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Abstract
Feature ranking has been widely adopted in machine learning applications such as high-
throughput biology and social sciences. The approaches of the popular Relief family of 
algorithms assign importances to features by iteratively accounting for nearest relevant 
and irrelevant instances. Despite their high utility, these algorithms can be computation-
ally expensive and not-well suited for high-dimensional sparse input spaces. In contrast, 
recent embedding-based methods learn compact, low-dimensional representations, poten-
tially facilitating down-stream learning capabilities of conventional learners. This paper 
explores how the Relief branch of algorithms can be adapted to benefit from (Riemann-
ian) manifold-based embeddings of instance and target spaces, where a given embedding’s 
dimensionality is intrinsic to the dimensionality of the considered data set. The developed 
ReliefE algorithm is faster and can result in better feature rankings, as shown by our evalu-
ation on 20 real-life data sets for multi-class and multi-label classification tasks. The util-
ity of ReliefE for high-dimensional data sets is ensured by its implementation that utilizes 
sparse matrix algebraic operations. Finally, the relation of ReliefE to other ranking algo-
rithms is studied via the Fuzzy Jaccard Index.
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1 Introduction

Contemporary machine learning has found its use in many scientific disciplines, rang-
ing from biology, sociology, logistics and engineering sciences to physics. Data sets are 
often available in tabular form and consist of instances (rows) and features (columns), 
where attributes denote column names and individual features correspond to individual 
attribute values.

Even though predictive models can offer insights into how well a certain aspect of 
a given system can be predicted, researchers and industry practitioners are frequently 
interested in which parts of the input space are the most relevant. Having such knowl-
edge can yield novel insights into relevant aspects of the studied problem, leading to 
improved human understanding of the studied phenomenon. For example, in modern 
molecular and systems biology, discovery of novel biomarkers is of high relevance—
once the researchers know which, e.g., compounds or proteins indicate the presence of 
the studied condition, they can be used for preliminary condition detection, but also to 
advance the human understanding of the conditions leading to the construction of novel 
hypotheses. We next discuss the types of feature ranking algorithms.

Feature ranking algorithms can be split into two main groups: myopic and non-
myopic. Myopic algorithms do not consider multiple features simultaneously and thus 
potentially neglect interactions between features. Examples of myopic feature ranking 
algorithms include, e.g., the information gain-based ranking. Algorithms from the non-
myopic Relief branch, originating in the early Relief algorithm (Kira and Rendell 1992), 
are among the most widely used non-myopic algorithms for feature ranking, where each 
feature is assigned a real-valued score, offering insights into its importance. The Relief 
family of algorithms has been successfully applied to numerous real-life problems 
(Stiglic and Kokol 2010; Stokes and Visweswaran 2012; Petković et al. 2021). In this 
work we propose ReliefE, an embedding-based feature ranking algorithm built on the 
ideas of the original Relief and ReliefF (Robnik-Šikonja and Kononenko 2003), as well 
as their extensions to a multi-label classification setting (Petković et al. 2018). ReliefE 
does not compute feature importances based on the original, high-dimensional feature 
space, but via low-dimensional embeddings of the input and/or output spaces. The key 
contributions of this work are summarized as follows:

• We present ReliefE, an algorithm for feature ranking implemented using sparse 
matrix algebraic computation of distances between low-dimensional manifold 
embeddings of both instances and targets (when considering multi-label classifica-
tion).

• The latent dimension of the space, in which the distances are computed, is inferred 
automatically in an efficient manner.

• We show that the number of neighbors to be considered can be automatically 
inferred based on the distribution of distances to the considered instances, rather 
than hard-coded as part of the input.

• Theoretically grounded sparsification of the input was considered as a preprocessing 
step, potentially decreasing the execution time.

• We offer evidence that ReliefE performs significantly faster than many state-of-the-
art methods, especially in high-dimensional input (and output) spaces.

• Theoretical properties of ReliefE, including the properties of the embedding spaces, 
their relations and computational complexity analysis are studied.
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• We showcase the ReliefE’s performance against six strong (widely used) baselines on 
20 real-life multi-class and multi-label classification data sets.

• We perform extensive Bayesian and frequentist performance comparisons assessing the 
statistical evidence of ReliefE’s utility and potential drawbacks.

The rest of this paper is structured as follows. In Sect.  2, we discuss the key ideas that 
have led to the developments described in this paper. Section  3 presents the proposed 
ReliefE methodology, followed by a description of the experimental setting in Sect.  4 
and the results of the empirical evaluation in Sect. 5. The overall findings are discussed 
in Sect. 6, followed by the conclusions and plans for further work in Sect. 7. The paper 
includes numerous appendices presenting detailed results of empirical comparisons and 
case studies.

2  Background

In this section we discuss the works that have impacted this paper the most, starting with 
the notion of feature ranking and the description of the Relief branch of feature ranking 
algorithms. Next, we discuss how embedding-based learning can be of use when solving 
otherwise intractable problems, serving as a motivation for the proposed work.

2.1  Feature ranking

Feature ranking can be considered as the process of learning to prioritize the feature space 
with respect to a given learning task. Algorithms that rank features can operate in non-myopic 
(considering feature interactions) or myopic manner (ignoring feature interactions). One of 
the first and most widely used algorithms for non-myopic feature ranking is Relief (Kira and 
Rendell 1992), introduced in the early 1990s. This iterative algorithm operates by randomly 
selecting parts of the instance space (e.g., rows), followed by iterative update of weights cor-
responding to individual features based on the closest instances from the positive and negative 
classes. The original Relief performs well for binary classification, however was unable to gen-
eralize to more complex learning tasks such as multi-class classification. Its extension, ReliefF 
(Robnik-Šikonja and Kononenko 2003), introduced a prior-based weighting scheme that can 
take different classes into account. In the following years, multiple adaptations of both Relief 
and ReliefF were introduced, varying mostly in terms of schemes for taking into account a 
given instance’s neighborhood and its (aggregated) properties. For example, SURF (Greene 
et al. 2009) unifies the considered per-class neighborhoods, whereas SURFstar (Greene et al. 
2010) additionally considers distant neighbors. Further, MultiSURFstar (Granizo-Macken-
zie and Moore 2013) takes neighborhood boundaries into account based on the average and 
standard deviation of distances from the target instance to all others. The TuRF adaptation 
(Moore and White 2007) of any Relief algorithm also employs recursive feature elimination, 
whilst applying the dedicated Relief implementation iteratively during feature pruning. TuRF 
attempts to address some of the problems that arise in very large feature spaces (e.g., more 
than 20,000 features), yet at the cost of higher computational complexity. In terms of scalabil-
ity, for example, VLSReliefF (Eppstein and Haake 2008) samples random subspaces whilst 
simultaneously offering competitive performance at a far lower computational cost. The above 
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ReliefF variants mostly attempt to correct some of the original ReliefF drawbacks by re-con-
sidering the update step and how the neighbors are taken into account.

In recent years, the Relief algorithms have also been extended to a multi-label classifica-
tion setting (MLC)—a learning problem where multiple labels for an instance are simultane-
ously possible. Examples of this task include gene function prediction. The first attempt of 
extending ReliefF to MLC that scales well with the number of labels (Petković et al. 2018) 
uses the Hamming distance as the distance measure between two label sets. Since Hamming 
loss can be expressed as a sum of component-wise differences, it is not able to detect the pos-
sible label-label interactions, which may lead to sub-optimal quality of the obtained rankings 
as shown recently (Petković et  al. 2018), where other MLC error measure-based distances 
between labels were shown to offer superior performance.

2.2  Embeddings

The rise of embedding-based learning can be nowadays observed in virtually all areas of sci-
ence and industry. Since the 2010s, for example, deep neural networks are successfully used 
in fields such as computer vision, where state-of-the-art results are consistently demonstrated, 
e.g., in face recognition and anomaly detection (LeCun et al. 2015; Pouyanfar et al. 2018). 
Further, in the recent years, natural language processing has been transformed first by the 
introduction of recurrent neural networks, followed by the attention-based neural networks 
(transformers), showing prominent results in the areas of question answering, language under-
standing and text classification (Vaswani et al. 2017). Similar results have been observed in 
the areas of network mining (Kipf and Welling 2016) and time series analysis (based on the 
initial work of Connor et al. 1994).

Neural networks offer an elegant alternative for learning a latent representation of the 
input data set that can be transferred, as well as directly used for problem solving. More 
recent works on representation learning, however, suggest that a low-dimensional manifold 
is a suitable topological object for learning rich and transferable representations (Bronstein 
et al. 2017; Masci et al. 2015). Even though representations learned by neural networks can be 
associated with manifold learning, the development of algorithms capable of approximating 
such low-dimensional manifolds has been an active research area even before the era of deep 
learning, and is of particular relevance to this work. For example, algorithms such as Isomap 
(Balasubramanian and Schwartz 2002) and Locally linear embedding (Roweis and Saul 2000) 
have been successfully used for data visualization and more efficient learning. Further, mod-
ern omics sciences have widely adopted t-SNE (Maaten and Hinton 2008), an approximation 
method capable of producing two dimensional embeddings of high-dimensional spaces, mak-
ing it suitable for e.g., gene expression visualization. Hyperbolic embeddings have been also 
recently demonstrated to be useful when considering hierarchical multi-label classification 
(Stepišnik and Kocev 2020).

