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Abstract: Increasing quantities of semantic resources offer a wealth of human knowledge, but their
growth also increases the probability of wrong knowledge base entries. The development of ap-
proaches that identify potentially spurious parts of a given knowledge base is therefore highly
relevant. We propose an approach for ontology completion that transforms an ontology into a graph
and recommends missing edges using structure-only link analysis methods. By systematically evalu-
ating thirteen methods (some for knowledge graphs) on eight different semantic resources, including
Gene Ontology, Food Ontology, Marine Ontology, and similar ontologies, we demonstrate that a
structure-only link analysis can offer a scalable and computationally efficient ontology completion
approach for a subset of analyzed data sets. To the best of our knowledge, this is currently the most
extensive systematic study of the applicability of different types of link analysis methods across
semantic resources from different domains. It demonstrates that by considering symbolic node
embeddings, explanations of the predictions (links) can be obtained, making this branch of methods
potentially more valuable than black-box methods.
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1. Introduction

Researchers and companies often address tasks that require domain knowledge for
their solution. Domain knowledge often contains complex relations between entities and
human-defined terms that can be modeled using ontologies [1,2]. Ontologies can range
from small ones that describe people, their activities, and relations to other people, such
as the FOAF ontology [3], up to large ones such as the Gene Ontology that describes, e.g.,
protein functions and cellular processes [4].

Ontologies have long been used to represent and reason over domain knowledge but
have recently shown further potential in conjunction with machine learning methods. They
have been used for relation prediction tasks [5,6], much like graphs, or to improve features
with background knowledge in other machine learning tasks [7]. Commonly applied
methods range from more traditional semantic similarity approaches [5,8] to recently
successful entity-embedding algorithms, whether graph-based [9–11], syntactic [12,13],
hybrid [14], or rule-based [15]. Alternatively, ontologies have been utilized to constrain the
output of machine learning and optimization models to conform to certain rules [16].

While small ontologies can easily be annotated due to a limited number of possible
relations, even highly skilled domain experts can make mistakes when considering larger
ontologies, by missing some links or adding nonexistent ones. These mistakes can have an
impact on our understanding of the domain and can produce models and solutions that do
not perform well. This issue is addressed by ontology completion, which refers to the task
of finding missing relations that are plausible but not logically deducible from the given
ontology [17].

Mach. Learn. Knowl. Extr. 2022, 4, 1107–1123. https://doi.org/10.3390/make4040056 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make4040056
https://doi.org/10.3390/make4040056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-0469-6696
https://orcid.org/0000-0001-8746-469X
https://orcid.org/0000-0002-9995-7093
https://orcid.org/0000-0002-9916-8756
https://doi.org/10.3390/make4040056
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make4040056?type=check_update&version=1


Mach. Learn. Knowl. Extr. 2022, 4 1108

This work adopts machine learning methods that perform well on the link prediction
task for ontology completion exclusively based on the ontology structure. This is achieved
by representing ontologies as graphs and applying link prediction methods, providing
experts with a scalable ontology completion tool to help improve the error-prone human
annotation process. The contributions of this work include:

• A methodology for ontology completion using link analysis methods;
• A methodology for recommending missing edges using scores obtained through

link prediction;
• Demonstrated utility of considered link analysis methods on multiple ontologies with

different properties;
• Simple-to-use software for ontology completion and evaluation of the proposed

methodology on a given ontology (Available online: https://github.com/smeznar/
ontology-completion-with-graph-learners, accessed on 1 November 2022).

The related work is presented in Section 2. The proposed methodology is outlined in
Section 3. It consists of an ontology-to-graph transformation (Section 3.1), ontology comple-
tion using link prediction (Section 3.2), a recommendation of missing edges (Section 3.3),
and an approach for explaining recommendations (Section 3.4). The experimental setting is
outlined in Section 4. The results of the evaluation are presented in Section 5. The paper
concludes with a discussion in Section 6.

2. Related Work

In this section, we first introduce ontologies and their use in machine learning, fol-
lowed by the relevant related work from the field of machine learning on graphs and
link prediction.

2.1. Ontologies

Ontologies refer to machine-readable representations of knowledge in a given appli-
cation domain, usually defined in a declarative knowledge modeling language, such as
OWL (Web Ontology Language) [18], which is based on description logic (DL). Ontologies
operate with individuals, classes (sets of individuals), and properties (relations between
individuals), for which they define semantics through a set of logical statements (axioms).

These statements fall into two categories. The terminological box (also called the
T-box, vocabulary, or schema) contains statements defining classes, their characteristics,
and hierarchy. In contrast, the assertional box (A-box) consists of assertions about individ-
uals (concrete facts), which use the vocabulary of the T-box. Given a complete ontology,
reasoners can infer additional implicit facts from the explicitly defined set based on rules
defined in the T-box. For example, the A-box fact "Mary is a mother" implies "Mary is a
parent" since the T-box defines that "mother is a subclass of parent". T-box statements in OWL
are class subsumption axioms (e.g., "mother SubclassOf: woman"), property restrictions (e.g.,
"parent EquivalentTo: HasChild Some person", meaning that everyone who has at least one
child is a parent) and set operators (e.g., "parent EquivalentTo: mother Or father"). A-box
statements include membership axioms (e.g., "Mary Types: mother") and property assertions
(e.g., John Facts: HasWife Mary).

