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Abstract. Functional genomics is a typical 
scientific discovery domain characterized by a very 
large number of attributes (genes) relative to the 
number of examples (observations). This work 
presents an approach to subgroup discovery in 
supervised inductive learning of short rules that 
are appropriate for human interpretation. The 
approach is based on the subgroup discovery rule 
learning framework, enhanced by methods of 
restricting the hypothesis search space by 
exploiting the relevancy of features that enter the 
rule construction process as well as their 
combinations that form the rules. A multi-class 
functional genomics problem of classifying 
fourteen cancer types based on more than 16000 
gene expression values is used to illustrate the 
methodology. 
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Introduction 

Construction of understandable and explainable 
models is important for scientific discovery as well 
as for the generation of actionable knowledge. It is 
possible to extract the most informative features or 
attributes from complex classifiers (the attributes 
with this property are called disease markers) but 
logical connections among these features or 
attributes are missing. This disables the 
construction and expert interpretation of models 
describing the target class. In contrast, short rules, 
despite being potentially less accurate than the 
complex classifiers, are much more appropriate for 
scientific discovery tasks in which the 
interpretability of induced models is of ultimate 
importance.  

Functional genomics is a typical scientific 
discovery domain characterized by a very large 
number of attributes (genes) relative to the 
number of examples (observations). The danger of 
data overfitting is crucial in such domains. This 
work presents an approach to subgroup discovery, 
complemented by an approach which can help in 
avoiding data overfitting in supervised inductive 
learning of short rules that are appropriate for 
human interpretation. The approach is based on 
the subgroup discovery rule learning framework, 
enhanced by methods of restricting the hypothesis 
search space by exploiting the relevancy of 
features that enter the rule construction process as 
well as their combinations that form the rules.  

This paper presents an approach, based on the 
subgroup discovery rule learning framework, 
enhanced by a method for filtering of irrelevant 
features. The results of its application on a multi-
class functional genomics problem, aimed at 
classifying fourteen cancer types based on more 
than 16000 gene expression values, illustrate the 
use of the proposed methodology. 

Subgroup Discovery 

Subgroup discovery is a form of supervised 
inductive learning of subgroup descriptions for the 
target class in a two class domain. The 
descriptions have the form of rules built as logical 
conjunctions of features. Features are logical 
conditions that have values true or false, 
depending on the values of attributes which 
describe the examples in the problem domain. 
Subgroup discovery rule learning is therefore a 
form of two-class propositional inductive rule 
learning. Multi-class problems can be solved as a 
series of two-class learning problems, so that each 
class is once selected as the target class while 
examples of all other classes are treated as non-
target class examples. 

Formally, the task of subgroup discovery is defined 
as follows: given a population of individuals and a 
specific property of the individuals that we are 
interested in, find population subgroups that are 
‘most interesting’, e.g., are as large as possible and 
have the most unusual distributional 
characteristics with respect to the property of 
interest. 
 
Standard classification rule learning algorithms 
can be adapted to perform subgroup discovery. For 
instance, subgroup discovery algorithms, CN2-SD1 
and Apriori-SD2 are adaptations of classification 
rule learners: CN2-SD is an adaptation of CN23 
and Apriori-SD is an adaptation of APRIORI-C4 
and APRIORI5. These algorithms take as input 
the training examples described by discrete 
attribute values.  
 

Method 

In this work, subgroup discovery is performed by 
the SD algorithm6,7, implemented in the on-line 
Data Mining Server (DMS), publicly available at 
http://dms.irb.hr, a relatively simple iterative beam 
search rule learning algorithm.  
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The input to SD consists of a set of examples E 
(E=P U N, P is the set of target class examples, N 
the set of non-target class examples) and a set of 
features F constructed for the given example set. 
For discrete (categorical) attributes, features have 
the form Attribute = value, while for continuous 
(numerical) attributes they have the form 
Attribute > value or Attribute < value. The 
output of the SD algorithm is a set of rules with 
optimal covering properties on the given example 
set. As in classification rule learning, an induced 
rule (subgroup description) has the form of a 
(backwards) implication:  

Class ← Cond. 

In terms of rule learning, the property of interest 
for subgroup discovery is the target class (Class) 
that appears in the rule consequent, and the rule 
antecedent (Cond) is a conjunction of features 
(attribute-value pairs) selected from the features 
describing the training instances. 