This work builds on the notion of uniform manifold projections (UMAP) (McInnes et al. 
2018a, b), a recently introduced algorithm with a strong theoretical grounding in manifold 
theory. We explore, whether low-dimensional manifold approximations of sparse input spaces 
can be a natural extension to the Relief family of algorithms.
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3  Proposed methodology

One of the main criticisms of the Relief branch of algorithms is their lack of ability 
to handle very high-dimensional, potentially sparse input spaces, where problems arise 
either due to increased space complexity or due too incremental weight update steps 
that result in similar importance scores for many features (i.e. non-informative rank-
ings). We developed the proposed ReliefE algorithm with the goal to addresses these 
issues. In this section, we discuss in detail ReliefE, the proposed embedding-based fea-
ture ranking algorithm for multi-class and multi-label classification problems, along 
with its implementation, currently one of the fastest Python-based implementations 
compiled to machine code capable of handling both multi-class and multi-label clas-
sification problems.

The proposed ReliefE algorithm is summarized in Fig. 1. Here, the input feature space 
( F ) is mapped (by �F ) to its corresponding low-dimensional approximation ( EF ). Finally, 
the Relief feature ranking (f) is adapted to operate via this low-dimensional representation 
to obtain final feature rankings w . Further, in a multi-label setting, distances between tar-
gets ( T ) can also be computed in the latent space ET , constructed via �T.

3.1  Rationale for embedding‑based ranking

Embedding the instances in the feature space prior to feature ranking is sensible due to 
the fact that volume increases exponentially with dimension. Many classifiers benefit from 
increasing the number of dimensions, however, once a certain dimensionality is reached, 
their performance can degrade (Hughes 1968). Feature ranking aids this problem by prior-
itizing parts of the feature space that are relevant for learning.

Higher-dimensional feature spaces render feature importance detection in the initial 
feature space harder, as more subtle differences between instances need to be taken into 
account. Embedding (in an unsupervised manner) offers the construction of instance rep-
resentations that potentially carry additional semantic context, as comparing instances in 
the embedded space does not compare only the considered pairs of instances but also their 
potential roles in the joint latent space, offering more meaningful comparisons (as shown 

Fig. 1  Overview of the core idea behind ReliefE. Distances in both the feature and target space are com-
puted based on instance embeddings
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in e.g., Mikolov et al. 2013 for words and phrases). We next discuss the embedding method 
considered throughout this work.

3.2  Uniform manifold approximation and projection

This work builds on the recently introduced idea of Uniform Manifold Approximation and 
Projection (UMAP) (McInnes et al. 2018a) for the task of low-dimensional, unsupervised 
representation learning. Even though a detailed treatment of the theoretical underpinnings 
of UMAP is beyond the scope of this paper, we discuss some of the key ideas underlying 
the actual implementation, and refer the interested reader to McInnes et al. (2018a) for a 
detailed overview of the theory.

UMAP is formulated with concepts from both topological manifold theory and applied 
category theory. Riemannian manifolds are topological spaces that have a locally constant 
metric, and are locally connected. UMAP assumes that high dimensional data can be uni-
formly mapped across a low-dimensional Riemannian manifold. The locality of the metric, 
connectivity and uniformity of the mapping are the three main assumptions of this method. 
Even though such assumptions are not necessarily fulfilled, appropriate selection of the 
metric used by UMAP can offer better performance and generalization when the learned 
representations are used for down-stream learning tasks. In contrast to t-SNE, which is 
effective for two dimensional embeddings, UMAP is highly efficient also for embeddings 
into higher-dimensional vector spaces. UMAP thus serves as a general unsupervised rep-
resentation learner.1 It has been successfully used for exploration of biological and other 
high-dimensional data sets (Cao et al. 2019). In summary, the topological manifold theory 
underlying UMAP offers a very general representation learning framework, applicable 
beyond the current implementation of UMAP, which we discuss in more detail below.

Even though the original formulation assumes continuity, in practice, discrete graph-
theoretical analogs of the continuous concepts are employed. The representations are 
a result of a two-step procedure, where in the first step, a weighted graph is constructed 
based on the distances between the closest instances. The second step resembles conven-
tional graph layout computation, which is normally computed in two or three dimensions 
for visualization purposes, where, e.g., two coordinates of a 2D layout represent two fea-
tures. Analogously, UMAP extends the idea to higher dimensions, where the instances are 
positioned in a d-dimensional space (with d going up to several hundred in most cases). 
The resulting space is not useful for direct visualization, but serves as a representation suit-
able for a down-stream learning task—in this work, feature ranking. The computation of 
the UMAP embedding can be described as follows. 

Weighted graph construction.  Assume a user-specified dissimilarity measure 
� ∶ ℝ

|F| ×ℝ
|F|

→ [0,∞) and the number of nearest neigh-
bours k, computed via an approximation algorithm (Dong 
et al. 2011). We refer to the ordered set of instances near-
est to instance ri as {ri1 ,… , rik} . For each instance, let 

𝜔i = min {𝛿(ri, rij )|1 ≤ j ≤ k, 𝛿(ri, rij ) > 0},

1 UMAP can also perform supervised embeddings, yet this functionality is not considered in this work.
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 and �i such that 

 Next, a weighted directed graph G = (N,E,w) is constructed, where N is the set of consid-
ered instances, E = {(ri, rij )|1 ≤ j ≤ k} and 

 The final adjacency matrix B is computed as B = A + AT − A⊙ AT where, A is the adja-
cency matrix of G and ⊙ denotes the Hadamard product.
Layout computation.  In the second step, the graph undergoes a process resem-

bling energy minimization, where repulsive and attrac-
tive forces are iteratively applied across pairs of instances, 
resulting in a d-dimensional layout, which is effectively 
a real-valued embedding. The attractive forces ( F+ ) are 
computed, for a given pair of vertices ni and nj and their 
corresponding coordinate representations (embeddings) ri 
and rj as follows: 

 and similarly, the repulsive forces ( F− ) are computed as 

 Here, � is introduced for numerical stability (a small constant), while a and b are hyper-
parameters. Note that the F− update is computationally very expensive, and is addressed 
via sampling. The initial coordinates are computed by using spectral layout—here, the two 
eigenvectors corresponding to the two largest eigenvalues are used as the starting set of 
coordinates.
 The two steps, when implemented efficiently, offer fast construction of d-dimensional, 
real-valued representations. The considered UMAP implementation exploits the Numba 
framework (Lam et al. 2015) for compiling parts of Python code, making it scalable whilst 
maintaining user-friendly API-based execution. Note that UMAP’s computational com-
plexity depends heavily on the approximate k-nearest neighbor computation. In the fol-
lowing sections, we discuss how we further facilitate the embedding computation, as the 
current version of UMAP still has high space complexity (graph construction).

3.3  Input sparsification

The proposed methodology is capable of handling highly sparse inputs without additional 
memory overheads. However, real-life data frequently comes in the form of dense matri-
ces, as is the case with, e.g., gene expression data sets. As a part of the proposed method-
ology, we explored whether input sparsification can speed up the feature ranking process 

k∑

j=1

exp

(−max(0, �(ri, rrj ) − �i)

�i

)
= log2(k).

w((ri, rij )) = exp

(−max(0, �(ri, rij ) − �i)

�i

)
.

F+ =
−2 ⋅ a ⋅ b ⋅ ||ri − rj||

2(b−1)

2

1 + ||ri − rj||22
⋅ w(ni, nj) ⋅ (ri − rj),

F− =
b ⋅ (1 − w(ni, nj)) ⋅ (ri − rj)

(� + ||ri − rj||22)(1 + ||ri − rj||22)
.
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with minimal ranking quality degradation. We implemented the theoretically grounded 
Probabilistic Matrix Sparsification algorithm (PrMS) for matrix sparsification (Arora et al. 
2006), given in Algorithm 1.

The mathematical intuition behind PrMS is as follows. Given a real-valued matrix 
A ∈ ℝ

n×n , let S =
∑

ij �Aij� . A single PrMS pass through A guarantees at least O(
√
n⋅S

�
) ele-

ments with probability 1 − exp (−�(
√
n⋅S

�
)) . Here, � represents the lower bound, and 

� = �∕‖A‖2 , where parameter 𝜖 > 0 determines the approximation level. Further, with 
probability 1 − exp (−�(n)) , ||A − Â||2 ≤ O(𝜖) holds.2 Note that, as the majority of real-
life data sets are not represented by symmetric matrices (typically, they are not even square 

matrices), the transformation B ↦ A =

[
0 B

BT 0

]
 of the initial matrix B ∈ ℝ

m×n has to be 

employed since A is symmetric and ‖A‖2 = ‖B‖2 . We heuristically consider 
� = ‖A‖∞∕(m + n) , i.e. the maximal column-average (of absolute values) of matrix A.

The sparsification procedure remains highly dependent only on � , the parameter deter-
mining the reconstruction error that is allowed.

We have used this estimate of � as it is fast to compute and avoids the need for user spec-
ification of � , whilst simultaneously guaranteeing reasonable performance (see Sect.  5). 
One of the most crucial hyperparameters related to representation learning in general is the 
dimension of the space in which the constructed representation resides. We have attempted 
to automate the choice of this—otherwise hard-coded—parameter and discuss the consid-
ered estimate next.

