
Signalling Network Construction for Modelling Plant
Defence Response
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Abstract

Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant
interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell
metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant
defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis
thaliana model plant. The initial signalling network topology was constructed manually by defining the representation
formalism, encoding the information from public databases and literature, and composing a pathway diagram. The
manually constructed network structure consists of 175 components and 387 reactions. In order to complement the
network topology with possibly missing relations, a new approach to automated information extraction from biological
literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the
literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be
visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response
vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in
137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions
were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram
of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics
data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation
workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for modelling other biological systems,
given that an adequate vocabulary is provided.
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Introduction

Plants and pathogens can enter into various relations that do not

necessarily damage the host plant. In resistant interaction the plant

cell efficiently perceives the pathogen signals, often through the

interaction between the resistance (R) protein and the pathogen

avirulence factor [1]. This interaction initiates a complex signal-

ling network, referred to as plant defence response or plant defence

signalling (PDS), orchestrating the activity of a multitude of

transcriptional regulators, resulting in massive changes of the gene

activity and extensive reprogramming of the cell metabolism. For

a successful defence the activation of plant response must be rapid,

efficient and targeted [2]. It was shown that salicylic acid (SA),

jasmonic acid (JA) and ethylene (ET) play a crucial role in

mediating the defence signalling responses in plants [3]. SA is

generally involved in the activation of the defence responses

against biotrophic and hemi-biotrophic pathogens, whereas

pathogens that kill the host and feed on the contents (necrotrophs)

and herbivorous insects are generally affected by JA/ET-mediated

defences [4–5]. Although most reports indicate an antagonistic

interaction between SA- and JA-dependent signalling, synergistic

interactions have been described as well [6–8]. ET often plays

a modulating role [9–11]. The interconnected PDS network

provides plants with an enormous regulatory potential to rapidly

adapt to their biotic environment and to utilise their limited

resources for growth and survival in a cost-efficient manner [12].

This is especially important when the plant is exposed to multiple

attackers [13].

Systems biology was proven to be successful in modelling

complex biological processes [14]. Before the analysis of the

network dynamics, one needs to understand the network structure

[15]. There are various representation formalisms that can be used

to represent a network topology, including the directed graphs

formalism as used in the Systems Biology Graphical Notation by

Le Novère et al. [16] or the modified EPN (mEPN) scheme

proposed by Raza et al. [17]. To construct the signalling network

topology, different information sources can be used, including
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pathway databases such as the KEGG Pathway [18], Reactome

[19] and BioCyc [20], integrated knowledge sources such as

ONDEX [21] and Biomine [22–23], and the scientific literature

itself. Given that most of human biological knowledge is still stored

only in the silos of biological literature, retrieving information from

the literature is required when building the signalling network

topology.

Scientific literature can be inspected manually or analysed by

natural language processing and information extraction tools.

There are numerous biological models which were manually

constructed based on an in-depth literature survey, such as the

macrophage activation model developed by Raza et al. [17] [24].

On the other hand, state-of-the-art technologies enable informa-

tion extraction from scientific texts in an automated way by means

of text processing techniques, based on the advances in the area of

natural language processing (NLP) of biology texts (see e.g., the

research advances of the emerging bioNLP community at http://

www.bionlp.org/). Similar to our work which involves the

extraction of a set of (component1, reaction, component2) triplets from

biology texts, several existing NLP tools enable the extraction of

interactions between the components (e.g., see the review by

Ananiadou et al. [25]). The most common NLP approaches can

be classified into three categories [26]: rule-based approaches,

machine-learning approaches and co-occurrence-based ap-

proaches. Examples of rule-based systems include GeneWays

[27], Chilibot [28], PLAN2L [29] and the approach proposed by

Ono et al. [30]. Combined methods, including co-occurrence-

based approaches, such as the one developed by Suiseki et al. [31]

and upgraded in the BioRAT system by Corney et al. [32], are less

appropriate for systems biology as the information retrieved is

partial and can therefore not be directly transformed into a graph

format used for signalling network modelling. In most systems, the

information is retrieved only from abstracts; an exception is

BioRAT which can process full texts, albeit using a quite general

vocabulary [32].

Most of the above mentioned approaches enable the users to

query the extracted information, but do not result in an explicit

network topology which can be visualised for simple inspection by

the biology experts. Exceptions are the Chilibot system by Chen

and Sharp [28], the approach by Blaschke et al. [33] and the

GeneWays system by Rzhetsky et al. [27]. These systems are

however not directly applicable in our context for the following

reasons. The Chillibot system enables the search for relations by

querying only a limited number of entities without supporting the

complete network topology construction. Blaschke et al. [33]

extract information only from abstracts. The closest to our work is

the GeneWays system [27] which enables the extraction, analysis,

visualisation and integration of molecular pathway data, but the

system is not publicly available.

When studying plant-pathogen interactions most of the research

has focused on individual interactions or subsets of the whole PDS

mechanism [34–35]. The first attempt to model PDS by

constructing a small Boolean network and performing numerical

simulations of PDS was proposed by Genoud et al. [36]. However,

this model is simple, containing 18 biological entities and 12

Boolean operators, whereas to fully describe complex biological

systems one needs to simultaneously address a large number of

components [14].

The goal of this work is to construct a topology of the PDS

model aimed to improve our understanding of this complex

signalling system and serve as a basis for dynamic modelling and

simulations. The dynamic PDS model can be useful in predicting

plant behaviour under conditions that have not yet been tested

experimentally. The intended use of the model is to generate

predictions of dynamic behaviour of selected variables by model

simulation under different conditions and to use the simulation

results to suggest new experiments. Simulations are faster than the

laboratory experiments that involve a time-consuming process of

creating mutant plants with modified gene expressions in

a particular pathway. Therefore, simulation results can help to

identify the key components for gene mutations in the PDS and

assist in further experimental research. Such an approach to

experiment design is considered more helpful than a simple

intuitive or experimental trial and error approach. In this study we

concentrated on model plant species Arabidopsis thaliana and its

interaction with viruses. At the level of signal perception we

focused on the Turnip Crinkle Virus (TCV) infection, while the

remaining PDS network was built from the available knowledge

on SA, JA and ET signalling and the crosstalk between these

pathways.

In our work, the PDS network topology was initially manually

constructed by defining the representation formalism, the vocab-

ulary of components and relations, as well as the actual signalling

network topology. Nevertheless, we later realised that this time-

consuming process should be best complemented by automated

triplet extraction from literature and network composition from

the extracted triplets of the form (component1, reaction, component2). In

addition to building this model topology, our motivation was also

to build a tool which can be utilised for automated model topology

construction in other domains.

Given that this work is relevant to scientists from different fields

(biology and computer science), Table 1 introduces the mapping of

the terms used in these two areas.

Results and Discussion

The topology of the PDS model, which is the final outcome of

this paper, was constructed in three steps: manual construction of

the PDS model topology, automated extraction of the network

structure from biological literature, followed by expert curation

and automated merging of these two networks. To efficiently

implement the second step we developed a new methodology and

a tool, named Bio3graph. The Bio3graph methodology is

implemented as a reusable workflow of natural language

processing components for information extraction from biological

literature in a format compatible with systems biology formalisms,

and workflow components for graph construction and visualisa-

tion.

Manually Constructed PDS Model Topology
When constructing the PDS model topology, we focused on

metabolic, signalling and gene regulation networks of SA, JA and

ET, as they have a crucial role in mediating the induced defence

responses in plants [3]. When identifying the relevant biological

Table 1. Mapping between biology and computer science
terminology used in this paper.

Biology Computer science

Biological system Computer model, Network

Pathway Sub-model, Sub-network

Molecule, Component Node, Vertex

Reaction, Interaction Relation, Edge, Arc, Link

doi:10.1371/journal.pone.0051822.t001
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reaction and component types, we followed the mEPN formalism

[17], slightly adapted to our requirements.

The following component and reaction types were identified.

Three groups of biological components were considered (see

Figure 1A): small compounds or metabolites (chorismate, jasmonic

acid, linoleic acid, etc.), genes/proteins (chorismate synthase,

PAD4, etc.) and complexes (JA-Ile/COI1/SCF complex, etc.).