A rule with ideal covering properties is true for all 
target class examples and not true for all non-
target class examples. Target class examples 
covered by a rule are also called true positives, TP, 
while non-target class examples covered by the 
rule are called false positives, FP. All remaining 
non-target class examples not covered by the rule 
are called true negatives, TN. An ideal rules has 
TP=P and TN=N. In the proposed subgroup 
discovery approach, the following rule quality 
measure q is used in heuristic search of rules: 

q = |TP| / (|FP| + g) 

where g is a user defined generalization parameter. 
High quality rules will cover many target class 
examples and a low number of non-target 
examples. The number of tolerated negative 
examples, relative to the number of covered target 
class cases, is determined by parameter g. 

The flexibility of subgroup discovery is due to its 
search of rules that satisfy groups of examples of 
the target class, not necessary excluding all of the 
non-target examples. Sizes of subgroups are not 

defined in advance but the algorithm tends to 
make them as large as possible. Due to this 
flexibility the algorithm is able to incorporate 
different rule relevancy methods with the goal to 
prevent the construction of target class subgroup 
descriptions which do not have sufficient 
supportive evidence for being significantly 
different from non-target samples. An equally 
important part of the methodology for avoiding 
overfitting is that each feature that enters the 
subgroup discovery algorithm should itself be a 
relevant target class descriptor. 

Relevancy of features 

The relevancy of features is determined by a 
combination of methods for restricting the 
hypothesis search space and for eliminating 
features with low covering properties. The later 
methods based on absolute and relative relevancy 
are universally applicable to any domain and their 
use is suggested in all feature based inductive 
learning tasks. The restrictions of the hypothesis 
search space are related to the form of rules and to 
the properties of the domain. In this section we 
present an effective approach that can strongly 
reduce the number of features and its application 
is suggested for descriptive induction tasks in gene 
expression domains. 

The features are restricted to simple forms only, 
because their complex forms may enable that, 
despite testing feature covering properties, features 
with insufficient supportive evidence may enter 
the rule construction process. For example, for 
discrete attributes the simple features have the 
form Ai=a. No complex logical forms like (Ai=a 
& Aj=b) or (Ai=a V Aj=b) are acceptable. The 
first form is not needed as all potential 
conjunctions are tested by the beam search 
procedure of the subgroup discovery algorithm. 
The second form is dangerous because, for 
example, the feature Ai=a may be relevant while 
the feature Aj=b may be irrelevant. Their 
combination Ai=a V Aj =b may be even more 
relevant than fi=a itself, which may cause that 
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condition fj=b may be included into the finally 
constructed rules while its inclusion is not justified 
by its covering properties on the training set. 
Notice that if both conditions fi=a and fj=b are 
relevant, it does not mean that by restricting the 
form of used features some important logical 
combinations of features will be ignored. In the 
subgroup discovery approach both features can 
build separate subgroup descriptions and - if they 
are relevant - they both have a chance to appear 
in the final set of induced rules. 

Results 

The gene expression domain, described by 
Ramaswamy et al.8 and Gamberger et al.,9 and 
used in our experiments, is a domain with 14 
different cancer classes and 144 training examples 
in total. Eleven classes have 8 examples each, two 
classes have 16 examples and only one has 24 
examples. The examples are described by 16063 
attributes presenting gene expression values. The 
domain can be downloaded from http://www-
genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi . 
There is also an independent test set with 54 
examples. 

Gene expression scanners measure signal intensity 
as continuous values which form an appropriate 
input for data analysis. The problem is that for 
continuous valued attributes there can be 
potentially many boundary values separating the 
classes, resulting in many different features for a 
single attribute. Another possibility is to use 
presence call (signal specificity) values computed 
from measured signal intensity values by the 
Affymetrix GENECHIP software. In all 
experiments we used only the presence call values. 
The presence call has discrete values A (absent), P 
(present), and M (marginal). The M value can be 
interpreted as a do not know state, so for every 
attribute there are only two distinct features 
Attribute = A and Attribute = P generated for 
each attribute. The reason is that features 
presented by conditions like Ai is true (Ai is 
present) or Aj is false (Aj is absent) are very 

natural for human interpretation. A more 
important reason for using GENECHIP presence 
call values (instead of continuous signal intensity 
values) is that the approach can help in avoiding 
overfitting, as the feature space is very strongly 
restricted: instead of many features per attribute 
we have only two. Also, as the measured gene 
expression values are not completely reliable 
(which is reflected by the fact that for the same 
sample measured values may change from one 
measurement to another), some robustness of 
constructed rules is welcome, which is achieved by 
treating the marginal presence call attribute value 
M as a do not know state. The value can neither be 
used to support the relevancy of a feature or a rule, 
nor it can be used for prediction purposes. In this 
way it additionally restricts the hypothesis search 
space. 