3.4  Estimation of latent dimension

Following (Facco et al. 2017), we improve upon the idea of latent dimension estimation 
via top two nearest neighbors. To compute the latent dimension d of the data (under the 
assumption of a locally constant probability density), it suffices to define two (hyper)
spheres S1 and S2 . Both are centred at a random data sample and have radii equal to the dis-
tances between the sample and its two nearest neighbors (Facco et al. 2017). The radii and 
the dimension d define the volumes of the spheres and it turns out that the value of d can be 
easily estimated from the empirical probability distribution of the ratio V(S2�S1)∕V(S1) of 
the volumes of the shell S2∖S1 and sphere S1 . The method, implemented as a part of ReliefE 
is summarized in Algorithm 2. 

2 For extensive theoretical treatise, please consult (Arora et al. 2006).
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The algorithm first computes distanceMatrix, i.e. a matrix comprised of distances to 
the top two nearest neighbors. In this work, we improve upon the original idea of simply 
computing the two nearest neighbors of a given instance. Instead, we ignore the neighbors 
that are equal to a given instance (are at distance 0), and take into account the two nearest 
neighbors that are at a positive distance to the given instance (method pairwiseDistanc-
esNonzero). The rationale for this step is that this method is also used on the output space 
of multi-label classification data, where two (or more) examples can often have the same 
output value (vector describing the labels assigned to the instance). If we had followed 
the original method, some components of the vector � would equal ∞ or NaN. Using the 
modified procedure, numerical instability is avoided whilst observing the same, or very 
similar, results. Next, � , a quotient between the two distance vectors is computed (second 
closest against closest). An empirical distribution is derived from � . This distribution can 
be defined as:

where � represents the indicator function (presence). Thus, for a given x, Fn represents the 
relative number of elements that are smaller than x. The logarithms of � , as well as (1 - 
EMPn(x) ) are computed next. The line between the two quantities intersects 0, and its coef-
ficient, when rounded to the nearest integer, corresponds to the estimated latent dimension. 
For example, the intrinsic dimension of the genes data set is estimated to 33 (see Fig. 2).

3.5  Scaling up UMAP: learning to embed based on representative subspaces

As the most apparent memory (space) bottleneck, we (empirically) identified the UMAP’s 
graph construction phase, where the entirety of the instance space is used for learning to 
approximate the low-dimensional manifold (embedding). This paper explores whether rep-
resentative subspaces of the instance space can serve similarly well for learning to embed. 
The idea was inspired by recent work on random output space selections for ensemble 
learning (Breskvar et al. 2018). The two adaptations we needed to consider were the initial-
ization and training on a representative subspace of the instances. In the original UMAP, 
the initialization is based on the spectral decomposition of the instance graph. We instead 
considered random initialization, which already notably reduced the memory requirement, 
and kept the quality of the ranking at the approximately same level. However, on larger 
data sets (see Sect. 4), the embedding computation was still beyond the capabilities of an 
off-the-shelf computer (Lenovo Carbon X1). To overcome this issue, we employ the fol-
lowing two-step sampling scheme. In the first step, the set of target values appearing in the 
data was ordered into a list. In the second step, we cyclically iterate through the list and 

EMPn(x) =
1

|I|
∑

�xi<x
,
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(without repetition) choose an element with a given target value, or skip this value if all 
samples labeled with the considered target value have already been chosen.

The multi-class (and binary) classification examples thus adhere to straightforward map-
ping from possible classes to the corresponding multisets of instances. We also extended 
this idea to the task of multi-label classification (MLC) where multiple labels can be simul-
taneously assigned a given example. However, a finite number of possible different label 
sets allows for first enumerating them, and then proceeding as in the multi-class classifica-
tion scenario. We consider the theoretical properties of this procedure in Sect. 3.8.

3.6  Adaptive neighbor selection and comparison to average neighbor 
representation

The first improvement we introduce next, removes the hyperparameter k—the number of 
neighbors considered for an update step w.r.t. a single randomly chosen instance. Com-
monly, k is a user defined hyperparameter: However, we explored whether this part of the 
user input can be removed entirely and replaced by a distance distribution-based heuristic 
that dynamically allocates a number of neighbors suitable for a given randomly selected 
instance, albeit at some additional computational cost. The rationale for such a heuristic is 
that real-life data sets are often not uniformly distributed (Liu et al. 2005), indicating only a 
few other instances are mostly well connected with a given one (scale-free property).

We implement this (optional) estimation as follows. For each instance, ReliefF com-
putes its distance to the remainder of the other instances in order to obtain the top k nearest 
ones. Such hard-coded selection scheme is not optimal, as it does not take into account the 
shape of the distance distribution with respect to an individual instance. To overcome this 
issue, we propose the following procedure: 

1. Sort distances w.r.t. the selected instance ri.

Fig. 2  Intrinsic dimension for the genes (Weinstein et al. 2013) data set
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2. Compute the difference between each pair of consequent entries in the distance vector.
3. Select the value of k based on the maximum difference observed.

This procedure intuitively takes into account the shape of the distance distribution as fol-
lows. Assuming that all instances are similarly far from the selected instance, the difference 
vector will mostly consist of small values (a given pair of distances is not all that different). 
This can result in large k, as the global difference maximum can occur very late. On the 
contrary, if only a handful of instances are close, and the remainder is very far, only this 
handful shall serve to determine k, which will be consequently lower. Furthermore, if very 
high k is selected and all distances are approximately the same, their mean will be similar 
no matter how many are selected. If a similar situation is considered for highly non-uni-
form distance distribution, the mean of selected k nearest instances should represent only 
the ones that are indeed similar to the selected instance, and do not take into account the 
remainder which is further and possibly not as relevant.

Even if the standard IID assumption holds when sampling a data set, we are always 
given a finite sample. The neighborhoods of the samples on the border of the convex hull 
of the data set are most probably different than the neighborhoods of those in the interior 
of the hull. Additional theoretical properties of this neighbor number selection are given in 
Sect. 3.8, where computational complexity is also considered.

The proposed adaptation of ReliefF was further extended with an additional option to 
use the average neighbor for the update step, instead of performing updates based on all 
neighbors and averaging the updates. Albeit subtle, this difference potentially improves the 
update part’s robustness, making the update step less prone to possible outliers amongst 
the nearest neighbors—such situations could emerge, if the value of k is hard-coded, as 
is commonly the practice. The intuition behind this incremental change in weight update 
is as follows. As the distance computation is conducted in the latent space, averaging the 
representation of the neighborhood can also be considered as constructing a semantic rep-
resentation of the considered instance’s neighborhood.

3.7  ReliefE—ranking via manifold embeddings

In the following sections, we discuss more formally the proposed ReliefE algorithm incor-
porating the possible improvements stated in the previous sections. The solution (that han-
dles both multi-class and multi-label classification) is given as Algorithm 3. We can see 
that this is an iterative algorithm where a random sample r is chosen on each of the n itera-
tions, and distances between r and the remaining instances are computed (lines 6 and 18). 
We next discuss the two main parts of ReliefE with respect to the addressed classification 
task. 
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The adaptive threshold step can be further formalized as shown in Algorithm 4. 
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3.7.1  Multi‑class classification

We first discuss the part of ReliefE algorithm that handles multi-class classification (MCC) 
tasks. Here, the classes are traversed (line 8) as follows. If adaptiveThreshold is enabled, 
the number of neighbors to be considered is determined dynamically for each sample 
(see Sect.  3.6 for more details). Next, the neighbors are selected and used for the final 
weight update, where the prior probabilities of individual classes are also considered. The 
updateScore method iteratively updates the weights (line 16), and is in this work for the j-
th feature and i-th sample defined as follows:

In the proposed update step, an instance is compared directly to the mean of its neigh-
bors which reduces the noise compared to the original updates of Relief (Kira and Rendell 
1992) where the order of the averaging and | ⋅ | operators is reversed.

The nearestNeighbors represents the ordered set of indices of the top k neighbors, thus 
�[nearestNeighbors(i)][j] represents the first moment w.r.t. the j-th feature based on the 
nearest neighbors of the i-th instance (there are k such neighbors). We set the prior to -1 
and the offset for considering the nearest neighbors to +1 if c = ci , i.e., the considered class 
ci is equal to the currently considered class c.

3.7.2  Multi‑label classification

For multi-label classification (MLC option), the weight update step differs substantially 
from the MCC case, after selecting a random instance ( ri ) and determining its distance 
to the other examples. First, the indices of the closest k neighbors are stored in nearest-
Neighbors. As the values in the target space T are sets of (multiple) labels per instance, the 
simple iteration considered in the MCC case does not take the interactions between classes 
into account (label co-occurrences). Hence, distances are also computed between the target 
values of ri and its nearest neighbors (line 26), by using one of the implemented options of 
ReliefE, which are given in Table 1.

Note that we also consider the cosine and hyperbolic distances which are applicable if 
the label space is embedded prior to the ranking step. We believe employment of manifold 
projections that operate on sparse spaces can be of relevance for high-dimensional output 
spaces, as for example seen when considering gene function prediction (Urbanowicz et al. 
2018). Once the distances are obtained both based on the input space and the output space, 

w[j]+=
|||r

j

i
− �[nearestNeighbors(i)][j]

|||
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

absMean weight update

⋅

{
P[c]∕(1 − P[ci]) ; c ≠ ci
−1 ; c = ci

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Prior information

.
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this information is used for updating feature weights as follows. Let K represent the set of 
considered nearest neighbors. Let t-diff represent the mean of the target distances tar-diff. 
Let d-diff represent the mean of the (descriptive) distances to neighbors (des-diff), as also 
considered for the MLC case, i.e. the absolute difference between the selected instance ri 
and the mean of the nearest neighbors. More formally

where X[n ∈ K] keeps only the rows of the matrix X that correspond to the neighbors 
n ∈ K.