Ontologies are used in various fields and vary significantly in their purpose, content,
and implementation. At one end of the spectrum, there are small, ungrounded ontologies
that lack an A-box and serve as a semantic schema of high-level terms (classes) in a
particular domain. They are often used in the scope of the semantic Web and are intended
to be referenced by various Web sources and thereby populated with “external” facts.
Examples include FOAF and the Marine Ontology. Conversely, there are larger, more
grounded ontologies attempting to comprehensively capture knowledge in a domain as a
complex hierarchy with many concrete facts. The Gene Ontology is an illustrative example.

Notably, grounded ontologies, or at least their graph representations, could be con-
sidered knowledge graphs (KGs) by some definitions that define the latter as a schema
(T-box) accompanied by a large number of (A-box) facts [19]. However, KGs do not have
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a well-established definition yet, with other work giving alternate proposals, such as a
collection of facts without the schema [20], or a system encompassing an ontology and a
reasoning engine [21].

In practice, different grounded ontologies also take different approaches to capturing
A-box (ground level) facts in OWL. Some, such as HeLiS [22], use individuals and OWL’s
object property assertion axioms to define that two “ground level entities” are related
by a property. Others, such as the Gene Ontology and Food Ontology [23], do not use
individuals at all, representing even very “individual-like” entities as classes and thus
blurring the line between T-box and A-box. Because of this, it can be difficult to create a
general approach for embedding ontologies.

2.2. Ontology Embeddings

Ontologies can be seen as stand-alone resources, much like knowledge graphs, as
means of encoding domain knowledge. On the other hand, ontologies have recently
shown potential in combination with machine learning methods as means to provide
additional background information or to constrain the learning process. To exploit ontology
information using approaches such as linear regression or neural networks, one usually has
to embed them into the vector space first. In our work, we propose to embed ontologies
with graph-based methods to identify potentially novel relations for ontology completion.

The related work comprises several works that present ontology-specific embedding
algorithms. Onto2Vec [12] constructs sentences from OWL axioms and trains a language
model; On2Vec [11] is based on translational graph embeddings and OWL2Vec* [14]
combines the language model approach with random walks on the ontology graph. These
methods have been typically evaluated against knowledge graph embeddings on a limited
number of large ontologies for the relation prediction task (predicting the predicate between
two entities).

Other examples are domain-specific applications, most often in the biomedical domain,
where ontologies are mined for tasks such as protein–protein interaction (PPI) prediction,
or gene–disease prediction. Here, several ontologies are usually combined into a single
data set and used with semantic similarity approaches [5,24], often heavily tailored to the
task. Recently, similar works have adopted ontology-specific embeddings [6,25] that are
more general.

None of the above can be considered a systematic study. To our knowledge, the
most valuable resource about the topic that is closest to our work is a survey on the state
of machine learning with ontologies [26] that covers both traditional semantic similarity
methods and recent embedding-based methods. It looked at simple graph embeddings,
knowledge graph embeddings, and ontology-specific embeddings, categorizing them into
graph-based, syntactic and semantic approaches. The survey included an experimental
evaluation of a subset of methods on a protein–protein interaction task. It only considered
two subsets of GO as data sets, since its focus was on a theoretic categorization of the field
and on the biomedical domain in particular. Compared to the survey [26] that focused
on the overview of the field, our study focuses on the evaluation of a large number of
graph-based methods, comparing graph embeddings to KG-specific embeddings. However,
we limit ourselves to structure-only methods due to the nature of the ontology-to-graph
conversion. We also test our methodology on substantially different ontologies both
in terms of the domain they cover and their size, ranging from small schemas to large
knowledge bases of ground-level facts.

A more extensive overview of related work is summarized in Table 1.



Mach. Learn. Knowl. Extr. 2022, 4 1110

Table 1. Overview of some of the related approaches, their aim, and a short description. The horizontal lines separate different types of research articles.

Article Title Article Type Considered Data Method Type Description

Onto2Vec: Joint vector-based representation
of biological entities and their

ontology-based annotations [12]
Method Gene Ontology Syntactic ontology embedding

Represents ontology axioms as sentences and trains a
word2vec model to generate embeddings. Evaluated

on a PPI task.
OPA2Vec: Combining formal and informal

content of biomedical ontologies to
improve similarity-based prediction [13]

Method PhenomeNET and Gene
Ontology Syntactic ontology embedding Extends Onto2Vec by including informal information

such as class descriptions in the axiom sentences.

