bags-Of-Tokens), a system capable of efficient,
simultaneous learning from multiple representations of a given document set.

– The system’s hyperparameters are optimized by using an evolutionary algorithm,
adopted for exploration of high-dimensional sparse vector spaces—evolution gov-
erns the representation used for learning by a collection of linear models trained
with stochastic gradient descent.

– The dimension of the evolved space is estimated based on the expected sparsity of
the representation.

– The performance of autoBOT can be competitive to pre-trained transformer mod-
els and other state-of-the-art learners, as demonstrated on fourteen text classifica-
tion data sets, while using less computational resources and requiring zero manual
hyperparameter tuning for achieving reasonable out-of-the-box performance (given
enough time).

– autoBOT offers visualization of the similarity of parts of the feature space across
multiple data sets. Such visualizations offer fast overview into key parts of the fea-
ture space relevant for a given data set.

– We explore three novel feature types, namely features derived from document key-
words, relational features that represent pairs of tokens at a given distance and first-
order features constructed based on a collection of 34,074,917 grounded relations
from the ConceptNet (Speer et al. 2017) knowledge graph.

– The proposed system is especially suited for settings, where hardware as well as the
amount of data are limited.

The remainder of this work is structured as follows. In Section 2 we discuss the related
work that influenced the development of autoBOT. Section 3 presents the proposed
autoBOT system for learning from evolvable text representations, including the issue
of representing texts, the formulation of the autoBOT learning task, as well as the issue
of its explainability. Section 4 presents the conducted experiments, and in Section 5 we
discuss the obtained results. Section 6 presents the conclusions and plans for further
work.

991Machine Learning (2021) 110:989–1028

1 3

2 Related work

In this section we discuss the related approaches that inspired the development of the pro-
posed autoBOT system. We begin by discussing the notion of text representation learning
(Section 2.1), followed by text classification (Section 2.2) and evolutionary computation
(Section 2.3). Finally, we discuss the state-of-the-art autoML systems in Section 2.4.

2.1 Text representation learning

Machine learning approaches that learn from text usually consist of two main steps: pre-
processing the text into a suitable representation, e.g., the Bag-of-words (BoW) format,
followed by subsequent learning. The main drawback of such approaches is the require-
ment of the user’s specification of how the text should be represented, at what granular-
ity etc. Such semi-automated feature construction can be time-demanding and requires
large amounts of development time, however, the subsequent learning can be very efficient
(Mirończuk and Protasiewicz 2018).

Recent developments in the field of representation learning offer many insights into the
importance of having a suitable representation for the given problem. Transformer-based
language models, such as BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019), XLNet
(Yang et al. 2019), learn multi-faceted representations of the provided input sequences,
where multiple computational layers are used to distill the obtained representation into a
form used for more general problem solving. Similar insights also emerged in the fields
of graph (Kipf and Welling 2017) and image (Szegedy et al. 2017) representation learn-
ing. The state-of-the-art transformer language models also use subword information due to
byte-pair encoded inputs (Sennrich et al. 2016), offering even better performance, albeit at
the cost of explainability.

Representations learnt by deep neural network models are dense; for example, vectors
of dimension < 1000 are used to capture relations between input tokens. On the other hand,
many shared tasks, especially the ones where the number of input instances is in the order
of hundreds, yield themselves to more conventional, even linear models that operate on
sparse input spaces (Martinc et al. 2017). The main caveat of such approaches is the inclu-
sion of the human factor: humans need to carefully fine-tune many parameters without well
defined properties or predictable behavior. For example, it is not clear how the word-based
features should be weighted when compared to character-based ones, how the classifier
should be regularized etc.

Further, the collections of features are also arbitrary as there is no general theoretical
background as to when to apply what type of e.g., n-grams or other features (e.g., emoji
counts etc.). Hence, such systems are commonly fine-tuned for a particular domain, yet
need non-negligible human effort to perform adequately well for the same task in a differ-
ent domain. For example, a system can perform well when classifying sentiment, however
it fails at the prediction of side effects based on the patient reports. Finally, exhaustive
search of the hyperparameter space is in most cases computationally intractable.

2.2 Text classification

We continue the discussion by considering different machine learning approaches
employed for the task of text classification, how they relate to this paper and what are their
potential limitations. Text classification explores how representations of a given collection

992 Machine Learning (2021) 110:989–1028

1 3

of documents can be associated with a given target space, such as for example a collec-
tion of genres. Broadly, text classification approaches can be split into two main groups,
namely symbolic and sub-symbolic classifiers. The canonical example of symbolic learn-
ers are linear classifiers such as the logistic regression or linear Support Vector Machines,
which learn to classify e.g., TF-IDF encoded documents (Manning et al. 2008; Kowsari
et al. 2019; Agarwal and Mittal 2014). In recent years, however, the paradigm of neural
language models has also offered state-of-the-art classifiers across multiple domains (Jing
and Xu 2019). Some of the currently best-performing classifiers are commonly fine-tuned
language models, pre-trained on large textual corpora (Belinkov and Glass 2019). Albeit
extensive pre-training is currently inaccessible to majority of researchers, fine-tuning
can be conducted with adequate off-the-shelf GPUs, and is actively employed on many
e.g., shared tasks, ranging from classification of social media-related texts to classifica-
tion of biomedical documents (Moradi et al. 2020). Compared to discussed approaches,
which derive a representation from raw text, approaches that are able to exploit background
knowledge alongside raw text are also of increasing interest and serve as one of the motiva-
tions for the proposed autoBOT. Background knowledge can be considered in many forms.
Ontologies and taxonomies represent formally defined, hierarchical structures with human-
defined concepts and relations between them. Some canonical examples of such knowl-
edge sources are for example the WordNet (Fellbaum 2012) and similar taxonomies. On
the other hand, knowledge graphs are the structures that can be defined semi-automatically,
and are commonly comprised of millions of subject-predicate-object triplets. Examples of
freely available knowledge graphs include the ConceptNet (Speer et al. 2017) used in this
work.

2.3 Evolutionary computation and learning

We discuss in more detail the applications and the underpinnings of evolutionary computa-
tion, and more specifically genetic algorithms, as this metaheuristic optimization idea was
also used to guide representation learning conducted by autoBOT. Genetic algorithms have
been considered for both combinatorial and continuous optimization problems in the sec-
ond part of the 20th century (Mitchell 1998). Inspired by (a very basic) notion of biological
evolution, these optimization algorithms often gradually evolve a solution via the process
of intermediary evaluation, crossover, mutation and selection.

More recently, genetic algorithms (GA) evidence widespread use throughout industrial
and academic projects, where GAs were successfully applied to tackle otherwise analyti-
cally intractable problems (Chambers 2000). Even though genetic and other algorithms for
hard optimization problems were applied to many real-life problems, their use for improv-
ing machine learning approaches has only recently become mainstream (see Stanley et al.
(2019) for an exhaustive overview); neuroevolution was already considered in 1960s,
however it was computationally infeasible at the time. Neuroevolution performs well for
traditional benchmark tasks, such as the knapsack problems (Denysiuk et al. 2019), but
also real-life robotics problems (Zimmer and Doncieux 2017). Evolution-based approaches
were also successfully adopted for the task of scientific workflow discovery (Pilat et al.
2016), offering symbolic descriptions of data mining workflows, directly applicable in
practice. Neuroevolution Stanley et al. (2019) approaches have shown promising results
in the domain of computer vision, where more efficient neural networks were evolved with
minimal performance trade-offs (Zoph et al. 2018).

993Machine Learning (2021) 110:989–1028

1 3

One of the early approaches on how genetic algorithms can be adopted for the feature
selection purposes was proposed in Vafaie and De Jong (1998). The authors developed
a system that employs a genetic algorithm to select feature subspaces useful for a deci-
sion tree classifier. They successfully showcased the performance of their approach on an
eye-detection problem. The proposed autoBOT builds on a similar idea, i.e. that feature
subspaces can be evolved prior to learning, however, extends the idea to multiple differ-
ent instance (documents instead of images) representations, from symbolic to non-sym-
bolic. Further, autoBOT also explores novel representation types such as e.g., knowledge-
graph based features, capable of exploiting the knowledge beyond the textual training data
considered.

More recent works explore how task scheduling can be tackled by employing a combi-
nation of evolution and learning (Dorronsoro and Pinel 2017). Similarly convincing results
were also recently demonstrated for the task of material discovery (Jennings et al. 2019),
where machine learning algorithms were used to guide the evolution, offering up to 50x
speedup compared to naïve exhaustive search.

2.4 Advancements in autoML systems

Automatic learning of machine learning pipelines has been thoroughly explored for tabular
data in tools such as AutoWEKA (Thornton et al. 2013) and auto-sklearn (Feurer et al.
2019). The key idea is that parts of the learning procedure are modularized and automati-
cally explored. For example, AutoWEKA and auto-sklearn employ Bayesian optimization
(Snoek et al. 2012) for scalable and efficient exploration of such hyperparameter spaces.
These approaches assume a tabular input, and consequently explore both the preprocess-
ing, as well as heterogeneous ensemble construction methods that yield the best perform-
ing configuration. Another example of automated (tree-based) learning is conducted within
TPOT (Olson et al. 2019), a tool for automatic construction of scikit-learn workflows spe-
cializing in tree-based learners. The main advantage of TPOT is simplicity—competitive
results on tabular data sets can be obtained by merely running the default optimization
setting for a dedicated amount of time. Development of approaches for automatic learning
renders possible fast prototyping—instead of spending days in deciding to what extent the
current data is suitable for learning—autoML systems offer quick and effortless answers
to such questions, greatly speeding up the machine learning development and deployment
process.

Another prominent example of the machine learning algorithm design are the automati-
cally constructed deep neural architectures, for example, used for solving image recognition
tasks (He et al. 2018). In this field of neuroevolution (Stanley et al. 2019) , genetic algo-
rithms and their variations are commonly used, and were recently shown to perform better
than many alternative optimization approaches. Even though evolved neural networks were
shown to perform well for image data, and the majority of the remaining autoML systems
focus on tabular data, we believe that research on how automatic machine learning can aid
the development of algorithms that learn from texts is still scarce and worth exploring. The
idea of autoML was adapted also to text domains (Madrid 2019). Similarly, Google also

994 Machine Learning (2021) 110:989–1028

1 3

offers proprietary cloud-based solutions that address also the domain of natural language1.
Learning from texts automatically is an interesting research question, especially if the hard-
ware is not specialized for learning, and the data are scarce.

Apart from the machine learning-based approaches, explored by the evolutionary com-
putation community, the machine learning papers that exploit evolution (or similar optimi-
zation) were developed in parallel to the aforementioned studies. For example, the impli-
cations of using evolutionary computation for the meta learning purposes on tabular data
was also explored (Reif et al. 2012). They explored the performance of SVMs and random
forest-based classifiers on over 100 data sets from the UCI (Dua and Graff 2017). The
authors have shown that a standard genetic algorithm already offers performance improve-
ments. Note that the methods such as the auto-sklearn (Feurer et al. 2019), TPOT (Olson
et al. 2019) and AutoWEKA (Kotthoff et al. 2017) also show consistent improvements of
using stochastic optimization on tabular data. Further, autoML frameworks such as GAMA
(Gijsbers and Vanschoren 2019), hyperopt-sklearn (Komer et al. 2014), ML-Plan (Mohr
et al. 2018) and OBOE (Yang et al. 2019) all offer an optimization layer on top of an exist-
ing e.g., learning pipeline which requires hyperparameter tuning. The proposed autoBOT,
albeit being conceptually similar to the work of (Dua and Graff 2017) at the optimization
level, explores how the evolution can be conducted at the representation level, which is a
rather novel endeavour. Further, evolution on unstructured data such as texts is also a nov-
elty compared to e.g., optimization for tabular classifiers.

2.5 The rationale behind autoBOT

This work presents autoBOT, an approach for scalable, low-resource text classification that
requires as little human input as possible, but nevertheless offers a decent classification
performance. To our knowledge, similar approaches were explored mostly for tabular data,
where the representation is already given, or for evolution of neural network architectures,
where the models many times require custom hardware and are not (at all) explainable. We
believe that evolution—when operating with less structured inputs such as texts—should
simultaneously consider both the suitable representation and the subsequent learning,
which was to our knowledge not yet explored at the scale done in this work. Further, the
optimized feature space is inherently sparse, requiring an end-to-end implementation that
operates with sparse matrix-algebraic operations (including learning), otherwise resulting
in high dimensional dense vector spaces that require lots of computational resources. For
example, considering a dense matrix of a hundred thousand features is computationally
infeasible, unless sparse representation is considered.

3 Learning from evolving text representations with autoBOT

In this section, we present the proposed autoBOT approach. First, we discuss the repre-
sentations of text considered, followed by the overall formulation of the approach. A sche-
matic overview of autoBOT is shown in Figure 1.

1 https://cloud.google.com/natural-language/automl/docs/beginners-guide, however this software is not
open-source.

995Machine Learning (2021) 110:989–1028

1 3

Here, the training set of documents is first represented at different granularities (F); Sparse
bag-of-words type of vectors on the level of characters, words, part-of-speech (POS) tags as
well as keywords and relations spanning multiple tokens, to dense document embeddings
and knowledge graph-based features (K). This is followed by the process of representation
evolution (G field). The obtained initial set of representations is considered as the base for
evolutionary optimization. Here, weights (individuals), multiplied with the feature values cor-
responding to the parts of this space are evolved so that a given performance score is maxi-
mized. The final set of solutions is used to obtain a set of individual classifiers, each trained on
a different part of the space. However, for obtaining final predictions, a majority vote scheme
is considered. Hence, evolution effectively emits an ensemble of classifiers. More details fol-
low below.

3.1 Multi‑level representation of text

Let FT represent the set of all feature types that are considered during evolution. Let D denote
the set of considered document instances. Examples of feature types include single word fea-
tures, their n-grams, character n-grams etc. Assuming f represents a given feature type. Let df
denote the number of features of this type. The number of all features is defined as d =

∑
f df .

Hence, the final d-dimensional document space consists of concatenated Ff ∈ ℝ
|D|×df-dimen-

sional matrices, i.e.