The following reaction types (mEPN transition nodes) were

defined: protein-protein binding, protein phosphorylation, protein

dephosphorylation, protein activation, translocation, protein in-

hibition, gene expression, catalysis, gene-protein binding and gene

repressions (Figure 1B). To reduce the PDS network complexity,

degradation was not introduced as a separate reaction type.

However, if this regulatory function was specified in the literature

(such as, for example, COI1 binding to SCF complex resulting in

a degradation of JAZ repressors [37–39]), degradation was

modelled as a binding reaction.

To simplify manual topology construction, the components with

similar functions were grouped into families (level 2 in Figure 1A).

For example, node named JAZ represents the entire family of JAZ

proteins (JAZ1 - JAZ12). The reaction types were also grouped at

a higher level of abstraction into three groups (see level 1 in

Figure 1B): activation, binding and inhibition. Activation (A) denotes

all the reactions that follow the principle that, when two

components X and Y are directly involved in the production of

Z, the concentration of Z depends on the concentration of both

substrates (Figure 2A). Reactions such as protein activation,

phosphorylation of proteins, translocation, gene expression and

catalysis are grouped under activation. Binding (B) is defined as

a close interaction between at least two components resulting in

a functional active complex (Figure 2B). Binding is both the

formation of a protein-protein complex or the binding of a protein

to a DNA promoter region to regulate its gene expression. Binding

results in the activation or inhibition of a particular target, gene or

protein. Finally, Inhibition (I) is defined as a process in which one

component blocks the performance of another component

(Figure 2C). Inhibition groups all biological reactions such as

protein inhibition, gene repression and dephosphorylation of

proteins.

The abstraction to the three reaction types (activation, inhibition

and binding) at level 1 was necessary to make the PDS model useful

for further in silico experiments. Activation defines processes that

activate the next component (or raise its abundance). Even the

case of enzymatic reaction where the phosphorylation of a protein

results in its deactivation (and thus one would consider it as

inhibition) is still classified under activation in our work, since when

a concentration of a phosphorylated protein increases, then the

concentration of a product (which is inactive but phosphorylated

protein in this case) also increases. The same holds for the

translocation of components or for their degradation. When the

active form of the protein is its phosphorylated form, it is this node

that is further connected in the model. While in the case when

non-phosphorylated form of the protein performs certain function

and is thus considered to be the biologically active form of the

protein, this node is further connected with the other nodes.

In the manually constructed PDS model topology, the reaction

types were encoded according to level 1 shown in Figure 1B and

the components were encoded according to level 2 of Figure 1A.

The manually constructed PDS network topology consists of three

sub-models, each named by the central biological component

which is responsible for the defence response of Arabidopsis thaliana,

i.e., the SA, JA and ET sub-models. The SA sub-model contains

42 biological components and 27 reactions. The JA sub-model

contains 33 biological components and 20 biological reactions,

whereas the ET sub-model contains 24 biological components and

17 biological reactions. The manual PDS model topology,

including additional 4 crosstalk reactions, has in total 99 biological

components and 68 reactions. Out of 68 reactions of the manual

model, 19 were obtained from KEGG and AraCyc [40], while the

rest were found in the PubMed articles. The detailed numbers for

individual sub-models forming the manually constructed PDS

topology are shown in Table 2 and Table 3. Detailed descriptions

of all the components, reactions and corresponding data sources

are available in Supporting Information S1.

Modelling the topology at the level of component families (99

components at level 2 of the components taxonomy) is of

a manageable size for manually depicting and inspecting the

topology graph. However, to allow for in-depth inspection we

visualised the PDS model topology at the level of individual

components (175 components at level 3). The ultimate result of

manual PDS model topology construction is therefore an

expanded graph shown in Figure 3. In this edge-labelled graph

nodes represent the components and the edges represent the

reactions. This is a very complex graph consisting of 175 nodes

and 387 reactions, compared to the manually constructed PDS

topology consisting of 99 components and 68 reactions.

The graph of Figure 3 was achieved through automated

conversion of the level 2 PDS topology into the expanded level

3 PDS topology, visualised as an edge-labelled graph. This

expansion was performed according to the conversion principles

outlined in the Materials and Methods section and illustrated in

Figure 4. The expanded edge-labelled graph shown in Figure 3

includes 175 components (31 small compounds, 135 genes/

proteins and 9 complexes) and 387 reactions (231 activations, 49

bindings, 62 inhibitions and 45 produces reactions from binding

reactants to their products). This graph is provided in Supporting

Information S2 as an interactive graph visualised with the Biomine

graph visualisation engine. Provided that the Java plug-in for the

Web browser has been installed and enabled, the reader can open

and explore an interactive version of the Figure 3 at: http://ropot.

ijs.si/bio3graph/prepareVisualization.php?file = media/

supplement/models/Supplement_file_2.bmg.

Bio3graph Methodology and Implementation
Manual construction of the PDS model topology is a time-

consuming process, since only a limited amount of data was

gathered in the available biological databases. The study of a large

body of literature was therefore necessary in order to build a PDS

network structure according to the most recent findings. The

proposed Bio3graph methodology was developed with the purpose

of automated information extraction from biological literature,

aimed at complementing the manually developed PDS topology.

An integral part of this methodology is a domain specific

vocabulary that composed of two parts: a list of components and

a list of reactions together with their synonyms. The basis for the

vocabulary was the list of 175 components and three reaction types

defined when building the manual PDS model topology. The

components vocabulary consists of their short names, gene

identifiers and synonyms, as annotated in TAIR [41] and iHOP

[42]. As several components included in the manual PDS model

topology are still not fully identified they were labelled as X in the

PDS model topology and were not included in the vocabulary.

Moreover, in few cases one biological component is represented

with two nodes due to its compartmentalisation within the cell. For

example, as SA accumulates in both the chloroplast and the

cytosol, the manual model node SA which stands for SA in cytosol

and node SA-chl which stands for SA in chloroplast are

represented by the same component SA. In addition, most of

Signalling Network of Plant Defence Response
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the complexes were not included in the vocabulary except for the

SCF complex. Consequently, the list of 153 biological components

in the vocabulary (Supporting Information S3) contains fewer

components than the vocabulary of 175 components at level 3 of

Figure 1A used for manual PDS model topology construction.

Furthermore, the vocabulary for the reaction types was developed,

containing synonyms for the three reaction types: activation,

inhibition and binding. Separate files for each reaction in both the

passive and the active verb form are available in Supporting

Information S4.

The Bio3graph methodology consists of a series of text mining,

information extraction, graph construction and graph visualisation

steps, offering reusability, repeatability, and extension with

additional components (Figure 5A). The name of the methodol-

ogy, Bio3graph, reflects its main functionality: ‘Bio3’ stands for

biological triplet extraction and ‘graph’ stands for graph

construction from the extracted triplets.

Figure 1. Taxonomy of PDS components and reactions. A) In the taxonomy of PDS components there are four representation levels. The
highest level (level 0) is the most abstract level, while the lowest one (level 3) represents single molecules. B) In the taxonomy of PDS reactions
individual reactions are represented at the lowest level (level 2) and are grouped according to their functionality into three groups at level 1:
Activation (A), Binding (B) and Inhibition (I).
doi:10.1371/journal.pone.0051822.g001
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N The first (NLP) part of this methodology (referred to as the

triplet extraction algorithm below) concerns the extraction of

relations in the triplet form (subject, predicate, object) thus

searching for reactions between components as triplets

(component1, reaction, component2) from publicly available bi-

ological texts by employing the above described manually

developed vocabulary. Given the list of components, the

algorithm detects subject and object, while the predicate represents

the relation between the components as defined in the

vocabulary of reaction types. For activation reaction type, an

example triplet is (PAD4, activates, EDS5).

N The second part of this methodology concerns graph

construction from the extracted triplets, and graph visualisa-

tion.