On2Vec: Embedding-based Relation
Prediction for Ontology Population [11] Method Yago, ConceptNet, and

DBPedia ontology
Graph-based ontology

embedding

Adapts translational KG embeddings for ontologies by
accounting for hierarchical relations. Evaluated on a

relation prediction task.
OWL2Vec*: Embedding of

OWL Ontologies [14] Method HeLiS, FoodOn, and Gene
Ontology Hybrid ontology embedding Combines concepts from OPA2Vec with biased

random walks on the ontology graph.

Predicting Gene-Disease Associations with
Knowledge Graph Embeddings over

Multiple Ontologies [25]
Application Several biomedical

ontologies
Various KG and ontology

embeddings

Combines several biomedical ontologies along with
annotations and applies several embeddings for the

task of gene–disease prediction.

Predicting Candidate Genes From
Phenotypes, Functions, And Anatomical

Site Of Expression [6]

Application and a
method

Several biomedical
ontologies Various ontology embeddings

Combines data from several biomedical ontologies.
Presents a novel domain-specific embedding model

and evaluates it against existing ontology embeddings
on a gene-disease prediction task.

Ontology-based prediction of
cancer driver genes [27] Application Several biomedical

ontologies Syntactic ontology embeddings
Combines data from several biomedical ontologies,

generates features with OPA2Vec, and trains a model
to predict cancer genes.

Gene Function Prediction based on Gene
Ontology Hierarchy Preserving

Hashing [24]

Application and a
method Gene Ontology Novel semantic similarity

method

Gene Ontology terms are represented by a
hierarchy-preserving hash function before computing

semantic similarity for gene–function prediction.
Protein–protein interaction inference based

on semantic similarity of Gene Ontology
terms [5]

Application Gene Ontology Various semantic similarity
methods

Integrates multiple semantic similarity measures to
improve PPI prediction on the Gene Ontology.

Semantic similarity and machine learning
with ontologies [26] Survey Gene Ontology

Various SSM, simple graph
embeddings, KG embeddings,

and ontology embeddings

Survey on ML with ontologies. Covers both traditional
SSM and recent ontology embedding methods.
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2.3. Graph-Based Machine Learning

Graph-based machine learning has seen a rise in popularity in recent years due to its
potential to work with complex data structures such as relational databases and structures
commonly found in biology and chemistry [28]. This branch of machine learning mainly
focuses on node and graph classification [29], node clustering, and link prediction tasks [30].

Machine learning tasks on graphs are usually solved in three different ways. Tra-
ditionally, tasks on graphs are solved using label propagation [31], PageRank [32], and
proximity-based measures such as Adamic/Adar [33] or the Jaccard coefficient [34]. An-
other group of approaches embed graphs into a vector space, used together with traditional
machine learning methods such as logistic regression to generate predictions. These ap-
proaches include well-established methods such as node2vec [9] and Deepwalk [35], as
well as new ones such as SNoRe [36]. More recently, with new research in deep learning
approaches, neural network models such as graph convolutional networks (GCN) [37], and
graph attention networks (GAT) [38] have emerged as end-to-end learners.

2.4. Link Prediction

Link prediction is one of the most widely addressed tasks concerning graph-based
data. Predicting whether there exists an edge between two nodes without any additional
information is hard, but with some additional information about the graphs, nodes, and
with some assumptions, various approaches can predict the edge existence well [30,39].
The most common assumption used in link prediction is that two nodes are connected if
they are similar. This similarity might be due to them sharing similar node features or
having similar neighborhoods. Another assumption that is commonly used is that nodes
are likely to be connected to nodes with a high number of neighbors. These assumptions
are both reasonable and often occur in real-life networks as well as ontologies.

Link prediction is traditionally solved using proximity-based methods that model
networks using the assumptions mentioned above. These methods commonly predict the
existence of links based on the first and second neighbors of the nodes, e.g., the number of
common neighbors. These include Adamic/Adar index [33], preferential attachment, and
others. Later, embedding methods such as node2vec [9] and SNoRe [36] were developed.
These methods use a random walk to explore and approximate a node’s neighborhood.
The embedding these methods produce is either low-dimensional or sparse and usually
performs well even on networks where structure assumptions do not necessarily hold. Sim-
ilar to embedding methods, graph neural networks such as GCN [37] and GAT [38] have
recently been used for different machine learning tasks on networks. These approaches
jointly exploit the adjacency matrix of a network alongside node features. For knowledge
graphs, i.e., graphs where nodes and edges usually contain some additional information,
specialized approaches such as metapath2vec [40] are used. Other approaches on knowl-
edge graphs such as TransE [10] and RotatE [41] embed nodes and relations in such a way
that a combination of their embeddings creates a vector that has a norm close to zero if the
triplet (subject, predicate, and object) is inside the graph and close to one if it is not.

In our work, we mainly focus on link prediction using embedding and proximity-
based methods as they do not require a specific representation or additional knowledge
about the graph. By exploiting the semantic information of the knowledge graph, one can
find missing links using rule-based approaches [15].

3. Methodology

The following section presents the ontology-to-graph transformation, link prediction,
recommendation of missing links, and explanation of the recommendations.