We further define

and the weight update can be defined as:

The weight update concludes the ranking for multi-label classification.

3.8  Theoretical analysis

We next discuss the relevant theoretical aspects of ReliefE, ranging from computational 
complexity analysis (both time and space) to the implications of the adaptations considered.

3.8.1  Time complexity

The time complexity of ReliefE can be studied with respect to the two main modes of func-
tion—multi-class and multi-label classification. 

T-DIFF = �[dist(ti,T[n ∈ K])] and D-DIFF = �[dist(ri,E[n ∈ K])],

TD-DIFF = �[TAR-DIFF ⊙ DES-DIFF],

(1)w[j]+=
TD-DIFF

T-DIFF
−

D-DIFF − T-DIFF

1 − TD-DIFF
.

Table 1  Considered distances between rows in the multi-label output matrix T

The t
1
 and t

2
 correspond to two rows, the nnz represents the count of non-zero elements in a given row vec-

tor. Note that the considered vectors are binary in all but the cosine and hyperbolic cases (last two rows)

Distance Definition

F1
dist =

{
1 −

2t1 t
T

2

(nnz(t1)+nnz(t2))
;(nnz(t1) + nnz(t2)) > 0

0 ; otherwise

Accuracy
dist =

{
1 −

t1 t
T

2

(nnz(t1+t2))
;(nnz(t1 + t2)) > 0

0 ; otherwise

Subset
dist =

{
1 ; t1 == t2;

0 ; otherwise

Hamming dist =
∑�t1�

i=1
�t1,i − t2,i�∕�t1�

Cosine (if embedded) dist = t1t
T

2
∕(‖‖t1‖‖2‖‖t2‖‖2)

Hyperbolic (if embedded) dist = arcCosh (−t1t
T

2
)
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Dimensionality estimation.  The dimensionality estimation step, as optionally considered 
in this work, requires pairwise distance computation between 
the instances. Thus, �(|�|2 ⋅ |F|) operations are required, 
where � represents the indices of the samples for dimen-
sion estimation, and |𝜈| < |I| , as discussed in Sect. 3.5. Note 
that if all instances are considered, the complexity rises to 
�(|I|2 ⋅ |F|).

Manifold projections.  Learning low-dimensional representations represents one of 
the computationally more intensive parts of ReliefE. Fol-
lowing (McInnes et  al. 2018b), the UMAP’s complexity 
can be split into two main parts. First, approximate nearest 
neighbor computation was shown to have empirical com-
plexity of O(|I|1.12 ⋅ |F|) (Dong et  al. 2011). However, in 
the sampling limit, if all instances are considered, the com-
putational complexity is equal to that of pairwise compari-
sons—O(|I|2 ⋅ |F|) The optimization of embeddings requires 
additional O(k ⋅ |I|) steps, where k is the number of nearest 
neighbors (a hyperparameter). Overall complexity is in the 
worst case thus O(|I|2 ⋅ |F|) . Note that the proposed cyclic 
sampling scheme (Sect.  3.5) implies I → � for all cases in 
this paragraph.

Multi-class.  Given a fixed number of samples s, ReliefE traverses each 
of the classes |T|, and for each one performs the sampling. 
The adaptive neighbor selection scheme does not cost any 
additional time w.r.t. |I|, as the distances are already com-
puted. The feature update step requires O(|F|) operations, 
for each neighbor. The complexity of the original, re-imple-
mented ReliefF is thus O(|I| ⋅ |F| ⋅ s) (Robnik-Šikonja and 
Kononenko 2003). The absMean update does not change 
this complexity, however, when adaptive scoring is consid-
ered, distances to the class members need to be sorted. We 
re-use the sorted indices of top neighbors to obtain clos-
est distances, thus no additional time is spent on sorting. If 
ReliefE is considered, the complexity needs to be adapted for 
input dimension estimation, as well as lower dimension in 
which distances are computed. The final complexity is thus: 
O(|�|2 ⋅ |F| + |I| ⋅ d ⋅ s) , where d is the dimensionality of the 
embedding. Assuming the “empirical complexity" from the 
previous paragraph holds, the multi-class complexity can 
also be stated as O(|�|1.12 ⋅ |F| + |I| ⋅ d ⋅ s)

Multi-label.  The complexity of multi-label classification needs to addi-
tionally account for the distances computed between the tar-
get instances. Effectively, O(|�|2|F| + s ⋅ (|I| ⋅ dF + k ⋅ dT )) 
operations are required, where dT and dF correspond to 
embedding dimensions of the input and output space – for 
each sample, first distances need to be computed between the 
instances to that sample within the input space (|I|). Once top 
k nearest instances are identified, the distances of the target 
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instance to these k other target instances are computed in dT 
space.

Down-stream ranking.  Commonly, Relief algorithms operate in the raw feature 
space, however, as ReliefE operates via embedding-based 
distance computation, we consider the option that embed-
dings are pre-computed. This is possible due the fact that 
many contemporary embedding algorithms refine the repre-
sentation, once the new data is obtained, and do not (neces-
sarily) re-compute the embedding for each new instance. In 
this case, the initial complexity of O(|�|2 ⋅ |F| + |I| ⋅ d ⋅ s) 
reduces to O(|I| ⋅ d ⋅ s).

3.8.2  Space complexity

The proposed implementation of ReliefE in comparison with, e.g., state-of-the-art 
Python-based implementations (as found in Urbanowicz et  al. 2018) operates eas-
ily in very high-dimensional, sparse vector spaces. In practice, we adopt the CSR for-
malism for matrix representation. Here, a sparse matrix is stored as three arrays, a data 
array, a pointer array and an index array. All three code for non-zero entries in the input 
space. Note that such representation is not optimal for dense matrices, as it results in 
some (minor) space overhead. This design decision means that every computationally-
intensive operation that is part of ReliefE was re-written with handcrafted CSR-friendly, 
Numba-compilable methods. More formally, let nnz correspond to the number of non-
zero elements in a given matrix. The space complexity of ReliefE can thus be stated as: 
O(max(nnz(F), nnz(EF)) +max(nnz(T), nnz(ET))).

The complexity thus depends on the relation between the embedded space and the input 
space, which can be very context-dependent, however very low-dimensional embeddings 
normally do not result in space overhead, and neither do highly sparse input matrices. 
More formally, if nnz(F) ≥ |I| ⋅ d or nnz(T) ≥ |I| ⋅ d,

the embedded space will require less (or equal) memory. Note that T , correspond-
ing to a potentially very sparse output space, is similarly considered as a sparse matrix, 
meaning that classification problems with very high-dimensional target spaces can also be 
considered, which is to our knowledge one of the first such Python-based, user-friendly 
implementations. As dimensionality estimation only requires the two closest neighbors, 
we do not keep all others in memory, the space complexity becomes linear, i.e., O(|I|) 
(in fact, exactly 2 ⋅ |I| ). We empirically discovered that UMAP’s memory requirements are 
the main space bottleneck, and, based on the evaluation on the larger data sets, require 
O(|I|2) (empirical) space. Such complexity potentially arises from the dense computational 
graph derived by UMAP. This observation led us to introduce the representative (cyclic) 
sampling scheme, which reduced this complexity to O(|�|2) , making ReliefE executable 
even on an off-the-shelf computer (Lenovo Carbon X1). Note that the number of samples is 
lower-bounded by the number of classes or unique label sets.

3.8.3  absMean update step and its implications

Compared to the original ReliefF, one of the proposed modifications implemented in 
ReliefE is the comparison of a given instance directly to the average nearest neighbor. We 
believe that this approach is advantageous in two ways.
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First, as shown in Fig. 3a, if a sample r that is far away from the class border is chosen, 
we cannot capture the local structure of the data in the other classes, so such samples r 
should not influence the updates considerably. This is not the case in the standard ReliefF, 
since the differences in feature values are necessarily large. This is overcome by computing 
the average neighbor first, and then updating the weights.

Second, when the sample r is close to the border (Fig. 3b), averaging neighbors results 
in correctly detecting that the general direction of the neighbors should be perpendicular to 
the class borders when the number of samples goes to infinity. For example, in the situation 
depicted in Fig. 3b, only n1 should be rewarded. Again, computing the mean neighbor �(n) 
first, brings us closer to the optimal direction. The reduction of noise can be also proven by 
using the triangle inequality, 1

k

∑k

j=1
�n0

i
− n

j

i
� ≥ �n0

i
−

1

k

∑k

j=1
n
j

i
�, from which it directly fol-

lows that this approach results in smaller weight updates.

3.8.4  Adaptive neighbor selection and its behavior

The considered adaptive neighbor selection attempts to reduce the number of hyperparam-
eters by one (k), potentially saving O(k) optimization iterations, should this parameter be 
tuned. Furthermore, by considering neighbors, potentially relevant for a given instance, 
less noise is considered during the weight update step. For example, assume k = 7 , with 
only three other instances very close and the remaining four much further (by a large mar-
gin). The latter 4 instances will impact the weight update significantly, as the average dis-
tance will be heavily biased towards their mean, and thus potentially not representative of 
the close neighborhood of a given instance that naturally appears in the data. A visualiza-
tion in such a situation is shown in Fig. 4.

