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a b s t r a c t 

Redescription mining is a field of knowledge discovery that aims at finding different descriptions of simi- 

lar subsets of instances in the data. These descriptions are represented as rules inferred from one or more 

disjoint sets of attributes, called views. As such, they support knowledge discovery process and help do- 

main experts in formulating new hypotheses or constructing new knowledge bases and decision support 

systems. In contrast to previous approaches that typically create one smaller set of redescriptions satis- 

fying a pre-defined set of constraints, we introduce a framework that creates large and heterogeneous 

redescription set from which user/expert can extract compact sets of differing properties, according to its 

own preferences. Construction of large and heterogeneous redescription set relies on CLUS-RM algorithm 

and a novel, conjunctive refinement procedure that facilitates generation of larger and more accurate 

redescription sets. The work also introduces the variability of redescription accuracy when missing val- 

ues are present in the data, which significantly extends applicability of the method. Crucial part of the 

framework is the redescription set extraction based on heuristic multi-objective optimization procedure 

that allows user to define importance levels towards one or more redescription quality criteria. We pro- 

vide both theoretical and empirical comparison of the novel framework against current state of the art 

redescription mining algorithms and show that it represents more efficient and versatile approach for 

mining redescriptions from data. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In many scientific fields, there is a growing need to under-

stand measured or observed data, to find different regularities or

anomalies, groups of instances (patterns) for which they occur and

their descriptions in order to get an insight into the underlying

phenomena. 

This is addressed by redescription mining ( Ramakrishnan, Ku-

mar, Mishra, Potts, & Helm, 2004 ), a type of knowledge discovery

that aims to find different descriptions of similar sets of instances

by using one, or more disjoint sets of descriptive attributes, called

views. It is applicable in a variety of scientific fields like biology,

economy, pharmacy, ecology, social science and other, where it is

important to understand connections between different descrip-

tors and to find regularities that are valid for different subsets of

instances. Redescriptions are tuples of logical formulas which are

called queries. Redescription R ex = (q 1 , q 2 ) contains two queries: 
∗ Corresponding author. 

E-mail addresses: matej.mihelcic@irb.hr (M. Mihel ̌ci ́c), saso.dzeroski@ijs.si (S. 
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q 1 : (−1 . 8 ≤ ˜ t 7 ≤ 4 . 4 ∧ 12 . 1 ≤ ˜ p 6 ≤ 21 . 2) 

q 2 : Polarbear 

The first query ( q ′ 1 ) describes a set of instances (geospatial lo-

ations) by using a set of attributes related to temperature ( t ) and

recipitation ( p ) in a given month as first view (in the example

verage temperature in July and average precipitation in June).

he second query ( q ′ 2 ) describes very similar set of locations by

sing a set of attributes specifying animal species inhabiting these

ocations as a second view (in this instance polar bear). Queries

ontain only conjunction logical operator, though the approach

upports conjunction, negation and disjunction operators. 

We first describe the fields of data mining and knowledge dis-

overy closely related to redescription mining. Next, we describe

ecent research in redescription mining, relevant to the approach

e propose. We then outline our approach positioned in the

ontext of related work. 

.1. Fields related to redescription mining 

Redescription mining is related to association rule mining

 Agrawal, Mannila, Srikant, Toivonen, & Verkamo, 1996; Hipp,

üntzer, & Nakhaeizadeh, 20 0 0; Zhang & He, 2010 ), two-view data
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Fig. 1. Relation between redescription mining and other related tasks. 
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ssociation discovery ( van Leeuwen & Galbrun, 2015 ), clustering

 Cox, 1957; Fisher, 1958; Jain, Murty, & Flynn, 1999; Ward, 1963;

u & Tian, 2015 ) and it’s special form conceptual clustering ( Fisher,

987; Michalski, 1980 ), subgroup discovery ( Herrera, Carmona,

onzález, & Jesus, 2010; Klösgen, 1996; Novak, Lavra ̌c, & Webb,

009; Wrobel, 1997 ), emerging patterns ( Dong & Li, 1999; Novak

t al., 2009 ), contrast set mining ( Bay & Pazzani, 2001; Novak

t al., 2009 ) and exceptional model mining ( Leman, Feelders, &

nobbe, 2008 ). Most important relations can be seen in Fig. 1 . 

Association rule mining ( Agrawal et al., 1996 ) is related to

edescription mining in the aim to find queries describing similar

ets of instances which reveal associations between attributes

sed in these queries. The main difference is that association rules

roduce one directional associations while redescription mining

roduces bi directional associations. Two-view data association

iscovery ( van Leeuwen & Galbrun, 2015 ) aims at finding a small,

on - redundant set of associations that provide insight in how

wo views are related. Produced associations are both uni and bi

irectional as opposed to redescription mining that only produces

i directional connections providing interesting descriptions of

nstances. 

The main goal of clustering is to find groups of similar instances

ith respect to a set of attributes. However, it does not provide

nderstandable and concise descriptions of these groups which

re often complex and hard to find. This is resolved in conceptual

lustering ( Fisher, 1987; Michalski, 1980 ) that finds clusters and

oncepts that describe them. Redescription mining shares this

im but requires each discovered cluster to be described by at

east two concepts. Clustering is extended by multi-view ( Bickel

 Scheffer, 2004; Wang, Nie, & Huang, 2013 ) and multi-layer

lustering ( Gamberger, Mihel ̌ci ́c, & Lavra ̌c, 2014 ) to find groups of

nstances that are strongly connected across multiple views. 

Subgroup discovery ( Klösgen, 1996; Wrobel, 1997 ) differs

rom redescription mining in its goals. It finds queries describing

roups of instances having unusual and interesting statistical

roperties on their target variable which are often unavailable

n purely descriptive tasks. Exceptional model mining ( Leman

t al., 2008 ) extends subgroup discovery to more complex target

oncepts searching for subgroups such that a model trained on

his subgroup is exceptional based on some property. 

Emerging Patterns ( Dong & Li, 1999 ) aim at finding itemsets

hat are statistically dependent on a specific target class while

ontrast Set Mining ( Bay & Pazzani, 2001 ) identifies monotone
onjunctive queries that best discriminate between instances

ontaining one target class from all other instances. 

.2. Related work in redescription mining 

The field of redescription mining was introduced by

amakrishnan et al. (2004) , who present an algorithm to mine

edescriptions based on decision trees, called CARTwheels. The

lgorithm works by building two decision trees (one for each

iew) that are joined in the leaves. Redescriptions are found by

xamining the paths from the root node of the first tree to the

oot node of the second. The algorithm uses multi class classifica-

ion to guide the search between the two views. Other approaches

o mine redescriptions include the one proposed by Zaki and Ra-

akrishnan (2005) , which uses a lattice of closed descriptor sets

o find redescriptions; the algorithm for mining exact and approx-

mate redescriptions by Parida and Ramakrishnan (2005) that uses

elaxation lattice, and the greedy and the MID algorithm based on

requent itemset mining by Gallo, Miettinen, and Mannila (2008) .

ll these approaches work only on Boolean data. 

Galbrun and Miettinen (2012b) extend the greedy approach

y Gallo et al. (2008) to work on numerical data. Redescription

ining was extended by Galbrun and Kimmig (2013) to a rela-

ional and by Galbrun and Miettinen (2012a) to an interactive

etting. Recently, two tree-based algorithms have been proposed

y Zinchenko (2014) , which explore the use of decision trees in

 non-Boolean setting and present different methods of layer-by-

ayer tree construction, which make informed splits at each level of

he tree. Mihel ̌ci ́c, Džeroski, Lavra ̌c, and Šmuc (2015a, b) proposed

 redescription mining algorithm based on multi-target predictive

lustering trees (PCTs) ( Blockeel & De Raedt, 1998; Kocev, Vens,

truyf, & Džeroski, 2013 ). This algorithm typically creates a large

umber of redescriptions by executing PCTs iteratively: it uses

ules created for one view of attributes in one iteration, as target

ttributes for generating rules for the other view of attributes in

he next iteration. A redescription set of a given size is improved

ver the iterations by introducing more suitable redescriptions

hich replace the ones that are inferior according to predefined

uality criteria. 

In this work, we introduce a redescription mining framework

hat allows creating multiple redescription sets of user defined

ize, based on user defined importance levels of one or more

edescription quality criteria. The underlying redescription mining
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algorithm uses multi-target predictive clustering trees ( Kocev

et al., 2013 ) and allows the main steps of rule creation and re-

description construction explained in Mihel ̌ci ́c, Džeroski, Lavra ̌c,

and Šmuc (2015b) . This is in contrast to current state of the art

approaches that return all constructed redescriptions that satisfy

accuracy and support constraints ( Parida & Ramakrishnan, 2005;

Ramakrishnan et al., 2004; Zaki & Ramakrishnan, 2005 ), a smaller

number of accurate and significant redescriptions that satisfy sup-

port constraints ( Galbrun & Miettinen, 2012b; Gallo et al., 2008;

Zinchenko, 2014 ) or optimize one redescription set of user defined

size ( Mihel ̌ci ́c et al., 2015b ). This algorithm supports a broader

process which involves the creation and effective utilization of a

possibly large redescription set. 

From the expert systems perspective, the framework allows

creating large and heterogeneous knowledge bases for use by the

domain experts. It also allows fully automated construction of

specific subsets of obtained knowledge based on predefined user-

criteria. The system is modular and allows using the redescription

set construction procedure as an independent querying system

on the database created by merging multiple redescription sets

produced by many different redescription mining approaches.

Obtained knowledge can be used, for example, as a basis or

complement in decision support systems. 

The framework provides means to explore and compare multi-

ple redescription sets, without the need to expensively experiment

with tuning the parameters of the underlying redescription mining

algorithm. This is achieved with (i) an efficient redescription

mining algorithm with a new conjunctive refinement procedure,

that produces large, heterogeneous and accurate redescription sets

and (ii) redescription set construction procedure that produces

one or more reduced redescription sets tailored to specific user

preferences in a multi-objective optimization manner. 

After introducing the necessary notation in Section 2 , we

present the framework for redescription set construction in

Section 3 . First, we shortly describe the CLUS-RM algorithm, then

we introduce the conjunctive refinement procedure and explain

the generalized redescription set construction process. Next, we

introduce the variability index which supports a refined treat-

ment of redescription accuracy in presence of missing values. We

describe the datasets and an application involving redescription

sets produced by the framework in Section 4 and perform theo-

retical and empirical evaluation of the framework’s performance

in Section 5 . Empirical evaluation includes quality analysis of

representative sets and comparison to the set containing all dis-

covered redescriptions, evaluation of the conjunctive refinement

procedure, and quality comparison of redescriptions produced

by our framework to those produced by several state of the art

redescription mining algorithms on three datasets with different

properties. We conclude the paper in Section 6 . 

2. Notation and definitions 

The input dataset D = (V 1 , V 2 , E, W 1 , W 2 ) is a quintuple of the

two attribute (variable) sets ( V 1 , V 2 ), an element (instance) set E ,

and the two views corresponding to these attribute sets. Views

( W 1 and W 2 ) are | E | × | V d | data matrices such that W d i, j 
= c k if an

element e i has a value c k for attribute v j ∈ V d . 

A query q is a logical formula F that can contain the conjunc-

tion, disjunction and negation logical operators. These operators

describe logical relations between different attributes, from at-

tribute sets V 1 and V 2 , that constitute a query. The set of all valid

queries Q is called a query language. The set of elements described

by a query q , denoted supp ( q ), is called its support. A redescription

R = (q 1 , q 2 ) is defined as a pair of queries, where q 1 and q 2
contain variables from V 1 and V 2 respectively. The support of a

redescription is the set of elements supported by both queries that
onstitute this redescription supp(R ) = supp(q 1 ) ∩ supp(q 2 ) . We

se attr ( R ) to denote the multi-set of all occurrences of attributes

n the queries of a redescription R . The corresponding set of

ttributes is denoted attrs ( R ). The set containing all produced re-

escriptions is denoted R . User-defined constraints C are typically

imits on various redescription quality measures. 