3.1. Ontology-to-Graph Transformation

As outlined above, machine learning has approached the use of ontologies in various
ways. One of the common approaches is to represent ontologies as graphs where nodes
represent classes or individuals, and links encode semantic relationships defined by the
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ontology. This approach enables the use of many powerful graph-based machine learning
methods that are being developed for other problem domains and are rapidly evolving.

Since an ontology can be understood as a set of logical expressions and is usually
modeled as such, there exist multiple possible conversions of a given ontology into a graph.
Certain expressions, such as property assertions, directly map to nodes and edges. Others,
such as property restrictions, domain-range axioms, and set operators, do not have an
obvious representation. Because of our aim to learn about ontologies using graph-based
methods, the conversion needs to be such that semantics expressed with OWL axioms are
sufficiently reflected in the resulting graph’s topology.

A number of different approaches for converting OWL ontologies to graphs have
been developed; however, there is not yet an established standard or agreement on what
the most appropriate representation is. In our work we transform an ontology into a
(knowledge) graph using projection rules [14,42], as it has been previously used in a similar
machine learning context, outperforming methods such as OWL2RDF [14]. However, we
note that the conversion algorithm could be substituted by another without significant
changes to the rest of our methodology. Projection rules transform class subsumptions
and property assertions between individuals directly into predefined triplets, without
loss of information, while more complex logical expressions, such as property restrictions,
are approximated with simple triplets that do not keep the exact logical relationships.
The result is a graph that presumably approximately captures all relationships but does
not contain noisy syntactic structures. This approach produces a directed heterogeneous
multigraph, i.e., a set of triplets (edges) of the form 〈s, p, o〉 ∈ T, where s and o are nodes
(classes or individuals) and p is a label representing the relation between them. We use this
graph directly as the input to our baselines, which operate on knowledge graphs. For other
methods, we further convert this graph into an undirected homogeneous graph G(N, E) so
that {o, s} ∈ E⇔ ∃p : 〈o, p, s〉 ∈ T, meaning two nodes are at most connected by a single
undirected anonymous edge. In both cases we discard any additional textual information,
such as labels and descriptions of entities. We use undirected graphs instead of directed
ones because benchmarking link prediction on directed graphs can be problematic; it may
result in increasing scores artificially, since a connection between two nodes can occur in
both the training and the test set.

3.2. Ontology Completion Using Link Prediction

Link prediction and ontology completion tasks are closely related since one predicts
which edges are in the graph, and the other which relations are missing from the ontology.
Therefore, it is crucial to determine how well our model works on the link prediction task.
A high accuracy on the link prediction task means that the model will be able to reconstruct
the graph well and thus accurately predict which edges (connections) are missing.

In our work, we use the following methodology to test how well our methods perform
on the link prediction task. First, we transform an ontology into a graph as described in
Section 3.1. After this, we create positive (existent) and negative (nonexistent) examples.
We shuffle and split them into five folds. We then use the edges from four out of five folds to
create the adjacency matrix used in training. For each fold, we then train the baseline models
using the adjacency matrix generated from the other four folds and the corresponding
positive and negative edges, if they are needed as input. We use these models to predict
the existence of the positive and negative edges in this fold. Proximity-based methods
and GNN predict scores directly, while other methods use logistic regression. We evaluate
the performance using the ROC-AUC. An overview of the link prediction process can be
seen in Figure 1. In knowledge graph baselines, where the existence of a specific relation is
predicted, we score all relations and take the highest score.
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Figure 1. Overview of the link prediction methodology.

3.3. Recommending Missing and Redundant Edges

Annotations of data are not perfect and often, an annotator might miss some relations
in the ontology, or sufficient experiments might not have been conducted to determine if
some relation exists. Because of this, methods for recommending missing links can help im-
prove the ontology. This section presents an approach for creating such recommendations.

First, we transform the ontology as presented in Section 3.1. Then, we embed the
nodes of the generated network into matrix R using a non proximity-based approach (e.g.,
approaches in Section 4). A row of R represents a node, while a column represents either a
symbolic feature (in case of SNoRe) or a latent feature. Using R, we then create the link
prediction matrix L = R · RT that is used to find candidates for the missing and redundant
connections. For proximity-based approaches, matrix L can be obtained by individually
generating scores for each pair of nodes. We split the link prediction matrix into two
matrices, one that represents the score of existing edges and one that represents the score of
nonexisting edges. The matrix with scores of the existing edges P can be obtained by using
the adjacency matrix A as the mask P = L[A] (if matrices A and B are of the same size,
we define A[B] = C as Ci,j = Ai,j if Bi,j = 1, otherwise Ci,j = 0). The matrix with scores
for the nonexisting edges M can be obtained by subtracting the matrix with the scores of
existing edges from the link prediction matrix M = L− P. Recommendations for missing
edges are obtained by selecting the elements in the matrix of the nonexisting edges with
the highest scores. Additionally, recommendations for redundant edges can be obtained by
selecting the elements with the lowest (nonzero) scores in the matrix of existing edges. An
overview of this methodology is shown in Figure 2.