In both panels ((a) and (b)), the outer circle represents the neighbourhood for a hard-
coded value of k. In Fig. 4a, very distant instances are also considered for the update (e.g., 
from n3 onward) and the adaptive estimation only selects the closest neighbors (green). 
However, in Fig. 4b, all instances are very close, thus the value of k is equal to the auto-
matically selected choice.

This follows the intuition behind the Relief family of algorithms, where an instance is 
compared to its slight perturbations. Another downside of having k fixed, is that taking into 
account more distant nearest neighbors would (on average), increase the importance of more 

(a) (b)

Fig. 3  Updating weights with the absMean approach. The n
1,2,3

 represent the instance � ’s neighbors
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noisy features, since the distance values directly influence the importance. Irregularities in dis-
tance distribution were shown to hold for many real-life data sets, see for example the assump-
tions and their implementation in Dong et al. (2011). Finally, as ReliefE operates in a latent, 
low-dimensional space, obtained by instance similarity comparison, comparison to the closest 
instances only is potentially meaningful.

3.8.5  Parallelism aspects

The proposed implementation exploits the Numba framework for just-in-time compilation 
(Lam et al. 2015). Numba offers parallelism at the level of individual methods that get com-
piled, meaning that the proposed implementation offers parallelism at the level of weight 
updates. During compilation, parts of the code that are sensible to compile get detected auto-
matically. Many operations such as scalar-vector addition and similar can easily be parallel-
ized. With auto-parallelization, Numba attempts to identify such operations in the ReliefE 
weight update step, and fuses adjacent ones together, to form one or more kernels that are 
automatically run in parallel. In practice, we observed that such auto-parallelism does not nec-
essarily offer superior performance in terms of speed. However, it represents an elegant, array-
level parallelism detection which, when improved/updated, shall speed up the execution time 
even more. We omit the discussion regarding different spaces considered during ReliefE to 
“Appendix 1”.

3.8.6  How powerful is ReliefE?

Throughout this paper, we propose and demonstrate the utility of ReliefE when tabular data is 
considered. However, as ReliefE requires merely the representations of instances (training or 
target), the proposed approach generalizes well beyond tabular data with a single adaptation: 
the embedding method needs to be suitable for the considered data type. For example, if an 
instance is described by an ordered list of graphs, the plethora of graph embedding methods 
(Goyal and Ferrara 2018; Mežnar et al. 2020) could be used to prioritize the graphs based on 
their (learned) representations. Similarly, ReliefE could be adapted for learning in the context 
of relational data bases, via Wordification (Perovšek et al. 2015) and other propositionaliza-
tion-like algorithms.

Fig. 4  Adaptive neighbor 
selection. The n

1,2,3,…
 represent 

neighbors

(a) (b)
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4  Empirical evaluation setting

Our empirical evaluation of ReliefE consists of many sub-studies, and can be sum-
marized as follows. First, we discuss the evaluation of ReliefE against state-of-the-art 
ranking algorithms on eight multi-class classification data sets. Next, we present the 
empirical evaluation setup where ReliefE’s capabilities are shown on nine multi-label 
classification data sets. Finally, we conducted a series of experiments where we investi-
gated in more detail the convergence and time performance. We conclude this section by 
describing the Bayesian and frequentist approaches, to aid understanding of the results.

4.1  Multi‑class classification data sets

Multi-class classification remains one of the most widely adopted forms of learning. 
Here, the input space is associated with a single, integer-valued vector, where each 
instance can belong to one of the many possible classes. In this work, we consider a 
wide spectrum of data sets, summarized in Table 2.

The data sets are from multiple domains, incl. biological, social and other domains 
(e.g., chess). The data sets are of different dimensions, in terms of the numbers of rows 
and also columns.

4.2  Multi‑label classification data sets

Feature ranking for multi-label classification remains an active research area. Many 
of the approaches considered in the previous section (multi-class classification) are 
not able to handle the multi-label setting, where a single instance can belong to many 
classes simultaneously. Such a setting, for example, naturally emerges when gene 

Table 2  The properties of the considered multi-class classification data sets

The last column denotes the proportion of non-zero elements in the data table

Data set Instances Features Classes Proportion 
of non-zero 
entries

chess (Shapiro 1984) 3196 38 2 0.726558
biodeg-p2-discrete (Džeroski et al. 1999) 328 61 4 0.107357
optdigits (Alpaydin and Kaynak 1998) 5620 62 10 0.528117
madelon (Guyon et al. 2005) 2000 500 2 0.999999
php88ZB4Q (Anguita et al. 2013) 10299 561 6 0.999860
pd_speech_features (Sakar et al. 2013) 756 753 2 0.995294
dlbcl (Armstrong et al. 2002) 77 7070 2 0.997388
tumors C (Pomeroy et al. 2002) 60 7129 2 0.995722
AP_Ovary_Kidney (Stiglic and Kokol 2010) 458 10935 2 1.000000
ohscal.wc (Han and Karypis 2000) 11162 11465 10 0.005270
genes (Weinstein et al. 2013) 801 20531 5 0.857824
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function prediction is considered—a single gene is associated with many functions and 
contexts. The considered multi-label data sets are summarized in Table 3.

Similarly to the multi-class setting, we selected data sets from various domains to main-
tain diversity. Note that multiple repetitions of 10 fold cross validation were needed to per-
form Bayesian comparisons.

4.3  Additional experiments and statistical evaluation of results

For MCC, logistic regression with its default parameters was used as the learner. The 
first reason for this choice is the fact that this very learner is commonly used to evaluate 
the quality of a given data representation (in our case a subset of the feature space), and 
is known to be sensitive to noisy features. The second reason is computational: With all 
repetitions required for Bayesian analysis, additional grid search would be out of reach as 
it could further increase the computational time beyond reasonable capabilities. For the 
MLC setting, the default random forest parametrization was used, as it has been previously 
shown to perform competitively/well in such setting. Throughout the experiments, we 
set the regularization term of logistic regression (C) to one, the default value (Pedregosa 
et al. 2011). For multi-label classification, we considered the RandomForest classifier with 
default settings as set in Pedregosa et al. (2011).

As we consider either multi-class or multi-label problems, we compute either relative 
F1 or micro-averaged relative F1 scores, defined as:

where F1 is the harmonic mean of precision and recall, and f is the number of features. 
The macro rF1 is defined in the same fashion. Considering relative performance offers 
direct insights into how performant a given ranking is with how many top-ranked features. 
Note that by considering relative performance, it can be directly observed when the feature 
ranking algorithm identifies a ranking that outperforms the situation where all features are 

rF1(f ) =
F1f

F1f=|F|
,

Table 3  The properties of the considered MLC data sets

The last column denotes the proportion of non-zero elements in the data table

Data set Instances Features Classes Proportion 
of non-zero 
entries

delicious (Tsoumakas et al. 2008) 16105 1000 983 0.500000
imdb (imdb dataset 2010) 120919 1001 28 0.019363
medical (Pestian et al. 2007) 978 2898 45 0.500000
bibtex (Katakis et al. 2008) 7395 3672 159 0.500000
Education1 (Ueda and Saito 2003) 12030 27534 33 0.004059
Health1 (Ueda and Saito 2003) 9205 30605 32 0.003555
Entertainment1 (Ueda and Saito 2003) 12730 32001 21 0.004552
Science1 (Ueda and Saito 2003) 6428 37187 40 0.004659
Social1 (Ueda and Saito 2003) 12111 52350 39 0.002949
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considered—a reasonable baseline. We performed ten fold stratified cross-validation ten 
times, as required for the statistical analysis discussed next.

In order to summarize the overall performance of a given ranking, we believe taking 
into account the ranking’s quality over all possible values of top f features needs to be con-
sidered. Hence, we introduce the area under rF1 (AUrF1), i.e., the integral of rF1 normal-
ized by the number of considered top f rankings (to be more comparative across data sets), 
where we numerically integrate with the Simpson’s method.

Recent criticisms of the frequentist non-parametric comparison of multiple classifiers 
(Demšar 2006) has given rise to a novel spectrum of Bayesian t-tests, that directly offer 
insight into a probability space corresponding to the differences in algorithm performance 
(Benavoli et  al. 2017). In this work we adopt the hierarchical t-test, which is capable of 
comparing pairs of classifiers. The hierarchical Bayesian t-test is used to assess the proba-
bility of observing a given difference in performance between a pair of classifiers. As noted 
by   Benavoli et al. (2017), it requires that e.g., ten repetitions of ten fold cross validation 
need to be considered in order to reliably fit a hierarchical model. The approach attempts 
to model the probability of observing a given difference in performance between a pair of 
classifiers, which can be in favor of either of the classifiers or undetermined—practically 
equivalent (rope region). The plotted results are given in the form of triangular schemes, 
where each point represents a sample from the posterior distribution. Such samples, when 
aggregated, directly represent a probability of observing a given state (in this case differ-
ence between the classifiers). We set the rope region to 5%—if the difference in quality 
between two rankings is less than 5%, they are considered equal. The remaining setting is 
the same as in the original paper (Benavoli et al. 2017), we compare the top ranking for 
each fold. For a given pair of ranking algorithms, the pairwise Bayesian tests were per-
formed on the data sets common to both algorithms. Finally, results of time performance 
are presented in computation time (in seconds) diagrams with standard deviations. Such 
a comparison is not necessarily informative/useful when multiple classifiers are simulta-
neously considered, thus we also offer the results in the form of average rank diagrams 
(Demšar 2006). We believe that having both local and global insights into the relations 
between classifiers their differences are easier to study, even though looking at the classi-
fier ranks alone can be misleading (Benavoli et al. 2017).