F =
|||
|||iFi,

Fig. 1 Schematic overview of autoBOT. The input is a collection of documents D alongside a knowledge
graph K . The feature space F is constructed based on the information from both sources. Next, G gen-
erations of representation evolution are conducted. Here, the o(F) represents the application of different
operators to solution vectors representing weights of feature subspaces (e.g., word, character etc.), followed
by selection, s(F) , where the next generation of solutions is chosen. Once the optimization finishes, the
best solutions (HOF - Hall Of Fame) are used for the final set of predictions. The SOL1…ιHOFι denotes the
individual solutions, used for construction of final classifiers, and ε represents the set of explanations –
feature-value associations. As the solutions encode both the weights at the feature subspace level, as well as
weights of individual features, autoBOT offers two distinct views of feature importances

996 Machine Learning (2021) 110:989–1028

1 3

where i denotes the i-th feature type, and |||| denotes concatenation along the separate col-
umns. The matrix is next normalized (L2, row-wise), as is common practice in text mining.
Types of features considered by autoBOT are summarized in Table 1.

The considered features, apart from the relational ones and document embeddings, are
subject to TF-IDF weighting, i.e.,

where t is a token of interest and m the document of interest. The D is the set of all docu-
ments. While word and character n-grams, POS tags as well as document embeddings2 are
commonly used, the relational, knowledge graph-based and keyword-based features are a
novelty of autoBOT discussed below.

Relational features. One of the key novelties introduced in this paper is the rela-
tional feature construction method, summarized as follows. Consider two tokens, t1 and
t2 . autoBOT already considers n-grams of length 2, which would account for patterns
of the form (t1,t2). However, longer-range relations between tokens are not captured
this way. As part of autoBOT, we implemented an efficient relation extractor, capa-
ble of producing symbolic features described by the following (i-th) first-order rule:
Ri ∶= presentAtDistance(t1, t2, �(t1, t2)) , where � represents the average distance between
a given token pair across the training documents. Thus, the features represent pairs of
tokens, characterized by binary feature values, derived from the top dt=relational distances
(number of considered features) between token pairs. An example is given next.

(1)TF-IDF(t,m) =
�

j∈m

�[j = t] ⋅ log

�
�D�

∑
k∈D �[t ∈ k] + 1

�
,

Table 1 Different feature types considered by autoBOT

Feature generator type Description Data type Feature type Sparse

Word n-grams words raw text symbolic yes
Character n-grams tuples of sequential char-

acters
raw text symbolic yes

Keyword features one or multi-term keyphrases graph-based token paths symbolic yes
Relational features globally close characters distance relation symbolic yes
POS n-grams part-of-speech tags grammatical symbolic yes
Knowledge graph features grounded relations semantic symbolic yes
Document embeddings document embeddings (dis-

tributed memory - DM)
embedding sub-symbolic no

Document embeddings document embeddings
(distributed bag of words -
DBOW)

embedding sub-symbolic no

2 See Le and Mikolov (2014) for an overview of the two embedding models used. The two namings, i.e.,
DBOW and DM are used in the state-of-the-art implementation in Khosrovian et al. (2008).

997Machine Learning (2021) 110:989–1028

1 3

Keyword-based features.
The second type of features introduced in this work are the features based on keywords.

Given a document, keywords represent a subset of tokens that are representative of the
document. There exist many approaches for keyword detection. For example, statistical
methods, such as KP-MINER (El-Beltagy and Rafea 2009), RAKE (Rose et al. 2010) and
YAKE (Campos et al. 2018), use statistical characteristics of texts to capture keywords.
On the other hand, graph-based methods, such as TextRank (Mihalcea et al. 2004), Single
Rank (Wan and Xiao 2008), TopicRank (Bougouin et al. 2013), Topical PageRank (Ster-
ckx et al. 2015) and RaKUn (Škrlj et al. 2019) build graphs to rank words based on their
position in the graph. The latter is also the method adopted as a part of autoBOT for the
feature construction process, which proceeds in the following steps:

1. Keyword detection. First, for each class, the set of documents from the training cor-
pus corresponding to this class are gathered. Next, keywords are detected by using the
RaKUn algorithm for each set of documents separately. In this way, a set of keywords
is obtained for each target class.

2. Vectorization. The set of unique keywords is next obtained, and serves as the basis for
novel features that are obtained as follows. For each document in the training corpus,
only the keywords from the subset of all keywords corresponding to the class with
which the document is annotated are recorded (in the order of appearance in the origi-
nal document), and used as a token representation of a given document. This way, the
keywords specific for a given class are used to construct novel, simpler “documents”.
Finally, a TF-IDF scheme is adopted as for e.g., character or word n-grams, yielding n
most frequent keywords as the final features 3.

The rationale behind incorporating keyword-based features is that more local information,
specific to documents of a particular class is considered, potentially uncovering more sub-
tle token sets that are relevant for the differentiation between the classes.

Knowledge graph-based features. A key novelty introduced as part of autoBOT is
the incorporation of knowledge-graph-based features. Knowledge graphs are large, mostly
automatically constructed relational sources of knowledge. In this work we explored how

3 The features, identified on the training set of data as relevant are also used to construct the test set’s
instances.

998 Machine Learning (2021) 110:989–1028

1 3

ConceptNet (Speer et al. 2017), one of the currently largest freely available multilingual
knowledge graphs could be used to construct novel features of which scope extends the
considered data set4. We propose an algorithm for propositionalization of grounded rela-
tions, discussed next.

Assuming a collection of documents D, the proposed propositionalization procedure
identifies which relations, present in the knowledge graph, are also present in a given
k ∈ D . Let K = (N,E) represent the knowledge graph used, where N is the set of terms
and E the set of subject-predicate-object triplets, so that the subject and the object are two
terms. We are interested in finding a collection of features FKG (i.e. knowledge graph-based
features). We build on the late propositionalization ideas of Lavrač et al. (2020), where
zero-order logical structures are effectively used as features, that are automatically identi-
fied. We refer to the algorithm capable of such scalable extraction of first-order features as
PropFOL, summarised next. The key idea of PropFOL is related to grounding the triplets,
appearing in a given knowledge graph while traversing the document space. More specifi-
cally, each document k is traversed, and the relations present in each document are stored.
The relations considered by PropFOL are shown in Table 2. The PropFOL operates by
memorizing the collections of grounded relations in each k (document). Once the docu-
ment corpus is traversed, the bags of grounded relations are vectorized in TF-IDF manner.
Finally, for each new document, two operations need to be conducted. First, the grounded
relations need to be identified. Second, the collection of relations is vectorized by using the
stored weights of the individual relations occurring based on the training data. The feature
construction algorithm is given as the Algorithm 1.

Table 2 Considered relations. from ConcepNet considered by PropFOL

/r/Antonym /r/AtLocation /r/CapableOf
/r/Causes /r/CausesDesire /r/CreatedBy
/r/dbpedia/capital /r/dbpedia/field /r/dbpedia/genre
/r/dbpedia/genus /r/dbpedia/influencedBy /r/dbpedia/knownFor
/r/dbpedia/language /r/dbpedia/leader /r/dbpedia/occupation
/r/dbpedia/product /r/Desires /r/DistinctFrom
/r/Entails /r/EtymologicallyDerivedFrom /r/EtymologicallyRelatedTo
/r/ExternalURL /r/FormOf /r/HasA
/r/HasContext /r/HasFirstSubevent /r/HasLastSubevent
/r/HasPrerequisite /r/HasProperty /r/HasSubevent
/r/InstanceOf /r/IsA /r/LocatedNear
/r/MadeOf /r/MannerOf /r/NotDesires
/r/NotHasProperty /r/NotUsedFor /r/ObstructedBy
/r/PartOf /r/ReceivesAction /r/RelatedTo
/r/SimilarTo /r/SymbolOf /r/Synonym
/r/UsedFor /r/MotivatedByGoal /r/NotCapableOf
/r/DefinedAs /r/DerivedFrom

4 September 2020 version, found at https:// github. com/ commo nsense/ conce ptnet5

https://github.com/commonsense/conceptnet5

999Machine Learning (2021) 110:989–1028

1 3

 The algorithm consists of two main steps. First, the document corpus (D) is traversed
(line 4), whilst the relations are being recorded for each document (k). Once memorized
(for training data, line 7), a vectorizer is constructed, which in this work conducts TF-IDF
re-weighting (line 16) of first order features, and based on their overall frequency selects
the top n such features that shall be used during evolution. Note that this simple proposi-
tionalization scheme is adopted due to a large knowledge graph considered in this work,
as one of the key purposes of autoBOT is to maintain scalability (such graph can be pro-
cessed on an off-the-shelf laptop). Note that in practice, even though millions of entities
and tens of millions of possible relations are inspected, the final collection of grounded
relations, particular to a considered data set, remains relatively small. In more detail, the
getAllTokens (line 2) method maps a given document corpus D to a finite set of possible
tokens (e.g. words). The obtained token base is retrieved for each document (k, line 7) via
getTokens method. The subset of tokens corresponding to a given document is next used to
extract a subgraph of the input knowledge graph K , corresponding to a given document.
This step is mandatory as the subgraph effectively corresponds to the set of triplets that are
used as features. The missing component at this point are the relations, which are retrieved
via the decodeToTriplet method (line 12). Such triplets represent potentially interesting,
background knowledge (K)-based features. In the final part of the algorithm, triplet sets
are processed as standard bags-of-items to obtain the real valued feature space suitable for
learning (FKG).

1000 Machine Learning (2021) 110:989–1028

1 3

The following example demonstrates how the constructed features are obtained,
and what are the potentially interesting relations entailed by performing such feature
construction.

P

This type of feature construction is thus able to extract relations, otherwise inaccessi-
ble by conventional learners that operate solely based on e.g., word-based representations.
Even though current implementation of autoBOT exploits the ConceptNet knowledge
graph due to its generality, the implementation permits utilization of any triplet knowledge
base that can be mapped to parts of texts, and as such offers many potentially interesting
domain-specific applications.

3.2 Solution specification and weight updates

The key part of every genetic algorithm is the notion of solution (an individual). The solu-
tion is commonly represented as a (real-valued) vector, with each element corresponding
to the part of the overall solution. Let FT represent the set of feature types. The solution
vector employed by the autoBOT is denoted with SOL ∈ [0, 1]|FT| (|FT| is the number of
feature types).

Note that the number of parameters a given solution consists of is exactly equal to the
number of unique feature types (as seen in Table 1). The solution is denoted as:

Thus, the solution vector of the current implementation of autoBOT consists of 8 (hyper)
parameters (for eight different feature types as seen in Table 1). Next, solution evaluation,
the process of obtaining a numeric score from a given solution vector is discussed.

Each solution vector SOL consists of a set of weights, applicable to particular parts of
the feature space. Note that the initial feature space, as discussed in Section 3.1, consists of
d features. Given the weight-part of SOL , i.e. [w1,w2,… ,w|FT|] , we define with Ifrom

i
 and

Ito
i

 the two column indices, which define the set of columns of the i-th feature type. The
original feature space F is updated as follows:

where ⊙ refers to matrix-scalar product and s to a particular individual (updated feature
space). Note also that the superscript in the weight vector corresponds to the considered
individual. The union of the obtained subspaces represents the final representation used for
learning.

The key idea of autoBOT is that instead of evolving on the learner level, evolution is
conducted at the representation level. The potential drawback of such setting is that if
only a single learner was used to evaluate the quality of a given solution (representation),

SOL =
[
w1,w2,… ,w|FT|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Subspace weights

]
.

(2)F
Ifrom
i

to Ito
i

s = ws
i
⊙ FIfrom

i
to Ito

i .

1001Machine Learning (2021) 110:989–1028

1 3

the fitness score (that in this work equals to the mean score obtained during a five-fold
cross validation on the training set) would be skewed. To overcome this issue, autoBOT—
instead of a single classifier—considers a wide spectrum of linear models parameterized
with different levels of elastic net regularization (trade-off between L1 and L2 norms) and
losses (hinge and log loss are considered). Being trained by the stochastic gradient descent,
hundreds of models can be evaluated in a matter of minutes, offering a more robust esti-
mate of a given representation’s quality. Note that each solution is considered by hundreds
of learners, and there are multiple solutions in the overall population. More formally, we
denote with

the optimization process yielding the best performing classifier when considering feature
space F , where SGD represents a single, stochastic gradient descent-trained learner param-
eterized via h (a set of hyperparameters such as the loss function and regularization). Note
that SGD considers the labeled feature space during learning.

A detailed specification of the family of linear models that are considered during fitness
computation are given in Section 4.2. We next discuss the final component of autoBOT
that can notably impact the evolution—the initialization. Let Ff represent a feature sub-
space (see Section 3.1 for details). The initial solution vector is specified as:

Note the link to Equation 3: the vector consists of feature type-specific performances. The
U(a, b) represents a random number between a and b drawn from the uniform distribution.
This serves as noise which we add to prevent initialization of too similar individuals. As in
this work the F1 score is adopted for classifier performance evaluation, its range is known
(0 to 1), thus the proposed initialization offers stable initial weight setting5.

3.3 Dimension estimation

Commonly, dimension of a learned representation is considered as a hyperparameter. How-
ever, many recent works in the area of representation learning indicate that high-enough
dimension is a robust solution across multiple domains, albeit at the cost of additional
computational complexity. The proposed autoBOT exploits two main insights and adapts
them for learning from sparse data. The dimension estimation is parametrized via the fol-
lowing relation:

where df is the final dimension, dd the dense dimension and s the estimated sparsity. The
idea is that autoBOT attempts to estimate the size of the sparse vector space based on the
assumption that models that operate with dense matrices require dd dimensions for suc-
cessful performance, and that s is the expected sparsity of the space produced by autoBOT.
In this work, we consider dd = 128 and s = 0.1 , the dense dimension is based on the exist-
ing literature and s is low enough to yield a sparse space.

(3)Sc(F) = arg max
h

[
SGD(SOL, h,F)

]

(4)SOLinit = [Sc(Ff) ⋅ U(0.95, 1.05)]f∈FT .

df = round(dd∕s),

5 However, should a different custom score be used, it is not necessarily a sensible approach.

1002 Machine Learning (2021) 110:989–1028

1 3

3.4 Formulation of autoBOT

Having defined the key steps for evaluation of a single solution vector SOL , we continue
by discussing how such evaluation represents a part of the evolution process undertaken by
autoBOT. The reader can observe that the genetic algorithm adopted as part of autoBOT is
one of the simplest ones, introduced already in the 1990s (Davis 1991).