Given that the space complexity of the link prediction matrix is quadratic, such
approach might not be feasible for ontologies with many entities. One way to avoid this
is to only create predictions for a subset of nodes P ⊂ V. This can be done by creating a
prediction matrix L{P} = R{P} · RT , where A{B} represents the rows of nodes from set B
in matrix A. To obtain recommendations, we use the same technique as before, the only
difference being that we only use the mask for the selected nodes. For the approaches that
do not generate an embedding, this is done by only generating scores of the selected pairs
of nodes.
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Figure 2. Overview of our methodology for finding missing and redundant edges.

3.4. Explaining Recommendations

An ontology completion tool can have much higher utility to annotators if it can pro-
vide some level of explanation for its recommendations. By using a method that produces
a symbolic embedding, such as SNoRe, we can explain why the model recommended some
specific edges. The following sections presents how to create global explanations, which
give the most important features (in our case nodes). Similarly, one can create explanations
for each prediction using interpretability methods such as SHAP [43].

Global explanations are useful for finding nodes that contribute the most to the
presence of an edge. Since features represent the similarity to some node’s neighborhood,
this information can be exploited to prioritize nodes with the higher chance of being
connected. Specifically, annotators can start with nodes in the neighborhood of the most
important feature (a node). To create such explanations, we first train a logistic regression
model as in the link prediction benchmark. The importance of features can be estimated
by the absolute value of its t-statistic [44]. The t-statistic is calculated as the weight of the
feature divided by its standard error. For the jth feature with the weight β j, the t-statistic

is calculated using the formula SE(β j) =
√
(XTWX)−1

jj , where X represents the matrix
with training data used as input to the logistic regression, W is a diagonal matrix where

W jj =
e∑

p
i=1 βi X ji

(1+e∑
p
i=1 βi X ji )2

, and p is the number of features in the embedding.

4. Experimental Setting

In this section, we first present the considered data sets (ontologies), followed by the
description of the baselines and the evaluation procedures.

4.1. Data Sets

In our work, we used the following ontologies:

Marine TLO [45]: A small top-level ontology of concepts related to biodiversity data in
the marine domain. It is intended to help integrate new information about marine
species (linked data) by providing a hierarchy of generic classes such as legislative
zone or ecosystem.

Anatomy Entity Ontology (AEO) [46]: A high-level vocabulary of anatomical structures
common across species. It aims to enable interoperability between different anatomy
ontologies (such as EHDAA2) and describes anatomical entities such as artery, bone,
or mucous membrane.
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SCTO [47]: Captures upper-level terms from the Systematized Nomenclature of Medicine
(SNOMED CT), a comprehensive medical terminology used to manage electronic
health data, as an ontology. It is just a taxonomy (only a subclass of relations), with
diverse classes such as symptom, laboratory test, or anatomical structure.

Emotion Ontology (MFOEM) [48]: It aims to describe affective phenomena (emotions
and moods), their different building blocks, and their effects on human behavior
(expressions). Similar to the Anatomy Entity Ontology, this ontology includes more
numerous and more specific terms than FOAF or SCTO, but is not as grounded as,
for example, the Gene Ontology. It models classes such as anxiety, negative valence, or
blushing, and properties such as has occurrent part.

Human Developmental Anatomy v2 (EHDAA2) [49]: An ontology that is primarily struc-
tured around the parts of organ systems and their development in the first 49 days
(Carnegie stages (CS)1–20). It includes more than 2000 anatomical entities (AEs) and
aims to include as much information about human developmental anatomy as is
practical and as is available in the literature.

Food Ontology (FOODON) [23]: It aims to name all parts of animals, plants, and fungi
that can bear a food role for humans, as well as their derived food products and the
processes used to make them. It is a large, fairly grounded ontology with upper-level
entities such as part of organism and leaf classes as specific as Pinot noir wine or chickpea.
Some properties include has ingredient, derives from and has quality.

LKN [50]: A biological knowledge graph constructed from multiple different sources of
information, including temporal expression data, small RNA-based interactions and
protein–protein interactions. This source was obtained in the process of semiauto-
matic curation.

Gene Ontology (GO) [4] A comprehensive source of information on cellular processes.
It describes three types of entities—molecular functions, cellular components and
biological processes—and their relations in a complex class hierarchy linked mostly
by is a (subsumption), part of (meronymy) and regulates properties. Among the used
ontologies, GO is the largest and most grounded, with entities (classes) ranging from
molecular function to, for example, DNA alpha-glucosyl transferase activity.

We selected these ontologies because they possessed different properties, came from
different domains, ranged from small to big ones, and contain both grounded and un-
grounded ontologies. Because of this, we believe that the conclusions from our benchmark
generalize well to most existing ontologies.

Some basic statistics of these ontologies are shown in Table 2. Of the three bigger
ontologies, the Food Ontology has a very treelike structure, while LKN and the Gene
Ontology are more connected.

Table 2. Basic statistics of the tested ontologies. Columns |N|, |E|, and Components describe the
converted graphs. The rest describes the raw OWL ontologies.