4.4  Considered implementations and baselines

We next discuss the implementations considered. For multi-class classification, the consid-
ered Relief variants were MultiSURF, MultiSURFstar, ReliefF, all from the scikit-rebate 
library (Urbanowicz et  al. 2018). We also used RandomForest (RF)-based importances 
(Genie3) and Mutual information (MI)-based ones (Pedregosa et al. 2011). The multi-class 
Relief variants that are the original contribution of this work include: ReliefE, ReliefE-
absMean, ReliefE-adaptive and ReliefE-absMean-adaptive. The suffix adaptive denotes the 
use of an adaptive threshold and absMean the use of absMean update step.

Multi-label classification is not supported (at all) in scikit-rebate (Urbanowicz et  al. 
2018), and thus we considered the multi-label variants of ReliefE and ReliefF (re-imple-
mented in this work with Numba) with all of the possible distances given in Table 1. We 
emphasize that when multi-label distances are considered, only the cosine and hyperbolic 
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distances operate on target space embeddings (the other distances do not). The computa-
tion of these distances is also more efficient.

Note that all versions of ReliefF, implemented or re-implemented in this work,3 natively 
operate on sparse spaces, which is on its own a contribution of this work. In terms of spar-
sification, we set the sparsification threshold to 0.15, meaning that if a matrix’s density 
is higher than 15%, it is sparsified with the proposed procedure (there are many of such 
matrices amongst the considered data sets). Detailed results of investigating the ablation 
of the considered data sets’ (induced) sparsities are given in “Appendix 2”. Similarly, the 
behavior of the adaptive k statistic was also studied in more detail in “Appendix 3”. Fur-
ther, � (the sample for intrinsic dimension estimation) was set to 2048. The dimension 
number was set so that the algorithm runs normally on an off-the-shelf-computer (Lenovo 
Carbon X1) even for larger data sets. Thus, if a given data set consisted of more than 2048 
instances, a representative subset of 2048 instances was considered for estimating the 
intrinsic dimension and consequent embedding. The UMAP’s setting is left to its defaults, 
with the dimension being set to the estimated one.4 The value of k is set to 15 for our 
implementation for ReliefF, and left at its defaults for the baselines. The time and space 
complexity of the baselines and ReliefE are summarized in Table 4. Note that, even though 
ReliefF (and its other variants’) space complexity is linear w.r.t |F|, their implementations, 
should they not consider the sparse input structure, in fact require O(|I| ⋅ |F|) space (as 
found, e.g., in Urbanowicz et al. 2018).

Finally, the considered experiments for multi-label classification consider both Euclid-
ean embeddings, as well as non-Euclidean ones (Poincaré ball).

5  Results

This section presents the results of the empirical evaluation. We begin by discussing the 
performance comparisons for the task of multi-class classification. We follow on by dis-
cussing the results of the experiments on multi-label classification tasks. Finally, we pre-
sent additional investigations of ReliefE’s behavior.

Table 4  Computational 
complexity of feature importance 
estimation

For Relief algorithms, we used s = |I| . The t corresponds to the num-
ber of trees

Algorithm Time complexity Space complexity

ReliefE O(|�|2 ⋅ |F| + |I| ⋅ d ⋅ s) O(|�|2)
ReliefF O(|F| ⋅ |I|2) O(|F|)
Random Forest O(t ⋅ |F| ⋅ |I| ⋅ log2 |I|) O(|I| + |F|)
Mutual Information O(|F| ⋅ |I|) O(|I|)

4 Extensive evaluation of UMAP’s capabilities w.r.t. the proposed implementations is beyond the scope of 
this paper, and is left for further work.

3 Implementation’s official repository is https:// github. com/ SkBlaz/ relie fe.

https://github.com/SkBlaz/reliefe
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5.1  Multi‑class classification

We first present two average rank diagrams depicting the relative performance on the 
different ranking methods for MCC in terms of the quality of the produced rankings, as 
measured by the corresponding average and maximum F1 scores (Fig.  5a, b , respec-
tively). The diagrams include critical distances, representing the minimum differences 
in performance that are statistically significant. It can be observed that the ReliefE vari-
ants yield the best performing rankings (with lowest average ranks, Fig. 5a), but there 
are not many such rankings (Fig. 5b). The AUrF1 values (“Appendix 4”) indicate that 
the performances of the top 5 feature ranking algorithms are highly similar (within the 
confidence interval).

We next present the mean time consumption averaged across data sets. Consistently 
slower SURF variants of ReliefF can be observed in the rightmost part of Fig. 6a. The 
average rank diagram is shown in Fig. 6b.

Additional analysis of the proportions of time spent at different parts of the algo-
rithm is presented in “Appendix 5”, showing that most time is spent on feature weight 
updates. Average rank diagrams comparing the rankings in terms of the top 50 and 100 
features are given in “Appendix 6”.

(a)

(b)

Fig. 5  Max (a) and mean (b) F1 scores across all feature rankings



296 Machine Learning (2022) 111:273–317

1 3

5.2  Bayesian ranking comparison of ranking approaches for MCC

In this section, we present selected Bayesian pairwise comparisons of classifiers’ per-
formance. Previously determined relationships, such as the dominance of the SURF 
branch of algorithms over mutual information were confirmed, and further extended by 
adding comparisons with the proposed ReliefE branch of algorithms. The comparisons 
are presented in Figs. 7 and  8.

Each diagram has three main regions (parts of the pyramid). The two bottom regions 
correspond to the samples associated with the dominance of each of the two algorithms 

(a)

(b)

Fig. 6  Speed comparison of ranking approaches for MCC. Absolute running times (a) show that ReliefE 
variants perform an order of magnitude (or more) faster. Relative running times are given in terms of aver-
age ranks (b), where lower ranks mean worse performance, i.e., longer running times
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Fig. 7  Bayesian comparisons of performance (ranking qualities) between MultiSURFstar and other feature 
ranking methods for MCC
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compared, and the rope region to the difference space, where the winner is not clearly 
defined. The probability density directly corresponds to the density of dots in the diagram, 
thus, the part of the diagram with the highest density implies the most probable situation. 
Individual (posterior) probabilities are also shown next to each diagram, and denote the 
probabilities of one algorithm outperforming the other or the algorithms being of similar 
performance.

The key results of such pairwise comparisons can be summarized as follows. Very few 
comparisons yield clear winners. In the majority of the cases, when the most competitive 
methods are considered, less than 50% probability that one of the ranking algorithms domi-
nates is observed, giving no strong evidence for dominant ranking algorithms. This is the 
case also for the diagrams in Fig. 7.

The visualizations in Fig. 8 show that ReliefE-absMean-adaptive, the implementation 
proposed in this work, performs on par, or better than many existing, well established 
approaches such as MultiSURF and RandomForest-based rankings. However, we observe, 
in the second part of Fig. 8, that ReliefE-absMean-adaptive offers small, albeit incremental 
win rate when compared against the other methods. With the highest probability (80%), 
we can claim ReliefE’s dominance against MultiSURF, however, the observed probability 

Fig. 8  Bayesian comparisons of performance (ranking qualities) between ReliefE-absMean-adaptive and 
other feature ranking methods for MCC
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ratio does not suffice for a significant difference with > 95% probability (the commonly 
considered convention). To further study the algorithm performance, we visualize the top 
f features—rF1 curves and discuss the selected examples—such figures showing in detail 
the ranking performance of the different algorithms for the selected data sets are given 
in “Appendix  7”. Overall, considering the different statistical approaches to evaluating 
ReliefE’s performance, the results indicate that the method has similar performance to its 
competitors, but offers up to two orders of magnitude faster ranking computation, which 
also confirms the theoretical findings from Sect. 3.8.

5.3  Multi‑label classification

We next present the results of feature ranking for multi-label classification. For readability 
purposes, we present the average rank diagrams in “Appendix 8”. The time required for the 
execution of various distance-ranking algorithm combinations is shown in Fig. 9.

The differences in the execution times are apparent. The ReliefE branch (blue) offers 
more than an order of magnitude faster ranking computation.

The AUrF1 scores, averaged across data sets are shown in Fig. 10.
The best performing ReliefF variants for multi-label classification do not embed the 

input space. However, the top performant variant employs Euclidean embeddings of the 
target space, where the distances are computed based on the cosine similarity score. This 
result indicates multi-label classification can benefit from embedding-based approaches. A 

Fig. 9  Running times for the MLC variants of ReliefE (and ReliefF, reimplemented in this work and 
denoted ReliefF-this)
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case study, where the behavior of various ReliefE variants for MLC is considered in more 
detail can be found in “Appendix 9”.

5.4  Relations between ranking algorithms

We employ the fUJi score, a recently introduced scale-free comparison of ordered positive 
real-valued lists, to study how different feature ranking algorithms relate to each other. This 
study employs the same methodology as discussed in Petković et al. (2020) and Škrlj et al. 
(2020). The considered fUJi scores can, apart from the ranking, also take into account the 
differences between the elements that are being compared—this is not possible by using, 
e.g., the Jaccard score. We compare pairs of curves comprised of (rF1,top f) tuples, thus 
effectively comparing the shape of the rankings’ performance. The results of these com-
parisons are shown in Fig. 11 for multi-class classification and in Fig. 12 for multi-label 
classification. The most apparent pattern that emerges when these comparisons is that 
embedding-based rankings (ReliefE variants) tend to give very similar rankings. This holds 
for both multi-class and multi-label classification rankings.