Details of the Bio3graph methodology and its implementation

are described in the Materials and Methods section. The

methodology is implemented as a workflow in the Orange4WS

[43] workflow construction and execution environment

(Figure 5B). The input to the Bio3graph workflow is the collection

of biological full text articles, obtained through a user-defined

keyword-based search of the PubMed Central database, accessible

at www.ncbi.nlm.nih.gov/pmc/. The output of the workflow is

a network of triplets, automatically extracted from the articles. As

an illustration, the network consisting of all triplets extracted from

the literature (consisting of 129 components and 1,132 reactions) is

shown in Figure 5C and is made available for interactive graph

inspection in Supporting Information S5. The triplet extraction

algorithm found relations between 129 out of 153 components

listed in the vocabulary. If the Java plug-in for the Web browser is

installed and enabled, the reader can open and explore an

interactive version of the Figure 5C at: http://ropot.ijs.si/

bio3graph/prepareVisualization.php?file = media/supplement/

models/Supplement_file_5.bmg.

Evaluation of the Bio3graph Results
The performance of Bio3graph was evaluated on a corpus of

50 full length articles with manually annotated correct triplets.

The performance of information extraction is evaluated by

calculating the precision and recall as follows: Recall =TP/(TP+TN)
and Precision =TP/(TP+FP), where TP are the true positives (the

number of triplets correctly extracted by Bio3graph), TN are true

negatives, FP are false positives, TP+TN is the number of manually

identified correct triplets, and TP+FP is the number of triplets

extracted by Bio3graph regardless if they are correct or not.

The results achieved by Bio3graph on the annotated corpus are

presented in Table 4 showing average precision of 42.6% and

recall of 62.3%. The annotated texts, the simplified vocabulary,

together with the Bio3graph results and a detailed summary for

Figure 2. PDS reaction types. There are three groups of reactions. A) Activation (A) denotes all the reactions directly involving two components X
and Y in the production of Z, where the concentration Z depends on the concentration of both substrates. B) Binding (B) results in the formation of
a protein-protein complex or in the binding of a protein to a DNA promoter region to regulate its gene expression. C) Inhibition (I) is a process in
which one component blocks the performance of another component.
doi:10.1371/journal.pone.0051822.g002

Table 2. Summary of all component types of the manually
constructed SA, JA and ET sub-models represented at level 2
of the PDS taxonomy of Figure 1A.

Component
types SA JA ET Total

Small compounds 13 12 6 31

Genes/proteins 27 17 15 59

Complexes 2 4 3 9

All components 42 33 24 99

doi:10.1371/journal.pone.0051822.t002

Table 3. Summary of all reaction types of the manually
constructed SA, JA and ET sub-models, including the crosstalk
connections, represented at level 1 of the PDS taxonomy of
Figure 1B.

Reaction
types SA JA ET Crosstalk Total

Activation 24 16 11 1 52

Binding 1 3 2 0 6

Inhibition 2 1 4 3 10

All reactions 27 20 17 4 68

doi:10.1371/journal.pone.0051822.t003

Signalling Network of Plant Defence Response
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each of the 50 papers are available in Supporting Information

S6.

Several systems for automated information extraction have

already been developed reporting remarkable precision and recall

results. Most of them extract the protein-protein interactions from

text abstracts or from a filtered text corpus, where only sentences

with keywords were considered. For example, the Chilibot system

reports a precision from 74.4% for inhibitory relations to 79.1%

for the general protein-protein interaction, with a recall of 91.2%.

Suiseki has a recall of 70% with the accuracy around 80% for the

best defined reactions. The methodology developed by Ono et al.

[30] extracted protein-protein interactions for yeast organism with

the precision range from 90.2% for the ‘associate’ relation up to

96.1% for the relation ‘interact’ and the recall for the same

organism in the range from 80.9% for the ‘associate’ relation up to

89.1% for the ‘interact’ relation. In the same study the recall for

extracting a protein-protein interaction in E. coli organism ranges

from 77.3% for the ‘associate’ relation to 85.2% for the ‘complex’

relation.

The full-length papers have generally a more complex sentence

structures than the abstracts. Therefore, when processing full texts

both the precision and the recall are lower than in abstract-based

relation extraction systems. The only system to which we were able

to compare Bio3graph was BioRAT. The BioRAT system

achieved a precision of 51.25% and a recall of 43.6%. The

average precision of our system is 42.6% which is lower than the

precision of BioRAT. On the other hand, recall of Bio3graph is

62.3% which is almost 20% higher than the recall of the BioRAT

system. Since Bio3graph was validated on the whole articles and

not only the abstracts, we were satisfied with a recall of 62.3%.

In Bio3graph we chose to achieve higher recall at the cost of

lower precision, given that the aim of developing Bio3graph was to

Figure 3. Manually constructed PDS model topology visualised as an edge-labelled graph. This graph, consisting of 175 nodes and 387
edges, is provided in Supporting Information S2 as an interactive graph visualised with the Biomine graph visualisation engine, enabling its closer
inspection by zooming into its subparts and rearranging the node and the arc positions in the 2D space. The graph is organised into SA, JA and ET
pathways with their crosstalk connections. The node borders of the main pathway components SA, JA and ET are coloured with red.
doi:10.1371/journal.pone.0051822.g003

Figure 4. Principle of decomposing families of components by decoupling of reactions. The example shown in this figure presents two
conversion types illustrating the transformation from the biological reaction representation into the edge-labelled graph representation. First, the
linolenic acid node is connected to the reaction product 13-HPT directly with an arc labelled as A. Second, the decomposing of LOX node is done
from the protein family level (level 2) to the single protein level (level 3). The final result of the conversion is a graph with 8 nodes and 7 edges.
doi:10.1371/journal.pone.0051822.g004

Signalling Network of Plant Defence Response
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add to the manually constructed topology the interactions that

were missed when manually gathering the information. This

means that when used in a real setting, this requires manual

reviewing of more false positive triplets, instead of losing some

information. As a remark, 62.3% recall does not necessarily mean

that we have not detected 37.7% of the interactions, given that the

interactions between components are often mentioned more than

once in a single paper (in the abstract, results and discussion). It is

very likely that if we did not extract one triplet from one part of the

article we may still find it in the other parts of the article.

The analysis of non-detected triplets shows that Bio3graph does

not cover some sentence constructions. One of these constructions

is: ‘‘EDS1 protein activates not only EDS5, but also activates SA’’.

In this sentence there are two triplets (EDS1, activates, EDS5) and

(EDS1, activates, SA). However, if, for example, EDS1 is not in the

vocabulary of compounds, and the other two compounds EDS5

Figure 5. Overview of the Bio3graph methodology, its implementation and a sample output. A) Schematic representation of the
Bio3graph methodology. Text processing is performed in a workflow according to the boxes in the schematic diagram resulting in a network of
(component1, reaction, component2) triplets. B) Bio3graph as a workflow implemented in Orange4WS. C) The triplet network extracted and composed
by Bio3graph. The output network (consisting of 129 components and 1,132 reactions) is visualised with the Biomine visualizer and made available in
Supporting Information S5.
doi:10.1371/journal.pone.0051822.g005

Table 4. Recall and precision analysis for 50 full-length
papers.

Reaction
types TP TP+TN TP+FP Precision (%) Recall (%)

Activation 142 223 311 45.7 63.7

Inhibition 47 80 134 35.1 58.8

Binding 6 9 13 46.2 66.7

All reactions 195 312 458 42.6 62.3

Recall = TP/(TP+TN) and Precision = TP/(TP+FP), where TP are the true positives,
TN the true negatives, and FP the false positives. Recall is the percentage of the
retrieved true positive relations from the whole set of true relations. Precision is
the percentage of retrieved true positive relations from the whole set of
retrieved relations.
doi:10.1371/journal.pone.0051822.t004

Signalling Network of Plant Defence Response
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and SA are in the vocabulary, then the algorithm would find the

following triplet (EDS5, activates, SA), which is a false positive.

We have also noticed that some triplets were not detected due to

incorrect sentence parsing by the GENIA tagger. For example, in

the sentence ‘‘Expression of NPR1 and defence genes was induced

by harpin to higher levels, while only MeJA activated COI1.’’ the

triplet (MeJA, activates, COI1) cannot be extracted, because the

word ‘‘activated’’ was labelled as a noun phrase instead as a verb

phrase.