Given a dataset D , a query language Q over a set of attributes

 , and a set of constraints C, the task of redescription mining

 Galbrun, 2013 ) is to find all redescriptions satisfying constraints

n C. 

.1. Individual redescription quality measures 

The accuracy of a redescription R = (q 1 , q 2 ) is measured with

he Jaccard similarity coefficient (Jaccard index). 

(R ) = 

| supp(q 1 ) ∩ supp(q 2 )) | 
| supp(q 1 ) ∪ supp(q 2 ) | 

The problem with this measure is that redescriptions describing

arge subsets of instances often have a large intersection which

esults in high value of Jaccard index. As a result, the obtained

nowledge is quite general and often not very useful to the domain

xpert. It is thus preferred to have redescriptions that reveal more

pecific knowledge about the studied problem and are harder to

btain by random sampling from the underlying data distribution. 

This is why we compute the statistical significance ( p -value) of

ach obtained redescription. We denote the marginal probability

f a query q 1 and q 2 with p 1 = 

supp(q 1 ) | E| and p 2 = 

supp(q 2 ) | E| , respec-

ively and the set of elements described by both as o = supp(q 1 ) ∩
upp(q 2 ) . The corresponding p -value ( Galbrun, 2013 ) is defined as 

pV (R ) = 

| E| ∑ 

n = | o| 

(| E| 
n 

)
(p 1 · p 2 ) 

n · (1 − p 1 · p 2 ) 
| E|−n 

he p -value represents a probability that a subset of elements of

bserved size or larger is obtained by joining two random queries

ith marginal probabilities equal to the fractions of covered

lements. It is an optimistic criterion, since the assumption that

ll elements can be sampled with equal probability need not hold

or all datasets. 

Since it is important to provide understandable and short

escriptions, it is interesting to measure the number of attributes

ccurring in redescription queries attr ( R ). 

Below, we provide an example of a redescription, together

ith its associated quality measures obtained on the Bio dataset

 Galbrun, 2013; Hijmans, Cameron, Parra, Jones, & Jarvis, 2005;

itchell-Jones, 1999 ): 

Redescription R ′ ex = (q ′ 1 , q ′ 2 ) with its queries defined as: 

q ′ 
1 

: (−1 . 8 ≤ ˜ t 7 ≤ 4 . 4 ∧ 12 . 1 ≤ ˜ p 6 ≤ 21 . 2) ∨ 

(−1 . 6 ≤ ˜ t 6 ≤ 1 . 5 ∧ 21 . 6 ≤ ˜ p 6 ≤ 30 . 1) 

q ′ 
2 

: Polarbear 

escribes 34 locations which are inhabited by the polar bear.

he q ′ 
1 

query describes the average temperature ( ̃ t ) and the

verage precipitation ( ̃  p ) conditions of these locations in

une and July. The redescription has a Jaccard index value

f 0.895 and a p -value smaller than 2 · 10 −16 . The multi-set

t t r(R ′ ex ) = { ̃ t 6 , ̃  t 7 , ˜ p 6 , ˜ p 6 , Polarbear } and its corresponding set

t t rs (R ′ ex ) = { ̃ t 6 , ̃  t 7 , ˜ p 6 , Polarbear } . The query size of R ′ ex , denoted

 at t r(R ′ ex ) | , equals 5. 

.2. Redescription quality measures based on redescription set 

roperties 

We use two redescription quality measures based on properties

f redescriptions contained in a corresponding redescription set. 
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The measure providing information about the redundancy of

lements contained in the redescription support is called the

verage redescription element Jaccard index and is defined as: 

EJ (R i ) = 

1 

|R| − 1 

·
|R| ∑ 

j=1 

J (supp(R i ) , supp(R j )) , i 
 = j 

Analogously, the measure providing information about the

edundancy of attributes contained in redescription queries, called

he average redescription attribute Jaccard index, is defined as: 

AJ (R i ) = 

1 

|R| − 1 

·
|R| ∑ 

j=1 

J (at t rs (R i ) , at t rs (R j )) , i 
 = j 

We illustrate the average attribute Jaccard index on the

edescription example from the previous subsection. If we as-

ume that our redescription set contains only two redescriptions

 = { R ex , R 
′ 
ex } where R ex equals: 

q 1 : (−1 . 8 ≤ ˜ t 7 ≤ 4 . 4 ∧ 12 . 1 ≤ ˜ p 6 ≤ 21 . 2) 

q 2 : Polarbear 

The corresponding average attribute Jaccard index of the

edescription R ex equals 3 
4 = 0 . 75 showing a high level of redun-

ancy in the used attributes between redescription R ex and the

nly other redescription available in the set R ′ ex . On the other hand,

n the redescription set R = { R ′ ex , R 
′′ 
ex } , where R ′′ ex contains queries: 

q ′′ 
1 

: (7 . 2 ≤ t + 
9 

≤ 17 . 2 ∧ 13 . 5 ≤ t + 
7 

≤ 22 . 7) 

q ′′ 2 : MountainHare 

he average attribute Jaccard index of the redescription R ′ ex equals
0 
7 = 0 showing no redundancy in the used attributes. 

. Redescription mining framework 

In this section, we present a redescription mining framework.

t first creates a large set of redescriptions and then uses it to

reate one or more smaller sets that are presented to the user.

his is done by taking into account the relative user preferences

egarding importance of different redescription quality criteria. 

.1. The CLUS-RM algorithm 

The framework generates redescriptions with the CLUS-RM al-

orithm ( Mihel ̌ci ́c et al., 2015b ), presented in Algorithm 1 . It uses

lgorithm 1 The CLUS-RM algorithm. 

equire: First view data ( W 1 ), Second view data ( W 2 ), Constraints

C 
nsure: A set of redescriptions R 

1: procedure CLUS-RM 

2: [ P W 1 init , P W 2 init ] ← createInitialPCTs( W 1 , W 2 ) 

3: [ r W 1 , r W 2 ] ← extrRulesFromPCT( P W 1 init , P W 2 init ) 

4: while RunInd<maxIter do 

5: [ D W 1 , D W 2 ] ← constructTargets( r W 1 , r W 2 ) 

6: [ P W 1 , P W 2 ] ← createPCTs( D W 1 , D W 2 ) 

7: extractRulesFromPCT( P W 1 , P W 2 , r W 1 , r W 2 ) 

8: R ← R ∪ createRedescriptons (r W 1 
, r W 2 

, C) 

9: return R 

ulti-target Predictive Clustering Trees (PCT) ( Kocev et al., 2013 )

o construct conjunctive queries which are used as building blocks

f redescriptions. Queries containing disjunctions and negations

re obtained by combining and transforming queries containing

nly conjunction operator. 
The algorithm is able to produce a large number of highly accu-

ate redescriptions from which many contain only conjunction op-

rator in the queries. This is in part the consequence of using PCTs

n multi-target setting, which is known to outperform single class

lassification or regression trees due to the property of inductive

ransfer ( Piccart, 2012 ). This distinguishes the CLUS-RM redescrip-

ion mining algorithm from other state of the art solutions that in

eneral create a smaller number of redescriptions with majority of

edescription queries containing the disjunction operator. 

.1.1. Rule construction and redescription creation 

The initial task in the algorithm is to create one PCT per view

f the original data, constructed for performing unsupervised

asks, to obtain different subsets of instances (referred to as

nitial clusters) and the corresponding queries that describe them.

o create initial clusters (line 2 in Algorithm 1 ), the algorithm

ransforms an unsupervised problem to a supervised problem by

onstructing an artificial instance for each original instance in the

ataset. These instances are obtained by shuffling attribute values

mong original instances thus breaking any existing correlations

etween the attributes. Each artificial instance is assigned a target

abel 0.0 while each original instance is assigned a target label

.0. One such dataset is created for each view considered in

he redescription mining process. A PCT is constructed on each

ataset, with the goal of distinguishing between the original

nd the artificial instances, and transformed to a set of rules.

his transformation is achieved by traversing the tree, joining all

ttributes used in splits into a rule and computing its support.

ach node in a tree forms one query containing the conjunction

nd possibly negation operators (line 3 and 7 in Algorithm 1 ). 

After the initial queries are created, the algorithm connects dif-

erent views by assigning target labels to instances based on their

overage by queries constructed from the opposing view (line 5 in

lgorithm 1 ). To construct queries containing attributes from W 2 ,

ach instance is assigned a target label 1.0 if it is described by a

uery containing the attributes from W 1 , otherwise it is assigned a

alue 0.0. The process is iteratively repeated a predefined number

f steps (line 4 in Algorithm 1 ). 

Redescriptions are created as a Cartesian product of a set of

ueries formed on W 1 and a set of queries formed on W 2 (line

 in Algorithm 1 ). All redescriptions that satisfy user defined

onstraints ( C): the minimal Jaccard index, the maximal p -value,

he minimal and the maximal support are added to the redescrip-

ion set. The algorithm can produce redescriptions containing

onjunction, negation and disjunction operators. 

The initialization, rule construction and various types of re-

escription creation are thoroughly described in Mihel ̌ci ́c et al.

2015b) . 

.1.2. Conjunctive refinement 

In this subsection, we present an algorithmic improvement

o the redescription mining process presented in Algorithm 1 .

he aim of this method is to improve the overall accuracy of

edescriptions in the redescription set by combining newly created

edescriptions with redescriptions already present in redescription

et R . 

Combining existing redescription queries with an attribute by

sing conjunction operator has been used in greedy based re-

escription mining algorithms ( Galbrun & Miettinen, 2012b; Gallo

t al., 2008 ) to construct redescriptions. The idea is to expand

ach redescription query in turn by using a selected attribute

nd the selected logical operator. Such procedure, if used with

he conjunction operator, leads to increase of Jaccard index but

lso mostly reduces the support size of a redescription. Zaki and

amakrishnan (2005) combine closed descriptor sets by using

onjunction operator to construct a closed lattice of descriptor sets
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Fig. 2. Demonstration of the effects of the conjunctive refinement on a support of 

the improved redescription and corresponding redescription queries. For the sup- 

ports represented on the figure it holds: supp ( R ) ⊂ supp ( R ref ). As a consequence: 

supp(R ) = supp(R new ) , J ( R new ) > J ( R ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Flowchart representing the redescription set construction process. 
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which are used to construct redescriptions. They conclude that

combining descriptor set D 1 and D 2 describing element sets G 1 

and G 2 respectively, such that G 1 ⊆ G 2 , can be done by construct-

ing a descriptor set D 1 ∪ D 2 . They conclude that the newly created

descriptor set, describes the same set of elements G 1 as the set

D 1 . This procedure works only with attributes containing Boolean

values and does not use the notion of views. 

Instead of extending redescription queries with attributes con-

nected using conjunction operator (which is usually constrained

by the number of expansions), the conjunctive refinement proce-

dure compares support of each redescription R = (q 1 , q 2 ) in the

redescription set with the selected redescription R re f = (q ′ 
1 
, q ′ 

2 
) .

It merges the queries of these two redescriptions with the { ∧ }

operator to obtain a new redescription R new 

= (q 1 ∧ q ′ 1 , q 2 ∧ q ′ 2 )
if and only if supp ( R ) ⊆ supp ( R ref ). We extend and prove the

property described in Zaki and Ramakrishnan (2005) in a more

general setting, combining redescriptions with arbitrary type of

attributes and a finite amount of different views. We demonstrate

how to use it efficiently with numerical attributes and show that

this procedure does not decrease the accuracy of a redescription.