5.5  Convergence to the final ranking

Note that in all the examples up to this point, the number of iterations via which the 
weights corresponding to feature importances were updated was equal to the number of 
instances (hence the quadratic complexity). Having shown that this setting already offers 

Fig. 10  Area under the relative F1 for different ranking approaches in the context of multi-label classifica-
tion
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state-of-the-art performance, we further explored how redundant is the iteration process, 
i.e., what is the minimum number of iterations needed to obtain a similar ranking. We 
investigated this question on MCC datasets following the approach described below.

For each number of considered iterations, we conducted 100 logistic regression 
runs building models with up to 100 top-ranked features. We computed the AUrF1 and 
inspected the curve induced by the obtained series of (top f, AUrF1) tuples. We conducted 
these experiments for the DLBCL, Tumors C, Biodeg-discrete and chess data sets, with the 
results shown in Fig. 13. We compared ReliefE-absMean-adaptive with ReliefF as imple-
mented in this work, evaluating each iteration with three-fold cross validation (same splits).

It can be observed in Fig. 13a that the convergence is slower with the ReliefE-absMean-
adaptive variant, however, once the performance is achieved, it is no longer impacted by 
additional iterations. This does not appear to be the case with ReliefF, where a decrease 
is observed when 32 iterations are considered. Overall, ReliefE-absMean-adaptive offers 
state-of-the-art performance already after four iterations. A similar situation is observed in 
the case of Biodeg in Fig. 13c. We also observed that on the Tumors C data set (Fig. 13d), 
ReliefE-absMean-adaptive was consistently outperformed by ReliefF. Being very high-
dimensional, and with only tens of instances, this data set’s intrinsic dimension is most 
likely under-estimated, yielding feature ranking based on representations that loose too 
much information. The ReliefE branch of algorithms is highly dependent on the underlying 
embeddings, where construction of high quality embeddings in such data scarce scenarios 
remains a lively research area on its own.

Fig. 11  AUfUJi scores for multi-class rankings. Higher numbers (red colors) mean higher similarity 
between rankings (Color figure online)
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Fig. 12  AUfUJi scores for multi-label rankings. The red block of cells in the upper left part of the triangle 
corresponds to various variants of ReliefE (Color figure online)

(a) (b)

(c) (d)

Fig. 13  Impact of the number of ReliefF iterations on ranking quality
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Potential speedups by decreasing the number of iterations will be explored in fur-
ther work. The performance on the chess data set, however, remains consistent for both 
algorithms—this is a low-dimensional data set, where feature importance estimation via 
embedded space does not offer notable performance improvements, both with respect to 
top F1 and computation time.

5.6  Relevant negative results

Even though the paper proposes a promising Relief variant, capable of operating in high-
dimensional sparse spaces, many intermediary steps did not perform as expected, and are 
summarized below: 

1. Due to pointer-based storage, using sparse matrix algebra can result in additional over-
head which can be significant in large, dense data sets.

2. Running UMAP with spectral decomposition resulted in an unexpected memory over-
head. We circumvented this issue with � , however, the original implementation, once 
adapted for large scale embedding, could offer an alternative that is more native to 
UMAP’s routines.

3. Employment of Numba’s parallel capabilities led to somewhat mixed results. On one 
hand, trivially parallel routines such as independent looping and similar could easily 
be adapted to run in parallel, however, when the parallel decorator was employed over 
the whole ReliefE weight update step, even though all cores were utilized, no notable 
speedups were observed. Additional study of the intricacies of such decorator-based 
parallelism is left for further work.

4. When validating our and scikit-rebate’s implementations against Weka’s ReliefF, it 
turned out that ReliefF, as implemented in scikit-rebate differs with a somewhat negative 
effect on performance (as shown in this paper).

5. We did not experiment with detailed typing of the most time-consuming methods, how-
ever we believe some of the routines could be, this way, made even faster.

6. The intrinsic dimension algorithm (Algorithm 2) appears to underestimate the real 
dimension, leading to poorer performance in some cases.

7. Embedding target instances in hyperbolic space either works well, or does not work at 
all. We believe the observed performances are due to the intrinsic geometry of the data, 
which we will explore in further work.

We next discuss some of the general observations and their implications.

6  Discussion

In this work, we considered extensions of the original ReliefF approach with embedding-
based distance computations to both multi-class and multi-label classification settings. We 
observed that, especially in MLC, embedding the target space can contribute both to lower 
running time and improve a classifier’s performance. The distance that showed the most 
promising results was based on the cosine similarity, which is widely used when consider-
ing embedding-based learning and exploration. The main contribution of this work, the 
ReliefE ranking approach, is capable of operating via embeddings of both input and output 
spaces (e.g., in multi-label classification).
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In this section, we comment on the obtained results and discuss further implications 
of ReliefE. We first observe that adaptive neighbor selection empirically performs very 
similarly to implementations where neighbor selection is hard-coded. This positive 
results indicate that one hyperparameter less needs to be tuned, should the user not have 
the computational resources for extensive grid searches. Further, the simple adaptation 
of the update step to take into account the distance to the mean of the neighbors simi-
larly offered competitive results. One of the possible reasons for such performance is the 
potential cancellation of noise, as with averaging, especially in the embedding space, 
a joint representation is obtained that can also carry some information regarding the 
semantic similarity amongst the neighbors.

Within the proposed ReliefE approach, we also explored how data sparsification 
can be leveraged to further speed up feature ranking in high-dimensional settings. The 
sparsification procedure was targeted at larger, higher-dimensional data sets and did not 
affect smaller data sets as much.

In terms of multi-label classification performance, we observed that the classic 
adaptation of ReliefF with the proposed adaptive distance and the hamming loss was 
amongst the best performing options. Interestingly, the variant which used the cosine 
distance on the target space embeddings was also amongst the top three best perform-
ing solutions, indicating that multi-label classification potentially benefits more by con-
sidering only the embeddings of the target space instances (and not of instances in the 
feature space). Similarly, the absMean variant of ReliefF was also amongst the top five 
algorithms performed, indicating that this aggregation scheme is competitive to the 
widely accepted averaging followed by the absolute value computation step. The best 
variant of ReliefE that considered both feature and target space embeddings is ranked 
poorly, indicating that by embedding the feature space, performance is lost (albeit sig-
nificant speedups can be obtained): This hints at a trade-off between performance and 
ranking quality. Of the remaining metrics, the subset and hyperbolic distances were 
amongst the worst performing ones, indicating that hyperbolic embeddings operate well 
in rather limited settings, possibly where a hierarchical structure of the target space can 
be observed.

This work is also one of the first (to our knowledge) to compare the performance 
curves of different ranking algorithms with the Fuzzy Jaccard Index. We observe that 
embedding-based algorithms proposed in this work behave very similarly, for both 
multi-label and multi-class classification. Especially in MLC, two consistent patterns 
emerge. All ReliefE variants are shown to be very similar to one another (red block in 
Fig. 12). However, also the hyperbolic and subset versions of ReliefF appear to behave 
similarly to the embedding-based ones, even though the input space was not embedded 
in these cases. For multi-label classification (Fig. 11), the ReliefE variants again emerge 
as the most similar (to one another). However, similarly to the MLC comparison, ver-
sions of the adapted ReliefF, as implemented in this work, were shown to yield similar 
performance curves to ReliefE-based variants.

Following the results of ablation studies, we believe further speedups could be 
obtained by considering fewer iterations. Current experiments indicate that potentially 
quadratic speedup could be obtained, as adequate performance was already observed 
after 

√
�I� iterations in some cases. Further, the number of iterations could also be 

adapted dynamically, by monitoring the feature ranking scores and detecting conver-
gence before all iterations are carried out.

When studying individual data sets, e.g., DLBCL and opt-digits, we observe that 
ReliefE offers superior performance at a fraction of the computation time required by 
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the other methods, indicating that the development of approaches based on ideas intro-
duced in this paper is a sensible research avenue.

In this work, we have evaluated feature rankings based on classification performance 
obtained by robust learners, such as logistic regression, which have not been fine-tuned. 
The purpose of such evaluation was to emphasize the effect of feature ranking. However, 
extensive studies of the interplay between regularization regimes (e.g., L1 vs. L2) and 
ranking performance could also offer interesting insights into the robustness of rankings, 
and further, their purpose. For example, a L1 regularized learner could automatically dis-
card large parts of the feature space: Although this would be considered as feature selection 
(and not ranking), it would potentially offer similar results. We leave this type of experi-
ments for further work.

Similarly, the Bayesian comparisons, involving mostly a state-of-the-art feature ranker 
MultiSURFstar and the proposed ReliefE algorithm(s), indicate that ReliefE is competitive 
and many times outperforms MultiSURFstar, even in a probabilistic sense. For example, 
the probability that ReliefE-absMean-adaptive outperforms MultiSURFstar is more than 
30%, with most of the remaining probability density lying in the equal performance (rope) 
region.