PDS Model Topology Extracted by Bio3graph from
Biological Literature

Using the following set of keywords: ‘‘Arabidopsis thaliana’’

AND {‘‘defence’’ OR ‘‘defense’’ OR ‘‘ethylene’’ OR ‘‘jasmonate’’

OR ‘‘jasmonic acid’’ OR ‘‘salicylate’’ OR ‘‘salicylic acid’’ OR

‘‘pathogen’’ OR ‘‘virus’’}, 9,586 relevant PubMed Central articles

were retrieved on April 4, 2011. PubMed Central database was

used as it enabled us to gather freely available full text articles and

not only their abstracts. These articles were taken as a ground

information corpus from which the triplets were extracted.

Keywords were selected to obtain the most of the PDS related

literature with the emphasis on the JA, ET and SA signalling

pathways. Since PubMed Central is a medically oriented database

and does not cover some of plant sciences related journals, it is

possible that some PDS related articles were not retrieved.

Nevertheless, PubMed Central represents the largest source of

full text scientific papers and is therefore a relevant basis for our

work.

The result of using the Bio3graph triplet extraction algorithm is

a set of 1,132 unique triplets, identified from the total of 4,204

extracted triplets. To evaluate the correctness of the extracted

triplets, we have manually inspected the sentences from which the

triplets were extracted. Since some of the 1,132 triplets appear in

several sentences, we have defined the term correct triplet in the

following way: If the triplet is a true positive in at least one

sentence of the whole text corpus, it is considered to be a correct

triplet. The graph constructed from 377 correct triplets is available

in Supporting Information S7. The reader can open and explore

an interactive version of the Supporting Information S7 at: http://

ropot.ijs.si/bio3graph/prepareVisualization.php?file = media/

supplement/models/Supplement_file_7.bmg, if the Java plug-in

for the Web browser has been installed and enabled.

Most of the relations found by the triplet extraction algorithm

are the ones related to activation (out of 1,132 unique triplets in

total, 736 are the activation reactions between the components).

There are fewer inhibition relations and very few relations of binding

type. We have already identified most of these relations when

manually constructing the PDS model topology, while some of

them are new. Some of the extracted triplets represent direct

interactions between the components (i.e., relations between direct

neighbours in the graph), while others are indirect (i.e., paths

composed of a set of direct relations). A direct interaction is

defined as the transduction of the signal between two components

without an additional in-between component. For example, the

binding of ET to its receptor ETR1 is a direct interaction while the

activation of ERF proteins by ET through a signalling cascade is

defined as an indirect interaction.

Table 5 gives a summary of the automatically extracted

relations between the biological components, emphasizing the

numbers of newly discovered direct links (last column of Table 5)

discovered by the Bio3graph triplet extraction algorithm. Details

of the evaluation for each extracted triplet are provided in

Supporting Information S8. The obtained new direct links are

visualised in Figure 6, while all the correct new (direct and indirect)

links discovered by the triplet extraction algorithm are available in

Supporting Information S9. The reader can open and explore an

interactive version of the Supporting Information S9 at: http://

ropot.ijs.si/bio3graph/prepareVisualization.php?file = media/

supplement/models/Supplement_file_9.bmg, if Java plug-in for

the Web browser has been installed and enabled.

Each of the subclasses of correct triplets has its own significance

with respect to the PDS model topology. With correct manual

direct links we confirmed the applicability of the Bio3graph

approach. More importantly, reactions which have not been

identified when building the manual PDS model topology (i.e.,

new direct and indirect links) extend our knowledge on the topic

and are therefore of high importance. Indirect relations serve as

a database of signal transduction knowledge. Depending on the

experimental setup in which these interactions were observed,

some of the relations can be redundant. In a biological experiment

a hormone can be applied to the plant in order to investigate its

effect on the genes of the interest. For example JA can be applied

(in the form of MeJA) to the plant and the expression of

lipoxygenase (LOX) or oxide synthase (AOS) genes can be

monitored in comparison with the plants that have not been

pretreated. If both genes show equal increase in the gene

expression level, two triplets (JA, activates, LOX) and (JA, activates,

AOS) can show redundancy. If AOS is also activated by LOX,

increased level of AOS can be due to the JA-induced activation of

LOX and not necessarily due to its activation by JA. In this case

a more detailed manual inspection and biological validation has to

be performed prior to the incorporation of the links into the PDS

model and its simulation.

Using Bio3graph we discovered 14 new direct links, out of

which two were known to the biological experts but not included

in the manual model as we limited ourselves to the most important

elements of plant defence signalling when building the manual

model ((SAG_metabolite, activates, SA_metabolite) and (NIMIN1_protein,

inhibits, NPR1_protein)). In the former, only the inverse reaction was

included, i.e., (SA_metabolite, activates, SAG_metabolite), while in the

later, the interaction in the manual model was specified as binding

instead of inhibition, which has the same biological function

(diminishing the concentration of active NPR1 through binding to

NIMIN1). An interesting result is also the identification of

components connected with two relations, from which one is

a subset of the other. This is the case of ETHYLENE

INSENSITIVE 3 (EIN3) and ISOCHORISMATE SYNTHASE

1 (ICS1) where the components are connected with two relations:

binding (B) and inhibition (I) (Figure 6). Biologically this is interpreted

as binding of EIN3 to ICS1 causes its inactivation. Biological

relevance of the most interesting new direct links is investigated in

more detail below.

EIN3 and ETHYLENE INSENSITIVE 3-LIKE1 (EIL1) have

been mostly studied as regulators of the ET signalling pathway. In

addition to the involvement in the signal transduction of ET-

mediated response, Bio3Graph search identified that EIN3 and

EIL1 are negative regulators of ICS1. In the paper from which

these triplets were extracted it was indeed shown that these two

transcription factors inhibit gene expression of ICS1, which is one

of the crucial enzymes involved in the SA biosynthesis. The

reduction of SA biosynthesis results in a repression SA-mediated

signal transduction which is highly-induced upon a pathogen

attack [44]. This study was performed on Arabidopsis plants

infected with P. syringae bacteria. We did not consider this relation

when manually building the signalling network topology, as such

links between hormone signalling modules are especially difficult

for researchers to explicate. Due to automated knowledge
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extraction, such new ‘out of the box’ thinking results in the

discovery of additional knowledge.

Another set of new relations identified by Bio3Graph was

related to the WRKY family of transcription factors and Mitogen-

activated protein kinases (MAPKs or MPKs). Both are relatively

large gene families with very specific functions of individual family

members. Therefore they represent a substantial challenge in

manual PDS network construction and the information related to

Figure 6. New direct PDS relations extracted from the biological literature. The new direct links result from the Bio3graph processing of
9,586 articles. Bio3graph extracted 14 new direct relations between the components which were not identified in the manually built PDS model
topology. Note that two of these triplets are trivial (SAG_metabolite, activates, SA_metabolite) and (NIMIN1_protein, inhibits, NPR1_protein).
doi:10.1371/journal.pone.0051822.g006

Table 5. Summary of PDS related triplets extracted by the Bio3graph triplet extraction algorithm from 9,586 PubMed Central
articles.

Reaction types Total triplets Incorrect triplets Correct triplets
Manual indirect
links

Manual direct
links

New indirect
links New direct links

Activation 736 446 290 158 41 86 5

Inhibition 352 289 63 18 1 37 7

Binding 44 20 24 20 2 0 2

All reactions 1,132 755 377 196 44 123 14

In total, 1,132 triplets were extracted, out of which 377 are correct. Out of these, 14 are newly discovered direct relations and 123 are indirect, while 44 direct and 196
indirect connections were already included in the manual PDS model topology of Figure 3.
doi:10.1371/journal.pone.0051822.t005
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PDS was overlooked by the biology experts. Indeed, Bio3Graph

identified several missing relations. WRKY70 is known to repress

the ISOCHORISMATE SYNTHASE 1, SID2 (also known as

ICS1) transcription, although detailed inspection of the manu-

script showed that it is still not clear whether it directly binds to the

SID2 promoter or not [44]. The WRKY70 transcription factor

also suppresses the MeJA-induced expression of PDF1.2 [45]

showing its importance in a cross-pathway communication.