The key steps of autoBOT, summarized in Algorithm 2, are outlined below. They
involve initialization (line 2), followed by offspring creation (line 6). The two steps first
initialize a population of a fixed size, followed by the main while loop, where each iteration
generates a novel set of individuals (solutions), and finally (line 14) evaluates them against
their parents in a tournament scheme. Note that prior to being evaluated, each population
undergoes the processes of crossover and mutation (lines 7 and 10), where individuals are
changed either pointwise (mutation), or piecewise (crossover). Once the evolution finishes,
the HOF object (hall-of-fame) is inspected, and used to construct an ensemble learner that
performs classifications via a voting scheme. In this work, we explore only time-bound
evolution. Here, after a certain time period, the evolution is stopped. The more detailed
description of the methods in Algorithm 2 is as follows. The generateSplits method offers
the functionality to generate data splits used throughout the evolution. This step ensures
that consequent steps of evolutions operate on the same feature spaces and are as such
comparable. The generateInitial method generates a collection of real-valued vectors that
serve as the initial population as discussed in Equation 4. Next, the initializeRepresenta-
tion method constructs the initial feature space, considered during evolution. Note that
by initializing this space prior to evolution, the space needs to be constructed only once

1003Machine Learning (2021) 110:989–1028

1 3

compared to the naïve implementation where it is constructed for each individual. The
mate and mutate methods correspond to standard crossover and mutation operators. The
evaluateFitness method returns real valued performance assessment score of a given repre-
sentation.6 The updateHOF method serves as a storage of the best-performing individuals
throughout all generations, and is effectively a priority queue with a fixed size. The select-
Tournament method is responsible for comparisons of individuals and the selection of the
best-performing individuals that constitute the next generation of representations. Finally,
the trainFinalLearners method considers the best-performing representations from the
hall-of-fame, and trains the final classifier via extensive grid search.

We next discuss the family of linear models considered during evolution. Note that the
following optimization is conducted both during evolution (line 13) and final model train-
ing (line 16). The error term considered by stochastic gradient descent is:

where y is the target vector, xi the i-th instance, w is a weight vector, L is the considered
loss function, and � and � are two numeric hyperparameters: � represents the overall weight
of the regularization term, and � the ratio between L1 and L2. The loss functions consid-
ered are the hinge and the log loss, discussed in detail for the interested reader in Friedman
et al. (2001).

3.5 Theoretical considerations and explainability

We next discuss relevant theoretical aspects of autoBOT, with the focus on computational
complexity and parallelism aspects, as the no-free-lunch nature of generic evolution as
employed in this work has been previously studied in other works (Wolpert and Macready
1997; English 1996). In terms of computational complexity, the following aspects impact
the evolution the most:

Feature construction. Let � represent the number of unique tokens in the set of docu-
ments D. Currently, the most computationally expensive part is the computation of key-
words, where the load centrality is computed (Škrlj et al. 2019). The worst case complex-
ity of this step is O(�3) – the number of nodes times the number of edges in the token
graph, which is in the worst case �2 . Note, however, that such scenario is unrealistic, as
real-life corpora do not entail all possible token-token sequences (Zipf’s law). The com-
plexities of e.g., word, character, relational and embedding-based features are lower. Addi-
tionally, the features based on the knowledge graph information also contribute to the
overall complexity, discussed next. Let E(K) denote the set of all subject-predicate-object
triplets considered. The propFOL (Algorithm 1) needs to traverse the space of triplets only
once (O(|E(K)|)). Finally, both of the mentioned steps take additional |D| steps to read the
corpus. We assume the remaining feature construction methods are less expensive.

Fitness function evaluation. As discussed in Section 3.2, evaluation of a single
individual that encodes a particular representation is not conducted by training a single

Err(w, b) =
1

|D|

|D|∑

i=1

L(yi,w
Txi + b))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Loss term

+�

[
1 − �

2

|D|∑

i=1

w2
i

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
L2

+ �

|D|∑

i=1

|wi|

⏟⏞⏟⏞⏟
L1

]
,

6 Note that each representation is evaluated by training a collection of linear classifiers in a cross-validation
setting.

1004 Machine Learning (2021) 110:989–1028

1 3

learner, but a family of linear classifiers. Let the number of models be denoted by � , the
number of individuals by � , and the number of generations by |G| (G is a set of aggre-
gated evaluations for each generation). The complexity of conducting evolution, guided
by learning, is O(� ⋅ � ⋅ |G|).

Initial dimensionality estimation. The initial dimensionality is computed via a lin-
ear equation, and is O(1) w.r.t. the |FT| (number of feature types).

Space complexity. When considering space complexity, we recognize the follow-
ing aspects as relevant. Let |I| denote the number of instances and |FT| the number of
distinct feature types. As discussed in Section 3.1 the number of all features is denoted
with da , the space required by the evolution is O(|I| ⋅ da ⋅ �) . In practice however, the
feature space is mainly sparse, resulting in no significant spatial bottlenecks when tens
of thousands of features are considered.

The individual computational steps considered above can be summarized as the fol-
lowing complexity:

We next discuss how autoBOT computes solutions in parallel, offering significant speed-
ups when multiple cores are used. There are two main options for adopting parallelism
when considering simultaneously both the evolution and learning. The parallelism can be
adopted either at the level of individuals, where each CPU core is occupied with a single
individual, or at the learner level, where the grid search used to explore the space of linear
classifiers is conducted in parallel. In autoBOT, we employ the second option, which we
argument as follows. Adopting parallelism at the individual level implies that each worker
considers a different representation, thus rendering sharing of the feature space amongst the
learners problematic. However, this is not necessarily an issue when considering parallel-
ism at the level of learners. Here, individuals are evaluated sequentially, however, the space
of the learners is explored in parallel for a given solution (representation). This setting,
ensuring more memory efficient evolution, is implemented in autoBOT. Formally, the space
complexity, if performing parallelism at the individual’s level rises to O(c ⋅ |I| ⋅ d� ⋅ �) ,
which albeit differing (linearly) only by the parameter c (the number of concurrent pro-
cesses), could result in an order of magnitude higher memory footprint (when considering
autoBOT on a e.g., 32 core machine). The option with sequential processing of the indi-
viduals but parallel evaluation of learners remains of favourable complexity O(|I| ⋅ d� ⋅ �)
(assuming shared memory). An important aspect of autoBOT is also explainability, which
is discussed next.

As individual features constructed by autoBOT already represent interpretable pat-
terns (e.g., word n-grams), the normalized coefficients of the top performing classifiers
obtained as a part of the final solution can be inspected directly. However, in practice,
this can result in manual curation of tens of thousands of features, which is not neces-
sarily feasible, and can be time consuming. To remedy this shortcoming, autoBOT’s
evolved weights, corresponding to semantically different parts of the feature space can
be inspected directly. At this granularity, only up to e.g., eight different importances
need to be considered, one per feature type, giving practical insights into whether the
method, for example, benefits the most by considering word-level features, or it per-
forms better when knowledge graph-based features are considered. In practice, we
believe that combining both granularities can offer interesting insights into the model’s
inner workings, as considering only a handful of most important low-level (e.g., n-gram)

O(|D| + �3 + |E(K)|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Representation construction

+ � ⋅ � ⋅ |G|
⏟⏞⏞⏟⏞⏞⏟
Evolution

).

1005Machine Learning (2021) 110:989–1028

1 3

features can also be highly informative and indicative of the patterns recognized by the
model as relevant.

Finally, autoBOT also offers direct insights into high-level overview of what types of
features were the most relevant. We believe such information can serve for transfer learn-
ing purposes on the task level, which we explore as part of the qualitative evaluation.

3.6 How successful was evolution?

Quantification of a given evolution trace, i.e. fitness values w.r.t generations has been
previously considered in Beyer et al. (2002), and even earlier in Rappl (1989), where the
expected value of the fitness was considered alongside the optimum in order to assess how
efficient is the evolution, given a fixed amount of resources. To our knowledge, however,
the scores were not adapted specifically for a machine learning setting, which we address
in the heuristic discussed next. We remind the reader that G = (perf(i))i represents a tuple
denoting the evolution trace – the sequence of performances. Each element of G is in this
work a real valued number between 0 and 1. Note that the tuple is ordered, meaning that
when moving from left to right, the values correspond to the initial vs. late stages of the
evolution’s performance. Further, the perf(i) corresponds to the maximum performance in
each generation. Let maxg(G) denote the maximum performance observed in a given evo-
lution trace G. Let arg max g(G) represent the generation (i.e. evolution step) at which the
maximum occurs. Finally, let |G| denote the total number of evolution steps. Intuitively,
both the maximum performance, as well as the time required to reach such performance (in
generations) need to be taken into account. We propose the following score:

Intuitively, the score should be high if the overall performance is good and evolution found
the best performing solution quickly. On the other hand, if all the available time was spent,
no matter how good the solution, the GPERF will be low. Note that the purpose of GPERF
is to give insights into the evolution’s efficiency, which should also take into account the
time to reach a certain optimum. If the reader is interested solely in performance, such
comparisons are also offered. Note that maxg(G) represents the best performing solution
obtained during evolution. The heuristic, once computed for evolution runs across different
data sets, offers also a potential insight into how suitable are particular classification prob-
lems for an evolution-based approach – this information is potentially correlated with the
problem hardness.

4 Experiments

In this section we present the considered data sets, the adopted baselines with correspond-
ing hyperparameter settings and the hardware environment used to conduct the experi-
ments. The data sets are discussed in Section 4.1, followed by the discussion of the base-
lines in Section 4.2. Finally, the used hardware and software are presented in Section 4.3,
followed by the evaluation in Section 4.4.

GPERF(G) = max
g

(G)

⏟⏟⏟
Top score

⋅

(
1 −

arg max g(G)

|G|

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
How late it converged to the top score?

.

1006 Machine Learning (2021) 110:989–1028

1 3

4.1 Data sets

This section presents the data sets used for quantitative evaluation of the autoBOT’s per-
formance. The data sets are summarized in Table 3. The selection of data sets spans from
sentiment classification (semeval data sets), to news classification (fox, bbc), as well as per-
sonality classification (mbti). The data sets span various numbers of documents, from a
few hundred to tens of thousands. The number of unique tokens represents the number of
tokens obtained by doing document splitting directly by whitespace. Furthermore, multi-
class and binary classification are considered.

4.2 Classifiers tested and hyperparameter settings

We next discuss the baseline approaches and configurations of autoBOT tested in this
work. We divide baselines into the following main groups.

Manually tuned linear models. The first branch of models are linear classifiers, i.e. sup-
port vector machines (SVM) (Chang and Lin 2011) and logistic regression (LR), fine tuned
across manually specified regularization ranges. The regularization of SVM and LR clas-
sifiers was in the range [0.1, 0.5, 1, 5, 10, 20, 50, 100, 500]. Each of the two learners was
tested on word, character and word + character n-gram space. The feature space was nor-
malized prior to learning.

Another autoML system. We considered TPOT, a state-of-the-art learner that adopts
evolution on the level of learners (it evolves tree ensembles). We used the default settings
on the word n-gram space, as this approach is not suitable for large sparse spaces.

Neural language models. Strong baselines, which operate with two orders of magnitude
more parameters were also considered. More specifically, we fine-tuned BERT (base) and
RoBERTa (base), two state-of-the-art language models for up to 20 epochs with early stop-
ping, should the optimization converge faster. The hyperparameters for the two language
models were left to defaults7.

Representation-specific baselines. One of the key experiments needed to be conducted
in order to assess the performance of the evolution was that of establishing baselines that
learn directly from the constructed representation, however are not subject to iterative re-
weighting of the feature space. To address this problem, we implemented a cartesian prod-
uct of representation-learner baselines, that offer a solid estimation of how far can e.g., a
SVM get by using only the initial autoBOT representation (but no evolution). The imple-
mented classifiers are (as named in figures): autoBOT-svm-neural (only embeddings +
SVM), autoBOT-svm-neurosymbolic (full feature space + SVM), autoBOT-svm-symbolic
(symbolic features + SVM), and autoBOT-lr-neural (only embeddings + LR), autoBOT-
lr-symbolic (symbolic features + LR) and autoBOT-lr-neurosymbolic (full feature space +
LR).

Other baselines. We implemented a stratified majority classifier8.
Having discussed the baseline approaches, we next discuss the considered variants

of autoBOT. The main hyperparameters of evolution that we explored were the muta-
tion rate and crossover rate. The mutation rates were varied in the range [0.3, 0.6, 0.9]
and the crossover rates in the range [0.3, 0.4, 0.6, 0.9]. The tournament size was set to

7 https:// github. com/ Thili naRaj apakse/ simpl etran sform ers
8 https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. dummy. Dummy Class ifier. html, default option

https://github.com/ThilinaRajapakse/simpletransformers
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html

1007Machine Learning (2021) 110:989–1028

1 3

Ta
bl

e
3

 S
um

m
ar

y
of

 th
e

co
ns

id
er

ed
 d

at
a

se
ts

a ht
tp

s:
//b

itb
uc

ke
t.o

rg
/s

si
x-

pr
oj

ec
t/s

em
ev

al
-2

01
7-

ta
sk

-5
-s

ub
ta

sk
-2

/s
rc

/m
as

te
r/

b ht
tp

s:
//w

w
w.

ka
gg

le
.c

om
/d

ee
pa

k7
11

/4
-s

ub
je

ct
-d

at
a-

te
xt

-c
la

ss
ifi

ca
tio

n
c ht

tp
s:

//w
w

w.
ka

gg
le

.c
om

/c
/d

et
ec

tin
g-

in
su

lts
-in

-s
oc

ia
l-c

om
m

en
ta

ry
/o

ve
rv

ie
w

d ht
tp

s:
//w

w
w.

ka
gg

le
.c

om
/d

at
as

na
ek

/m
bt

i-t
yp

e
e ht

tp
s:

//w
w

w.
ic

s.u
ci

.e
du

/ v
ps

ai
ni

/
f h

ttp
s:

//g
ith

ub
.c

om
/a

ito
r-g

ar
ci

a-
p/

ha
te

-s
pe

ec
h-

da
ta

se
t

g h
ttp

s:
//s

ite
s.g

oo
gl

e.
co

m
/s

ite
/o

ffe
ns

ev
al

sh
ar

ed
ta

sk
/o

lid
h ht

tp
s:

//c
om

pe
tit

io
ns

.c
od

al
ab

.o
rg

/c
om

pe
tit

io
ns

/2
06

54

D
at

a
se

t
D

oc
um

en
ts

U
ni

qu
e

to
ke

ns
U

ni
qu

e
la

be
ls

Ta
sk

So
ur

ce

ke
ny

an
46

2
46

18
9

2
N

ew
s s

ou
rc

e
pr

ed
ic

tio
n

Po
lla

k
et

 a
l.

(2
01

1)
se

m
ev

al
-2

01
7-

se
nt

im
en

t
11

56
51

44
4

Se
nt

im
en

t p
re

di
ct

io
n

N
ak

ov
 e

t a
l.