Ontology |N| |E| Components Classes Individuals Object
Properties

Subsumption
Axioms Restrictions Set

Axioms

Marine 108 156 2 104 3 92 105 0 0
Anatomy 249 366 1 250 0 11 366 101 0

SCTO 321 370 1 394 18 8 341 251 111
Emotions 631 773 1 688 36 29 774 94 40
EHDAA2 2743 12,894 15 2734 0 9 13,366 10,283 0

Food 28,740 35,897 107 45,942 381 68 39,155 8860 2543
LKN 20,011 68,503 2427 20,011 0 0 68,503 68,503 0
GO 44,167 101,504 1 62,201 0 9 90,583 30,704 23,493

4.2. Baselines

We selected baselines that belonged to different groups. Proximity-based methods
such as Adamic/Adar [33], the Jaccard coefficient [34], and preferential attachment [51]
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are fast, space-efficient, and require no additional training, but rely on strong assump-
tions which usually do not hold. Graph neural networks such as GAE [52], GAT [38],
GCN [37], and GIN [53] usually work well when we have a lot of data, computational
resources, and handcrafted features. Embedding methods SNoRe [36], node2vec [9], and
metapath2vec [40] first embed graph nodes into a matrix and then solve a given task with
a learner. We classified the existence of a link for this method using logistic regression as
it has good performance and interpretability. TransE [10] and RotatE [41] are knowledge
graph embedding methods that embed nodes as well as the relationships between them.
Lastly, we also used a spectral clustering [54] baseline. A more detailed description of these
baselines is the following:

Adamic/Adar [33]: An edge between nodes u and v is scored with ∑x∈N(u)∩N(v)
1

log |N(x)| ,
where N(x) is the neighborhood of node x. These scores are normalized and thresh-
olded to obtain a link prediction.

Jaccard coefficient [34]: An edge between nodes u and v is scored with |N(u)∩N(v)|
|N(u)∪N(v)| , where

N(u) is the neighborhood of node u. These scores are normalized and thresholded to
obtain the link prediction.

Preferential attachment [51]: An edge between nodes u and v is scored with |N(u)| ·
|N(v)|, where N(u) is the neighborhood of node u. These scores are normalized and
thresholded to obtain the link prediction.

GAE [52]: Generates a node representation with a variational graph autoencoder that uses
latent variables to learn an interpretable model.

GAT [38]: Includes the attention mechanism that helps learn the importance of neighboring
nodes. In our tests, we adapted the implementation from PyTorch Geometric [55].

GCN [37]: A method that introduced convolution to graph neural networks and revo-
lutionized the field. This approach aggregates feature information from the node’s
neighborhood. In our tests, we adapted the implementation from PyTorch Geomet-
ric [55].

GIN [53]: Learns a representation that can provably achieve the maximum discriminative
power. In our tests, we adapted the implementation from PyTorch Geometric [55].

SNoRe [36]: A node embedding algorithm that produces an interpretable embedding by
calculating the similarity between vectors generated by hashing random walks.

node2vec [9]: A node-embedding algorithm that learns a low-dimensional representa-
tion of nodes that maximizes the likelihood of neighborhood preservation using
random walks.

metapath2vec [40]: A node-embedding algorithm that learns a low-dimensional represen-
tation of nodes. The algorithm works similarly to node2vec but samples random
walks based on predetermined metapaths.

TransE [10]: Creates a knowledge graph embedding in such a way that the distance
between the embedding of the second node and the embedding of the first node
translated by the embedding of the relation is small.

RotatE [41]: Creates a knowledge graph embedding. This approach is similar to TransE,
but instead of translating the embedding of the first node by the embedding of the
relation, it rotates the embedding in a complex vector space.

Spectral clustering [54]: Generates a node embedding by using a nonlinear dimensionality
reduction method based on a spectral decomposition of the graph’s Laplacian matrix.

4.3. Evaluation

We evaluated the link prediction capabilities on transformed ontologies by using a
five-fold cross-validation. We created these folds as follows. We started with a directed
(multi)graph with multiple edges between each pair of nodes. We transformed this graph
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into a simple undirected graph and removed elements on the diagonal of the adjacency
matrix. Afterwards, we took the upper triangle of the adjacency matrix, put the elements
into an array, and shuffled them to create positive examples. Selecting only elements from
the upper triangle ensured a fair evaluation since each edge was chosen exactly once and
thus contained exactly one fold. For negative examples, we randomly sampled pairs of
nodes, tested if the edge between them existed, and made sure they did not repeat. We
used the same amount of positive and negative examples. We split positive and negative
examples into five equally sized parts.

We obtained the score of a baseline on the selected data set by taking the mean value
of the scores for each fold. A fold was scored by training the model with data from other
folds and using the ROC-AUC to obtain prediction scores for edges in that fold. While the
AUC assessed all decision thresholds and thus gave a score that might be too general [56],
we believe it sufficiently showed the performance of different baselines in our benchmark.
To make our experiments reproducible, we initialized the random number generators of
the data splitting algorithm and all baselines with the same, predetermined seed. This way,
data splits were the same for each baseline.