Finally, we discuss several potentially interesting future empirical studies that would 
represent a non-trivial extension of the proposed work. Detailed analysis of the algo-
rithms’ performance with respect to various properties of the data sets could offer addi-
tional insights into when to use what type of ranking. We believe that meta-learning could 
be a promising research venue, as by linking the data sets’ properties with suitable algo-
rithms could largely benefit situations where embedding-based ranking is not the best 
option. Overall, if one optimizes for efficient performance on large, contemporary data 
sets, ReliefE offers a computationally efficient approach, that could serve as a first step to 
further study where to invest the remaining computational resources, and whether feature 
ranking is a sensible approach at all (it might not be for, e.g., image-based data). Simi-
larly, understanding whether the choice of the distance score can be further transferred 
between similar data sets also represents an interesting research direction worth of further 
study. Overall, the proposed paper provides an empirical, as well as a theoretical founda-
tion for potentially more involved embedding schemes, such as e.g., (variational) autoen-
coder-based ones. We believe that a relevant factor influencing ReliefE’s performance is 
the quality of the learned representation, indicating that another promising research venue 
could be the investigation of different embedding approaches (this work explores different 
distances within a single embedding approach, but does not consider different embedding 
approaches).

7  Conclusions and further work

In this paper, we proposed one of the first embedding-based Relief implementations with 
both theoretical and practical grounding. We explored whether embedding the input, but 
also the output space onto a Riemannian manifold prior to feature ranking yields better 
rankings. The results indicate that, while being significantly faster, embedding-based rank-
ing methods do not consistently outperform the ones that do not use the embeddings. How-
ever, we show that they are indeed consistently faster than all other Relief-based ranking 
approaches.
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We also show that for multi-label classification, where additional complexity arises 
due to multiple label co-presence, ReliefE can offer more stable, and on data sets like 
Delicious, better performance. Further, we demonstrate that embedding the target 
label space is beneficial for the final ranking’s quality in a multi-label setting. The 
proposed adaptive neighbor estimation procedure could be further developed in terms 
of the neighborhood dependence with respect to a given metric. Similarly, the current 
implementation potentially over-estimates the neighborhood size, which could be due 
to the nature of the embedded space or the method’s bias. Both possibilities are to be 
explored in future work.

We believe that comparison of feature ranking algorithms should also be considered 
at the level of their properties and not only their performance. In this work, we show 
that embedding-based ranking gives rise to a fundamentally different type of rank-
ings, which we believe are worthy of being studied further. To our knowledge, we are 
the first to perform such large-scale comparisons of a long list of ranking approaches 
(using, e.g., different similarities in MLC) and take into account also the actual values 
of importance scores of rankings (through the fUJi score), and not only the feature 
order.

We also observe that the variants of the original ReliefF, as re-implemented in this 
work, already offer superior performance to, e.g., the SURF branch of algorithms, 
indicating that their scikit-rebate implementations have some limitations in terms of 
numeric stability (and are not adapted at all to handle sparsity).

As further work, we believe the study of non-Euclidean spaces could yield many 
novel insights, as the target space is frequently of hierarchical nature, implying Euclid-
ean geometry is not sufficiently good for its representation. In this work, we show ini-
tial results for embedding on a hyperboloid (Pincaré ball model). However, Lorenzian 
geometry can also be considered.

Appendix 1: Theoretical considerations of embedding spaces

As many of the recently introduced embedding-based methods tend to replace ear-
lier methods, whilst maintaining the representation power, we believe the compari-
son of the two mappings, when considered, can be represented as a simple diagram. 
The example, considered to represent ReliefE’s mapping compared to, e.g., that of the 
standard ReliefF’s can be represented as 

F E

w

φ

q f

Here, the initial, real valued feature matrix F is either directly (q), or indi-
rectly ( � and f) mapped to the output weight vector w . Note that q ∶ ℝ

|I|×|F|
→ ℝ

|F| , 
� ∶ ℝ

|I|×|F|
→ ℝ

|I|×d and f ∶ ℝ
|I|×d

→ ℝ
|F| . ReliefE operates under the assumption that 

the initial ranking can be retrieved via latent space E in two steps ( � and f).
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Appendix 2: Ablation study of data sparsity

The considered sparsification procedure is dependent on the parameter epsilon, i.e., the 
approximation error. The study of how different error thresholds impact the final sparsi-
fication result is shown in Fig. 14. It can be observed that most of the data sets only get 
sparsified after a rather large epsilon is permitted. The second ablation explores the relation 
between the initial data sparsity and the final sparsity, i.e., the sparsity of a given data set 
after the conducted sparsification procedure. The result is shown as a kernel density plot in 
Fig. 15.

Fig. 14  Dependence of sparsification on approximation error allowed

Fig. 15  Kernel density estimation of the relation between the initial and final sparsity
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The observed result indicates that when the data set is sparse to begin with, the result 
will be, as expected, similarly sparse. However, the vertical density at the rightmost part 
of the figure demonstrates that the sparsification procedure indeed yields sparser data, 
albeit not in all cases. A similar visualization can be produced for the space based on 
estimated epsilon values, shown in Fig. 16.

Fig. 16  Kernel density estimation − estimated epsilon values

Fig. 17  Density of estimated k values for 100 iterations of ReliefE
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The considered estimate yields a similar landscape sparseness to that obtained via grid-
search (Fig. 15), indicating decrease in most cases. However, there are examples where a 
given data set’s density was substantially lowered, such as for example pd-speech-features 
and biodeg-p2-discrete. The results indicate that the considered estimate could be further 
relaxed, albeit at the cost of worse approximation of the input matrix, which could nega-
tively impact the final performance.

Appendix 3: Adaptive k distributions

In this ablation study, we visualized the distributions of the neighborhoods across all con-
sidered MCC data sets. This plot demonstrates that for different data sets, differently sized 
neighborhoods were identified by the proposed heuristic (Fig. 17).

Appendix 4: Area under the rF1

The AUrF1 scores, averaged across data sets are shown in Fig. 18. It can be observed that 
the first 5 rankings behave very similarly w.r.t. this measure. Thus, we emphasize other 
types of comparison, where the differences are more apparent.

Fig. 18  Area under the relative F1 curve for multi-class classification. All ranking approaches perform sim-
ilarly with no notable differences. More insights into the relative performance of ranking algorithms are 
provided by Bayesian tests and FUJI-based comparisons of performance curves
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Appendix 5: Detailed analysis of running time

We additionally studied how different parts of ReliefE impact the total running time. 
For p53, one of the largest considered data sets, we visualize the proportions in Fig. 19.

Fig. 19  Proportions of time spent 
on different methods within 
ReliefE on the p53 dataset. 
Majority of time is spent on 
weight update steps (as expected)

Fig. 20  Max first 100 features. Similarly to the situation with 50 top features, the ReliefE variants, includ-
ing the adaptive one, perform well for the multi-class classification task

Fig. 21  Max first 50 features. The performance if considering only first 50 features. The adaptive version of 
ReliefE performs on average the best in this scenario
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Appendix 6: Multi‑class classification, additional rank diagrams

This appendix includes additional ablation studies in the form of critical distance dia-
grams presenting the performance for multi-class ranking (Figs. 20 and  21).

Appendix 7: Multi‑class classification—case study with Madelon, 
DLBCL and genes

This section contains feature rankings, visualized for the Madelon data set, where 
either the ReliefE or a variant of ReliefF equiped with one of the proposed heuristics 
shows different behavior (better performance) (Fig. 22.) The visualized performances 
offer insights into behavior of the algorithms. For example, the ReliefF branch of adap-
tations (and vanilla ReliefF) peak at less than a hundred features, however, another 
performance peak where feature ranking is sensible ( rF1 > 1 ) is around 250 features, 
where ReliefE-type algorithms are consistently amongst the best-performing ones.

The power of ReliefE is apparent when considering DLBCL data set (very high 
dimensional with not many instances). Results are shown in Fig. 23. Finally, the results 
for the genes data set are shown in Fig. 24. Note how the more time expensive SURF 
variants were not able to finish in dedicated time. Further, ReliefF is notably worse, 
requiring more information to detect the relevant signal. On the other hand ReliefE 
variants perform consistently well.

Fig. 22  Madelon performance curves. This result indicates that there exist situations where initially better 
rankings are obtained via e.g., the SURF branch of the algorithms, however, when considering more fea-
tures, ReliefE variants are the only ones that find rankings which perform well
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Appendix 8: Multi‑label classification—additional rank diagrams

In this section, we present the average rank diagrams that offer insights into global distribu-
tion of the performances when multi-label classification setting is considered (Figs. 25 and 
26).

Fig. 23  DLBCL performance curves. The DLBCL is a very high-dimensional data set and reflects the 
ReliefE’s capability to operate with high-dimensional feature spaces

Fig. 24  Genes performance curves. Compared to mutual information (myopic)-based rankings ReliefE per-
forms consistently better (steeper curve at the beginning in the first around hundred features
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Fig. 25  Max (upper) F1 scores for top 10 highly-ranked features. The results indicate that the adaptive 
threshold step impacts the placing of the top features (adaptive) version of ReliefF

Fig. 26  Mean (upper) F1 scores for top 10 highly-ranked features. The average rank diagrams confirm the 
finding that if the target space is embedded via cosine distance, the MLC ReliefF variant performs the best
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Appendix 9: Multi‑label classification—case study with Delicious

We study in more detail the performance on the Delicious data set, as it offers interest-
ing insights into the algorithms’ performances (Fig.  27). The algorithms’ performances 
are overall consistent. Note how cosine-based embeddings of the target space emerge as 
the best option (orange line), indicating embedding-based distances amongst the target 
instances can already offer competitive performance.
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