(2
01

3)
a

bb
c

22
25

73
49

1
4

N
ew

s c
at

eg
or

y
pr

ed
ic

tio
n

G
re

en
e

an
d

C
un

ni
ng

ha
m

 (2
00

6)
su

bj
ec

ts
17

86
13

29
96

4
To

pi
c

pr
ed

ic
tio

n
b

fo
x-

ne
ws

21
07

22
00

63
7

N
ew

s t
op

ic
 p

re
di

ct
io

n
Q

ia
n

an
d

Zh
ai

 (2
01

4)
in

su
lts

39
46

36
02

1
2

in
su

lt
pr

ed
ic

tio
n

c

qu
es

tio
ns

54
52

13
27

9
6

Q
ue

sti
on

 ty
pe

s
Li

 a
nd

 R
ot

h
(2

00
2)

m
bt

i
86

75
57

22
69

16
Pe

rs
on

al
ity

 ty
pe

 p
re

di
ct

io
n

M
ye

rs
 (1

96
2)

d

ye
lp

10
00

0
12

54
46

5
Re

vi
ew

 p
re

di
ct

io
n

e

ha
te

sp
ee

ch
10

86
8

30
55

5
4

H
at

e
sp

ee
ch

 p
re

di
ct

io
n

f

se
m

ev
al

20
19

13
24

0
53

69
3

2
O

ffe
ns

iv
e

la
ng

ua
ge

 p
re

di
ct

io
n

Za
m

pi
er

i e
t a

l.
(2

01
9)

g

se
nt

im
ix

17
00

0
89

69
4

3
Se

nt
im

en
t p

re
di

ct
io

n
h

ar
tic

le
s

19
99

0
28

51
67

20
O

bj
ec

tiv
ity

 p
re

di
ct

io
n

H
aj

j e
t a

l.
(2

01
9)

sa
rc

as
m

28
61

9
58

77
9

2
Sa

rc
as

m
 p

re
di

ct
io

n
M

is
ra

 a
nd

 A
ro

ra
 (2

01
9)

1008 Machine Learning (2021) 110:989–1028

1 3

be integer-rounded one third of the number of individuals. Three main variants of auto-
BOT are reported, i.e. autoBOT-neurosymbolic, a variant where document embeddings are
evolved along with the symbolic part of the feature space and autoBOT-symbolic, a vari-
ant where the document embeddings are omitted (see Table 1). Further, autoBOT-neural
evolves only the two neural representations. The time for evolution was set to 8h per data
set. The time was selected from a practical viewpoint; leaving an autoML running during
the night instead of having an idle machine is an option that does not require any additional
time allocation at the user side. The population sizes were set to 8, the same number as the
number of available cores for parallel evolution (with minimal overhead). The spectrum of
linear models, evaluated during fitness evaluation was specified as follows9. The loss func-
tions considered were the hinge and the log loss. The learning rate of stochastic gradient
descent was set to a value from the set {0.01, 0.001, 0.0001}. The elasticnet penalty was
adopted, where the ratio between L1 and L2 terms was varied in the range [0, 0.1, 0.5, 0.9,
1]. Here, if this ratio was 0, the penalty would be L2, however, if the ratio was 1, L1 pen-
alty (lasso) would be adopted.

Finally, we discuss the data set splits considered used to evaluate the aforementioned
approaches. Three different splits used for evaluation are discussed next. Each data set was
split to 60% training, 20% validation and 20% testing, where the validation set was used to
e.g., stop the training early on convergence when considering language models, however,
as autoBOT employs cross-validation for determining the best learners, training and valida-
tion were merged—a similar scenario is computationally not feasible for language models.

4.3 Hardware and software used

The experiments were conducted using the SLING supercomputing architecture10. Each
run was given at most 16GB of ram and 8CPU cores. autoBOT was implemented as a
CPU-parallel procedure, and does not need GPU accelerators.

Additional information on the hardware used is accessible in Appendix 1. For lan-
guage models benchmarks, however, specialized hardware Nvidia Tesla GPUs with 32GB
of RAM (GPU) and 128GB of RAM (CPU) was used. Intentionally, we minimized the
number of dependencies. Hence, Scikit-learn was used to fit linear classifiers (highly opti-
mized) (Pedregosa et al. 2011), evolution primitives from the DEAP library (De Rainville
et al. 2012) were used, and for matrix subsetting and similar linear-algebraic operations,
Scipy library was adopted (Virtanen et al. 2020). The NLTK library was used for part-of-
speech tagging and language parsing (Bird et al. 2009). The GENSIM library was used
to obtain document embeddings (compiled versions of the algorithms) (Khosrovian et al.
2008). The language model baselines were implemented by using the PyTorch-transform-
ers library (Wolf et al. 2020).

4.4 Evaluation of the results

Throughout the experiments we adopted the micro F1 score for multiclass classification
and F1 score for binary classification. As critical distance diagrams (Demšar 2006) are
currently one of the only alternatives for simultaneous comparison of multiple classifiers

9 https:// scikit- learn. org/ stable/ modul es/ gener ated/ sklea rn. linear_ model. SGDCl assifi er. html
10 http:// www. sling. si/

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
http://www.sling.si/

1009Machine Learning (2021) 110:989–1028

1 3

across multiple data sets, we report the results by using these diagrams (for F1 and accu-
racy, separately) as they offer a more compact view compared to tabular results (which are
reported in Appendix 2. The distance diagrams are interpreted as follows. The black lines
denote the average ranks. The lower the average rank, the better the classifier. The red lines
join all classifiers which are according to Friedman-Nemenyi testing part of the same sig-
nificance class – there are no significant differences in their performance at (p = 0.05). We
interpret the diagrams in alignment with the tabular results. In terms of GPERF, we visual-
ize distributions for different data sets—such visualizations offered insights into which data
sets are, given the same resources, easier or harder for the conducted evolution.

5 Results

In this section we discuss the results of empirical evaluation. We first report on classifica-
tion performance in Section 5.1, followed by qualitative exploration of possible transfer
learning properties of autoBOT in Section 5.2, an explainability case study in Section 5.3,
and case studies of evolution’s behavior in Section 5.4.

5.1 Classification performance

We summarize the F1 and accuracy-based performances in the form of critical distance
diagrams, shown in Figures 2 and 3, and tabular results, shown in Tables 5 and 6 in
Appendix 2. We report the results for the best performing evolution hyperparameter set-
tings which were the mutation rate of 0.3 and the crossover rate of 0.9. It can be observed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

bert-base

roberta-base

autoBOT-base-neurosymbolic

autoBOT-base-symbolic

TPOT

autoBOT-svm-symbolic

LR (char + word)

autoBOT-svm-neurosymbolic

autoBOT-svm-neural

autoBOT-base-neural

majority

doc2vec (svm)

doc2vec (lr)

LR (char)

autoBOT-lr-neural

SVM (char)

autoBOT-lr-neurosymbolic

SVM (char + word)

LR (word)

autoBOT-lr-symbolic

SVM (word)

critical distance: 7.9242

Fig. 2 Critical distance diagrams showing average ranks based on the F1 scores

1010 Machine Learning (2021) 110:989–1028

1 3

that the proposed autoBOT-neurosymbolic performs competitively to the other state-
of-the-art approaches, even though it is outperformed by BERT (and to some extent by
RoBERTa). Surprisingly, the symbolic-only version of autoBOT (autoBOT-symbolic) is
also highly competitive. The performance is similar if compared against TPOT, and signifi-
cantly higher than the weak baselines such as the majority classifier (the red lines do not
join the classifiers). We also observe that RoBERTa (125M parameters) performed margin-
ally worse than BERT (110M parameters), which we believe is due to the fact that we did
not perform extensive hyperparameter search, especially exploring various regularization
settings. Another interpretation of this result is that due to the large number of parame-
ters, overfitting on the validation set occurred. Such behavior can be problematic for low
resource scenarios where many classes are predicted (e.g., mbti). Current results indicate
that language models perform sub-optimally, if multiple classes are considered (e.g., five
or more), however, the results could also be due to the class imbalance, which is present in
the most multiclass problems.

The overall performance can be, based on the diagrams, summarised as follows. The
neural language models, as discussed, on average out-perform other approaches. The pro-
posed autoBOT variants including either the combination of symbolic and non-symbolic
features (autoBOT-neurosymbolic) and only symbolic features (autoBOT-symbolic) are
ranked next, performing on average better than e.g., TPOT (autoML baseline) and other
variants of linear learners trained on the constructed representation, which, however, do
not consider the evolved representation. The LR (char + word) baseline performed sur-
prisingly well, and was, out of the weaker baselines, out-performed only by the symbolic
feature space of autoBOT + SVM classifier (autoBOT-svm-symbolic). The doc2vec-only
representations were amongst the worst-performing ones (doc2vec (svm) and doc2vec
(lr)), indicating their potential complementarity with symbolic features (as observed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

bert-base

roberta-base

autoBOT-base-symbolic

autoBOT-base-neurosymbolic

TPOT

SVM (word)

autoBOT-lr-symbolic

autoBOT-lr-neurosymbolic

autoBOT-svm-symbolic

autoBOT-base-neural

majority

doc2vec (svm)

LR (char)

doc2vec (lr)

LR (word)

SVM (char + word)

SVM (char)

autoBOT-svm-neural

autoBOT-svm-neurosymbolic

LR (char + word)

autoBOT-lr-neural

critical distance: 7.9242

Fig. 3 Critical distance diagrams showing average ranks based on the Accuracy scores

1011Machine Learning (2021) 110:989–1028

1 3

in e.g., autoBOT-base-neurosymbolic). Interestingly, if the two neural representations
were evolved, the performance increased, however did not reach the neuro-symbolic
combinations.

In terms of the performance across individual data sets, we highlight the following
observations. The news-based data sets were rather easy to classify – in e.g., bbc, the
strong learners all achieved around 99% accuracy. The data sets, where the discrepancy
was larger, are for example the ones with more classes. One such example is the mbti,
where TPOT outperformed the other learners, however was followed closely by the auto-
BOT-symbolic variant. On data sets such as sarcasm, the discrepancy between the neural
language models and other types of methods was the largest. For example, BERT and RoB-
ERTa achieved > 90% accuracy, the closest autoBOT implementation was again the sym-
bolic one which scored with 82%, which is substantially lower. Interestingly, on the data
sets with a large number of instances, the proposed autoBOT came within two percentage
points w.r.t. the neural language models. Finally, when considering the hatespeech data
set, the proposed autoBOT performed on par with neural language models, albeit being
completely explainable, which can be the decision factor when deploying a model on a this
type of task. Overall, the clear win of neural language models is in alignment with previous
work (e.g., Devlin et al. (2019)), where such models performed very well across a spec-
trum of multiple tasks. In terms of the interpretable methods, autoBOT was shown to offer
a viable alternative a user can obtain with minimal input (and setup), and no specialized
hardware (GPUs in this case).

5.2 Towards meta transfer learning

As the proposed approach yields solution vectors that uniquely determine the importance
of each type of features, we explored further whether the obtained solution vectors share
properties across similar data sets. The clustered solution space is shown in Figure 4. The
colors represent the scale of solution weights—weights that correspond to the individual
feature types.

We observe that distinct clustering patterns emerge, roughly grouping the data sets
based on the type of classification task. For example, the yelp and bbc data sets appear
to have similar solutions, similarly the insults, questions and the sarcasm data sets. As
we conducted two-way (hierarchical) clustering, insights into relations between types can
also be observed. The POS and relational features appear to have the most in common,
and similarly word-, character- and the keyword-based features. The two types of docu-
ment embeddings behave similarly, and were recognized by autoBOT as such, which is
an expected result that validates the purpose of such visualization. The image also offers
insights into the question whether the embedding-based representations are always use-
ful (assuming high weights correspond to relevance). For data sets such as sarcasm and
insults, keyword and word-level features emerged with higher weights, however, when con-
sidering for example the yelp data set, the embedding-based representation appears to have
had the most impact on the success of learning. Another apparent benefit of such visuali-
zation is the inspection of how relevant a given feature type is across multiple data sets.
Current results indicate that POS tag-based features and the relational features appear to
improve the predictive performance very selectively. For example, the POS tags appear to
work well when considering the sarcasm data set, and relational features help, albeit mod-
erately, when considering semeval2019 and hatespeech data sets. We believe the visualiza-
tions like the proposed one are a very transparent option for efficient exploration of which

1012 Machine Learning (2021) 110:989–1028

1 3

feature types carry the most information, and could be potentially further inspected (or
extended). Current results indicate that the observed clustering is related to the properties
of the addressed task (e.g., embedding relevance for bbc, yelp and the articles)

5.3 Explainability

One of the key features of autoBOT is its two-level transparency scheme. The first level
corresponds to weights, representing parts of a given feature space, and can be used to
understand what autoBOT emphasizes across data sets (Figure 4). However, autoBOT
can also offer direct importances, based on the absolute coefficients of linear classifiers
employed. An example for the bbc data set is given in Table 4. The tokens such as “blair”,
“election” and similar emerged as the most relevant, which is in alignment with the task
that addresses differentiation between the topics. Note that proper nouns (nnp – noun-noun-
pronoun), either one or two in a sequence, were found to be the most relevant POS tags.
The table demonstrates that even though importances can be computed for each feature
separately, if the feature itself is non-symbolic, such feature importances contribute very
little to the interpretation (or nothing at all). Hence, we see token or knowledge graph-level
features as the most relevant when attempting to interpret what impacts the autoBOT’s

Fig. 4 Similarity of the solution vectors across considered data sets. It can be observed that data sets related
to similar tasks group together, indicating potential transfer learning possibilities at the evolution solution
level. The importances were re-scaled to 0-1 range

1013Machine Learning (2021) 110:989–1028

1 3

Ta
bl

e
4

 T
op

 si
x

fe
at

ur
es

 fo
r d

iff
er

en
t f

ea
tu

re
 s

ub
sp

ac
es

 (b
bc

 d
at

a
se

t).
 T

he
 ro

w
 in

de
x

co
rr

es
po

nd
s t

o
co

ns
id

er
ed

 fe
at

ur
e

ty
pe

s,
co

lu
m

ns
 a

re
 to

p
si

x
fe

at
ur

es
. E

ac
h

ce
ll

co
ns

ist
s

of
 th

e
fe

at
ur

e
na

m
e

an
d

th
e

ab
so

lu
te

 im
po

rta
nc

e
ex

tra
ct

ed
 w

ith
 a

ut
oB

O
T.