TransE and RotatE baselines needed two nodes, as well as the type of the edge between
them to predict the edge score. To bypass this, we generated predictions for each relation
and output the most probable one. We did this because if there was no edge between two
nodes, all predictions should have a low score, and otherwise, at least one should have a
high score (the one we selected). During the training of these baselines, we maintained the
information about the edge type.

5. Results

In this section we present the results of the link prediction and show an example of
the global explanations.

5.1. Link Prediction Results

The results of ontology completion using the methodology described in Section 3.2 are
presented in Table 3. From the results, we can observe two aspects that generally held for
all baselines: the variance of results fell with the number of edges, and baselines performed
significantly worse on ontologies where the ratio between nodes and edges was close to one.
We can also observe that on smaller ontologies, the embedding methods that did not rely
on random walks such as spectral embedding, TransE, and RotatE worked best, while on
bigger ones, SNoRe and TransE generally outperformed the others. By grouping baselines
of similar kinds together, we see that proximity-based approaches usually gave mediocre
performance, and graph neural networks worked well on most data sets but usually fell
just below the best performing approaches. Node-embedding algorithms based on random
walks generally performed great on all data sets and approaches designed for knowledge
graphs performed similarly to other embedding methods. Spectral embedding generally
performed better on smaller ontologies, the exceptions being the Marine Ontology. Overall,
the best performing baselines (based on the average rank) were SNoRe and TransE.

When comparing training and inference speed, our experiments showed that proximity-
based methods performed the fastest, while the knowledge graph embedding methods
usually the slowest. We found that the running time of smaller ontologies was less than a
second for (almost) any given baseline. On the three bigger ontologies, some proximity-
based methods achieved great results even though they were a lot faster; e.g., preferential
attachment on LKN. Overall, the slowest method was RotatE, which needed almost twice
as much time on the Gene Ontology as TransE, the second slowest. We found that graph
neural network methods performed similarly or a bit slower than SNoRe, while achieving
lower results overall.
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Table 3. Link prediction results based on the ROC-AUC metric (multiplied by 100 to improve readability) and average rank.

Dataset Baseline Marine Anatomy SCTO Emotions EHDAA2 FoodOn LKN GO Average Rank

Adamic 61.01 (±3.79) 51.05 (±0.90) 56.22 (±2.59) 50.47 (±0.68) 71.88 (±0.46) 50.91 (±0.06) 62.83 (±0.50) 65.39 (±0.13) 8.88
Jaccard 60.72 (±3.41) 51.02 (±0.92) 56.11 (±2.47) 50.47 (±0.68) 62.30 (±0.81) 50.91 (±0.06) 62.77 (±0.50) 64.95 (±0.11) 10.25

Prefferential 70.76 (±4.47) 52.31 (±4.30) 55.70 (±2.99) 52.34 (±3.32) 83.38 (±0.35) 47.54 (±0.46) 88.75 (±0.34) 69.53 (±0.16) 6.88
GAE 63.73 (±5.18) 57.44 (±4.67) 58.76 (±4.28) 58.59 (±4.49) 80.38 (±0.67) 53.02 (±0.43) 83.80 (±2.99) 68.16 (±0.40) 5.38
GAT 45.35 (±2.33) 54.50 (±3.63) 50.51 (±3.43) 51.98 (±1.36) 72.40 (±0.72) 54.26 (±1.39) 63.51 (±8.88) 77.75 (±0.21) 8.13
GCN 61.75 (±4.92) 59.03 (±5.27) 54.73 (±2.33) 56.51 (±5.46) 69.69 (±0.66) 57.09 (±0.57) 75.69 (±1.27) 75.66 (±0.88) 6.88
GIN 59.81 (±6.16) 59.47 (±4.62) 54.90 (±3.03) 54.69 (±3.81) 70.64 (±0.87) 58.11 (±0.18) 73.23 (±0.57) 77.19 (±0.19) 6.63

SNoRe 70.79 (±2.05) 57.59 (±2.45) 59.06 (±3.23) 60.47 (±2.83) 69.06 (±0.90) 64.82 (±0.16) 86.91 (±0.29) 79.82 (±0.19) 3.63
node2vec 71.01 (±5.07) 53.20 (±3.54) 52.25 (±2.10) 47.71 (±2.04) 74.51 (±0.83) 51.25 (±0.44) 86.47 (±0.36) 76.37 (±0.11) 7.50

metapath2vec 76.09 (±3.55) 57.36 (±5.61) 41.42 (±3.16) 49.20 (±4.92) 78.93 (±0.39) 57.68 (±0.53) 76.91 (±0.47) 53.76 (±0.22) 7.63
TransE 74.82 (±6.68) 56.23 (±3.16) 55.99 (±2.34) 54.16 (±1.24) 84.63 (±0.23) 64.56 (±1.41) 89.62 (±0.29) 75.20 (±0.54) 4.00
RotatE 75.98 (±5.20) 50.36 (±4.47) 55.69 (±2.99) 49.74 (±2.53) 71.75 (±0.90) 47.82 (±0.19) 88.68 (±0.38) 77.61 (±0.25) 7.50