MAPKs are signal transduction components which play an

important role in plant responses to biotic stress. Their perfor-

mance is cascade-mediated via a complex phosphorelay mecha-

nism. MPK3, MPK4 and MPK6 are the best characterized

MAPKs in Arabidopsis [46] [34] and, were thus incorporated in

the PDS network. With Bio3graph a new relation was identified in

the literature. A modelling approach has suggested an activation

reaction between EIN3 and MPK6 [47]. In addition, wet-lab

experiments have shown that both MPK3 and MPK6 stabilize

EIN3 through phosphorylation of threonine 174 [48]. MPK3 and

MPK6 are therefore both positive regulators of EIN3.

Another interesting new relation identified by Bio3Graph is the

inhibition of AAO4 by Cu2+. Ibdah et al. [49] have shown that

the high concentration of Cu2+ reduces the enzymatic activity of

AAO4 for 95%. This fine-tuned activation of AAO4 activity is also

an additional reaction revealed by our PDS model topology that

could be essential in further kinetic studies.

The Merged PDS Model Topology
The manual PDS model topology and the new triplets extracted

from the literature were merged into a single graph consisting of

175 components and 524 reactions. This graph, visualised with the

Biomine visualisation engine, is shown in Figure 7A. The merged

PDS model topology is available for interactive inspection in

Supporting Information S10. The reader can open and explore an

interactive version of the Figure 7A at: http://ropot.ijs.si/

bio3graph/prepareVisualization.php?file = media/supplement/

models/Supplement_file_10.bmg, provided that the Java plug-in

for the Web browser has been installed and enabled. Bio3graph

found 44 direct relations from a total of 387 from the manually

built PDS model topology (Figure 7B). A reason for this relatively

low overlap is that Bio3graph does not process tables or figure

images, out of which the information for the manual PDS model

topology was also constructed. Moreover, as Bio3graph processes

only one sentence at a time, it does not deal with co-reference.

Considering co-reference, which could have further improved the

results of triplet extraction, is a possible direction of our further

research.

The merged PDS model topology thus represents a faithful

representation of current knowledge on a topology of plant

defence signalling with the emphasis on plant-virus interaction.

More specifically, we have chosen to base our model on resistant

interaction between Arabidopsis and virus TCV. In Arabidopsis,

the resistance to TCV is mediated by the R protein HRT [49],

which subsequently induces the signalling cascade leading to plant

defence response which limits viral spread and multiplication.

Activation of HRT protein stimulates accumulation of SA [50].

SA in Arabidopsis thaliana is synthesized via two pathways both

requiring chorismate as a substrate. One pathway goes through

a subset of enzymatic reactions initially catalysed by phenylalanine

ammonia lyase (PAL) and its homologues (PAL 1,2,3,4). Most of

the SA is however synthesized via reaction, catalysed by

isochorismate synthase (ICS) and isochorismate pyruvate lyase

(IPL) [51–52]. Arabidopsis encodes two ICS enzymes, ICS1 and

ICS2 [51] [53]. SA accumulation results in the monomerization

and the activation of NPR1, which consequently triggers the

activation of the SA dependant PR proteins [54–55] [2].

SA signalling is fine-tuned with negative and positive feedback

loops. A negative feedback loop slows down a signalling process,

while the positive feedback loop has a tendency to accelerate it.

The final cascade product regulates its own concentration by

activating or inhibiting the genes involved in its biosynthesis.

NPR1 inhibits the expression of PAD4 and EDS1 [56], two genes

involved in the production of SA and consequently, diminishing its

own production thus forming a negative feedback loop.

The main biosynthetic pathway for JA is oxylipin pathway,

linolenic acid being a substrate for JA biosynthesis [35]. JA can be

derivatised to different amino acid conjugates. Jasmonyl-isoleucine

(JA-Ile) is the conjugate whose biological activity has been proven

[57]. In the presence of JA-Ile, the SCF complex, composed of

a SKP1 (S-phase kinase-associated protein 1), cullin, and a RING

finger protein (RBX1/HRT1/ROC1), binds to F-box protein

Coronatine insensitive1 (COI1). SCFCOI1 ubiquitine ligase binds

to JAZ and presumably ubiquitinases it [35] [58–59] [37]. When

ubiquitinated JAZ repressors are targeted for degradation in 26S

proteasome, they result in the de-repression of the transcription

factors such as the MYC2 and other beta helix-loop-helix

transcription factors [60] which activate JA-dependant PR gene

expression [2].

L-methionine is transformed by S-adenosyl-L-methionine

(SAM), 1-amino-cyclopropane-1-carboxylate synthase (ACS) and

ACC oxidase (ACO), to form a gaseous hormone ET [61]. When

synthesized, ET binds to its receptors. There are five membrane-

located receptors identified in Arabidopsis (ETR1, ETR2, EIN4,

ERS1 and ERS2) [48] [62]. Binding of ET to its receptor leads to

CTR1 deactivation, which finally results in downstream activation

of EIN3/EIL1/EIL2 transcription factors [48] [63]. CTR1 levels

are also regulated by ubiquitination and 26S proteasome

degradation via EBF1/EBF2 - Skp- Cullin-F-box (SCF) E3 ligase

complex [62]. The concentration has to be well regulated, since

they are the crucial positive regulators of ET signalling.

SA, JA and ET pathways do not function independently, but are

rather interconnected by agonistic and antagonistic interactions to

fine-tune the plant defence response. These regulations are very

complex and often more than one component is involved in the

signal transduction [61] [13] [64]. When Bio3graph was applied to

enhance the manually built PDS model topology, most of the

newly-found relations were characterized as ‘indirect’. Most of

them indicate a cross-talk between the sub-pathways or a feed-

back regulation of the crucial components in the model. However,

some new Bio3graph links are direct. A cross-talk link connects ET

and SA sub-pathways: MPK3 and MPK6 activate ET signalling

pathway transcription factor EIN3 which negatively regulates SA

biosynthesis trough binding to ICS1 (Figure 6). Using dynamic

modelling approaches the SA concentration changes can be

simulated in different model topologies. If we consider only the

manually built model only NPR1 and MPK4 affect negatively the

SA concentration. Removing these two proteins from the model

by in silico knock-out results in an infinite rise of SA. We assume

that in a real biological experiment with NPR1/MPK4 double

mutant the SA levels would drop thus implying the other negative

regulators of SA biosynthesis are involved. Adding the cross-talk

link with ET sub-pathway found by Bio3graph could improve the

model to more accurately predict SA concentration changes in

such knock-out plants.

Bio3graph is used also for extracting detailed information about

certain protein family. Several enzymes that are members of the

same family can be involved in one biological reaction. For

example, according to AraCyc there are five ACC oxidases
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(ACO1, ACO2, ACO4, ACO and ACO-like) catalysing the last

step of biosynthesis of ET [65]. Evidence for their 1-amino-

cyclopropane-1-carboxylic acid oxidase activity can be obtained

either from the experimental data or from a computational

prediction, which is usually sequence-based. With Bio3graph we

were able to extract the data for each of the family members,

compare the experiments and evaluate their importance for the

model. In Figure 7C one can see that Bio3graph identified all

ACO family members, apart from the ACO-like, activating ET

production. When manually checking the papers we established

which relations represent biochemical knowledge and which

interactions rely only on sequence homology data. Such detailed

information can be used in further dynamic modelling experi-

ments.

As shown in Figure 7C five proteins belonging to ACO protein

family have manually assigned activation links in our model.

Triplet extraction tool Bio3graph has confirmed four out of five

activation links. The activation link between the ACO-like and ET

originates from the manual construction process of the structure

(after expanding from level 2 to level 3– see Figure 1A) and has not

been confirmed by Bio3graph. ACO-like therefore either has

a different function than other members of this protein family or it

was not explicitly determined as ET biosynthetic enzyme in the

literature surveyed by Bio3graph. To determine the real function

of ACO-like biological experiments should be conducted using

methods that reduce or increase the expression of genes encoding

ACO-like. For example, reducing ET concentration in Arabidop-

sis knock-out plants would confirm the involvement of ACO-like

in ET biosynthesis.