 N
ot

e
th

at
 e

ve
n

th
ou

gh
 im

po
rta

nc
es

 c
an

 b
e

ex
tra

ct
ed

 fo
r t

he
 e

m
be

dd
ed

 s
pa

ce
, t

he
y

ar
e

no
t i

nf
or

m
a-

tiv
e—

th
es

e
fe

at
ur

es
 a

re
 o

nl
y

nu
m

be
re

d
di

m
en

si
on

s.
N

ot
e

th
at

 e
.g

.,
ch

ar
-b

as
ed

 fe
at

ur
es

 a
pp

ea
r t

he
 s

am
e,

 a
s

th
e

di
ffe

re
nc

e
ca

n
be

 in
 th

e
w

hi
te

sp
ac

e
ne

xt
 to

 a
 g

iv
en

 to
ke

n
(p

ar
t

of
 th

e
fe

at
ur

e)

In
de

x
C

ha
r f

ea
tu

re
s

W
or

d
fe

at
ur

es
ke

yw
or

d
fe

at
ur

es
PO

S
fe

at
ur

es
Re

la
tio

na
l f

ea
tu

re
s

K
G

 fe
at

ur
es

N
eu

ra
l f

ea
tu

re
s v

1
N

eu
ra

l f
ea

tu
re

s v
2

0
fil

m
 :

0.
04

ia
af

 :
0.

12
bl

ai
r :

 0
.1

6
nn

p
nn

p
: 0

.0
2

–2
–e

 :
0.

4
at

lo
ca

tio
n(

co
m

m
itt

ee
,g

ov
er

nm
en

t)
: 0

.0
3

19
51

 :
1.

37
36

20
 :

1.
19

1
ilm

 :
0.

04
m

r b
ro

w
n

: 0
.0

7
m

us
ic

 :
0.

16
nn

s :
 0

.0
2

–2
–n

 :
0.

29
ha

sc
on

te
xt

 (f
al

l,u
k)

 :
0.

03
37

31
 :

1.
21

14
20

 :
1.

18
2

m
r :

 0
.0

3
dr

ug
 :

0.
05

br
ow

n
: 0

.1
4

cd
 :

0.
0

e–
8–

l :
 0

.2
1

ha
sc

on
te

xt
 (m

r,u
k)

 :
0.

02
10

21
 :

1.
15

19
60

 :
1.

09
3

fil
 :

0.
03

m
r b

la
ir

: 0
.0

5
el

ec
tio

n
: 0

.1
2

rb
 :

0.
0

u–
2–

c
: 0

.2
re

la
te

dt
o

(m
in

ist
er

,b
rit

is
h)

 :
0.

02
42

41
 :

1.
13

80
 :

0.
99

4
m

r :
 0

.0
3

g8
 :

0.
04

at
hl

et
ic

s :
 0

.1
cc

 :
0.

0
–3

–l
 :

0.
2

re
la

te
dt

o
(s

ec
re

ta
ry

,g
ov

er
nm

en
t)

: 0
.0

2
12

11
 :

1.
09

47
30

 :
0.

98

5
m

r :
 0

.0
3

m
r h

ow
ar

d
: 0

.0
4

bl
ac

kp
oo

l :
 0

.1
ex

 :
0.

0
a–

9–
o

: 0
.2

sy
no

ny
m

 (m
in

ist
er

,se
cr

et
ar

y)
 :

0.
02

43
61

 :
1.

05
42

40
 :

0.
97

6
fil

 :
0.

03
ra

il
: 0

.0
4

pa
rty

 :
0.

1
in

 :
0.

0
s–

7–
i :

 0
.2

sy
no

ny
m

 (m
ov

ie
,fi

lm
) :

 0
.0

2
46

01
 :

1.
03

42
80

 :
0.

95
7

m
r :

 0
.0

3
w

to
 :

0.
04

str
aw

 :
0.

09
nn

 :
0.

0
–2

–r
 :

0.
18

us
ed

fo
r (

fil
m

,m
ov

ie
) :

 0
.0

2
67

1
: 1

.0
2

38
0

: 0
.9

4
8

m
us

 :
0.

02
bi

g
br

ot
he

r :
 0

.0
3

at
hl

et
es

 :
0.

08
po

s :
 0

.0
s–

6–
t :

 0
.1

8
ha

sc
on

te
xt

(a
ve

ra
ge

,u
k)

 :
0.

01
40

61
 :

1.
0

78
0

: 0
.9

1
9

m
us

 :
0.

02
hu

nt
 :

0.
03

co
m

m
itt

ee
 :

0.
08

rp
 :

0.
0

p–
2–

n
: 0

.1
8

ha
sc

on
te

xt
(c

ha
nc

el
lo

r,b
rit

ai
n)

 :
0.

01
37

11
 :

0.
95

28
00

 :
0.

91

1014 Machine Learning (2021) 110:989–1028

1 3

decisions. Further, the proposed ConceptNet features also offer interesting insight into
what predicates emerged as the most relevant. For example, synonym(movie, film) indicates
the relevance of synonyms, however, the hascontext(fall, uk) offers insight into symbolic
context, previously not considered in such setting.

5.4 The Evolution’s behavior

We next present aggregations of autoBOT’s GPERF scores when varying the evolution
hyperparameters in Figure 5.

We observe the following. There exist distinct distribution differences among the data
sets. For example, the articles and subjects data sets, and also bbc are characterized with
high GPERF scores. On the other hand, yelp, insults and semeval2019 data sets are on
the lower end of the spectrum. As GPERF considers both the percentage of generations
needed to convergence, as well as performance, we conjecture that the data sets with high
GPERF are indeed easier to learn. For example, when considering bbc, both the F1 scores
are above 95%, and also converge to the final maximum in the first couple of generations.

In contrast, we observe gradual evolution when considering e.g., the insults data set,
and when this information is combined with the fact that F1 scores for this data set are
lower than e.g., when considering bbc, we can conclude that this data set is harder to
learn from and requires more time (generations). Another observation is that fox, bbc
and subjects data sets are all focusing on topic prediction, where word-level seman-
tics (and keywords) can play a dominant role. Note that comparison of multiple data

Fig. 5 GPERF across considered data sets. The standard deviations entail different hyperparameter settings
(mutation, crossover)

1015Machine Learning (2021) 110:989–1028

1 3

sets yields different distributions even if only performances are considered—the GPERF
only offers additional insight into the nature of the evolution trace that led to a cer-
tain performance. For example, the semeval2019’s GPERF is very low, even though its
final F1 performance is around 60%. We believe GPERF (or its variants) could serve
for inspecting how the evolution progresses and potentially serve as a mechanism for
automatic stopping, however we leave such evaluation for further work. Note also, that
if autoBOT would be expected to perform well on a particular collection of data sets
of the same type, this type of measurement (and visualization) would offer immediate
insight into its success (e.g., detection of insults, hate speech and fake news) and poten-
tially interesting task hardness ranking.

We next discuss the behavior of the two main hyperparameters; the crossover and
mutation, on the GPERF score in Figure 6. It can be observed that very high mutation
rates result in, on average, lower GPERF scores (0.3 and 0.6 yield similar results). On
the contrary, current results indicate that high crossover values are beneficial for the
considered problem setting.

In Figure 7 we present the interesting evolution traces we observed and discuss their
implications. The figure shows four distinct evolution traces we observed when further
investigating the conducted experiments. One of the key observations is that a fixed
amount of time (8 hours) is not necessarily enough, and can vary highly when con-
sidering different data sets. For example, the kenyan data set appears relatively simple
compared to e.g., the semeval2019 data set, when gradual progress is observed, how-
ever there is no visual evidence of convergence (evolution, when considering the ken-
yan data set, converges rather quickly in the first 10% of generations). An interesting
trace was observed when considering the insults data set, where at first larger perfor-
mance increases were observed, however, when a certain point was reached, only minor
improvements were present. Even though not systematically addressed, the results indi-
cate neuro-symbolic learning is subject to faster convergence. Further, we acknowledge
the existence of many approaches that could help with further analysis of such traces
(e.g., Eiben et al. (1990)), however we consider them for further work, as the purpose
of this paper was to evaluate whether autoML systems for text are feasible at all and in
what scenarios.

Fig. 6 Relation between GPERF and the crossover and mutation hyperparameters of evolution. Mutation of
0.3 and crossover of 0.9 offer a good trade-off between performance and evolution convergence, and were
considered as the default setting

1016 Machine Learning (2021) 110:989–1028

1 3

6 Discussion and conclusions

The focus of this paper is the proposed autoBOT system for automatic learning of classi-
fiers and representations for texts. We demonstrate the system’s competitive performance
on multiple data sets, when compared to strong baselines such as other autoML systems
or neural, transformer-based language models. We additionally investigate the evolution’s
behavior for selected examples, showing that instead of evolving a heterogeneous ensemble
of learners, as performed by existing state-of-the-art approaches, evolution on the represen-
tation level proves to be a feasible and computationally more sensible option.

The proposed autoBOT system currently considers six symbolic and two non-symbolic
document representations, however it is by no means limited to feature types consid-
ered in this work—these were selected to take multiple possible text representations into
account, as well as to explore potentially interesting implications for meta transfer learn-
ing, where the solution vectors could be directly transferred across similar problems. As
part of the future work, we believe incorporation of translational distance-based features
could also be a promising approach. Here, a feature would be a conjunct of e.g., pairs of

Fig. 7 Examples of evolution traces. The blue lines represent mean and red ones maximum fitness values.
It can be observed (c,b) that in some cases, the dedicated evolution time of 8 hours, was not necessarily
enough to achieve convergence. On the other hand, as seen for example when considering the kenyan data
set (d), relatively fast convergence is observed due to a relatively simple classification task. The evolution
either gradually unveils a relevant representation (b), or in a few generations, as can be seen in (d)

1017Machine Learning (2021) 110:989–1028

1 3

presentAtDistance predicates, which approximate the distance between the considered pair
of tokens. This type of features could potentially entail more complex relations between
tokens that can be otherwise hard to detect.

The proposed autoBOT approach can also be considered in analogy to the attention
mechanism, used in contemporary transformer-based architectures (Devlin et al. 2019).
The neural attention, during backpropagation, prioritizes parts of the byte pair encoded
space, yielding sparse signals that are highly dependent on the context. The evolution, as
implemented in this work, effectively optimizes a single vector of weights, each corre-
sponding to a particular collection of features. Similarly to the attention, however, particu-
lar collections are left out (e.g., character-level features when considering semantics-rich
texts). In this way, the evolution is responsible for distillation of the feature space (and not
backpropagation). Finally, we believe that also the granularity of the considered space is
different. While the attention mechanism emphasized e.g., individual tokens (or pairs), the
autoBOT importances are related to larger feature subsets related to feature types.

Even though the proposed implementation of autoBOT is not meant for online execution, a
potentially interesting research direction would be its adaptation for operation with e.g., data
streams. Here, we see two main opportunities on how this setting could be considered. First,
the existing, pre-initialized evolution weight space could be used to evolve a collection of clas-
sifiers just for a few iterations, potentially adapting to the new properties of the data, and sec-
ond, as the learners are trained with stochastic gradient descent, their weights could be updated
in a minibatch manner; in this scenario, the evolution iteration would not be considered after
each learning update but more seldom, lifting the potentially time expensive re-training.

The proposed dimensionality estimation procedure operates based on a simple assump-
tion that there exist useful high-dimensional feature spaces that have the same memory
footprint as the commonly used low-dimensional ones (e.g., of size 128). This intui-
tively means that one can select the dimensions with the spatial footprint of a reasonable
size, e.g., a 128 dimensional dense representation (the dimension is a hyperparameter),
for which we already got an insight into its behavior on a given hardware. The estima-
tion assumes the same dimension for all feature types, making it possible to happen that
e.g., there are fewer POS-based features than the estimated dimension permits. This could
be solved via some form of dynamic assignment procedure, despite the apparently low
expected effect on the overall performance.

In terms of computational load, we observed the following. As the proposed autoBOT
was developed with sparse representation structure in mind, its memory footprint never
exceeded that of available in individual cluster jobs (16GB). As the runtime is coupled
with the parameter denoting the time, current results indicate that in 8h (e.g., over-night),
autoBOT is able to find good classifiers, an explanation as to what are the relevant parts
of the feature space, and the features themselves that matter for the final classification.
We observed that even though TPOT performs competitively, it is not able to leverage the
sparseness of input matrices, resulting in potentially high memory overhead. Finally, as the
neural language models were evaluated on specialized hardware, and could not be easily
fine-tuned on an off-the-shelf laptop due to high working memory, disk and computation
requirements, we believe this branch of models does not cover all the low-resource sce-
narios in which symbolic or neuro-symbolic approaches should operate well.

In terms of explainability, the proposed autoBOT offers insight into feature type and
feature-level importances that are jointly learned. Potentially, a similar level of explainabil-
ity can be obtained by combining explanations based on linear learners that learn based
on individual features in conjunction with learners that learn on the subspaces governed
by the separate feature types. The main difference between the two paradigms is that the

1018 Machine Learning (2021) 110:989–1028

1 3

feature-type weights are obtained by evolution, offering potentially easier incorporation
of additional type-related constraints or simultaneous consideration of multiple objectives
related to a given representation’s properties. The bags-of-features-based approaches can be,
on the contrary, faster and are potentially an interesting future research direction in terms of
weight screening prior to the main, more computationally intense evolution part. We leave
a more detailed study of the explanatory power and combinations of the two paradigms for
further work. Note that the evolution performs feature selection only in the scenario where
the weights are exactly zero (for a given type). This type of features will be omitted entirely
during classification (extreme feature discarding). In most of the experiments conducted to
this end, the evolution merely re-weighted parts of the feature space, which is used in a reg-
ularization-based approach (as part of the fitness function). Even though document embed-
dings could be obtained with existing language models, and potentially further improve the
performance, such implementation would defeat the current purpose of autoBOT, which
emphasizes low resource learning. To our knowledge current state-of-the-art language mod-
els (e.g., RoBERTa) are not yet necessarily suitable for commodity hardware, even though
due to increasingly more computational power, this statement might change in the future.
Overall, as autoBOT was built with modular representation learning in mind, should the
need arise, contextual document space could also be included as one of the considered fea-
ture types (see Section 3.1). Further, we observed that large language models struggle with
problems where the amount of data is not large, and there are many classes (e.g., mbti).
Such behaviour will be further studied, as it is not clear whether this is a general limitation.