In fact, if ∃ e ∈ E , e ∈ supp ( q 1 ) ∨ ∃ e ′ ∈ E , e ′ ∈ supp ( q 2 ) such that

e / ∈ supp(q ′ 
1 
) ∨ e ′ / ∈ supp(q ′ 

2 
) , than J ( R new 

) > J ( R ). 

If the attributes contain numerical values, we can transform the

redescription R ref , given an arbitrary redescription R ∈ R such that

supp ( R ) ⊆ supp ( R ref ), to redescription R ′ 
re f 

= (q ′′ 
1 
, q ′′ 

2 
) such that R ′ 

re f 

has tighter numerical bounds on all attributes contained in the

queries, supp(R ) ⊆ supp(R ′ 
re f 

) and that J(supp(R ) , supp(R ′ 
re f 

)) ≥
J(supp(R ) , supp(R re f )) . By doing this, we increase the probability

of finding the element e or e ′ as described above, which leads

to improving the accuracy of redescription R new 

. The construction

procedure of such redescription is explained in Section S1.1 (On-

line Resource 1). The redescription R ′ 
re f 

is used as a refinement

redescription when numerical attributes are present in the data. 

We can now state and prove the following lemma: 

Lemma 3.1. For every redescription R ∈ R , for every redescrip-

tion R re f = (q ′ 1 , q ′ 2 ) , where q ′ 1 = q a 1 ∧ q a 2 ∧ . . . ∧ q a n ,

a i ∈ at t rs (R re f ) , ∀ i ∈ { 1 , . . . , n } and n ∈ N , q ′ 
2 

= q b 1 ∧ q b 2 ∧
. . . ∧ q b m , b j ∈ at t rs (R re f ) , ∀ j ∈ { 1 , . . . , m } and m ∈ N . If supp ( R )

⊆ supp ( R ref ) then for a redescription R new 

= (q 1 ∧ q ′ 1 , q 2 ∧ q ′ 2 ) it

holds that J ( R new 

) ≥ J ( R ) and supp(R new 

) = supp(R ) . 
he proof of Lemma 3.1 for redescription mining problems con-

aining two views can be seen in Section S1.1 (Online Resource

). General formulation with n arbitrary views is proven by math-

matical induction. It is easily seen from the proof that if ∃ e ∈
 , e ∈ supp ( q 1 ) ∨ ∃ e ′ ∈ E , e ′ ∈ supp ( q 2 ) such that e / ∈ supp(q ′ 

1 
) ∨ e ′ /∈

upp(q ′ 2 ) then supp(q 1 ∧ q ′ 1 ) ∪ supp(q 2 ∧ q ′ 2 ) ⊂ supp(q 1 ) ∪ supp(q 2 )

hus ultimately J ( R new 

) > J ( R ). 

he conjunctive refinement is demonstrated in Fig. 2 . 

Line 8 from Algorithm 1 is replaced with the procedure

 ← createAndRefineRedescriptions( r w 1 , r w 2 , R , C) which is pre-

ented in Algorithm 2 . 

lgorithm 2 The redescription set refinement procedure. 

equire: Rules created on W 1 ( rw 1 ), Rules created on W 2 ( rw 2 ),

Redescription set R , Constraints C 
nsure: A set of redescriptions R 

1: procedure ConstructAndRefine 

2: for R new 

∈ r w 1 × r w 2 do 

3: if R new 

.J ≥ C.minJre f then 

4: for R ∈ R do 

5: R.Re f ine (R new 

) 

6: R new 

.Re f ine (R ) 

7: if R new 

.J ≥ C.minJ then 

8: R ← R ∪ R new 

9: return R 

The procedure described in Algorithm 2 and demonstrated in

igure S1 applies conjunctive refinement by using redescriptions

hat satisfy the user defined constraints C and redescriptions that

atisfy looser constraints on the Jaccard index ( R.J ≥ C.minRefJ,

.minRefJ ≤ C.minJ ). These constraints determine the amount and

ariability of redescriptions used to improve the redescription set. 

The refinement procedure, in combination with redescription

uery minimization explained in Mihel ̌ci ́c et al. (2015b) , provides

rounds for mining more accurate yet compact redescriptions. 

.2. Generalized redescription set construction 

The redescription set obtained by Algorithm 1 contains re-

escriptions satisfying hard constraints described in the previous

ubsections. It is often very large and hard to explore. For this

eason, we extract one or more smaller sets of redescriptions that

atisfy additional preferential properties on objective redescription

valuation measures, set up by the user, and present them for

xploration. This process is demonstrated in Fig. 3 . 
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Producing summaries and compressed rule set representations

s important in many fields of knowledge discovery. In the field of

requent itemset mining such dense representations include closed

temsets ( Pasquier, Bastide, Taouil, & Lakhal, 1999 ) and free sets

 Boulicaut & Bykowski, 20 0 0 ). The approaches using set pattern

ining construct a set by enforcing constraints on different pattern

roperties, such as support, overlap or coverage ( Guns, Nijssen,

immermann, & Raedt, 2011 ). Methods developed in information

heory consider sets that provide the best compression of a larger

et of patterns. These techniques use properties like the Informa-

ion Bottleneck ( Tishby, Pereira, & Bialek, 1999 ) or the Minimum

escription length ( Grünwald, 2007 ). The work on statistical se-

ection of association rules developed by Bouker, Saidi, Yahia, and

guifo (2012) presented techniques to eliminate irrelevant rules

ased on dominance, which is computed on several possibly con-

icting criteria. If some rule is not strictly dominated by any other

ule already in the set, the minimal similarity with some repre-

entative rule is used to determine if it should be added to the set.

Redescriptions are highly overlapping with respect to described

nstances and attributes used in the queries. It is often very

ard to find fully dominated redescriptions, and the number of

ominated redescriptions that can be safely discarded is rela-

ively small compared to a set of all created redescriptions. Our

pproach to create a set of user defined (small) size, does not

se a representative rule to compute the similarity. Instead, it

dds redescriptions to the final redescription set by using the

calarization technique ( Caramia & Dell’Olmo, 2008 ) developed in

ulti-objective optimization to find the optimal solution when

aced with many conflicting criteria. If the corresponding optimiza-

ion function is minimized, given positive weights, the solution is

 strict pareto optimum, otherwise it is a weak pareto optimum

 Caramia & Dell’Olmo, 2008 ) of a multi objective optimization

roblem. Similar aggregation technique is used in multi attribute

tility theory - MAUT ( Winterfeldt & Fischer, 1975 ) to rank the

lternatives in decision making problems. 

Each redescription is evaluated with a set of criteria known

rom the literature or defined by the user. The final quality score

s obtained by aggregating these criteria with user-defined im-

ortance weights to produce a final numerical score. Based on

his score, the method selects one non-dominated redescription,

ased on utilised quality criteria, at each step of redescription set

onstruction. 

The procedure generalizes the current redescription set con-

truction approaches in two ways: (1) it allows defining impor-

ance weights to different redescription quality criteria and adding

ew ones to enable constructing redescription sets with different

roperties which provides different insight into the data, (2) it al-

ows creating multiple redescription sets by using different weight

ectors, support levels, Jaccard index thresholds or redescription

et sizes. Thus, it in many cases eliminates the need to make

ultiple runs of a redescription mining algorithm. 

One extremely useful property of the procedure is that it can

e used by any existing redescription mining algorithm, or a com-

ination thereof. In general, larger number of diverse, high quality

edescriptions allows higher quality reduced sets construction. 

Are there any elements in the data that share many common

roperties? Can we find a subset of elements that allows multiple

ifferent redescriptions? Can we find very diverse but accurate

edescriptions? What is the effect of reducing redescription query

ize to the overall accuracy on the observed data? What are the

ffects of missing values to the redescription accuracy? What

s our confidence that these redescriptions will remain accurate

f some missing values are replaced with real values? This is

nly a subset of questions that can be addressed by observing

edescription sets produced by the proposed procedure. The goal

s not to make redescription mining subjective in the sense of
nterestingness ( Tuzhilin, 1995 ) or unexpectedness ( Padmanabhan

 Tuzhilin, 1998 ), but to enable exploration of mined patterns in a

ore versatile manner. 

The input to the procedure is a set of redescriptions produced

y Algorithm 1 and an importance weight matrix defined by

he user. The rows of the importance weight matrix define the

sers’ importance for various redescription quality criteria. The

rocedure creates one output redescription set for each row in the

mportance weight matrix (line 3 in Algorithm 3 ). The procedure

lgorithm 3 Generalized redescription set construction. 

equire: Redescription set R , Importance weight matrix W , Size

of reduced set n 

nsure: A set of reduced redescription sets R red 

1: procedure ReduceSet 

2: [ E ocur , A ocur ] ← computeCoocurence( R ) 

3: for w i ∈ W do 

4: R f irst ← findSpecificRed( R , E cooc , A cooc , w i ) 

5: R w i 
← R w i 

∪ R f irst 

6: while | R w i 
| < n do 

7: R best ← findBest( R , R w i 
, w i ) 

8: R w i 
← R w i 

∪ R best 

9: R red ← R red ∪ {R w i 
} 

10: return R red 

orks in two parts: first it computes element and attribute occur-

ence in redescriptions from the original redescription set (line 2

n Algorithm 3 ). This information is used to find the redescription

hat satisfies the user defined criteria and describes elements by

sing attributes that are found in a small number of redescriptions

rom the redescription set. When found (line 4 in Algorithm 3 ),

t is placed in the redescription set being constructed (line 5 in

lgorithm 3 ). Next, the procedure iteratively adds non-dominated

edescriptions (lines 7–9 in Algorithm 3 ) until the maximum al-

owed number of redescriptions is placed in the newly constructed

et (line 6 in Algorithm 3 ). 

In the current implementation, we use 6 redescription quality

riteria, however more can be added. Five of these criteria are

eneral redescription quality criteria, the last one is used when

he underlying data contains missing values and will be described

n the following section. 

The procedure findSpecificRed uses the information about the

edescription Jaccard index, p -value, query size and the occurrence

f elements described by the redescription and attributes found in

edescriptions queries in redescriptions from the redescription set.

he p -value quality score of a redescription R is computed as: 

core pv al (R ) = 

{
log 10 (pV (R )) 

17 
+ 1 , pV (R ) ≥ 10 

−17 

0 , pV (R ) < 10 

−17 

he logarithm is applied to linearise the p -values and the normal-

zation 17 is used because 10 −17 is the smallest possible p -value

hat we can compute. 

The element occurrence score of a redescription is computed

s: score ocurEl (R ) = 

∑ 

e k ∈ supp(R ) E ocur [ k ] ∑ | E| 
j=1 

E ocur [ j] 
. The attribute occurrence score

s computed in the same way as: score ocurAt (R ) = 

∑ 

a k ∈ at t rs (R ) A ocur [ k ] 

∑ | V 1 | + | V 2 | 
j=1 

A ocur [ j] 
.

e also compute the score measuring query size in redescrip-

ions: 

core size = 

{ | at t r(R ) | 
k 

, | at t r(R ) | < k 
1 , k ≤ | at t r(R ) | 

The user-defined constant k denotes redescription complex-

ty normalization factor. In this work we use k = 20 , because
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redescriptions containing more than 20 variables in the queries

are highly complex and hard to understand. 