Indirect links found by Bio3graph can also guide researchers to

form new hypotheses and perform experiments guided by model

predictions. For example, indirect link (SA, activates, EDS1) (see

Supporting Information S10 for a detailed view) means that it is

not precisely known whether SA directly activates EDS1 or it

activates some of the biosynthesis components upstream from

EDS1 which results also in activation of EDS1. The exact nature

of such activation can be checked and tested in the laboratory

experiments. Nevertheless, this link provides a first clue about the

existence of a positive feedback loop in the SA pathway.

Conclusion
This paper presents the PDS network topology, developed by

combining a manual and an automated topology construction

Figure 7. The final PDS model topology constructed by merging the manual and the Bio3graph networks. A) Edge-labelled graph
representing the merged model. B) The Venn diagram. The relations in the manual model are all direct and are coloured in red. The intersection
between the model relations and the correct triplets extracted from the literature is presented with black colour. From the correct new triplets, the
indirect relations are represented with green and the direct ones with blue colour. C) Zoom-in into a part of the merged PDS topology. The links from
the manual model are shown in red, while the green coloured relations represent the extracted new indirect links, blue arcs show new direct links and
the black arcs show the intersection between the manual model and the correct triplets extracted with Bio3graph.
doi:10.1371/journal.pone.0051822.g007
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approach. This topology is, to our knowledge, the first of this scale,

comprising most of the information available on interactions

between the components of SA, JA and ET pathways.

The manual PDS topology construction approach was up-

graded with a new Bio3graph approach which combines semi-

automated extraction of new relations between the biological

components with a graph construction and visualisation approach.

The main advantage of our method is its effectiveness and

reusability. We have implemented the basic vocabulary and

accomplished valuable results in terms of precision and recall. Its

overall design allows the output of Bio3graph to be easily

transferred to standard systems biology modelling formalisms.

The presented approach may appear labour-intensive, as we

have started by manually building the initial network structure,

which required substantial human expert involvement through

time-consuming acquisition and analysis of available information

in the databases and literature. Note, however, that the developed

Bio3graph information extraction tool can be used from scratch,

without first manually building the network structure. Such an

approach would be less labour-intensive, as automatic information

extraction algorithms examine papers on behalf of the researchers

and save experts’ time from examining the full-length documents.

These algorithms aim to be research assistant tools for human

experts, but they can never replace human expertise. Nevertheless,

these tools always require a certain amount of effort for the

manual setup of the tool (vocabulary definition like in our work, or

template definition like in BioRAT [32]). Also, when the expert

wants to apply the information extraction algorithm to a new field

of interest, after automatic generation of results, the expert still has

to check all the results manually to assure their correctness since

there is no algorithm with absolute accuracy.

The presented approach may also appear error-prone, achiev-

ing 62.3% recall and 42.6% precision when applied on full-length

articles. However, especially in the natural language processing

field, the precision and recall of a specific algorithm can vary a lot

depending on the text corpus that is processed [32]. For example,

as Corney et al. report [32], the BioRAT system has a recall of

20.31% with 55.07% precision when applied to scientific abstracts,

while the same algorithm achieves 43.6% recall and 51.25%

precision on full-length papers. We have achieved comparable

results, but have traded-off lower precision for a higher recall, as

high recall is needed to extract as many new relations between

biological components as possible. The advantage of our system is

its public availability and simple reuse, as Bio3graph is available as

a repeatable workflow in the Orange4WS publicly available data

mining environment. Most importantly, by employing a different

vocabulary, Bio3graph can be reused to extract the network

structure of other biological mechanisms.

Some graphical interfaces allow manual removal of the

incorrect connections from the graph [66]. Similarly, in future

work we plan to add this feature to upgrade the BioMine engine

[23]. We also plan to use the developed Bio3Graph approach to

upgrade the BioMine engine with an automated step of triplet

extraction from literature and automated construction of the initial

BioMine network, when building the BioMine database for a new

domain such as plant biology, for which this resource has not yet

been developed. Moreover, the PDS model topology will serve as

a baseline for further research in the area of plant-pathogen

interactions. It can be easily transformed into formalisms enabling

dynamic modelling, and through simulations and predictions

identification of critical components in plant defence signalling can

be achieved more efficiently.

We expect that the Bio3graph tool will be used for building

topologies of other biological processes as well. With the possibility

to manually adjust the vocabulary of components and their

interactions, the Bio3graph approach can be used for in-depth

literature exploration on a selected topic. The same approach can

be also used for incremental topology updating based on triplet

extraction from recent literature, as it is time consuming and

sometimes impossible for the scientists to track the newest findings

in the literature. Even though this approach can not completely

substitute the experts, it can significantly speed up knowledge

elicitation from the literature. The presented results indicate the

usefulness of the proposed approach but also the necessity to

further improve the quality of information extraction.

Materials and Methods

Manual Model Topology Construction
The literature inspected for the manual model construction was

selected by the domain experts. We have focused on scientific

papers related to the PDS field. Ideally, a citation in one review

paper or in two scientific papers was required for the inclusion of

information into the pathway diagram. If the information was

available in one publication only, we critically assessed the

publication quality (e.g. high impact factor, author’s relevance in

the field) before incorporating this information into the model.

The information about the biosynthetic pathways and other

available data was acquired from different databases such as

KEGG [18] and TAIR [41]. KEGG was used as a backbone for

building the metabolic pathways, the biosynthesis of the hormones

and the main reactions involved in this processes. Additional

reactions and genes involved were implemented according to the

Aracyc database. TAIR provided gene information, and synonym

names were acquired from iHOP [42] and TAIR [41]. A list of all

the topology interactions was compiled, including the details of the

information sources, and is available in Supporting Information

S1.

Members of component families were selected according to

their function. The family members were joined under a common

family name if more than one component (family member) could

be involved in the listed reactions. The genes involved in hormone

biosynthesis are usually well described and implemented in the

reaction scheme of different databases such as plant metabolic

network. Therefore the component family members of bio-

synthetic pathways were defined as in these databases. The other

relations were manually acquired either from the studied literature

(such as ET receptors) or from the TAIR database.

To avoid visual overload, all the components in the PDS model

topology of Figure 3 are represented with the same shape and

colour, specifying the component type only with text in the graph

node. The reaction types (edges) in the expanded topology are

represented by the first capital letters of their names: A (activation), I

(inhibition), B (binding), P (produces).

Principled Conversion of the PDS Topology to the Edge-
labelled Graph Representation

As the triplet extraction method for automatically extracting

knowledge from the literature results in a graph consisting of

(component1, reaction, component2) triplets, and as our aim was to

enhance the manually constructed PDS model topology with

automatically extracted triplets, we had to convert the manually

constructed PDS model topology into the compatible format. This

is the edge-labelled directed graph format, where nodes represent

the components and edges represent the reactions. This conver-

sion was performed by decoupling the reaction of two components

resulting in a joint product, into two relations, one for each
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component connected to the product. Details of this conversion

are presented in Figure 8.

In addition, the decomposition of the nodes which represent

a component family into individual nodes was needed in order to

ensure the compatibility of the manually constructed topology and

the automatically extracted graph consisting of (component1, reaction,

component2) triplets. Reaction decoupling into separate relations is

illustrated in Figure 4. The members of the family were selected

from the plant databases, Aracyc and TAIR and additional topic-

related papers in the way that most of the functional analogues

were listed. The list of the PDS model topology components for

which decoupling was performed is available in Supporting

Information S11.

Bio3graph Methodology
For natural language processing we employed functions from

the Natural Language Toolkit (NLTK) library [67]. Additionally,

the GENIA tagger [68] for biological domains was used to

perform part-of-speech tagging and shallow parsing. The data

were extracted from PubMed Central using web-service enabled

access. Parts of the Bio3graph methodology, presented in Figure 5,

are described in more detail below.

Text pre-processing. The full texts of scientific articles for

biology domain are accessible in the publicly-available databases,

such as PubMed Central. The journal articles in the form of raw

text need to be pre-processed. For example, in order to avoid

a false detection of et (ethylene) component by the algorithm, the

phrase ‘‘et al.’’ was transformed into ‘‘ETAL.’’.

Sentence splitting. When the raw text is obtained with the

previous module, the sentences are separated into lines. This step

is necessary because the input into the Genia tagger module

requires one sentence per line in the text file.

Tokenization. This is the process of splitting a sentence into

words, phrases or other meaningful elements referred to as tokens.