One of the emphasis of this paper is autoBOT’s capability to operate on sparse spaces.
The sparsity of the considered document representations can be the result of two different
procedures. First, the classifier, evolved as part of the evolution is regularized so that it
potentially prunes out parts of the feature space. One of the classifiers explored as a part of
each individual is also lasso, hence the classifier-based sparseness is obtained if the clas-
sifier performs well. Further, sparseness can also be induced at the representation level by
the evolution itself; here, typed parts of the feature space can be jointly neglected (weight
= 0) if e.g., character-based features are non-informative.

Current autoBOT implementation considers very basic evolution principles, known for
at least 30 years. This choice is intentional, aiming to demonstrate that by considering a
simple tournament-based evolution with mutation and crossover, the system already offers
competitive performance. An apparent direction of future work is thus to explore more
advanced evolution schemes, including the exploration of Pareto optimal representations
(as for example discussed by Deb and Jain (2013))—simultaneous optimization of multiple
metrics could be beneficial in many real-life scenarios (Ishibuchi et al. 2008), and shall be
considered in future work.

Another design choice of autoBOT was the adoption of simple, well regularized lin-
ear learners instead of more computationally intensive ones. This choice was due to the
emphasis on representation evolution, which can otherwise be out-sourced to the model
itself (e.g., with deeper neural network models). Furthermore, the current implementation
of autoBOT offers relatively simple (drop-in replacement) exploration of more involved
models, which we leave for further work.

Finally, as the main result of this work we recognize the autoBOT’s performance to
offer reasonable results with zero human hyperparameter tuning, while at the same time
offering insights into which parts of the input space, either at the level of feature types,
or at the level of individual features is relevant. Even though we employed simple coef-
ficient normalization, we believe importance assessment can already be useful for low-risk
scenarios such as e.g., model debugging for news classification, however more involved

1019Machine Learning (2021) 110:989–1028

1 3

normalization schemes with statistical guarantees should be adopted if systems of this type
were to be used in more high-risk (e.g., biomedical) domains. The proposed implemen-
tation offers a straightforward way of obtaining relatively strong classifiers with as little
human input as possible, whilst remaining interpretable.

Appendix 1: Hardware used for neural language model training

The following is the hardware specification of the machine used for training neural language mod-
els. Note that GPUs were not used for autoBOT, as it performs as a parallel, CPU-only algorithm.

1020 Machine Learning (2021) 110:989–1028

1 3

Ta
bl

e
5

 M
ac

ro
 F

1
pe

rfo
rm

an
ce

 a
cr

os
s d

at
a

se
ts

 a
nd

 c
la

ss
ifi

er
s

da
ta

se
t

m
od

el
ar

tic
le

s
bb

c
fo

x
ha

te
sp

ee
ch

in
su

lts
ke

ny
an

m
bt

i
pa

n-
20

17
qu

es
tio

ns
sa

rc
as

m
se

m
e-

va
l-2

01
7

se
m

e-
va

l2
01

9
su

bj
ec

ts
ye

lp

du
m

m
y-

str
at

ifi
ed

0.
05

 (0
.0

)
0.

31
 (0

.0
2)

0.
18

 (0
.0

1)
0.

77
 (0

.0
)

0.
3

(0
.0

2)
0.

53
 (0

.0
3)

0.
14

 (0
.0

1)
0.

52
 (0

.1
1)

0.
2

(0
.0

1)
0.

49
 (0

.0
1)

0.
38

(0

.0
1)

0.
34

 (0
.0

)
0.

37

(0
.0

3)
0.

29

(0
.0

1)
LR

 (w
or

d)
0.

62
 (0

.0
)

0.
96

 (0
.0

)
0.

86
 (0

.0
)

0.
84

 (0
.0

)
0.

58
 (0

.0
)

0.
96

 (0
.0

)
0.

58
 (0

.0
)

0.
77

 (0
.2

4)
0.

78
 (0

.0
)

0.
78

 (0
.0

)
0.

51
 (0

.0
)

0.
54

(0

.0
2)

0.
96

 (0
.0

)
0.

49
 (0

.0
)

SV
M

(w

or
d)

0.
63

 (0
.0

)
0.

96
 (0

.0
)

0.
86

 (0
.0

)
0.

81
 (0

.0
)

0.
63

 (0
.0

)
0.

97
 (0

.0
)

0.
65

 (0
.0

)
0.

82
 (0

.2
6)

0.
82

 (0
.0

)
0.

78
 (0

.0
)

0.
45

 (0
.0

)
0.

53

(0
.0

3)
0.

95
 (0

.0
)

0.
49

 (0
.0

)

LR
 (c

ha
r)

0.
68

 (0
.0

)
0.

95
 (0

.0
)

0.
8

(0
.0

)
0.

83
 (0

.0
)

0.
64

 (0
.0

)
0.

95
 (0

.0
)

0.
4

(0
.0

)
0.

8
(0

.2
2)

0.
76

 (0
.0

)
0.

77
 (0

.0
)

0.
42

 (0
.0

)
0.

54
 (0

.0
)

0.
98

 (0
.0

)
0.

48
 (0

.0
)

SV
M

(c

ha
r)

0.
69

 (0
.0

)
0.

94
 (0

.0
)

0.
82

 (0
.0

)
0.

83
 (0

.0
)

0.
62

 (0
.0

)
0.

96
 (0

.0
)

0.
48

 (0
.0

)
0.

79
 (0

.2
4)

0.
78

 (0
.0

)
0.

77
 (0

.0
)

0.
43

 (0
.0

)
0.

56

(0
.0

4)
0.

98
 (0

.0
)

0.
46

 (0
.0

)

LR
 (c

ha
r

+
 w

or
d)

0.
7

(0
.0

)
0.

96
 (0

.0
)

0.
86

 (0
.0

)
0.

83
 (0

.0
)

0.
64

 (0
.0

)
0.

91
 (0

.0
)

0.
65

 (0
.0

)
0.

81
 (0

.2
6)

0.
82

 (0
.0

)
0.

81
 (0

.0
)

0.
42

 (0
.0

)
0.

56
 (0

.0
)

0.
97

 (0
.0

)
0.

5
(0

.0
)

SV
M

(c

ha
r +

w

or
d)

0.
64

 (0
.0

)
0.

95
 (0

.0
)

0.
88

 (0
.0

)
0.

81
 (0

.0
)

0.
59

 (0
.0

1)
0.

97
 (0

.0
)

0.
5

(0
.0

)
0.

75
 (0

.2
1)

0.
78

 (0
.0

)
0.

8
(0

.0
4)

0.
54

 (0
.0

)
0.

56

(0
.0

3)
0.

98
 (0

.0
)

0.
43

 (0
.0

)

be
rt-

ba
se

0.
84

 (0
.0

)
0.

99
 (0

.0
)

1.
0

(0
.0

)
0.

88
 (0

.0
)

0.
78

 (0
.0

1)
1.

0
(0

.0
2)

0.
33

 (0
.0

9)
0.

68
 (0

.1
6)

0.
96

 (0
.0

)
0.

92
 (0

.0
)

0.
67

(0

.0
1)

0.
67

(0

.0
1)

0.
99

(0

.0
1)

0.
58

(0

.0
1)

ro
be

rta
-

ba
se

0.
82

 (0
.0

)
0.

99
 (0

.0
)

1.
0

(0
.0

)
0.

89
 (0

.0
1)

0.
77

 (0
.0

1)
0.

99
 (0

.0
2)

0.
26

 (0
.0

7)
0.

69
 (0

.1
5)

0.
96

 (0
.0

)
0.

93
 (0

.0
)

0.
71

(0

.1
3)

0.
67

(0

.2
5)

0.
98

 (0
.0

)
0.

56

(0
.0

1)
TP

O
T

0.
64

 (0
.0

)
0.

97
 (0

.0
)

0.
93

 (0
.0

1)
0.

84
 (0

.0
)

0.
62

 (0
.0

1)
0.

97
 (0

.0
)

0.
67

 (0
.0

1)
0.

82
 (0

.2
2)

0.
82

 (0
.0

)
0.

8
(0

.0
)

0.
53

 (0
.0

)
0.

40
 (0

.0
)

0.
97

 (0
.0

)
0.

53
 (0

.0
)

do
c2

ve
c

(lr
)

0.
65

 (0
.0

)
0.

98
 (0

.0
1)

0.
77

 (0
.0

1)
0.

82
 (0

.0
)

0.
39

 (0
.0

1)
0.

97
 (0

.0
1)

0.
54

 (0
.0

1)
0.

81
 (0

.2
3)

0.
47

 (0
.0

)
0.

75
 (0

.0
)

0.
34

 (0
.0

)
0.

36

(0
.0

1)
0.

95

(0
.0

1)
0.

49

(0
.0

1)
do

c2
ve

c
(s

vm
)

0.
64

 (0
.0

)
0.

97
 (0

.0
1)

0.
7

(0
.0

1)
0.

82
 (0

.0
)

0.
39

 (0
.0

1)
0.

95
 (0

.0
1)

0.
5

(0
.0

1)
0.

79
 (0

.2
2)

0.
54

 (0
.0

1)
0.

76
 (0

.0
)

0.
34

 (0
.0

)
0.

37

(0
.0

1)
0.

95

(0
.0

1)
0.

47
 (0

.0
)

au
to

BO
T-

lr-
ne

ur
al

0.
81

 (0
.0

)
0.

99
 (0

.0
)

0.
85

 (0
.0

)
0.

81
 (0

.0
)

0.
28

 (0
.0

2)
0.

95
 (0

.0
)

0.
57

 (0
.0

)
0.

83
 (0

.2
1)

0.
53

 (0
.0

1)
0.

7
(0

.0
)

0.
45

 (0
.0

)
0.

36

(0
.0

1)
0.

98
 (0

.0
)

0.
52

 (0
.0

)

au
to

BO
T-

sv
m

-
ne

ur
al

0.
81

 (0
.0

)
0.

98
 (0

.0
)

0.
84

 (0
.0

1)
0.

82
 (0

.0
)

0.
49

 (0
.0

1)
0.

97
 (0

.0
)

0.
59

 (0
.0

1)
0.

82
 (0

.1
9)

0.
56

 (0
.0

)
0.

74
 (0

.0
)

0.
47

(0

.0
1)

0.
48

(0

.0
1)

0.
98

 (0
.0

)
0.

49
 (0

.0
)

1021Machine Learning (2021) 110:989–1028

1 3

Ta
bl

e
5

 (c
on

tin
ue

d)

da
ta

se
t

m
od

el
ar

tic
le

s
bb

c
fo

x
ha

te
sp

ee
ch

in
su

lts
ke

ny
an

m
bt

i
pa

n-
20

17
qu

es
tio

ns
sa

rc
as

m
se

m
e-

va
l-2

01
7

se
m

e-
va

l2
01

9
su

bj
ec

ts
ye

lp

au
to

BO
T-

lr-
sy

m
-

bo
lic

0.
81

 (0
.0

)
0.

98
 (0

.0
)

0.
85

 (0
.0

)
0.

81
 (0

.0
)

0.
29

 (0
.0

2)
0.

96
 (0

.0
)

0.
58

 (0
.0

)
0.

83
 (0

.2
1)

0.
54

 (0
.0

1)
0.

7
(0

.0
)

0.
46

(0

.0
1)

0.
37

(0

.0
1)

0.
97

 (0
.0

)
0.

52

(0
.0

1)

au
to

BO
T-

sv
m

-
sy

m
bo

lic

0.
81

 (0
.0

)
0.

98
 (0

.0
)

0.
84

 (0
.0

1)
0.

82
 (0

.0
)

0.
48

 (0
.0

1)
0.

97
 (0

.0
)

0.
59

 (0
.0

1)
0.

82
 (0

.1
9)

0.
56

 (0
.0

1)
0.

74
 (0

.0
)

0.
47

(0

.0
1)

0.
48

(0

.0
1)

0.
99

 (0
.0

)
0.

49

(0
.0

1)

au
to

BO
T-

lr-
ne

ur
o-

sy
m

bo
lic

0.
81

 (0
.0

)
0.

99
 (0

.0
)

0.
84

 (0
.0

)
0.

81
 (0

.0
)

0.
29

 (0
.0

2)
0.

96
 (0

.0
)

0.
58

 (0
.0

)
0.

83
 (0

.2
1)

0.
54

 (0
.0

1)
0.

7
(0

.0
)

0.
46

(0

.0
1)

0.
36

(0

.0
1)

0.
97

 (0
.0

)
0.

52
 (0

.0
)

au
to

BO
T-

sv
m

-
ne

ur
os

-
ym

bo
lic

0.
81

 (0
.0

)
0.

98
 (0

.0
)

0.
84

 (0
.0

)
0.

82
 (0

.0
)

0.
48

 (0
.0

2)
0.

97
 (0

.0
)

0.
58

 (0
.0

)
0.

82
 (0

.1
9)

0.
56

 (0
.0

)
0.

74
 (0

.0
)

0.
47

(0

.0
1)

0.
47

 (0
.0

)
0.

98
 (0

.0
)

0.
49

(0

.0
1)

au
to

BO
T-

ba
se

-
ne

ur
al

0.
8

(0
.0

)
0.

99
 (0

.0
)

0.
86

 (0
.0

1)
0.

82
 (0

.0
)

0.
49

 (0
.0

8)
0.

97
 (0

.0
1)

0.
6

(0
.0

1)
0.

84
 (0

.2
1)

0.
37

 (0
.0

6)
0.

67
 (0

.0
2)

0.
34

(0

.0
8)

0.
46

(0

.0
6)

0.
99

 (0
.0

)
0.

52
 (0

.0
)

au
to

BO
T-

ba
se

-
ne

ur
os

-
ym

bo
lic

0.
8

(0
.0

1)
0.

99
 (0

.0
)

0.
86

 (0
.0

1)
0.

82
 (0

.0
1)

0.
63

 (0
.0

4)
0.

97
 (0

.0
1)

0.
61

 (0
.0

1)
0.

84
 (0

.2
1)

0.
78

 (0
.0

2)
0.

79
 (0

.0
1)

0.
54

(0

.0
3)

0.
57

(0

.0
4)

0.
99

 (0
.0

)
0.

52

(0
.0

1)

au
to

BO
T-

ba
se

-
sy

m
bo

lic

0.
78

 (0
.0

1)
0.

99
 (0

.0
)

0.
88

 (0
.0

1)
0.

82
 (0

.0
1)

0.
66

 (0
.0

4)
0.

96
 (0

.0
1)

0.
63

 (0
.0

)
0.

83
 (0

.2
3)

0.
79

 (0
.0

1)
0.