The first redescription is chosen by computing: R f irst =
argmin R (w 0 · (1 . 0 − J(R )) + w 1 · score pv al (R ) + w 2 · score ocurEl (R ) +
w 3 · score ocurAt (R ) + w 4 · score size (R )) . Each following redescrip-

tion is evaluated with a score function that computes re-

description similarity to each redescription contained in the

redescription set. The similarity is based on described ele-

ments and attributes used in redescription queries. This score

thus allows controlling the level of redundancy in the re-

description set. For a redescription R i ∈ R\R red we compute:

score elemSim 

(R i ) = max j J(supp(R i ) , supp(R j )) , j = 1 , . . . , |R red | and

score at t rSim 

(R ) = max j J(at t rs (R i ) , at t rs (R j )) , j = 1 , . . . , |R red | . 
Several different approaches to reducing redundancy among

redescriptions have been used before, however no exact measure

was used to select redescriptions or to assess the overall level

of redundancy in the redescription set. Zaki and Ramakrishnan

(2005) developed an approach for non-redundant redescrip-

tion generation based on a lattice of closed descriptor sets,

Ramakrishnan et al. (2004) used the parameter defining the

number of times one class or descriptor is allowed to participate

in a redescription. This is used to make a trade-off between explo-

ration and redundancy. Parida and Ramakrishnan (2005) computed

non-redundant representations of sets of redescriptions containing

some selected descriptor (set of Boolean attributes). Galbrun and

Miettinen (2012b) defined a minimal contribution parameter each

literal must satisfy to be incorporated in a redescription query. This

enforces control over redundancy on the redescription level. Re-

dundancy between different redescriptions is tackled in the Siren

tool ( Galbrun & Miettinen, 2012c ) as a post processing (filtering)

step. Mihel ̌ci ́c et al. (2015b) use weighting of attributes occurring

in redescription queries and element occurrence in redescription

supports based on work in subgroup discovery ( Gamberger &

Lavrac, 2002; Lavra ̌c, Kavšek, Flach, & Todorovski, 2004 ). 

We combine the redescription p -value score with its support

to first add highly accurate, significant redescriptions with smaller

support, and then incrementally add accurate redescriptions with

larger support size. Candidate redescriptions are found by com-

puting: R best = argmin R (w 0 · (1 . 0 − J(R )) + w 1 · ( k n · score pv al (R ) +
(1 − k 

n ) · supp(R ) 
| E| ) + w 2 · score elemSim 

(R ) + w 3 · score at t rSim 

(R ) + w 4 ·
score size (R )) , where k denotes the number of redescriptions

contained in the set under construction at this step. 

3.3. Missing values 

There are more possible ways of computing the redescription

Jaccard index when the data contains missing values. The ap-

proach that assumes that all elements from redescription support

containing missing values are distributed in a way to increase

the redescription Jaccard index is called optimistic ( J opt ). Similarly,

the approach that assumes that all elements from redescription

support containing missing values are distributed in a way to de-

crease the redescription Jaccard index is called pessimistic ( J pess ).

The rejective Jaccard index evaluates redescriptions only by ob-

serving elements that do not contain missing values for attributes

contained in redescription queries. These measures are discussed

in Galbrun and Miettinen (2012b) . The Query non-missing Jaccard

index ( J qnm 

), introduced in Mihel ̌ci ́c et al. (2015b) , is an approach

that gives a more conservative estimate than the optimistic Jaccard

index but more optimistic estimate than the pessimistic Jaccard

index. The main evaluation criteria for this index is that a query

(containing only the conjunction operator) cannot describe an ele-

ment that contains missing values for attributes in that query. This

index is by its value closer to the optimistic than the pessimistic

Jaccard index. However, as opposed to the optimistic approach, re-
escriptions evaluated by this index contain in their support only

lements that have defined values for all attributes in redescrip-

ion queries and that satisfy query constraints. The index does not

enalize the elements containing missing values for attributes in

oth queries which are penalized in the pessimistic Jaccard index. 

In this paper, we introduce a natural extension to the presented

easures: the redescription variability index. This index measures

he maximum possible variability in redescription accuracy due

o missing values. This allows finding redescriptions that have

nly slight variation in accuracy regardless the actual value of

he missing values. It also allows reducing very strict constraints

mposed by the pessimistic Jaccard index that might lead to the

limination of some useful redescriptions. 

The redescription variability index is defined as:

 ariability (R ) = J opt (R ) − J pes (R ) . 

Formal definitions of pessimistic and optimistic Jaccard index

an be seen in Section S1.2 (Online resource 1). 

The scores used to find the first and the best redescription

n generalized redescription set construction ( Section 3.2 ) are

xtended to include the variability score. 

Our framework optimizes query non-missing Jaccard but re-

orts all Jaccard index measures when mining redescriptions on

he data containing missing values. In principle with the gen-

ralized redescription set construction, we can return reduced

ets containing accurate redescriptions found with respect to

ach Jaccard index. Also, with the use of variability index, the

ramework allows finding redescriptions with accuracy affected to

 very small degree by the missing values which is not possible by

ther redescription mining algorithms in the literature. The only

pproach working with missing values ReReMi requires preforming

ultiple runs of the algorithm to make any comparisons between

edescriptions mined by using different version of Jaccard index. 

. Data description and applications 

We describe three datasets used to evaluate CRM-GRS and

emonstrate its application on a Country dataset. 

.1. Data description 

The evaluation and comparisons are performed on three

atasets ( Table 1 ) with different characteristics: the Country

ataset ( Gamberger et al., 2014; UNCTAD, 2014; WorldBank, 2014 ),

he Bio dataset ( Galbrun, 2013; Hijmans et al., 2005; Mitchell-

ones, 1999 ) and the DBLP dataset ( DBLP, 2010; Galbrun, 2013 ).

etailed description of each dataset can be seen in Section S2

Online resource 1). 

Descriptions of all attributes used in the datasets are provided

n the document (Online Resource 2). 

.2. Application on the country dataset 

The aim of this study is to discover regularities and interesting

escriptions of world countries with respect to their trading

roperties and general country information (such as various de-

ographic, banking and health related descriptors). We will focus

n redescriptions describing four European countries: Germany,

zech Republic, Austria and Italy, discovered as a relevant cluster

n a study performed by Gamberger et al. (2014) . This study

nvestigated country and trade properties of EU countries with

otential implications to a free trade agreement with China. This

r similar use-case may be a potential topic of investigation for

conomic experts but the results of such analysis could also be

f interest to the policymakers and people involved in export or

mport business. 
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Table 1 

Description of datasets used to perform experiments. 

Dataset W 1 attributes W 2 attributes 

Country | E| = 199 countries Numerical (49) World Bank Year: 2012 Country info Numerical (312) UNCTAD Year: 2012 Trade Info 

Bio | E| = 2575 geographical locations Numerical (48) Climate conditions Boolean (194) mammal species 

DBLP | E| = 6455 authors Boolean (6455) autorship network Boolean (304) author-conference bi-partite graph 

Fig. 4. Similarities between different, mostly European, countries. 
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Table 2 

Description of attributes from R blue , R green and R red . 

Code Description 

POP 14 % of population aged [0 ,14] 

POP 64 % of population aged 65+ 

MORT Mortality under 5 years per 10 0 0 

P OP _ GROW T H % of population growth 

RUR _ P OP % of population living in rural area 

W _ REM % of GDP spent on worker’s remittances and compensation 

CRED _ COV % of adults listed by private credit bureau 

M 2 % of GDP as (quasi) money 

E , I , E / I export, import, export to import ratio 

MiScManArt Miscellaneous manufactured articles 

MedSTehInMan Medium - skill, technology - intensive manufactures 

ElMachApp Electrical machinery, apparatus and appliances 

AlocProd All allocated products 

SpecMach Specialised machinery 

Cereals Cereals and cereal preparations 

BevTob Beverages and tobacco 
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First step in the exploration process involves specifying various

onstraints on produced redescriptions. Determining parameters

uch as minimal Jaccard index or minimal support usually requires

xtensive experimentation. These experiments can be performed

ith CRM-GRS with only one run of redescription mining algo-

ithm by using minimal Jaccard index of 0.1, minimal support of

 countries (if smaller subsets are not desired) and p -value of

.01. Parameters specifying reduced set construction can now be

uned to explore different redescription set sizes, minimal Jaccard

hresholds or minimal and maximal support intervals. Results of

uch meta analysis (presented in Section S2.2.2 (Online resource

)) show little influence of setting minimal Jaccard threshold on

his dataset, however right choice of minimal support is important.

edescription sets using minimal support threshold of 5 countries

how superior properties and may contain useful knowledge. 

We present three different redescriptions describing specified

ountries and revealing their similarity to several other countries

demonstrated in Fig. 4 ). 

Redescriptions R blue , R green and R red are defined as: 

qb 1 : 13.2 ≤ POP 14 ≤ 15.2 ∧ 3.1 ≤ MORT ≤ 5.0 

∧ 0 . 0 ≤ POP _ GROWTH ≤ 0 . 5 

qb 2 : 13 . 2 ≤ E / I _ MiScManArt ≤ 15 . 2 ∧ 28 . 0 ≤
E _ MedSTehInMan ≤ 40 . 0 . 

( J qnm 

(R blue ) = J opt (R blue ) = 1 . 0 , J pess (R blue ) = 0 . 88 , 

pV (R blue ) = 2 . 3 · 10 −10 , | supp(R blue ) | = 7 ) 

qg 1 : 16.2 ≤ POP 64 ≤ 21.1 ∧ 2.9 ≤ MORT ≤ 4.5 

∧ 16 . 2 ≤ RUR _ POP ≤ 50 . 1 ∧ 0 . 2 ≤ W _ REM ≤ 1 . 4 

qg 2 : 0 . 8 ≤ E / I _ ElMachApp ≤ 1 . 8 ∧ 93 . 0 ≤
E _ AlocProd ≤ 99 . 0 ∧ 1 . 1 ≤ E / I _ SpecMach ≤ 4 . 3 . 

( J qnm 

(R green ) = J opt (R green ) = J pess (R green ) = 1 . 0 , 

pV (R green ) = 1 . 9 · 10 −11 , | supp(R blue ) | = 9 ) 

qr 1 : 3 . 6 ≤ MORT ≤ 4 . 7 ∧ 22 . 9 ≤ CRED _ COV ≤ 100 . 0 

∧ 77.3 ≤ M2 ≤ 238.9 

qr 2 : 0 . 1 ≤ E / I _ Cereals ≤ 1 . 7 ∧ 1 . 2 ≤ E / I _ BevTob ≤
3 . 1 ∧ 0 . 7 ≤ E / I _ SpecMach ≤ 4 . 3 . 

( J qnm 

(R red ) = J opt (R red ) = 1 . 0 , J pess (R red ) = 0 . 45 , 

pV (R red ) = 6 . 3 · 10 −12 , | supp(R red ) | = 10 ) 

Presented redescriptions (attribute descriptions available in

able 2 ) confirm several findings reported in Gamberger et al.

2014) . Mainly, high export of medium - skill and technology
 intensive manufactures, export of beverages and tobacco, low

ercentage of young population. Additionally, these redescrip-

ions reveal high percentage of elderly population (age 65 and

bove), lower (compared to world average of 47.4) but still present

ortality rate of children under 5 years of age (per 10 0 0 living)

nd small to medium percentage of rural population. The credit

overage (percentage of adults registered for having unpaid depths,

epayment history etc.) varies between countries but is no less

han 20% adult population. The money and quasi money (M2

 sum of currency outside banks etc.) is between substantial

7.3% and very large 239% of total country’s GDP. For additional

xamples see Section S2.2.3, Figure S11 (Online resource 1). 

Output of CRM-GRS can be further analysed with visualization

nd exploration tools such as the Siren ( Galbrun & Miettinen,

012c ) (available at http://siren.gforge.inria.fr/main/ ) or the Inter-

et ( Mihel ̌ci ́c & Šmuc, 2016 ) (available at http://zel.irb.hr/interset/ ).

n particular, the InterSet tool allows exploration of different

roups of related redescriptions, discovery of interesting associ-

tions, multi-criteria filtering and redescription analysis on the

ndividual level. 