Tokenization is performed with the Genia tokenizer [69]. The

outputs of the tokenization process are tokens that are used for

POS tagging, i.e., shallow parsing of the sentence.

POS tagging and chunking. Part of speech (POS) tagging is

the process of labelling each word in a sentence as a noun, verb,

adjective, adverb, etc. Chunking is the labelling of the sentences

into the syntactically-correlated groups of words such as noun

Figure 8. The principles of conversion to the edge-labelled graph format. A) Activation reaction (labelled A) reaction between two
components is transformed into the graph with arcs between the reactant and the product node. B) Activation (labelled A) on a transcription level is
a special type of activation, when Y induces the activation of gene X to produce protein X. In this case we omit the gene transcription level when
transforming the level 2 topology to the edge-labelled graph. C) Binding (labelled B) relation between two reactant nodes X and Y is transformed into
a B relation between the reactants and an additional relation produces (labelled as P) between the reactant and the product. The latter is introduced
to represent the binding of proteins into complexes. Binding is a binary relation, consisting of a bidirectional edge; in graph visualisation, the arrows
are omitted. D) Inhibition (labelled I) is the blocking of the activation or binding reaction between components by a third component X, resulting in
reduced production of product Z.
doi:10.1371/journal.pone.0051822.g008
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phrase (NP) and verb phrase (VP). For the purpose of POS tagging

and chunking of biological texts we used the GENIA tagger. The

output from the GENIA tagger are the chunks of the words, such

as Noun Phrase (NP), Verb Phrase (VP), etc. These output chunk

labels are the phrase levels according to the Bracketing Guidelines

for Treebank II Style Penn Treebank Project (see publicly

accessible phrase level types at http://bulba.sdsu.edu/jeanette/

thesis/PennTags.html). The sentence labelled with the chunk

labels is the input to the triplet extraction module.

Triplet extraction. The aim of the triplet extraction

algorithm is to find the triplets in the form of (subject, predicate,

object). If the predicate is in active form, the subject is the part of the

noun phrase (NP) before, and the object is the part of the noun

phrase (NP) after the predicate. The opposite holds for the passive

form of predicate. Predicate is either one word that belongs to the verb

phrase (VP), or it is a multi-word phrase, partially belonging to the

VP. The output from the triplet extractor is the triplet list together

with the sentence from which the triplet was extracted and the

article PubMed Central ID number. Triplet extraction is

performed by employing rules with the help of a manually

developed vocabulary of components and reactions:

N Components vocabulary contains a list of all components of

the manually developed PDS model topology.

N Reactions vocabulary consists of three different types of

reactions (activation, inhibition and binding) together with

their synonyms and synonym phrases. For example, the

activation in Figure 1B has induces as a synonym, but also the

whole phrase shows increased levels in the presence of.

We have categorised triplet extraction rules into three

categories: a rule for one-word predicates, a rule for multi-word

predicates and a rule for swap. We describe briefly each of them.

N One-word predicate rule deals with the predicate that is only one

word, such as: activates, stimulates, reduces, etc. The algorithm for

triplet extraction of this rule is shown in Figure 9. After the

sentence is chunked into chunk tags with the Genia tagger, we

first compare all VPs with the reactions vocabulary (step 2 in

Figure 9). If at least one match is positive, we define it as

a predicate. Next, we search for the subject and the object in the

Noun Phrases before and after the predicate. The comparison

between the NP before the detected VP and the components

vocabulary (step 3 in Figure 9) is performed first. This match

provides the subject. Next, the match is done between the NP,

after detected VP, and the components vocabulary (step 4 in

Figure 9). If the match is negative, the matching continues

between the next NPs and the components vocabulary until

the next VP in the sentence (step 5 in Figure 9). If the match is

positive, the object is detected and the triplet is finally extracted

(step 6 in Figure 9).

N Multi-word predicate rule addresses the search for triplets

when the predicate is a phrase with more words, such as is

a positive regulator, is suppressor of, shows increased accumulation, etc.

The subject, the predicate and the object are searched in a similar

way as in the Rule for One-Word Predicate.

N Rule for swap is applied if the predicate is in the passive form or

if the predicate matches the activation_rotate vocabulary file (see

Supporting Information S4). In these cases the places of subject

and object are swapped.

Filtering. Filtering of extracted triplets is performed in order

to reduce the false negatives. The filtering box removes the triplets

from the extracted ones if they belong to any of the following

categories:

N Triplets with the same subject and object, for example: (EDS1,

activates, EDS1).

N Triplets that are extracted from ‘hypothetical’ sentences, such

as: ‘‘It was studied whether EDS1 protein possibly activates

EDS5 gene’’. The following set of ‘hypothetical’ words was

defined: possibly, whether, to determine, to investigate, to study, it was

postulated, it was hypothesized. If these ‘hypothetical’ words were

detected in the sentence, the triplet was filtered out. Also, if the

words like: may, might, can, could, would were detected in the VP

of the predicate, the sentence is considered ‘hypothetical’ and the

triplet is filtered out.

N Triplets extracted from the sentences related to mutant plants.

A set of ‘mutant plants’ words was predefined, such as: plant,

mutant, line. If these were detected in the NP of the subject or

object, the triplet was filtered out.

N Too ‘general’ triplets. An example is the following sentence:

‘‘The activation of Salicylic acid pathway increases the activity

of Jasmonic acid pathway’’. Triplet (SA, activates, JA) would be

extracted from this example sentence. However this triplet is

considered to be too ‘general’ since it addresses not only one

specific component, but the whole pathway. For this reason,

the set of ‘general’ words was also defined for filtering: pathway,

signalling, synthesis, biosynthesis, response, activator, inhibitor and

producer. If some of these ‘general’ words were in the same NP

of the subject or the object, the triplet was filtered out.

N Negation triplet. If the VP contains the words not or n’t the

triplet is filtered out. Note that processing of ‘contradictory

triplets’ is done by filtering out these negation words.

Network topology construction and

visualization. Triplets T= {(subject, predicate, object), where subject,

object M Components, predicate M Reactions} obtained from the manual

model or through Bio3graph are used to construct an edge-

labelled directed graph G= (V, A), where the set of vertices V is the

set of all Components, and the set of arcs A is a set of all Reactions. The

weights are not assigned to arcs but in general weights can be used

to reflect the reliability of the extracted triplet. Note that the graph

is not necessarily connected and it does not contain any isolated

vertices.

Since the extracted structure can contain a very large number of

vertices and many unconnected components it is important to use

scalable network visualisation methods, e.g., Barnes Hut n-body

simulation [70]. We have employed a freely available platform

independent network visualisation component provided by the

Biomine system [23] which implements a variant of the force-

directed layouting algorithm, and allows for the visualisation and

interactive exploration of reasonably large graphs. For example,

a picture of a triplet network consisting of 175 vertices and 524

edges as drawn by the Biomine visualisation engine is shown in

Figure 7A.

Bio3graph Tool: its Implementation and Availability
This section discusses the implementation of the Bio3graph

methodology and the availability of the Bio3graph tool. We have

implemented the Bio3graph methodology in a general framework

which is modular and extensible, and provides functionalities at

three different levels of generality. The first level provides classes

for core data structures such as Corpus, Document, and Triplet, and

the related low-level language processing functions such as

sentence splitting, tokenization, tagging, and parsing. The second

level contains the triplet extraction algorithm, its custom
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vocabulary data structure, and various utility functions some of

which are algorithm-specific. The third level provides post-

processing such as normalization and filtering, and exporting of

the results as text, XML, graph and other formats.

Our framework is implemented using the Python programming

language, and relies on the publicly available Natural Language

Toolkit (NLTK) [67] software for natural language processing,

and the GENIA tagger [68]. NLTK is a native Python suite of

libraries and programs for natural language processing while the

GENIA tagger provides part-of-speech tagging, shallow parsing,

and named entity recognition for biomedical texts. In order to

enable access to the GENIA tagger from the Python language

environment we implemented a wrapper which turns the

standalone tagger program into a Python library, thus allowing

an easy integration with the rest of the framework. In addition, our

framework also integrates the Biomine tool [23] for graph

construction and visualisation, which enables interactive graph

visualization including zoom-in and zoom-out, as well as the

relocation of the graph vertices and arcs.