82
 (0

.0
1)

0.
56

(0

.0
4)

0.
63

(0

.0
6)

0.
99

 (0
.0

)
0.

48

(0
.0

1)

1022 Machine Learning (2021) 110:989–1028

1 3

Ta
bl

e
6

 A
cc

ur
ac

y
pe

rfo
rm

an
ce

 a
cr

os
s d

at
a

se
ts

 a
nd

 c
la

ss
ifi

er
s

da
ta

se
t

m
od

el
ar

tic
le

s
bb

c
fo

x
ha

te
sp

ee
ch

in
su

lts
ke

ny
an

m
bt

i
pa

n-
20

17
qu

es
tio

ns
sa

rc
as

m
se

m
e-

va
l-2

01
7

se
m

e-
va

l2
01

9
su

bj
ec

ts
ye

lp

du
m

m
y-

str
at

ifi
ed

0.
05

 (0
.0

)
0.

32
 (0

.0
2)

0.
18

 (0
.0

1)
0.

77
 (0

.0
)

0.
63

 (0
.0

1)
0.

54
 (0

.0
4)

0.
14

 (0
.0

1)
0.

53
 (0

.1
1)

0.
2

(0
.0

1)
0.

51
 (0

.0
1)

0.
38

(0

.0
1)

0.
56

(0

.0
1)

0.
38

(0

.0
3)

0.
29

(0

.0
1)

LR
 (w

or
d)

0.
62

 (0
.0

)
0.

96
 (0

.0
)

0.
86

 (0
.0

)
0.

87
 (0

.0
)

0.
78

 (0
.0

)
0.

96
 (0

.0
)

0.
59

 (0
.0

)
0.

77
 (0

.2
4)

0.
78

 (0
.0

)
0.

79
 (0

.0
)

0.
53

 (0
.0

)
0.

73

(0
.0

1)
0.

97
 (0

.0
)

0.
5

(0
.0

)

SV
M

(w

or
d)

0.
64

 (0
.0

)
0.

96
 (0

.0
)

0.
86

 (0
.0

)
0.

87
 (0

.0
)

0.
84

 (0
.0

)
0.

97
 (0

.0
)

0.
66

 (0
.0

)
0.

82
 (0

.2
5)

0.
81

 (0
.0

)
0.

8
(0

.0
)

0.
54

 (0
.0

)
0.

73

(0
.0

1)
0.

96
 (0

.0
)

0.
51

 (0
.0

)

LR
 (c

ha
r)

0.
68

 (0
.0

)
0.

95
 (0

.0
)

0.
8

(0
.0

)
0.

87
 (0

.0
)

0.
83

 (0
.0

)
0.

95
 (0

.0
)

0.
43

 (0
.0

)
0.

8
(0

.2
2)

0.
76

 (0
.0

)
0.

78
 (0

.0
)

0.
53

 (0
.0

)
0.

73
 (0

.0
)

0.
98

 (0
.0

)
0.

49
 (0

.0
)

SV
M

(c

ha
r)

0.
69

 (0
.0

)
0.

94
 (0

.0
)

0.
82

 (0
.0

)
0.

87
 (0

.0
)

0.
83

 (0
.0

)
0.

96
 (0

.0
)

0.
5

(0
.0

)
0.

8
(0

.2
4)

0.
78

 (0
.0

)
0.

78
 (0

.0
)

0.
53

 (0
.0

)
0.

73

(0
.0

4)
0.

98
 (0

.0
)

0.
47

 (0
.0

)

LR
 (c

ha
r

+
 w

or
d)

0.
7

(0
.0

)
0.

96
 (0

.0
)

0.
86

 (0
.0

)
0.

87
 (0

.0
)

0.
83

 (0
.0

)
0.

9
(0

.0
)

0.
66

 (0
.0

)
0.

81
 (0

.2
6)

0.
82

 (0
.0

)
0.

82
 (0

.0
)

0.
53

 (0
.0

)
0.

73
 (0

.0
)

0.
97

 (0
.0

)
0.

51
 (0

.0
)

SV
M

(c

ha
r +

w

or
d)

0.
64

 (0
.0

)
0.

95
 (0

.0
)

0.
88

 (0
.0

)
0.

81
 (0

.0
)

0.
79

 (0
.0

)
0.

97
 (0

.0
)

0.
5

(0
.0

)
0.

75
 (0

.2
1)

0.
78

 (0
.0

)
0.

8
(0

.0
2)

0.
54

 (0
.0

)
0.

73

(0
.0

4)
0.

98
 (0

.0
)

0.
43

 (0
.0

)

be
rt-

ba
se

0.
84

 (0
.0

)
0.

99
 (0

.0
)

1.
0

(0
.0

)
0.

89
 (0

.0
)

0.
89

 (0
.0

)
1.

0
(0

.0
2)

0.
34

 (0
.0

4)
0.

68
 (0

.1
5)

0.
96

 (0
.0

)
0.

92
 (0

.0
)

0.
68

(0

.0
1)

0.
78

(0

.0
1)

0.
99

(0

.0
1)

0.
58

(0

.0
1)

ro
be

rta
-

ba
se

0.
82

 (0
.0

)
0.

99
 (0

.0
)

1.
0

(0
.0

)
0.

9
(0

.0
1)

0.
88

 (0
.0

1)
0.

99
 (0

.0
2)

0.
27

 (0
.0

2)
0.

68
 (0

.1
2)

0.
96

 (0
.0

)
0.

93
 (0

.0
)

0.
72

(0

.0
8)

0.
78

(0

.0
4)

0.
98

 (0
.0

)
0.

56

(0
.0

1)
TP

O
T

0.
64

 (0
.0

)
0.

97
 (0

.0
)

0.
93

 (0
.0

1)
0.

87
 (0

.0
)

0.
83

 (0
.0

)
0.

97
 (0

.0
)

0.
68

 (0
.0

1)
0.

83
 (0

.1
8)

0.
82

 (0
.0

)
0.

8
(0

.0
)

0.
57

 (0
.0

)
0.

7
(0

.0
)

0.
98

 (0
.0

)
0.

53
 (0

.0
)

do
c2

ve
c

(lr
)

0.
66

 (0
.0

)
0.

97
 (0

.0
1)

0.
77

 (0
.0

1)
0.

87
 (0

.0
)

0.
76

 (0
.0

)
0.

97
 (0

.0
1)

0.
53

 (0
.0

1)
0.

8
(0

.2
2)

0.
47

 (0
.0

)
0.

76
 (0

.0
)

0.
51

 (0
.0

)
0.

71
 (0

.0
)

0.
95

(0

.0
1)

0.
5

(0
.0

1)

do
c2

ve
c

(s
vm

)
0.

66
 (0

.0
)

0.
97

 (0
.0

1)
0.

7
(0

.0
1)

0.
87

 (0
.0

)
0.

77
 (0

.0
)

0.
95

 (0
.0

1)
0.

48
 (0

.0
1)

0.
78

 (0
.2

2)
0.

55
 (0

.0
1)

0.
77

 (0
.0

)
0.

51
 (0

.0
)

0.
72

 (0
.0

)
0.

95

(0
.0

1)
0.

49
 (0

.0
)

au
to

BO
T-

lr-
ne

ur
al

0.
82

 (0
.0

)
0.

99
 (0

.0
)

0.
85

 (0
.0

)
0.

87
 (0

.0
)

0.
77

 (0
.0

)
0.

95
 (0

.0
)

0.
62

 (0
.0

)
0.

82
 (0

.1
8)

0.
53

 (0
.0

1)
0.

73
 (0

.0
)

0.
55

 (0
.0

)
0.

71
 (0

.0
)

0.
98

 (0
.0

)
0.

53
 (0

.0
)

au
to

BO
T-

sv
m

-
ne

ur
al

0.
81

 (0
.0

)
0.

98
 (0

.0
)

0.
84

 (0
.0

1)
0.

86
 (0

.0
)

0.
78

 (0
.0

)
0.

97
 (0

.0
)

0.
6

(0
.0

1)
0.

81
 (0

.1
7)

0.
56

 (0
.0

1)
0.

75
 (0

.0
)

0.
53

(0

.0
1)

0.
68

(0

.0
1)

0.
98

 (0
.0

)
0.

49
 (0

.0
)

1023Machine Learning (2021) 110:989–1028

1 3

Ta
bl

e
6

 (c
on

tin
ue

d)

da
ta

se
t

m
od

el
ar

tic
le

s
bb

c
fo

x
ha

te
sp

ee
ch

in
su

lts
ke

ny
an

m
bt

i
pa

n-
20

17
qu

es
tio

ns
sa

rc
as

m
se

m
e-

va
l-2

01
7

se
m

e-
va

l2
01

9
su

bj
ec

ts
ye

lp

au
to

BO
T-

lr-
sy

m
-

bo
lic

0.
82

 (0
.0

)
0.

98
 (0

.0
)

0.
85

 (0
.0

)
0.

87
 (0

.0
)

0.
78

 (0
.0

)
0.

96
 (0

.0
)

0.
62

 (0
.0

)
0.

82
 (0

.1
8)

0.
54

 (0
.0

1)
0.

72
 (0

.0
)

0.
56

(0

.0
1)

0.
71

 (0
.0

)
0.

98
 (0

.0
)

0.
53

(0

.0
1)

au
to

BO
T-

sv
m

-
sy

m
bo

lic

0.
81

 (0
.0

)
0.

98
 (0

.0
)

0.
84

 (0
.0

1)
0.

86
 (0

.0
)

0.
78

 (0
.0

1)
0.

97
 (0

.0
)

0.
6

(0
.0

1)
0.

81
 (0

.1
7)

0.
56

 (0
.0

1)
0.

75
 (0

.0
)

0.
53

(0

.0
1)

0.
69

(0

.0
1)

0.
99

 (0
.0

)
0.

5
(0

.0
1)

au
to

BO
T-

lr-
ne

ur
o-

sy
m

bo
lic

0.
82

 (0
.0

)
0.

99
 (0

.0
)

0.
84

 (0
.0

)
0.

87
 (0

.0
)

0.
78

 (0
.0

)
0.

96
 (0

.0
)

0.
62

 (0
.0

)
0.

82
 (0

.1
8)

0.
54

 (0
.0

1)
0.

73
 (0

.0
)

0.
56

 (0
.0

)
0.

71
 (0

.0
)

0.
98

 (0
.0

)
0.

53
 (0

.0
)

au
to

BO
T-

sv
m

-
ne

ur
os

-
ym

bo
lic

0.
81

 (0
.0

)
0.

98
 (0

.0
)

0.
84

 (0
.0

)
0.

86
 (0

.0
)

0.
77

 (0
.0

)
0.

97
 (0

.0
)

0.
6

(0
.0

)
0.

82
 (0

.1
7)

0.
56

 (0
.0

)
0.

75
 (0

.0
)

0.
53

(0

.0
1)

0.
68

 (0
.0

)
0.

98
 (0

.0
)

0.
49

(0

.0
1)

au
to

BO
T-

ba
se

-
ne

ur
al

0.
81

 (0
.0

)
0.

99
 (0

.0
)

0.
86

 (0
.0

1)
0.

87
 (0

.0
)

0.
77

 (0
.0

1)
0.

97
 (0

.0
1)

0.
61

 (0
.0

1)
0.

84
 (0

.2
)

0.
37

 (0
.0

4)
0.

68
 (0

.0
)

0.
51

(0

.0
9)

0.
71

 (0
.0

)
0.

99
 (0

.0
)

0.
54

 (0
.0

)

au
to

BO
T-

ba
se

-
ne

ur
os

-
ym

bo
lic

0.
81

 (0
.0

)
0.

99
 (0

.0
)

0.
86

 (0
.0

1)
0.

87
 (0

.0
3)

0.
82

 (0
.0

2)
0.

97
 (0

.0
1)

0.
61

 (0
.0

1)
0.

84
 (0

.2
)

0.
78

 (0
.0

2)
0.

79
 (0

.0
1)

0.
57

(0

.0
3)

0.
72

(0

.0
5)

0.
99

 (0
.0

)
0.

54

(0
.0

1)

au
to

BO
T-

ba
se

-
sy

m
bo

lic

0.
79

 (0
.0

1)
0.

99
 (0

.0
)

0.
89

 (0
.0

1)
0.

86
 (0

.0
2)

0.
84

 (0
.0

3)
0.

96
 (0

.0
1)

0.
65

 (0
.0

)
0.

83
 (0

.2
1)

0.
79

 (0
.0

1)
0.

82
 (0

.0
2)

0.
58

(0

.0
4)

0.
77

(0

.0
6)

0.
99

 (0
.0

)
0.

52

(0
.0

1)

1024 Machine Learning (2021) 110:989–1028

1 3

Appendix 2: Tabular results

Acknowledgements The work of the first author was funded by the Slovenian Research Agency through
a young researcher grant. The work of other authors was supported by the Slovenian Research Agency
(ARRS) core research programme Knowledge Technologies (P2-0103), an ARRS funded research project
Semantic Data Mining for Linked Open Data (financed under the ERC Complementary Scheme, N2-0078)
and European Union’s Horizon 2020 research and innovation programme under grant agreement No
825153, project EMBEDDIA (Cross-Lingual Embeddings for Less-Represented Languages in European
News Media). We also gratefully acknowledge the support of NVIDIA Corporation for the donation of
Titan-XP GPU. This research was also partially supported by TAILOR (a project funded by the EU Horizon
2020 research and innovation programme under GA No 952215) and AI4EU (GA No 825619). We would
also like to thank the reviewers for their valuable comments.

Data availability autoBOT’s repository will be available at https:// github. com/ SkBlaz/ autoB OT.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Agarwal, B., Mittal, N. (2014) Text classification using machine learning methods - A survey. In: Proceed-
ings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012),
December 28-30, 2012 (pp. 701–709). Springer.

Belinkov, Y., & Glass, J. (2019). Analysis methods in neural language processing: A survey. Transactions of
the Association for Computational Linguistics, 7, 49–72.

Beyer, H. G., Schwefel, H. P., & Wegener, I. (2002). How to analyse evolutionary algorithms. Theoretical
Computer Science, 287(1), 101–130.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the
natural language toolkit. California: O’Reilly Media Inc.

Bougouin, A., Boudin, F., Daille, B. (2013) TopicRank: Graph-based topic ranking for keyphrase extrac-
tion. In: Proceedings of the Sixth International Joint Conference on Natural Language Processing (pp.
543–551). Asian Federation of Natural Language Processing, Nagoya, Japan.