Spectral 43.48 (±10.15) 59.62 (±5.26) 55.84 (±1.49) 61.50 (±2.56) 68.32 (±2.23) 49.27 (±3.57) 83.93 (±0.94) 61.07 (±1.92) 7.75
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5.2. Interpretation Examples

To further make our predictions useful, we interpreted them using the methodology
presented in Section 3.4. Figure 3 shows an example of the global explanation made for
the 2019 Gene Ontology. The term apoptotic process had the highest value, meaning that
when the neighborhood of two nodes were similar to the neighborhood of this node (a high
value in the embedding for this feature), it was more likely that there was an edge between
them. In a real-world application, the annotator should start with nodes that are in the
neighborhood of the apoptotic process node.

Figure 3. Example of a global explanation for the Gene ontology.

6. Discussion

The main goal of our approach was to simplify and accelerate the process of ontology
completion for annotators. We did this by transforming the ontology into a graph and
using link prediction approaches to score the edges. We also presented a methodology for
recommending the most probable missing (and possibly redundant) links. We empirically
evaluated the results of the link prediction on graphs obtained by transforming ontologies.
From Tables 2 and 3, we can see that the link prediction worked well on graphs with a high
number of average edges per node but badly on graphs whose structure resembled a tree
(i.e., average edges per node is close to one). Figure 4a,b show a visualization of the marine
and anatomy ontologies. We can see that the marine ontology was well connected through
most of the graph but had a lot of leaves, while the anatomy ontology was largely treelike,
especially at the bottom left of the figure.

(a) Marine ontology. (b) Anatomy ontology.
Figure 4. Visualization of the marine ontology (a) and anatomy ontology (b) using WebVOWL [57].

There are a few disadvantages to the proposed methodology. While the methodology
works well on ontologies where nodes are well connected, it performs poorly on the
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ones whose structure resembles a tree. Such ontologies probably do not contain enough
information to recommend new connections solely based on their structure. A possible
solution could be to transform the ontology into a knowledge graph, instead of a simple
undirected graph. Another disadvantage is that the approach needs a quadratic space to
store scores for each connection. This could prove problematic for large ontologies where
such an approach is needed even more due to the number of possible connections that
can easily be missed. In practice, this is not necessarily problematic since embeddings
are usually small enough to fit inside the memory and can be used to calculate scores for
only a subset of k nodes. This lowers the space complexity to |N| · k, which can easily fit
inside the memory and gives the same results. Since we work with simple graphs, our
methodology can only capture simple links and works under the assumption that two
nodes are connected if they are similar. This assumption is not necessarily true in ontologies
and knowledge graphs, where link can have different semantic meanings (as an example a
link might represent that two nodes are opposite). Lastly, link prediction assumes that the
distribution of links in the test set corresponds to the distribution of real missing links. For
ontologies, this assumption might not hold and consequently, results in the paper might
not be indicative of the true performance.

Note that this work primarily focused on outlining a scalable end-to-end methodology
for graph-based link prediction on ontologies. As such, there exist possible improvements
to many of the approaches adopted as part of the pipeline. For example, we demonstrated
how KG specific methods compared to methods that operated on simple graphs. However,
there exist even more specialized methods, such as ontology-specific embeddings [12–14].
These approaches are tailored to capture the higher expressivity that ontologies offer
compared to knowledge graphs and usually utilize lexical information (metadata) about
nodes and relations, which we ignored. Leveraging this additional information would
likely produce better results. Other choices could also be made when it comes to ontology
preprocessing and the ontology-to-graph conversion step. These include extending given
ontologies with related ones, ontology pruning, entailment reasoning before conversion,
and the choice of the ontology-to-graph conversion protocol itself.

Lastly, the presented methodology could help annotate larger ontologies where con-
nections can easily be missed. In practice, a web application can be set up, where the
annotator selects some nodes and gets recommended the most probable missing edges.

7. Conclusions

In this work, we proposed a graph-based machine learning approach for ontology
completion that is complementary to other domain-knowledge-based approaches. With
our approach, an annotator can quickly generate recommendations for the most probable
missing relations without the need to fine-tune their approach to the specific ontology.
We showed that the methodology yielded good results on larger ontologies when nodes
had a high average degree. The proposed approach could prove useful for annotators of
large ontologies or domain experts (e.g., biologists) to find the connections that are the
most likely to belong in the ontology. In further work, we plan to collaborate with domain
experts to further analyze the performance of our methodology in a real-life setting. We also
intend to study different approaches for preprocessing ontologies and representing them as
graphs, since this is one potential area where incorporating more of the available semantic
information into the model could help improve results. Finally, we wish to move our focus
to ontology-specific embeddings and other methods that utilize metadata about entities. We
suspect that taking full advantage of these additional features could significantly improve
the results and further explore the limits of the presented methodology.
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