In the triplet extraction workflow, the NLTK library provides

sentence splitting [71] while the GENIA tagger is used for

tokenization, POS tagging and shallow parsing (chunking) thus

forming the backbone of our implementation. Because of the

Figure 9. Illustration of the triplet extraction. We show a part of the flow from input of POS tagging box from Figure 5 until output of triplet
extraction box of the same figure. The input to the Genia POS tagger is previously pre-processed sentence. After the shallow parsing with Genia POS
tagger, the algorithm performs the step 2. The final output from the triplet extraction part of Bio3graph approach is a triplet in the form (subject,
predicate, object) which will be then transformed and visualised as an edge-labelled graph with the Biomine visualiser.
doi:10.1371/journal.pone.0051822.g009
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modular structure, the existing software libraries performing

various language processing steps can be easily integrated.

In order to provide an easy, system and software independent

access to our triplet extraction tool, we have developed a collection

of web services that expose the relevant functions of the

framework. These services were implemented using the Oran-

ge4WS [43] server tools as stateless SOAP web services. Currently,

the web service description document (WSDL) and its related

XML schema define three data structures (document, dictionary

and triplet) and nine functions: create_document, create_dictionary,

split_sentences, parse_sentences, extract_triplets, normalize_triplets, con-

struct_triplet_graph, triplets_to_XML and triplets_to_text.

The Bio3graph workflow, shown in Figure 5B, works as follows.

First, a dictionary is created by calling the create_dictionary function

which builds the dictionary structure according to the XML

schema from the provided text files specifying the reactions and

the components. Then, each loaded document is sent to the triplet

extraction workflow. It consists of the following parts: creation of

the document structure from raw text data, sentence splitting,

shallow sentence parsing, triplet extraction algorithm and triplet

normalization (removal of duplicates, change of order in the case

of passive predicate, and base word formatting). The resulting list of

triplets is then saved into a text and XML file, transformed into

a graph by Biomine and finally visualised in the Biomine

interactive graph visualiser. Note, however, that the triplet

extraction workflow is enclosed between the emitor and collector

components, provided by Orange4WS, which enable simple,

unconditional iterations. The emitor component emits elements of

the input iterable object, one at a time, while the collector collects

the incoming elements into a list. This allows for extracting triplets

not only from a single document but from the whole corpus. The

Bio3graph tool is publicly available at http://ropot.ijs.si/

bio3graph/.

Supporting Information

Supporting Information S1 The summary of all relations in

the manual model. This summary is grouped into four sheets

named with the sub-models names: SA, JA, ET and the forth one,

crosstalk. Table structure is the same in every sheet. In the first

column the interaction between two biological components is

given in the form of biological reaction representation, with the

following structure: (reactant1+ reactant2 reaction product). For

example: protein_MYC2 + gene_THI2.1JR1VSP1CLH1 activates

protein_THI2.1JR1VSP1CLH1. In the second column the interac-

tion between the two biological components is converted in the

format of the edge-labelled graph with the following structure:

(reactant, product, reaction abbreviation). For example: protein_-

MYC2 protein_THI2.1JR1VSP1CLH1 A. In both of these columns

the biological components are represented on the level of the

family nodes. In the third column the relations after decomposition

of the family nodes are shown also in the edge-labelled graph

format. In the last forth column the source of information, related

to the particular interaction, is specified.

(XLS)

Supporting Information S2 A manual expanded graph file

represented at the single component level. The visualisation of this

file into a graph in an interactive way is possible with the Biomine

visualizer file bmvis.jar. If a user does not have installed Java

software package, he should install it. It is available for download

at: http://java.com/en/download/index.jsp. The bmvis.jar file can

be downloaded from the link: http://www.cs.helsinki.fi/u/

phintsan/bmvis.jar and it should be located in the same folder

as the Supporting Information S2. To perform visualization of the

file one should do the following: 1. Open Command Prompt

window 2. Change your path into the folder where the Supporting

Information S2 is located. 3. Type into the Command Prompt

following: ‘‘,absolute path of java.jar file .\java’’ –jar bmvis.jar

‘‘Supporting Information S2.bmg’’ An example is a following line:

C:\Users\Dragana\Desktop\ SUPPLEMENT.‘‘C:\Program

Files (x86)\Java\jre1.6.0_22\bin\java’’ -jar bmvis.jar ’’ Support-

ing Information S2.bmg" A user should pay attention to the spaces

between words in the example line above and apply them in the

same way when visualising the graph. In case a warning message is

displayed the user should click OK and the graph will be

visualized. Note that this visualisation procedure applies only for

the Windows platform.

(BMG)

Supporting Information S3 Vocabulary of the biological

components used by Bio3graph tool. In this vocabulary every

row represents one component with its synonyms separated by

comma. The first name in the row represents the biological

component name that is also visualized in the graph nodes.

(TXT)

Supporting Information S4 Vocabulary of the biological

reactions used by Bio3graph tool. This vocabulary contains in

total 6 files with synonyms for three types of reactions: activation,

binding and inhibition in both active and passive form.

(RAR)

Supporting Information S5 The graph file with correct and

incorrect triplets found by Bio3graph. The triplet extraction was

performed on the set of the 9,586 articles resulting in a file which

can be visualized with Biomine visualizer in the same way as the

Supporting Information S2.

(BMG)

Supporting Information S6 Materials and results from the

precision and recall experimental Bio3graph evaluation. Since the

evaluation was performed with the simplified dictionary we supply

this simplified version in a separate folder. Next, there are also 50

raw text articles in a folder txt_files, which we have used for

labelling the triplets to obtain ground truth dataset. Also, uploaded

is the Ground truth file, named GROUND_TRUTH_manually_an-

notated_triplets.doc where each triplet from the 50 articles is coloured

in different colours depending whether the Predicate is activates,

inhibits or binds. Also, the results from Bio3graph are provided in

Bio3Ex_triplets.doc file. Finally the file Triplets_summary.xls represents

the summary of all the triplets manually annotated and found by

Bio3graph for each article separately.

(RAR)

Supporting Information S7 The graph file with only correct

triplets, extracted by Bio3graph. This network (consisting of 107

components and 377 reactions) can be visualized with Biomine

visualizer in the same way as the Supporting Information S2.

(BMG)

Supporting Information S8 The summary of triplets, ex-

tracted by Bio3graph tool from the 9,586 articles. In the first

column of this file the found triplet is represented in the edge-

labelled graph presentation way that can be visualized with the

Biomine graph visualizer. The names of the Subject and Object

name are converted with the first synonym name from the

component vocabulary (see the Supporting Information S3). The

Predicate name is transformed to the first letter of the reaction type

that it belongs to: A from activates, B from binds and I inhibits. The

second column represents the same triplet in a form of (Subject,

Predicate, Object) with the same normalized names. In the third
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column are the triplets with the subject, predicate and object

names as they are found in the sentence originally. The next

columns provide information whether the triplet is correct, new

and direct with respect to our manually constructed PDR

topology. The last columns contain the PubMed Central ID of

the article, publishing year and the sentences from where the

triplet is extracted.

(XLS)

Supporting Information S9 The graph file of the newly found

triplets. These new direct links are blue coloured and new indirect

green coloured. The network consists of 63 components and 137

reactions and can be visualized with Biomine visualizer in the

same way as the Supporting Information S2.

(BMG)

Supporting Information S10 The graph file of the merged

PDR topology. This topology contains both manual and new

triplets from the literature. The arcs from the manual model are all

direct and are coloured in red. The intersection between the

manual model arcs and the correct triplets extracted from the

literature is represented with black coloured arcs. Further, from

the correct new triplets, the indirect connections are represented

with green and the direct ones with blue colour. The file can be

visualized with Biomine visualizer in the same way as the

Supporting Information S2.

(BMG)

Supporting Information S11 The levels of the biological

component abstraction. The first column in the table represents

the family name of the biological component. The second column

contains all the single members of the family that are considered

important for the plant defence. The third column contains their

unique ID numbers from the TAIR database while in the fourth

column are all the synonyms for the component names.

(XLS)
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