. Evaluation and comparison 

In this section we present the results of different evaluations.

irst, we perform a theoretical comparison of our approach with

ther state of the art solutions which includes description of

dvantages and drawbacks of our method. Next, we apply the

eneralized redescription set construction procedure to these

atasets starting from redescriptions created by the CLUS-RM

lgorithm. We evaluate the conjunctive refinement procedure and

erform a thorough comparison of our reduced sets with the

edescription sets obtained by several state of the art redescription

ining algorithms. The comparisons use measures on individual

edescriptions ( Section 2.1 ) as well as measures on redescription

ets ( Section 2.2 ). We also use the normalized query size defined

n Section 3.2 . 

The execution time analysis, showing significant time reduction

hen using generalized redescription set construction instead

f multiple CLUS-RM runs, is described in Section S2.4 (Online

esource 1). 

http://siren.gforge.inria.fr/main/
http://zel.irb.hr/interset/
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Table 3 

Time and space complexity of redescription mining algorithms and the generalized redescription set construction procedure. 

Algorithm Time comp. Space comp. 

CRM-GRS O (z · (| V 1 | + | V 2 | ) · | E | 2 + z 2 · | E | ) (No refinement) O (z · (| V 1 | + | V 2 | ) · | E | 2 + z 3 · | E | ) (refinement) O ( z ) 

CARTWh. O (z · (| V 1 | + | V 2 | ) · | E| 2 ) O ( z ) 

Split trees O (z · (| V 1 | + | V 2 | ) · | E| 2 ) O ( z ) 

Layered trees O (z · (| V 1 | + | V 2 | ) · | E| 2 ) O ( z ) 

Greedy O (| V 1 | · | V 2 | · | E |) O (1) 

MID O (|C| · | E| · 2 l ) O (1) 

Closed Dset O (|C| · | E| · 2 l ) O (|C| ) 
Relaxation Latt. max (O (|B| · log (| E| ) + (| V 1 | + | V 2 | ) · | E| , O (L · log (| E| ) + (| V 1 | + | V 2 | ) · | E| )) O (|B| ) 
GRSC O (|R| · | E| ) O (|R| ) 
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5.1. Theoretical algorithm comparison 

We compare the average case time and space complexity of

the CRM-GRS with state of the art approaches and present the

strengths and weaknesses of our framework. 

The term z = 2 d − 1 in Table 3 denotes the number of nodes

in the tree and is constrained by the tree depth d . C denotes

the set of produced maximal closed frequent itemsets, l denotes

the length of the longest itemset, B a set of produced biclusters,

L = 

∑ 

c∈B | c| and R denotes a set of produced redescriptions. 

We can see from Table 3 that the CRM-GRS has slightly

higher computational complexity than other tree - based ap-

proaches (which is based on time complexity of algorithm

C4.5), caused by complexity of underlying redescription min-

ing algorithm CLUS-RM. Optimizations proposed in Mihel ̌ci ́c

et al. (2015b) lower average time complexity of basic algo-

rithm to O (z · (| V 1 | + | V 2 | ) · | E| 2 and algorithm with refinement

to O (z · (| V 1 | + | V 2 | ) · | E | 2 + z 2 · | E | ) . Worst-case complexity with

the use of refinement is O (z · (| V 1 | + | V 2 | ) · | E | 2 + z 4 · | E | ) . It is the

result of a very optimistic estimate that produced redescriptions

satisfying user constraints grow quadratically with the number of

nodes in the tree (this is only the case if no constraints on re-

descriptions are enforced). In reality, it has at most linear growth.

Furthermore, term z 2 ·| E | is only dominating if z > (| V 1 | + | V 2 | ) · | E| .
Since redescription queries become very hard to understand if they

contain more than 10 attributes, even with 2 attributes in each of

two views, this term is dominated when | E | > 255 instances. 

Greedy approaches ( Galbrun & Miettinen, 2012b; Gallo et al.,

2008 ) are less affected by the increase in number of instances

than the tree-based approaches, but are more sensitive to the

increase in number of attributes. 

Complexity of approaches based on closed and frequent itemset

mining ( Gallo et al., 2008; Zaki & Ramakrishnan, 2005 ) depends

on the number of produced frequent or closed itemsets which in

worst case equals 2 | V 1 | + | V 2 | . Similarly, the complexity of approach

proposed by Parida and Ramakrishnan (2005) depends on the

number of created biclusters and their size. 

One property of our generalized redescription set construc-

tion procedure (GRSC) is that it can be used to replace multiple

runs of expensive redescription mining algorithms. Analysis from

Table 3 and in S2.6 (Online resource 1) shows that it has substan-

tially lower time complexity than all state of the art approaches

except the MID and the Closed Dset. However, even for this

approaches, it might be beneficial to use GRSC instead of multiple

runs of these algorithms when |C| · 2 l > |R| . 
Since a trade-off between space and time complexity can be

made for each of the analysed algorithms, we write the space

complexity as a function of stored itemsets, rules, redescriptions

or clusters. To reduce execution time, these structures can be

stored in memory together with corresponding instances which

increases space complexity to O ( C old · | E |) for all approaches. 

One drawback of our method is increased memory consumption

( O ( z 2 ) in the worst case). Since we memorize all distinct created

t  
edescriptions that satisfy user constraints, it is among more mem-

ry expensive approaches. Although, the estimate O ( z 2 ) is greatly

xaggerated, and is in real applications at most O ( z ), it is currently

he only approach that memorizes and uses all created redescrip-

ions to create diverse and accurate redescription sets for the end

sers. If memory limit is reached, we use the GRCS procedure

called in line 8 of Algorithm 1 ) to create reduced redescription

ets of predefined properties. Only redescriptions from these sets

re retained allowing further execution of the framework. 

Greedy and the MID approaches are very memory efficient

ince they store only a small number of candidate redescriptions

n memory. Other tree-based approaches store two decision trees

t each iteration, Closed Dset ( Zaki & Ramakrishnan, 2005 ) ap-

roach saves a closed lattice of descriptor sets and the relaxation

attice approach ( Parida & Ramakrishnan, 2005 ) saves produced

iclusters. 

The main advantages of our approach are that it produces

 large number of diverse, highly accurate redescriptions which

nables our multi-objective optimization procedure to generate

ultiple, high quality redescription sets of differing properties

hat are presented to the end user. 

.2. Experimental procedure 

In this section we explain all parameter settings used to

erform evaluations and comparisons with various redescription

ining algorithms. 

For all algorithms, we used the maximal p -value threshold of

.01 (the strictest significance threshold). The minimal Jaccard

ndex was set to 0.2 for the DBLP dataset based on results pre-

ented in Galbrun (2013) , Table 6.1, p. 46. The same is set to 0.6

or the Bio dataset based on results in Galbrun (2013) Table 7, p.

01. The threshold 0.5 for the Country dataset was experimentally

etermined. Minimal support was set to 10 elements for the

BLP, based on Galbrun (2013) p.48, and the same is used for

he Bio dataset. Country dataset is significantly smaller thus we

et this threshold to 5 elements. Impact of changing minimal

accard index and minimal support is data dependent. Increasing

hese thresholds causes a drop in diversity of produced redescrip-

ions, resulting in high redundancy and in some cases inadequate

umber of produced redescriptions. However, it also increases

inimal and average redescription Jaccard index and support

ize. Lowering these thresholds has the opposite effect, increasing

iversity but potentially reducing overall redescription accuracy or

upport size. Increasing maximal p -value threshold allows more

edescriptions (although less significant) to be considered as can-

idates for redescription set construction. The effects of changing

inimal Jaccard index and minimal support size on the produced

edescription set of size 50 by our framework on Country, Bio and

BLP dataset can be seen in Section S2.2.2 (Online resource 1). 

We compared the CLUS-RM algorithm with the generalized re-

escription set construction procedure (CRM-GRS), to the ReReMi,

he Split trees and the Layered trees algorithms implemented in

he tool called Siren ( Galbrun & Miettinen, 2012c ). The specific
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Table 4 

A matrix containing different co mbinations of importance 

weights for the individual redescription quality criteria. 

W = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

J pV AJ EJ RQS RV 

0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 0 . 0 

0 . 4 0 . 2 0 . 1 0 . 1 0 . 2 0 . 0 

0 . 6 0 . 2 0 . 0 0 . 0 0 . 2 0 . 0 

0 . 0 0 . 2 0 . 3 0 . 3 0 . 2 0 . 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

Table 5 

The weight matrix designed to explore the effects of changing 

redescription variability index on the resulting redescription set. 

These weights are applied on data containing missing values. Oth- 

erwise, the variability index weight (RV) should equal 0. 

W miss = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

J pV AJ EJ RQS RV 

0 . 2 0 . 2 0 . 2 0 . 2 0 . 19 0 . 01 

0 . 18 0 . 18 0 . 18 0 . 18 0 . 18 0 . 1 

0 . 14 0 . 14 0 . 14 0 . 14 0 . 14 0 . 3 

0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 5 

0 . 06 0 . 06 0 . 06 0 . 06 0 . 06 0 . 7 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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C  
arameter values used for each redescription mining algorithm

an be seen in Section S2 (Online Resource 1). 

.3. Analysis of redescription sets produced with CRM-GRS 

We analyse a set containing all redescriptions produced by

LUS-RM algorithm (referred to as a large set of redescriptions ) and

he corresponding sets of substantially smaller size constructed

rom this set by generalized redescription set construction proce-

ure (referred to as reduced sets of redescriptions ) on three different

atasets. 

For the purpose of this analysis, we create redescriptions

ithout using the refinement procedure and disallow multiple

edescriptions describing the same set of instances. To explore

he influence of using different importance weights on proper-

ies of produced redescription sets, we use the different weight

ombinations given in Table 4 . 

In the rows 1,2 and 3 of matrix W , we incrementally increase

he importance weight for the Jaccard index and equally decrease

he weight for the element and attribute Jaccard index in order to

xplore the effects of finding highly accurate redescriptions at the

xpense of diversity. The last row explores the opposite setting

hat completely disregards accuracy and concentrates on diversity. 

By using importance weights in each row of matrices W

 Table 4 ) and W miss ( Table 5 ), we create redescription sets contain-

ng 25, 50, 75, 100, 125, 150, 175 and 200 redescriptions. We plot

he change in element/attribute coverage, average redescription

accard index, average p -value, average element/attribute Jaccard

ndex and average query size against the redescription set size.

nformation about redescriptions in the large set is used as a

aseline and compared to the quality of reduced sets. 

.3.1. The analysis on the bio dataset 

We start the analysis by examining the properties of the large

edescription set presented in Fig. 5 . In Fig. 6 , we compare the

roperties of redescriptions in the large redescription set, against

roperties of redescriptions in reduced sets based on different

reference vectors. The results are presented only for the Bio

ataset, however similar analysis for the DBLP and the Country

ataset is presented in Section S2.2.3 (Online Resource 1). 

Fig. 5 shows distributions of quality measures for redescriptions

n the large redescription set constructed with CLUS-RM algorithm.

edescription Jaccard index is mostly in [0.6, 0.7] interval, though

 noticeable number is in [0.9, 1.0]. The p -value is at most 0.01 but

ainly smaller than 10 −17 . The maximum average element Jaccard

ndex equals 0.13 and the maximum average attribute Jaccard
ndex equals 0.14 which shows a fair level of diversity among pro-

uced redescriptions. Over 99% of redescriptions contain less than

5 attributes in both queries, and more than 50% contains less than

0 attributes in both queries which is good for understandability. 