Campos, R., Mangaravite, V., Pasquali, A., Jorge, A. M., Nunes, C., & Jatowt, A. (2018). A text feature
based automatic keyword extraction method for single documents. In G. Pasi, B. Piwowarski, L. Azzo-
pardi, & A. Hanbury (Eds.), Advances in Information Retrieval (pp. 684–691). Germany: Springer.

Chambers, L. D. (2000). The Practical Handbook of Genetic Algorithms: Applications. Florida: CRC Press.
Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on

Intelligent Systems and Technology, 2(3), 1–27.
Davis, L. (Ed.). (1991). Handbook of Genetic Algorithms. London: Chapman & Hall.
De Rainville, F.M., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C. (2012) Deap: A python framework

for evolutionary algorithms. In: Proceedings of the 14th Annual Conference Companion on Genetic
and Evolutionary Computation (pp. 85–92).

Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-
based nondominated sorting approach, part I: Solving problems with box constraints. IEEE transac-
tions on evolutionary computation, 18(4), 577–601.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learn-
ing Research., 7, 1–30.

Denysiuk, R., Gaspar-Cunha, A., & Delbem, A. C. (2019). Neuroevolution for solving multiobjective knap-
sack problems. Expert Systems with Applications, 116, 65–77.

https://github.com/SkBlaz/autoBOT
http://creativecommons.org/licenses/by/4.0/

1025Machine Learning (2021) 110:989–1028

1 3

Devlin, J., Chang, M.W., Lee, K., Toutanova, K. (2019) BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers) (pp. 4171–4186) . Minneapolis, Minnesota : Association for Computational
Linguistics.

Dorronsoro, B., Pinel, F. (2017) Combining machine learning and genetic algorithms to solve the inde-
pendent tasks scheduling problem. In: 2017 3rd IEEE International Conference on Cybernetics (CYB-
CONF) (pp. 1–8). IEEE.

Dua, D., Graff, C. (2017) UCI Machine Learning Repository. http:// archi ve. ics. uci. edu/ ml.
Eiben, A.E., Aarts, E.H., Van Hee, K.M. (1990) Global convergence of genetic algorithms: A Markov chain

analysis. In: Proceedings of the International Conference on Parallel Problem Solving from Nature
(pp. 3–12). Springer.

El-Beltagy, S. R., & Rafea, A. (2009). KP-Miner: A keyphrase extraction system for English and Arabic
documents. Information Systems, 34(1), 132–144.

English, T.M. (1996) Evaluation of evolutionary and genetic optimizers: No free lunch. In: Evolutionary
Programming (pp. 163–169).

Fellbaum, C. (2012) WordNet. The Encyclopedia of Applied Linguistics.
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F. (2019) Auto-sklearn: Effi-

cient and robust automated machine learning. In: textitAutomated Machine Learning (pp. 113–134).
Springer.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The Elements of Statistical Learning (Vol. 1). New York,
USA: Springer Series. (in Statistics).

Gijsbers, P., & Vanschoren, J. (2019). Gama: Genetic automated machine learning assistant. Journal of
Open Source Software, 4(33), 1132.

Greene, D., Cunningham, P. (2006) Practical solutions to the problem of diagonal dominance in kernel
document clustering. In: W.W. Cohen, A.W. Moore (eds.) Machine Learning, Proceedings of the
Twenty-Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29,
2006, ACM International Conference Proceeding Series (pp. 377–384). ACM.

Hajj, N., Rizk, Y., & Awad, M. (2019). A subjectivity classification framework for sports articles using
improved cortical algorithms. Neural Computing and Applications, 31(11), 8069–8085.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S. (2018) Amc: Automl for model compression and
acceleration on mobile devices. In: Proceedings of the European Conference on Computer Vision
(ECCV) (pp. 784–800).

Ishibuchi, H., Tsukamoto, N., Nojima, Y. (2008) Evolutionary many-objective optimization: A short
review. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence) (pp. 2419–2426). IEEE.

Jennings, P. C., Lysgaard, S., Hummelshøj, J. S., Vegge, T., & Bligaard, T. (2019). Genetic algorithms
for computational materials discovery accelerated by machine learning. NPJ Computational Mate-
rials, 5(1), 1–6.

Jing, K., Xu, J. (2019) A survey on neural network language models. arXiv preprint arXiv:1906.03591
Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden,

N., Borchers, A., et al. (2017) In-datacenter performance analysis of a tensor processing unit. In:
Proceedings of the 44th Annual International Symposium on Computer Architecture (pp. 1–12).

Khosrovian, K., Pfahl, D., Garousi, V. (2008) Gensim 2.0: A customizable process simulation model for
software process evaluation. In: Proceedings of the International Conference on Software Process
(pp. 294–306). Springer.

Kipf, T.N., Welling, M. (2017) Semi-supervised classification with graph convolutional networks. In:
Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Komer, B., Bergstra, J., Eliasmith, C. (2014) Hyperopt-sklearn: automatic hyperparameter configuration
for scikit-learn. In: ICML workshop on AutoML (p. 50). Citeseer.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2017). Auto-WEKA 2.0?:
Automatic model selection and hyperparameter optimization in WEKA. Journal of Machine Learn-
ing Research, 18(25), 1–5.

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019). Text
classification algorithms: A survey. Information, 10(4), 150.

Lavrač, N., Škrlj, B., & Robnik-Šikonja, M. (2020). Propositionalization and embeddings: two sides of
the same coin. Machine Learning, 109(7), 1465–1507.

http://archive.ics.uci.edu/ml

1026 Machine Learning (2021) 110:989–1028

1 3

Le, Q.V., Mikolov, T. (2014) Distributed representations of sentences and documents. In: Proceedings of
the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June
2014, JMLR Workshop and Conference Proceedings vol. 32 (pp. 1188–1196). JMLR.org.

Li, X., Roth, D. (2002) Learning question classifiers. In: Proceedings of the 19th International Confer-
ence on Computational Linguistics (COLING 2002), vol. 1 (pp. 1–7).

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov,
V. (2019) RoBERTa: A robustly optimized BERT pretraining approach.

Madrid, J. (2019) Autotext: AutoML for text classification. https:// inaoe. repos itori oinst ituci onal. mx/
jspui/ bitst ream/ 1009/ 1950/1/ Madri dPJG. pdf

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Scoring, term weighting and the vector space
model. Introduction to information retrieval, 100, 2–4.

Martinc, M., Škrjanec, I., Zupan, K., Pollak, S. (2017) Pan 2017 Author profiling - gender and language
variety prediction. In: Working Notes Papers of the CLEF.

Mihalcea, R., Tarau, P. (2004) TextRank: Bringing order into text. In: Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language Processing (pp. 404–411). Barcelona, Spain:
Association for Computational Linguistics.

Mirończuk, M. M., & Protasiewicz, J. (2018). A recent overview of the state-of-the-art elements of text
classification. Expert Systems with Applications, 106, 36–54.

Misra, R., Arora, P. (2019) Sarcasm detection using hybrid neural network.
Mitchell, M. (1998). An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press.
Mohr, F., Wever, M., & Hüllermeier, E. (2018). Ml-plan: Automated machine learning via hierarchical

planning. Machine Learning, 107(8), 1495–1515.
Moradi, M., Dorffner, G., & Samwald, M. (2020). Deep contextualized embeddings for quantifying the

informative content in biomedical text summarization. Computer Methods and Programs in Bio-
medicine, 184, 105117.

Myers, I. B. (1962). The Myers-Briggs Type Indicator: Manual. Germany: Consulting Psychologists
Press.

Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., Wilson, T. (2013). SemEval-2013 task
2: Sentiment analysis in Twitter. Volume 2: Proceedings of the Seventh International Workshop on
Semantic Evaluation (SemEval. (2013). Second Joint Conference on Lexical and Computational
Semantics (*SEM) (pp. 312–320). Atlanta, Georgia, USA: Association for Computational Linguistics.

Olson, R.S., Moore, J.H. (2019) Tpot: A tree-based pipeline optimization tool for automating machine
learning. In: Automated Machine Learning (pp. 151–160). Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pilat, M., Křen, T., Neruda, R. (2016) Asynchronous evolution of data mining workflow schemes by
strongly typed genetic programming. In: 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence (ICTAI) (pp. 577–584). IEEE.

Pollak, S., Coesemans, R., Daelemans, W., & Lavrač, N. (2011). Detecting contrast patterns in newspa-
per articles by combining discourse analysis and text mining. Pragmatics, Quarterly Publication of
the International Pragmatics Association (IPrA)., 21(4), 647–683.

Qian, M., Zhai, C. (2014) Unsupervised feature selection for multi-view clustering on text-image web
news data. In: J. Li, X.S. Wang, M.N. Garofalakis, I. Soboroff, T. Suel, M. Wang (eds.) Proceed-
ings of the 23rd ACM International Conference on Conference on Information and Knowledge
Management CIKM (pp. 1963–1966). Shanghai, China :ACM.

Rappl, G. (1989). On linear convergence of a class of random search algorithms. ZAMM-Journal of Applied
Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 69(1), 37–45.

Reif, M., Shafait, F., & Dengel, A. (2012). Meta-learning for evolutionary parameter optimization of
classifiers. Machine Learning, 87(3), 357–380.

Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic keyword extraction from individual
documents (pp. 1–20). New Jersey: Wiley Online Library.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.

Sennrich, R., Haddow, B., Birch, A. (2016) Neural machine translation of rare words with subword units. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers) (pp. 1715–1725). Berlin, Germany : Association for Computational Linguistics.

Škrlj, B., Repar, A., Pollak, S. (2019) RaKUn: Rank-based keyword extraction via unsupervised learn-
ing and meta vertex aggregation. In: International Conference on Statistical Language and Speech
Processing (pp. 311–323) Springer.

https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/1950/1/MadridPJG.pdf
https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/1950/1/MadridPJG.pdf

1027Machine Learning (2021) 110:989–1028

1 3

Snoek, J., Larochelle, H., Adams, R.P. (2012) Practical bayesian optimization of machine learning algo-
rithms. In: P.L. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (eds.) Advances
in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Pro-
cessing Systems 2012. Proceedings of a meeting held December 3-6, 2012 (pp. 2960–2968), Lake
Tahoe, Nevada, United States.

Speer, R., Chin, J., & Havasi, C. (2017). Conceptnet 5.5: An open multilingual graph of general knowl-
edge. In S. P. Singh & S. Markovitch (Eds.), Proceeding of the Thirty-First AAAI Conference on
Artificial Intelligence (pp. 4441–4451). San Fransisco, California, USA: AAAI Press.

Stanley, K. O., Clune, J., Lehman, J., & Miikkulainen, R. (2019). Designing neural networks through
neuroevolution. Nature Machine Intelligence, 1(1), 24–35.

Sterckx, L., Demeester, T., Deleu, J., Develder, C. (2015) Topical word importance for fast keyphrase
extraction. In: Proceedings of the 24th International Conference on World Wide Web (pp. 121–
122). New York: ACM.

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the
impact of residual connections on learning. In S. P. Singh & S. Markovitch (Eds.), Proc of the
Thirty-First AAAI Conference on Artificial Intelligence (pp. 4278–4284). San Francisco, California,
USA: AAAI Press.

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-weka: combined selection and
hyperparameter optimization of classification algorithms. In I. S. Dhillon, Y. Koren, R. Ghani, T. E.
Senator, P. Bradley, R. Parekh, et al. (Eds.), The 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining KDD 2013 (pp. 847–855). Chicago, IL, USA: ACM.

Vafaie, H., & De Jong, K. (1998). Feature space transformation using genetic algorithms. IEEE Intelli-
gent Systems and their Applications, 13(2), 57–65. https:// doi. org/ 10. 1109/ 5254. 671093.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020). Scipy
10 Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272.

Wan, X., & Xiao, J. (2008). Single document keyphrase extraction using neighborhood knowledge. Pro-
ceedings of the AAAI Conference, 8, 855–860.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger,
S., Drame, M., Lhoest, Q., Rush, A. (2020) Transformers: State-of-the-art natural language processing.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations (pp. 38–45). Association for Computational Linguistics, Online. https:// doi. org/
10. 18653/ v1/ 2020. emnlp- demos.6. https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1), 67–82.

Yang, C., Akimoto, Y., Kim, D.W., Udell, M. (2019) Oboe. Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J.G., Salakhutdinov, R., Le, Q.V. (2019) Xlnet: Generalized autore-
gressive pretraining for language understanding. In: H.M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E.B. Fox, R. Garnett (eds.) Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019(pp. 5754–5764) Vancouver, BC,
Canada : NeurIPS 2019.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., Kumar, R. (2019) Predicting the type and
target of offensive posts in social media. In: textitProceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers) (pp. 1415–1420). Linguistics, Minneapolis, Minnesota : Associa-
tion for Computational.

Zimmer, M., & Doncieux, S. (2017). Bootstrapping q-learning for robotics from neuro-evolution results.
IEEE Transactions on Cognitive and Developmental Systems, 10(1), 102–119.

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V. (2018) Learning transferable architectures for scalable image
recognition. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition CVPR 2018 (pp.
8697–8710). Salt Lake City, UT, USA: IEEE Computer Society.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/5254.671093
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

1028 Machine Learning (2021) 110:989–1028

1 3

Authors and Affiliations

Blaž Škrlj1,2 · Matej Martinc1,2 · Nada Lavrač1,3 · Senja Pollak1

 Matej Martinc
 matej.martinc@ijs.si

 Nada Lavrač
 nada.lavrac@ijs.si

 Senja Pollak
 senja.pollak@ijs.si

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2 Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
3 University of Nova Gorica, Glavni trg 8, 5271 Vipava, Slovenia

http://orcid.org/0000-0002-9916-8756

	autoBOT: evolving neuro-symbolic representations for explainable low resource text classification
	Abstract
	1 Introduction
	2 Related work
	2.1 Text representation learning
	2.2 Text classification
	2.3 Evolutionary computation and learning
	2.4 Advancements in autoML systems
	2.5 The rationale behind autoBOT

	3 Learning from evolving text representations with autoBOT
	3.1 Multi-level representation of text
	3.2 Solution specification and weight updates
	3.3 Dimension estimation
	3.4 Formulation of autoBOT
	3.5 Theoretical considerations and explainability
	3.6 How successful was evolution?

	4 Experiments
	4.1 Data sets
	4.2 Classifiers tested and hyperparameter settings
	4.3 Hardware and software used
	4.4 Evaluation of the results

	5 Results
	5.1 Classification performance
	5.2 Towards meta transfer learning
	5.3 Explainability
	5.4 The Evolution’s behavior

	6 Discussion and conclusions
	Acknowledgements
	References