The experiments were performed separately for 
each cancer class so that a two-class learning 
problem was formulated where the selected cancer 
class was the target class and the examples of all 
other classes formed non-target class examples. In 
this way the domain was transformed into 14 
inductive learning problems, each with the total of 
144 training examples and with between 8 and 24 
target class examples. For each of these tasks a 
complete procedure consisting of feature 
construction, elimination of irrelevant features, 
and induction of subgroup descriptions in the form 
of rules was repeated. Finally, using the SD 
subgroup discovery algorithm, for each class a 
single rule with maximal q value has been selected, 
for q being the heuristic of the SD algorithm, and g 
being equal 5 in all experiments presented in this 
work. The rules for all 14 tasks consisted of 2-4 
features. The induced rules were tested on the 
independent example set. The procedure was 
repeated for all 14 tasks with the same default 
parameter values and tested on an independent 
test set. The results are presented in Table 1.  

The table presents measured covering properties 
both on the training set and on the test set. 
Although the obtained covering values on the 
training sets are very good, the measured 
prediction quality on the test sets is for many 
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classes very low, significantly lower than those 
reported by Ramaswamy et al.8 For 7 out of 14 
classes the measured precision on the test sets is 
0%. But from the table an interesting and 
important relationship between prediction results 
on the test set and the number of target class 
examples in the training set can be noticed. There 
are very large differences among the results on the 
test sets for various classes (diseases) and the 
precision higher than 50% has been obtained for 
only 5 out of 14 classes. There are only three 
classes (lymphoma, leukemia, and CNS) with 
more than 8 training cases and all of them are 
among those with high precision on the test set, 
while for only two out of eleven classes with 8 
training cases (colorectal and mesothelioma) high 
precision was achieved.  

Table 1 Covering properties on the training and on 
the independent test set for rules induced for 14 classes. 
Sensitivity is |TP|/|P|, specificity is |TN|/|N|, while 
precision is defined as |TP|/(|TP|+|FP|). 

 

The classification properties of rules induced for 
classes with 16 and 24 target class examples 
(lymphoma, leukemia and CNS, presented below) 
are comparable to those reported by Ramaswamy 
et al.,8 while the results on eight small example 
sets with 8 target examples were poor. 

The following rule was found for the lymphoma 
class: 

Lymphoma ← CD20_receptor EXPRESSED AND 
phosphatidylinositol_3_kinase_regulatory_alpha_subu

nit NOT_EXPRESSED. 

For the leukemia class, we have the following rule: 

Leukemia ← KIAA0128_gene EXPRESSED AND 
prostaglandin_d2_synthase_gene NOT 

EXPRESSED. 

The best-scoring rule for the lymphoma class 
contains a feature corresponding to a gene 
routinely used as a marker in diagnosis of 
lymphomas (CD20), while the other part of the 
conjunction (the PI3K gene) seems to be a 
plausible biological co-factor. The best-scoring 
rule for the leukemia class contains a gene whose 
relation to the disease is directly explicable (Septin 
6).  

Lastly, we address the rule found for the CNS 
class: 

CNS ← 
fetus_brain_mRNA_for_membrane_glycoprotein_M6 

EXPRESSED AND 
CRMP1_collapsin_response_mediator_protein_1 

EXPRESSED. 

Conclusion 

For larger training sets the subgroup discovery 
methodology enabled effective construction of 
relevant knowledge. The result, illustrated in 
Figure 1, demonstrates that mean values of rule 
sensitivity and precision are significantly higher for 
three tasks with 16 and 24 target class examples 
than for eleven tasks with only 8 target class 
examples. The mean values for the specificity are 
also higher but they were over 95% already for 
small target class sets. 

The induced rules for lymphoma, leukemia and 
CNS were evaluated by a domain expert and most 
of features used in them were recognized as known 
disease markers for the target class cancers.9 
Expert evaluation proved the relevancy of induced 
rules. Both good prediction results on an 
independent test set as well as expert 
interpretation of induced rules show the 
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effectiveness of described methods for avoiding 
overfitting in scientific discovery tasks. Mostly bad 
results for tasks with only eight target class 
examples demonstrate that the methods can not 
be successful in all situations, especially those with 
a very small number of examples. 

 

Figure 1 Mean values of sensitivity, specificity, and 
precision measured on the independent test set versus 
the number of target class cases in the training set. 

In spite of the number of findings in agreement 
with the bio-medical state-of-the-art, discovery of 
known factors in the considered malignancies was 
not the ultimate goal of this study. The main goal 
of the methodology is the discovery of unknown 
and never thought-off relationships, in a form 
instantly understandable to an expert. The 
presented experiments have succeeded in 
discovering human understandable rules, some of 
which have uncovered interesting regularities in 
the data. 
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