Plots in Fig. 6 contain 5 graphs demonstrating a specific prop-

rty of the reduced redescription set and its change with the

ncrease of reduced redescription set size. The Reduced k graph

emonstrates properties of redescriptions contained in redescrip-

ion set created with the preference weights from the k -th row

f W . The graph labelled Large set demonstrates properties of

edescriptions from a redescription set containing all produced

edescriptions. 

Increasing the importance weight for a redescription Jaccard

ndex has the desired effect on redescription accuracy in the

educed sets of various size. Large weight on this criteria leads to

ets with many highly accurate but more redundant redescriptions

average element Jaccard > 0.15) with larger support (average

upport > 10% of the total number of elements in the dataset).

onsequence of larger support is increased overall element cov-

rage. The effect is in part the consequence of using the Bio

ataset that contains a number of accurate redescriptions with

igh support (also discussed in Galbrun (2013) ). This effect is not

bserved on the Country and the DBLP dataset Figures S4 and

5), where element and attribute coverage is increased only with

ncreasing diversity weights in the preference vector. The average

edescription Jaccard index decreases as the reduced set size in-

reases which is expected since the total number of redescriptions

ith the highest possible accuracy is mostly smaller than 200. 

Use of weights from the second row of the importance matrix

 largely reduces redundancy and moderately lowers redescrip-

ion accuracy in produced redescription set compared to weights

hat highly favour redescription accuracy. The equal weight com-

ination provides accurate redescriptions (above large set average)

hat describe different subsets of elements by using different at-

ributes (both below large set average). The average redescription

upport is lower as a result, around 5% of data elements. Despite

his, the element coverage is between 88% and 100% with the

harp increase to 98% for a set containing 50 redescriptions. The

lement coverage reaches 100% for sets containing at least 175

edescriptions. 

Depending on the application, it might be interesting to find

ifferent, highly accurate descriptions of the same or very similar

ets of elements (thus the weights from the third row of W from

able 4 would be applied). Higher redundancy provides different

haracteristics that define the group. It sometimes also provides

ore specific information about subsets of elements of a given

roup. 

We found several highly accurate redescriptions describing

ery similar subsets of locations on the Bio dataset by using

eights from the third row of the matrix W . These locations are

haracterized as a co-habitat of the Arctic fox and one of several

ther animals with some specific climate conditions. We provide

wo redescriptions describing a co-habitat of the Arctic fox and

he Wood mouse. 

q 1 : −9 . 5 ≤ t −
11 

≤ 0 . 9 ∧ 9 . 7 ≤ t + 
7 

≤ 13 . 4 

q 2 : Woodmouse ∧ ArcticFox ∧ ¬MountainHare 

This redescription describes 57 locations with Jaccard index

.83. One very similar redescription describing 58 locations from

hich 57 are the same as above, with Jaccard index 0.87 is: 

q 1 : −5 . 5 ≤ ˜ t 2 ≤ 2 . 2 ∧ 6 . 4 ≤ t + 
9 

≤ 10 . 6 

q 2 : Woodmouse ∧ ArcticFox ∧ ¬Norwaylemming 

Examples that are even more interesting can be found on the

ountry data where very similar sets of countries can be described
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Fig. 5. Histograms showing distributions of different redescription quality measures for the large redescription set containing 7413 redescriptions. Redescriptions are created 

on the bio dataset. 
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q : 1.1 ≤ E / I ≤ 3.1 ∧ 93.0 ≤ E ≤ 98.0. 
by using different trading and general country properties. The ex-

ample can be seen in Section S2.1.3, Figure S11 (Online Resource 1).

5.3.2. Using the redescription variability index on the country dataset

We analyse the impact of missing values to redescription cre-

ation and use newly defined redescription variability index ( RW ),

in the context of generalized set generation, on the Country dataset

with a weight matrix shown in Table 5 . The variability weight is

gradually increased while other weights are equally decreased to

keep the sum equal to 1.0 (which is convenient for interpretation).

The change in variability index depending on a reduced set size

and comparison with the large set can be seen in Fig. 7 . 

As expected, increasing the importance weight for redescrip-

tion variability favours selecting more stable redescriptions to the

changes in missing values. 

To demonstrate the effects of variability index to redescription

accuracy, we plot graphs comparing averages of optimistic, query

non-missing and pessimistic Jaccard index for every row of the

weight matrix for different reduced set sizes. The results for row

1 and row 4 can be seen in Figs. 8 and 9 . Plots for reduced sets

obtained with importance weights from the 2., the 3. and the 5.

row of W miss are available in Figure S12 (Online resource 1). 

Increasing the weight on the variability index has the desired

effect of reducing the difference between values of different Jac-
ard index measures. However, the average optimistic and query

on-missing Jaccard index values in the reduced sets drop as a

esult. 

edescription with J qnm 

= J pess = J opt = 1 . 0 : 

q 1 : 3 . 6 ≤ MORT ≤ 4 . 1 ∧ 25 . 9 ≤ RUR _ POP ≤ 38 . 4 

∧ 58 . 8 ≤ LABOR _ PARTICIP _ RATE ≤ 61 . 1 

q 2 : 68.0 ≤ E 23 ≤ 79.0 ∧ 0.7 ≤ E / I 104 ≤ 4.4 

∧ 0.9 ≤ E / I 50 ≤ 1.5 

s highly accurate and stable redescription constructed by CRM-

RS with the importance weight from the fourth row of a matrix

 miss . It is statistically significant with the p -value smaller than

0 −17 . 

Redescriptions exist for which J qnm 

= J opt and J pess < J opt . In such

ases, the drop in accuracy from J opt to J pess occurs because a num-

er of elements exist in the dataset for which membership in the

upport of neither redescription query can be determined, due to

issing values. Optimizing pessimistic Jaccard index is very strict

nd can discard some potentially significant redescriptions such as:

q 1 : 5 . 6 ≤ EMPL _ BAD ≤ 18 . 2 ∧ 2 . 9 ≤ MORT ≤ 4 . 5 

∧ 2 . 0 ≤ AGR _ EMP ≤ 10 . 5 ∧ −2 . 4 ≤ BAL ≤ 10 . 1 
2 85 97 
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Fig. 6. Plots comparing element and attribute coverage, average redescription: Jaccard index, log( p -value), element/attribute Jaccard index, normalized support and normal- 

ized query size for resulting reduced sets of different size and the original, large redescription set containing all produced redescriptions. Reduced k , corresponds to the 

reduced set obtained with the importance weights from the k -th row of the weight matrix W . 
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This redescription has J qnm 

= J opt = 1 . 0 and J pess = 0 . 48 . With

he variability index of 0.52 it describes all elements that can be

valuated by at least one redescription query with the highest

ossible accuracy. 

This example motivates optimizing query non-missing Jaccard

ith positive weight on the variability index. It is especially useful

hen small number of highly accurate redescriptions can be found
 d  
nd when a large percentage of missing values is present in the

ata. 

.4. Evaluating the conjunctive refinement procedure 

The next step is to evaluate the conjunctive refinement proce-

ure and its effects on the overall redescription accuracy. We use
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Fig. 7. Change in average variability index of redescriptions in reduced redescrip- 

tion set for various set sizes and the set containing all created redescriptions. 

Fig. 8. Optimistic, query non-missing and pessimistic Jaccard index for reduced sets 

of different sizes created with importance weight from the first row of the weight 

matrix W miss . 

Fig. 9. Optimistic, query non-missing and pessimistic Jaccard index for reduced sets 

of different sizes created with importance weight from the fourth row of the weight 

matrix W miss . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Distribution of a redescription Jaccard index in a large set created on a bio 

dataset with and without the conjunctive refinement procedure. The set obtained 

without using the conjunctive refinement procedure contains 7413 redescriptions, 

and the set obtained by using the conjunctive refinement procedure contains 10,472 

redescriptions. 

Fig. 11. Distribution of a redescription support size in a large set created on a bio 

dataset with and without the conjunctive refinement procedure. The set obtained 

without using the conjunctive refinement procedure contains 7413 redescriptions, 

and the set obtained by using the conjunctive refinement procedure contains 10,472 

redescriptions. 
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the same experimental set-up as in Section 5.3 for both sets with

the addition of the minimum refinement Jaccard index parameter,

which was set to 0.4 on the Bio dataset and 0.1 on the Country

and the DBLP dataset. The algorithm requires the initial clusters

to start the mining process as explained in Section 3.1.1 and in

Mihel ̌ci ́c et al. (2015b) . To maintain the initial conditions, we

create one set of initial clusters and use them to create redescrip-

tions with and without the conjunctive refinement procedure.

Since we use PCTs with the same initial random generator seed

in both experiments, the differences between sets are the result

of applying the conjunctive refinement procedure. The effects of

using conjunctive refinement are examined on sets containing all

redescriptions produced by CLUS-RM and on reduced sets created
ith equal importance weights by the generalized redescription

et construction procedure (Row 1 in matrix W ). 

The effects of using the refinement procedure on redescription

ccuracy are demonstrated in comparative histogram ( Fig. 10 )

howing the distribution of redescription Jaccard index in a set

reated by CLUS-RM with and without the refinement procedure. 

CLUS-RM produced 7413 redescriptions, satisfying constraints

rom Section 5.2 , without the refinement procedure and 10,472

edescriptions with the refinement procedure. The substantial

ncrease in redescriptions satisfying user-defined constraints, when

he conjunctive refinement procedure is used, is accompanied by

ignificant improvement in redescription accuracy. 

We performed the one-sided independent 2-group Mann-

hitney U test with the null hypothesis that there is a probability

f 0.5 that an arbitrary redescription ( R r ) from a set obtained by

sing conjunctive refinement has the Jaccard index larger than the

rbitrary redescription ( R nr ) from a set obtained without using the

onjunctive refinement procedure ( P (J(R r ) > J(R nr )) = 0 . 5 ). The

 -value of 2 . 2 · 10 −16 lead us to reject the null hypothesis with the

evel of significance 0.01 and conclude that P ( J ( R r ) > J ( R nr )) > 0.5

ust be true. 

Another useful property of the conjunctive refinement proce-

ure is that it preserves the size of redescription support. The

omparative distribution of redescription supports between the

ets is shown in Fig. 11 . 
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Fig. 12. Boxplots comparing distributions of redescription: Jaccard index, support, 

log( p -value), element Jaccard index, attribute Jaccard index and normalized query 

size in reduced sets containing 200 redescriptions. The reduced sets were obtained 

by the generalized redescription set construction procedure by using equal impor- 

tance weight for each measure. 
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Fig. 13. Boxplots comparing redescriptions produced with our framework (CLNref, 

CLRef) and the ReReMi algorithm (ReReMi) on the bio dataset. Sets contain 66 re- 

descriptions created by using all defined logical operators and 46 redescriptions 

when only conjunction and negation operators are used to construct redescription 

queries. 
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Majority of 3059 redescriptions that entered the redescription

et because of the improvements made by the conjunctive refine-

ent have supports in the interval [10, 500] elements. Because

f that, the average support size in the redescription set obtained

y using the refinement procedure (217.98) is lower than that ob-

ained without the refinement procedure (263.63). The change in

istribution is significant, as shown by the one-sided independent

-group Mann-Whitney U test. The test rejects the hypothesis

 (| supp(R nr ) | > | supp(R r ) | ) = 0 . 5 with the level of significance

.01 ( p -value equals 2 . 4 · 10 −14 ), thus showing that P (| supp ( R nr )| >

 supp ( R r )|) > 0.5. 

Using the conjunctive refinement procedure improves re-

escription accuracy and adds many new redescriptions to the re-

escription set. However, since the reduced sets are presented to

he user, it is important to see if higher quality reduced sets can be

reated from the large set by using the conjunctive refinement pro-

edure compared to the set obtained without using the procedure.

We plot comparative distributions for all defined redescription

easures for reduced sets extracted from the redescription set

btained with ( CLRef ) and without ( CLNRef ) the conjunctive refine-

ent procedure. The comparison made on the sets containing 200

edescriptions is presented in Fig. 12 . The boxplots representing

istributions of supports show that the redescription construc-

ion procedure extracts redescriptions of various support sizes,

hich was intended to prevent focusing only on large or small

edescriptions based on redescription accuracy. 
We compute the one-sided independent 2-group Mann-

hitney U test on the reduced sets for the redescription Jaccard

ndex ( J ) and the normalized redescription query size ( RQS ) since

here seem to be a difference in distributions as observed from

ig. 12 . For other measures, we compute the two-sided Mann-

hitney U test to assess if there is any notable difference in

alues between the sets. 

The null hypothesis that P (J(R r ) > J(R nr )) = 0 . 5 is rejected with

he p -value smaller than 2 . 2 · 10 −16 < 0 . 01 , thus the alternative hy-

othesis P ( J ( R r ) > J ( R nr )) > 0.5 holds. The difference in support be-

ween two sets is not statistically significant ( p -value equals 0.21,

btained with the two-sided test). Distributions of redescription p -

alues are identical because all redescriptions have equal p -value:

.0. The difference in average attribute/element Jaccard index is

lso not statistically significant ( p -values 0.88 and 0.13 respec-

ively obtained with the two-sided test). The p -value for the null

ypothesis P (RQS(R nr ) < RQS(R r )) = 0 . 5 equals 5 . 25 · 10 −6 < 0 . 01

hus the alternative hypothesis P ( RQS ( R nr ) < RQS ( R r )) > 0.5 holds. 

The refinement procedure enables constructing reduced sets

ontaining more accurate redescriptions with the average Jaccard

ndex increasing from 0.72, for reduced set obtained without
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Table 6 

Table containing p-values obtained with the one-sided independent 2-group Mann-Whitney U test. We test the 

hypothesis to have the probability 0.5 that the redescription chosen from the redescription set obtained by our 

framework has larger/smaller value compared to the redescription chosen from the redescription set produced by 

the ReReMi, the split trees (ST) or the layered trees (LT), depending on the redescription measure used, compared 

to the alternative in which a redescription chosen from a set produced by our framework has the probability 

greater than 0.5 for this outcome. For the Jaccard index (J) and support we test if the probability is greater than 

0.5 to obtain larger values, for the average redescription redundancy based on elements/attributes contained in 

their support (AEJ)/ (AAJ) and redescription query size (RQS), we test if the probability is larger to obtain smaller 

values in the set produced by our framework. Each table cell contains two p -values in the format pVal 1/ pVal 2. The 

first p-value relates to the set produced by the CLUS-RM without the conjunctive refinement procedure and the 

second with the refinement procedure. 

Dataset Operators Measure ReReMi ST LT 

Bio AllOp (DCN) J 0 . 91 / 2 · 10 −4 2 . 6 · 10 −9 / 2 . 7 · 10 −15 0 . 0035 / 1 . 9 · 10 −7 

Supp 1 . 0 / 1 . 0 1 . 0 / 1 . 0 0 . 9994 / 1 . 0 

p-value 2 · 10 −9 / 2 · 10 −9 0 . 0217 / 0 . 0217 0 . 0408 / 0 . 0408 

AEJ < 2 · 10 −16 / < 2 · 10 −16 5 . 3 · 10 −10 / 3 . 4 · 10 −11 1 . 3 · 10 −5 / 2 . 3 · 10 −8 

AAJ 2 · 10 −7 / 2 · 10 −7 1 . 2 · 10 −13 / < 2 · 10 −16 0 . 1122 / 8 . 2 · 10 −5 

RQS 2 · 10 −8 / 9 · 10 −5 1 . 5 · 10 −8 / 1 . 3 · 10 −5 6 . 7 · 10 −7 / 5 · 10 −5 

ConjNeg (CN) J 0 . 0035 / 1 . 5 · 10 −12 

Supp 1 . 0 / 1 . 0 

p-value 0 . 08 / 0 . 08 

AEJ < 2 · 10 −16 / 1 . 4 · 10 −15 |R| < 10 |R| < 10 

AAJ < 2 · 10 −16 / < 2 · 10 −16 

RQS 4 . 3 · 10 −10 / 3 . 5 · 10 −7 

DBLP AllOp (DCN) J 1 . 0 / 1 . 0 1 . 0 / 0 . 9999 

Supp 1 . 0 / 1 . 0 0 . 0 033 / 0 . 0 033 

p-value 1 . 0 / 1 . 0 1 . 0 / 1 . 0 

AEJ 1 . 0 / 1 . 0 0 . 904 / 0 . 980 |R| < 10 

AAJ 1 . 0 / 1 . 0 0 . 9997 / 0 . 9998 

RQS < 2 · 10 −16 / 8 . 6 · 10 −9 < 2 · 10 −16 / 3 . 5 · 10 −15 

ConjNeg (CN) J 0 . 0127 / 5 . 96 · 10 −7 

Supp 1 . 74 · 10 −8 / 1 . 14 · 10 −9 

p-value 0 . 9779 / 0 . 9933 

AEJ 1 . 0 / 1 . 0 |R| < 10 |R| < 10 

AAJ 1 . 0 / 1 . 0 

RQS 1 . 0 / 1 . 0 

Country AllOp (DCN) J pess 1 . 0 / 0 . 9979 

J qnm < 2 · 10 −16 / < 2 · 10 −16 

Supp 1 . 0 / 1 . 0 

p-value 6 . 3 · 10 −10 / 7 . 5 · 10 −10 NA NA 

AEJ < 2 · 10 −16 / < 2 · 10 −16 NA NA 

AAJ < 2 · 10 −16 / < 2 · 10 −16 

RQS < 2 · 10 −16 / < 2 · 10 −16 

Conj (CN) J pess 0 . 257 / 7 · 10 −6 

J qnm 5 . 2 · 10 −7 / 2 . 3 · 10 −8 

Supp 4 . 7 · 10 −4 / 0 . 769 

p-value 0 . 0503 / 0 . 0239 NA NA 

AEJ 0 . 608 / 2 . 6 · 10 −5 NA NA 

AAJ 1 . 74 · 10 −15 / 3 . 3 · 10 −12 

RQS 1 . 3 · 10 −9 / 3 . 7 · 10 −17 
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1 http://www.cs.rpi.edu/ ∼zaki/www-new/pmwiki.php/Software/Software . 
using refinement procedure, to 0.82 for reduced set obtained

when refinement procedure is used. This improvement sometimes

increases redescription complexity, albeit this is limited on average

to having less than 1 additional attribute in redescription queries. 

The set produced by using the conjunctive refinement pro-

cedure has the element coverage of 0.9996 and the attribute

coverage of 0.7613 compared to the set where this procedure was

not used where the element coverage is 1.0 and the attribute

coverage is 0.7243. 

The conjunctive refinement procedure also significantly in-

creases redescription accuracy on the DBLP and the Country

dataset. Equivalent analysis for these datasets is performed in

Section S2.3 (Online Resource 1). 

5.5. Comparisons with other state of the art redescription mining 

algorithms. 

In this section, we present the comparative results of redescrip-

tion set quality produced by our framework (CRM-GRS) compared

to the state of the art algorithms: the ReReMi ( Galbrun & Miet-
inen, 2012b ), the Split trees and the Layered trees ( Zinchenko,

014 ). To perform the experiments, we used the implementation

f the ReReMi, the Split trees and the Layered trees algorithm

ithin the tool Siren ( Galbrun & Miettinen, 2012c ). 

The ReReMi algorithm was already compared in Galbrun and

iettinen (2012b) with the CartWheels algorithm ( Ramakrishnan

t al., 2004 ) (on a smaller version of a DBLP and the Bio dataset),

ith the association rule mining approach obtained by the ECLAT

requent itemset miner ( Zaki, 20 0 0 ) and the greedy approach

eveloped by Gallo et al. (2008) . The approach from Zaki and

amakrishnan (2005) , which is also related, works only with

oolean attributes and have no built in mechanism to differen-

iate different views. Redescription mining on the DBLP dataset

ith the original implementation of the algorithm 

1 returned

9 redescriptions, however they only describe authors by using

o-authorship network. Since, our goal is to describe authors by

heir co-authorship network and provide the information about

http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software/Software
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Fig. 14. Boxplots comparing 49 redescriptions by using all defined logical operators, 

produced with our framework (CLNref, CLRef) and the split trees algorithm (STrees) 

on the bio dataset (left). The analogous comparison is made with the layered trees 

algorithm (LTrees) on 30 redescriptions (right). 
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he conferences they have published in, these redescriptions are

ot used in our evaluation. To use the approach on the Bio dataset,

e first applied the Discretize filter in weka 2 to obtain nominal

ttributes. Then, we applied NominalToBinary filter to obtain binary

ttributes that can be used in Charm-L. As a result, the number

f attributes on the Bio dataset increased to 1679 making the

rocess of constructing a lattice of closed itemsets to demanding

ith respect to execution time constraints. The Country dataset

ontains missing values which are not supported by this approach.

Since there is an inherent difference in the number of created

edescriptions, depending on the type of logical operators used to

reate them, between CLUS-RM and the comparative algorithms,

e split the algorithm comparison in two parts. First, we compare

edescription properties created by using all logical operators and

hen redescriptions created by using only the conjunction and the

egation operator (Bio and DBLP dataset) or only by using the

onjunction operator (Country dataset). 

After obtaining redescriptions with the algorithms implemented

n the tool Siren ( Galbrun & Miettinen, 2012c ), with parameters

pecified in Section 5.2 , we used the Filter redundant redescriptions

ption to remove duplicate and redundant redescriptions. Since

plitTrees and LayeredTrees algorithms always use all logical

perators to create redescriptions, we created a redescription set

ith these approaches and filtered out redescriptions containing

he disjunction operator in at least one of its queries. 

For each obtained redescription set from the ReReMi, the Split

rees and the Layered trees algorithm, we extracted a redescrip-

ion set of the same size with the generalized redescription set

rocedure with equal weight importance for each redescription

riteria. These sets are extracted from a large set created with the

LUS-RM algorithm with the parameters specified in Section 5.2 . 

We plot pairwise comparison boxplots for each redescription

easure comparing the performance of our framework with the

hree chosen approaches. 

For each comparison we analyse the hypothesis about the

istributions by using the one-sided independent 2-group Mann-

hitney U test (see summary in Table 6 ). 

.5.1. Comparison on the bio dataset 

First, we compare the algorithms on the Bio dataset. Figs. 13 ,

4 and Table 6 show that the set produced by CRM-GRS tend to

ontain more accurate redescriptions on the Bio dataset when the

onjunction and the negation operators are allowed and when the

onjunctive refinement procedure is used compared to all other

pproaches. 

The results are significant at the significance level of 0.01,

xcept for the case of ReReMi when all logical operators were

llowed and refinement procedure was not used in the CLUS-RM

lgorithm. Redescriptions contained in redescription sets produced

y CRM-GRS tend to have smaller p -values compared to redescrip-

ions produced by other tree - based algorithms (statistically

ignificant with the significance level of 0.05). Redescription sets

reated by CRM-GRS tend to contain redescriptions with smaller

lement/attribute Jaccard index (redundancy) and smaller query

ize (the difference is statistically significant with the significance

evel of 0.01 with the exception of a set created by CRM-GRS,

hen conjunctive refinement procedure was not used in CLUS-RM,

ompared to the set created by Layered trees algorithm). 

Element and attribute coverage analysis for all approaches

s provided in Section S2.5.1 (Online Resource 1). This analysis

uggests that despite smaller average redescription support, our

ramework has comparable performance with respect to element

nd attribute coverage. 
2 http://www.cs.waikato.ac.nz/ml/weka/ . 

a  

0  

j  
As already discussed in Galbrun (2013) , the ReReMi algorithm

as a drift towards redescriptions with large supports on the Bio

ataset. The consequence is a large element redundancy among

roduced redescriptions. The Split trees and the Layered trees

lgorithms produce redescriptions in the whole support range,

hough majority of produced redescriptions still have a very high

upport resulting in large element redundancy. Our approach

eturns redescriptions with various support size as can be seen

rom Figs. 13 and 14 though majority of produced redescriptions

re very close to the minimal allowed support. However, if needed,

he minimal support can be adjusted to produce sets containing

edescriptions that describe larger sets of elements. It is also pos-

ible to produce multiple sets, each being produced with different

inimal and maximal support bounds. Also, by adjusting the

mportance weights to highly favour Jaccard index, the user can

roduce reduced sets with similar properties as those produced by

he ReReMi, the Layered trees and the Split trees. The distribution

f support size in the large redescription set produced with the

asic variant of CLUS-RM algorithm on the Bio dataset can be seen

n Fig. 5 . The increase in accuracy obtainable by using different

eights to construct reduced sets can be seen in Fig. 6 . 

Redescription sets produced with the Layered and the Split

rees algorithms do not create enough redescriptions containing

nly conjunction and negation operator in its queries to make

he distribution analysis. The Layered trees algorithm produced

nly one redescription with Jaccard index 0.62 and the Split trees

lgorithm created four redescriptions with Jaccard index 0.97,

.65, 0.7 and 0.78. On the other hand, the CLUS-RM with the con-

unctive refinement procedure created over 14,0 0 0 redescriptions

http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 15. Boxplots comparing redescriptions, produced with our framework (CLNref, 

CLRef) and the ReReMi algorithm (ReReMi) on the DBLP dataset. Sets contain 536 

redescriptions created by using all defined logical operators and 155 redescriptions 

when only conjunction and negation operators are used to construct redescription 

queries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Boxplots comparing redescriptions, produced with our framework (CLNref, 

CLRef) and the split trees algorithm (STrees) on the DBLP dataset. The set contains 

62 redescriptions created by using all defined logical operators. 
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containing only conjunction and negation in the queries with the

Jaccard index greater than 0.6 from which 73 redescriptions have

Jaccard index 1.0. 

Our framework complements the existing approaches which is

visible from redescription examples found by our approach that

were not discovered by other algorithms. Section S2.5.1 (Online

Resource 1) contains one example of very similar redescription,

found by the ReReMi and the CRM-GRS, and several redescriptions

discovered by CRM-GRS that were not found by other approaches. 

5.5.2. Comparison on the DBLP dataset 

The DBLP dataset is very sparse and all redescription mining

algorithms we tested only returned a very small number of highly

accurate redescriptions. Half of the redescription mining runs we

performed with different algorithms returned to small number of

redescriptions to perform a statistical analysis. On this dataset,

we can compare quality measure distributions of redescriptions

produced by our framework only with the ReReMi algorithm

( Fig. 15 ), and with the Split trees algorithm when all operators are

used to construct redescription queries. ( Fig. 16 ). 
CRM-GRS tends to produce redescriptions with smaller query

ize than the ReReMi and the Split trees algorithms when all

he operators are allowed. The redescriptions contained in the

educed set produced by our framework tend to have higher

upport than those produced by the Split trees algorithm. The

istribution analysis on sets created by using only conjunction

nd negation logical operators can be performed only against the

eReMi algorithm due to small number of redescriptions produced

y the other approaches. In this case, CRM-GRS tends to produce

ore accurate redescriptions (significant at the significance level

f 0.01 when the conjunctive refinement is used and at the sig-

ificance level of 0.05 when conjunctive refinement is not used).

n both cases, our framework produces redescriptions that tend to

ave larger support (significant with the level of 0.01). There is

 more pronounced difference between the Split trees algorithm

nd CRM-GRS when all the operators are allowed. In this case,

he Split trees algorithm has higher median in distribution of

edescription accuracy. 

The Layered trees approach produced 7 redescriptions using

ll operators, with accuracy 0.85,0.81,0.71,0.73,0.23,0.23,0.2 de-

cribing 10 to 48 authors. It produced 3 redescriptions using only
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Fig. 17. Boxplots comparing redescriptions, produced with our framework (CLNref, 

CLRef) and the ReReMi algorithm (ReReMi) on the country dataset. Sets contain 120 

redescriptions created by using all defined logical operators and 36 redescriptions 

when only conjunction and negation operators are used to construct redescription 

queries. Redescription accuracy is evaluated by using query non - missing Jaccard 

index. 
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Fig. 18. Boxplots comparing redescriptions, produced with our framework (CLNref, 

CLRef) and the ReReMi algorithm (ReReMi) on the country dataset. Sets contain 120 

redescriptions created by using all defined logical operators and 36 redescriptions 

when only conjunction and negation operators are used to construct redescription 

queries. Redescription accuracy is evaluated by using pessimistic Jaccard index. 
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onjunction and negation operators. The produced redescriptions

ad the accuracy 0.23,0.22,0.2 and the support 45 to 48 authors.

he Split trees algorithm produced only one redescription with

ccuracy 0.33 and support 13 using only conjunction and negation

perators. 

The most accurate redescriptions produced by each algorithm

nd a short discussion can be seen in Section S2.5.2 (Online

esource 1). 

.5.3. Comparison on the country dataset 

Comparisons on the Country dataset are preformed only with

he ReReMi algorithm since it is the only algorithm, besides

LUS-RM, that can work on datasets containing missing values.

echniques for value imputation must be used before other ap-

roaches can be applied. Using these techniques introduces errors

n the descriptions and violates a property of descriptions being

alid for each element in redescription support. Because of that,

e chose not to pursue this line of research. 

Since our framework optimizes the query non-missing Jaccard

ndex and the ReReMi optimizes pessimistic Jaccard index, we de-

ided to make comparisons using both measures ( Figs. 17 and 18 ).
e extract two sets with CRM-GRS, for each we use different Jac-

ard index as one of the quality criteria. Redescriptions produced

y the ReReMi remain unchanged but we compute the query non-

issing Jaccard for each redescription which causes redescription

ccuracy to rise. Optimizing pessimistic Jaccard seems like the

est option for comparisons since then the query non-missing

accard index necessarily increases and the redescription support

s preserved. 

Results from Table 6 show that CRM-GRS produces redescrip-

ion set that tends to contain more accurate redescriptions when

onjunction refinement procedure is used. The result is significant

t the significance level 0.01. However, it failed to produce such

et using all operators when pessimistic Jaccard index is used

o evaluate redescription accuracy (redescription set produced

y ReReMi has higher median in accuracy). Although, CRM-GRS

roduced a few redescriptions with higher accuracy than those

roduced by the ReReMi. When query non-missing Jaccard index

s used as accuracy evaluation criteria, CRM-GRS tends to create

ore accurate redescriptions than the ReReMi (statistically signif-

cant at the significance level 0.01). When using only conjunction

ogical operator, the ReReMi tends to produce redescriptions with
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smaller support compared to CRM-GRS if conjunctive refinement

procedure is not used. 

Analysis of element and attribute coverage is provided in

Section S2.5.3 (Online Resource 1). 

The ReReMi algorithm found 2 redescriptions with J pess = 1 . 0

while CRM-GRS created redescription set containing 4 redescrip-

tions with J pess = 1 . 0 when only conjunction operators are allowed

and 5 redescriptions when all operators are allowed. 

The analysis of comparative redescription examples produced

by CRM-GRS and the ReReMi algorithm can be seen in Section

S2.5.3 (Online Resource 1). 

The ReReMi produced 14 redescriptions with J qnm 

= 1 . 0 using

only conjunction operators while redescription sets constructed by

CRM-GRS contain 34 out of 36 redescriptions with J qnm 

= 1 . 0 with-

out using conjunctive refinement and 36 out of 36 redescriptions

with J qnm 

= 1 . 0 with the use of conjunctive refinement procedure.

When all logical operators were used to create redescriptions, the

ReReMi creates large number of disjunction based redescriptions,

many of which are quite complex. 

The difference in support size of redescriptions produced

by CRM-GRS compared to those produced by the ReReMi algo-

rithm, visible in Figs. 17 and 18 when all operators are used

is in part the consequence of CRM-GRS using high weight on

element diversity but is also connected to different logic in us-

ing the disjunction operator. CRM-GRS allows improving Jaccard

index, by using disjunctions, only for redescriptions satisfying

a predefined accuracy threshold. Highly overlapping subsets of

instances are thus complemented with subsets that are highly

overlapping with one of the already existing subset of instances.

Because of this, our framework eliminates descriptions of un-

related subsets of instances that occasionally occur in ReReMi’s

descriptions as a result of using disjunction operator (discussed in

Galbrun, 2013 ). 

6. Conclusions 

We have presented a redescription mining framework CRM-GRS

which integrates the generalized redescription set construction

procedure with the CLUS-RM algorithm ( Mihel ̌ci ́c et al., 2015a, b ). 

The main contribution of this work is the generalized redescrip-

tion set construction procedure that allows creating multiple

redescription sets of reduced size with different properties defined

by the user. These properties are influenced by the user through

importance weights on different redescription criteria. Use of the

scalarization technique developed in multi - objective optimization

guarantees that, at each step, one non-dominated redescription is

added to the redescription set under construction. The generalized

redescription set construction procedure has lower worst time

complexity than existing redescription mining algorithms so it

may be preferred choice over the multiple runs of these algo-

rithms. The procedure allows creating sets of different size with

different redescription properties. These features generally lack in

current redescription mining approaches, where users are forced

to experiment with individual algorithm parameters in order to

obtain desirable set of redescriptions. Finally, the procedure allows

using ensembles of redescription mining algorithms to create

reduced sets with superior properties compared to those produced

by individual algorithms. 

The second contribution is related to increasing overall re-

description accuracy. Here, we build upon our previous work on

CLUS-RM algorithm and provide new - conjunctive refinement

procedure, that significantly enlarges and improves the accuracy

of redescriptions in the baseline redescription set by combining

candidate redescriptions during the generation process. This pro-

cedure can be easily applied in the context of majority of other
edescription mining algorithms, thus we consider it as a generally

seful contribution to the field of redescription mining. 

Finally, we motivate the use of query non-missing Jaccard

ndex, introduced in Mihel ̌ci ́c et al. (2015b) , when data contains

issing values. We show that using pessimistic Jaccard index

liminates some potentially useful, high quality redescriptions

btainable by using query non-missing Jaccard index. To further

ncrease the possibilities of redescription mining algorithms, we

ntroduce the redescription variability index that allows extracting

table redescriptions in the context of missing data, by combining

he upper and lower bound on estimates of Jaccard index. 

The evaluation of our framework with 3 different state of

he art algorithms on 3 different real-world datasets shows that

ur framework significantly outperforms other approaches in

edescription accuracy in majority of cases. In particular in set-

ings when only conjunction and negation operators are used

n redescriptions, which is the preferred setting from the point

f understandability. In general, CRM-GRS produces more under-

tandable redescriptions (due to smaller query size and extensive

se of conjunction operator), it is more flexible and in majority of

omparisons more accurate approach to mine redescriptions from

atasets. Moreover, we demonstrated that it complements existing

pproaches in the discovered redescriptions and solves several

roblems of existing approaches (mainly the problem of support

rift and redescriptions connecting unrelated parts of element

pace by using disjunctions). The framework is easily extendible

ith new redescription criteria and allows combining results of

ifferent redescription mining algorithms to create reduced sets

ith superior properties with respect to different redescription

uality criteria. 
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